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Basic discrete time optimal control problem

Given T ≤ ∞, f ,F ,U, maximize

T∑
t=0

f (t, x(t), u(t))

x(t) determined by recurrent dynamics

x(t + 1) = F (t, x(t), u(t))

x(0) = x0

u(t) ∈ U for all t

u ∈ Rm - control, x ∈ Rn - (state) response, f , F C 1

differentiable.
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Pontryagin maximum principle

Let (û, x̂)-optimal control/response pair. Then, ∃ constant ψ0 ≥ 0
and solution ψ (not both of them 0) of adjoint equation

ψ(t) = ψ0Dx f ∗(t, x̂(t), û(t))ψ0 + A∗(t)ψ(t + 1)

with A(t) = DxF (t, x̂(t), û(t)) such that

ψ0f (t, x̂(t), û(t)) + ψ(t + 1)∗F (t, x̂(t), û(t))

= max
u∈U

(ψ0f (t, x̂(t), u) + ψ(t + 1)∗F (t, x̂(t), u)).

Notes:

• Condition homogeneous in ψ0, ψ (”soft” MP) so if ψ(0) 6= 0
one can choose ψ0 = 1 (”hard” MP)

• For discrete time problems PMP holds only under extra
convexity assumptions

• ”dynamic” view: u(.) as optimization parameter, x(.) as its
function
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The unconstrained case U = Rm

Let (û, x̂)-optimal control/response pair. Then, ∃ solution of
adjoint equation

ψ(t) = ψ0Dx f ∗(t, x̂(t), û(t)) + A∗(t)ψ(t + 1)

such that

ψ0Duf (t, x̂(t), û(t)) + ψ∗(t + 1)B(t) = 0

with A(t) = DxF (t, x̂(t), û(t)) and B(t) = DuF (t, x̂(t), û(t))
(”maximum condition”)

In case T <∞, ψ0 = 1: standard first order Lagrange extremum
condition, the adjoint variables being the multipliers.
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”Functional” formulation (static view)

(x(.), u(.)) - optimization parameters, initial conditon and
recurrence law - constraints:

Denote x = {x(t)}t ∈ Rn(T+1), u = {u(t)}t ∈ Rm(T+1),A =
{A(t)}t : Rn(T+1) → Rn(T+1), B = {B(t)}t : Rm(T+1) →
Rn(T+1), σx(t) = x(t + 1),F(x,u)(t) = F (x(t), u(t)), (Nemytskii
operator)

J(x,u) =
T∑
t=0

f (t, x(t), u(t)).

Then, OC problem reads:

Maximize J(x,u) subject to the constraints

x(0) = x0

σ(x) − F(x,u) = 0.
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Universal way to obtain 1-st order extremum condition

Assume (x̂, û) optimal and DF (x̂, û) has maximal rank. Then,
along every path in the constraint set emanating from the tested
point and tangent to a vector y, v the minimized function should
not decrease =⇒

DJ(x̂, û)(y, v) = 0 if L(y, v) = 0. (1)

with L(y, v) = (π0y, (σ − A)y − Bv), πty = y(t).

For T <∞ one has

Elementary algebra for T <∞
(1) holds if and only if DJ(x̂, û) ∈ R(L∗), i. e. ∃ψ ∈ Rn(T+1) such
that

DxJ(x̂, û) = ψ0π0 + ψ∗(σ − A) (2)

DuJ(x̂, û) = ψ∗B. (3)

Termwise, (2) is the adjoint equation, (3) the maximum condition.
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John’s optimality condition

If DF (x̂, û) fails to have maximal rank (iff not surjective), the soft
maximum condition

ψ0DxJ(x̂, û) = ψ0π0 + ψ∗(σ − A)

ψ0DuJ(x̂, û) = ψ∗B
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PMP for infinite horizon problems

Continuous time: Pontrjagin et al. 1961: invertible dynamics, soft
PMP

Very few references (2-3) for discrete time:
Blot - Chebbi 2000: assume invertible dynamics
Blot - Hayek 2008: assume contractive dynamics (‖A(t)‖ < 1)
plus convexity → true PMP
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The discounted infinite horizon problem

OC problem with T =∞ and f (t, x , u) = δt f (x , u) (motivation:
economics): x ∈ X = ln∞, u ∈ U = lm∞.

To extend the necessary condition of optimality in the PMP type
one has to prove

1 J : X × U → R is differentiable, its derivative is obtained by
termwise differentiation

2 L : X × U → X has closed range

3 N (L) has closed component

4 the singular component of ψ ∈ (ln∞)∗ = ln1 ⊕ lns vanishes on
local variations.

Proofs of 1 straightforward, 4 was observed earlier by Blot-Hayek,
focus on 2,3.
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Closed range and exponential dichotomy

Theorem

L has closed range provided

x(t + 1) = A(t)x(t)

exhibits exponential dichotomy (⇐⇒ is hyperbolic).
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Exponential dichotomy

x(t + 1) = A(t)x(t) (4)

exhibits exponential dichotomy: X = Rn = X−(t)⊕ X+(t), (4)
reads

x−(t + 1) = A−(t)x−(t)

x+(t + 1) = A+(t)x+(t)

with x±(t) ∈ X±(t);
A+(t) are nonsingular and there are constants C > 0 and
0 < λ < 1 such that |Φ−(t, s + 1)| ≤ Cλt−s for t > s,
|Φ+(t, s + 1)| ≤ Cλs−t for t < s,

Φ−(t, s + 1) = A−(t − 1) . . .A−(s) for t ≥ s

Φ+(t, s + 1) = (A+)−1(t) . . . (A+)−1(s − 1) for t < s.

Recall ln∞ = X, denote Xpm = {X pm(t)}t
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The range I

z ∈ R(L) iff ∃(x,u) bounded such that x(0) = 0 and

z(0) = x(0) (5)

z(t) = x(t + 1)− A(t)x(t)− B(t)u(t) for t ≥ 0 (6)

or, equivalently,

z±(t) = x±(t + 1)− A±(t)x±(t)− B(t)±u(t) for t ≥ 0

Well known (since Perron?): For given z,u, (5),(6) has unique
bounded solution with x−(0) = z−(0) given by

x−(t) = Φ−(t, 0)z−(0) +
t−1∑
0

Φ−(t, s + 1)[z−(s)− B−(s)u(s)]

x+(t) =
∞∑
t

Φ+(t, s + 1)[z+(s)− B+(s)u(s)];

in order to satisfy also x+(0) = z+(0) we need

z+(0) =
∞∑
0

Φ+(0, s + 1)[z+(s)− B+(s)u(s)].

or
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The range II

z+(0)−
∞∑
0

Φ+(0, s + 1)z+(s) =
∞∑
0

B+(s)u(s). (7)

Denote

P = {
∞∑
0

Φ+(0, s + 1)B+(s)u(s) : u ∈ lm∞}.

As subset of Rn, P has finite basis {ξ1, . . . ξd} d ≤ n ; choose
controls uj such that

∞∑
0

Φ+(0, s + 1)B+(s)uj(s) = ξj .

Then, (7) can be satisfied if and only if

z+(0)−
∞∑
0

Φ+(0, s + 1)z+(s) ∈ P,
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The range III

or, there exist α1, . . . , αd such that

z+(0) −
∞∑
0

Φ+(0, s + 1)z+(s) =
∑
j

αjξj

=
∑
j

αj

∞∑
0

Φ+(0, s + 1)B+(s)uj(s); (8)

Denote Z+ ⊂ X+ the linear space of such z+(.). Z+ has finite
codimension and, therefore, is closed.
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The range IV

z = L(x,u) iff z+ ∈ Z+ and

x−(t) = Φ(t, 0)z−(0) +
t−1∑
0

Φ−(t, s + 1)[z−(s)− B−(s)u(s)](9)

x+(t) =
∞∑
t

Φ+(t, s + 1)[z+(s)− B+(s)u(s)]; (10)

where u(t) =
∑

j αjuj(t) with αj determined by (??)

=⇒ R(L) = X− ⊕ Z+. Moreover, the map given by (9), (10)
maps R(L) isomorphically onto a closed complement of N (L).
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Summary

Theorem

Let the system
x(t + 1) = A(t)x(t),

admit exponential dichotomy. Then, the optimal control/response
pair satisfies the (in general soft) termwise maximum condition. In
F (x , u) is linear in both x and u or Z+ = X+ then the hard
condition holds.
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Is dichotomy needed?

Example

dim x = 1, A = 1, B = 0:

x(t + 1) = x(t)

R(L) = {z bounded : z(t) = x(t + 1)− x(t), x bounded}

For ε > 0 small let

zε(0) = 0, zε(t) = t−(1+ε).

For ε→ 0, zε → z0 in l∞. For t > 1 one has
xε(t) =

∑t−1
s=2(s − 1)−(1+ε) so xε ∈ l∞ for ε > 0 but x0 /∈ l∞.
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Concluding remarks

• Dichotomy assumption satisfied if e. g. A(t)→ A,B(t)→ B
for t →∞ and A,B hyperbolic, or if periodic and the period
map hyperbolic

• Adjoint variable ψ(.) ∈ l1 =⇒ ”transversality” condition

• Other spaces of variations simpler because of absence of
singular component of the dual

• Analogy for continuous systems: hard optimality condition

• dichotomy condition appears in early papers by J. Kurzweil on
the ”analytic construction of regulators”

• Refinements possible
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