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Regulated functions

Let X be a Banach space. A function u : [0, 1]→ X is said to
be regulated if there exist the limits u(t+) and u(s−) for any point
t ∈ [0, 1) and s ∈ (0, 1].

The name for this class of functions was introduced by Dieudonné.

The set of discontinuities of a regulated function is at most
countable.

Not all functions with countable set of discontinuity points
are regulated. A simple example is the characteristic function
χ{1,1/2,1/3,...} 6∈ G ([0, 1],R).

Regulated functions are bounded.
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Regulated functions II

When (X , ‖ · ‖) is a Banach algebra with the multiplication ∗
the space G ([0, 1],X ) is a Banach algebra too endowed with the
pointwise product, i.e. (f · g)(x) = f (x) ∗ g(x).

In contrast to the case of continuous functions the
composition of regulated functions need not to be regulated. The
simplest example is a composition (g ◦ f ) of functions
f , g : [0, 1]→ R: f (x) = x · sin 1

x and g(x) = sgn x (both are
regulated), which has no one-side limits at 0. Thus even a
composition of a regulated and continuous functions need not to
be regulated.
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The space G ([0, 1],X ) of regulated functions

The space G ([0, 1],X ) of regulated functions on [0, 1] into the
Banach space X is a Banach space too, endowed with the topology
of uniform convergence, i.e. with the norm ‖u‖∞ = sup

t∈[0,1]
‖u(t)‖.

The space G ([0, 1],X ) is not separable, contains. as a
proper subset, the space of continuous functions C ([0, 1],X ).

It can be represented (as an isometrical isomorphic copy) as a
space of continuous functions on some Hausdorff compact
non-metrizable space K (but different than [0, 1] as G ([0, 1],X ) is
not separable).
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(cf. [Michalak]) Put

K = {(t, 0) : 0 < t ≤ 1}∪{(t, 1) : 0 ≤ t ≤ 1}∪{(t, 2) : 0 ≤ t < 1}

(called the (Alexandroff) arrow space) and equip this set with the
order topology given by the lexicographical order (i.e.,
(s, i) ≺ (t, j) if either s < t, or s = t and i < j ).

The neighborhoods of the point (t, r) in this topology are of
the form

Vb(t, 0) = {(s, r) : b < s < t, r = 0, 1, 2} ∪ {(t, 0)}
Vc(t, 2) = {(s, r) : t < s < c, r = 0, 1, 2} ∪ {(t, 2)}
Vd(t, 1) = {(t, 1)}.
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Isometry

Theorem

([Michalak] for X = R) The Banach spaces G ([0, 1],X )
and C (K,X ) are isometrically isomorphic in the following way:
given functions f ∈ G ([0, 1],X ), and κ(f ) = g ∈ C (K,X ), as
corresponding to each other if

g(t, r) = lims→t− f (s) if r = 0 and t ∈ (0, 1],

g(t, r) = f (t) if r = 1 and t ∈ [0, 1] and

g(t, r) = lims→t+ f (s) if r = 2 and t ∈ [0, 1).
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Compactness in G ([0, 1],X )

Definition

[Fraňková] A set A ⊂ G ([0, 1],X ) is said to be
equi-regulated if for every ε > 0 and every t0 ∈ [0, 1] there exists
δ > 0 such that for all x ∈ A:

i) for any t0 − δ < s < t0: ‖x(s)− x(t−0 )‖ < ε;
ii) for any t0 < τ < t0 + δ: ‖x(τ)− x(t+0 )‖ < ε.

Lemma

[Fraňková] For a set A ⊂ G ([0, 1],Rd) the following
assertions are equivalent:

(i) A ⊂ G ([0, 1],Rd) is relatively compact;
(ii) A is equi-regulated and, for every t ∈ [0, 1],
A(t) = {x(t), x ∈ A} is relatively compact in Rd .
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Compactness in G ([0, 1],X ) via isometry

Theorem

A subset A ⊂ G ([0, 1],X ) is equi-regulated if and only if
κ(A) ⊂ C (K,X ) is equicontinuous in C (K,X ).

Theorem

A subset A ⊂ G ([0, 1],X ) is relatively compact if and only if
κ(A) ⊂ C (K,X ) is relatively compact in C (K,X ).
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Weak compactness in G ([0, 1],X )

Lemma

The dual space of G ([0, 1],X ) is isometrically isomorphic to
the space rcabv(Bo(K),X ∗) of regular countably additive X ∗

valued Borel vector measures on K with bounded variation.

Dobrakov’s Theorem for regulated functions:

Theorem

([MC, KC, B. Satco]) A sequence (xn) of regulated
functions xn ∈ G ([0, 1],X ) is weakly convergent to x in G ([0, 1],X )
if and only if is (norm) bounded and for any t ∈ [0, 1] a sequence
(xn(t)) is weakly convergent to x(t) in X for each t ∈ [0, 1].
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Superposition operators

Theorem

[Michalak] A superposition operator F (x) = f (·, x(·)) maps
G ([0, 1]) into itself if and only if the function f has the following
properties:

1. the limit lim[0,s)×R3(u,y)→(s,x) f (u, y) exists for every
(s, x) ∈ (0, 1]× R,

2. the limit lim(t,1]×R3(u,y)→(s,x) f (u, y) exists for every
(t, x) ∈ [0, 1)× R.

In It means, that for the composition operator (autonomous
superposition operator) F (x)(t) = f (x(t)) maps G ([0, 1]) into
itself iff f is continuous.
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Qualitative indices

Definition

([MC, Metwali]) For a bounded subset A ⊂ G ([0, 1],X ) we
define

ωG
δ (A) = sup

x∈A
sup

t∈(0,1]
sup

s∈(0,1),t−δ<s<t
‖x(s)− x(t−)‖

+ sup
x∈A

sup
t∈[0,1)

sup
s∈(0,1),t<s<t+δ

‖x(s)− x(t+)‖

and then a function

ωG (A) = lim
δ→0

ωG
δ (A)

will be called a (uniform) modulus of equi-regularity of the set A.
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Similarly we define the pointwise modulus of equi-regularity
at the point t0 ∈ (0, 1) by

ωG (A, t0) = lim
δ→0

(
sup
x∈A

sup
s∈(0,1),t0−δ<s<t0

‖x(s)− x(t−0 )‖

+ sup
x∈A

sup
s∈(0,1),t0<s<t0+δ

‖x(s)− x(t+0 )‖

)
.

Lemma

For a subset A of G ([0, 1],X ) we have ωG (A) = 0 if and only
if A is equi-regulated. Consequently, for any relatively compact
subsets B of G ([0, 1],X ) we have ωG (B) = 0.
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Lemma

Let A be a subset of C ([0, 1],X ). Then:

ωG (A) ≤ 2ωC (A).
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To show, that our modulus is, in some sense, uniform we get
the following lemma:

Lemma

Let A be a subset of G ([0, 1],X ). Then

sup
t0∈(0,1)

ωG (A, t0) ≤ ωG (A) ≤ 2 · sup
t0∈(0,1)

ωG (A, t0).
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Measures of noncompactness

Definition

The following function µG is a regular measure of
noncompactness in the space G ([0, 1],X ):

µG (A) = ωG (A) + sup
t∈[0,1]

µX (A(t)),

where µX stands for a measure of noncompactness in X .

Theorem

A bounded subset A of G ([0, 1],X ) is relatively compact if
and only if µG (A) = 0. Consequently, it is relatively compact iff is
equi-regulated and A(t) are relatively compact in X for t ∈ [0, 1].
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Denote by βE the Hausdorff measure of noncompactness in
the space E . Then we able to estimate βG by the above defined
measures.

Theorem

For any subset A of G ([0, 1],X ) we have

βG (A) ≤ ωG (A) + sup
t∈[0,1]

β(A(t))

and
βG (A) ≤ sup

t∈[0,1]
[ωG (A, t) + β(A(t))].
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The space D([0, 1],X )

The space of X -valued functions right-continuous admit finite
left-limits at every point will be denoted by D([0, 1],X ) (càdlàg
functions).

In such a case we are able to simplify the space K in the
construction of an isomorphic copy of D([0, 1],X ).

L = {(t, 0) : 0 < t ≤ 1} ∪ {(t, 1) : 0 ≤ t < 1}

Theorem

The Banach spaces D([0, 1],X ) and C (L,X ) are isometrically
isomorphic in the following way: given functions f ∈ D([0, 1],X ),
and κ(f ) = g ∈ C (L,X ), as corresponding to each other if
g(t, r) = lims→t− f (s) if r = 0 and t ∈ (0, 1], g(t, r) = f (t) if
r = 1 and t ∈ [0, 1).
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Regulated selections

Given a multivalued mapping F : A→ 2X we have several
results related the the question of existence of regulated selections
for F under various regularity conditions for F .

The selection problem, i.e. existence of a mapping
f (t) ∈ F (t) for arbitrary t ∈ A, seems to be is one of the most
interesting problems in the theory of multivalued analysis.
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Some special cases

Lemma

([MC, KC, B. Satco]) Let a multivalued mapping
F : [0, 1]→ 2X has nonempty, bounded, closed values. Then there
exists a selection f : [0, 1]→ X being:

(a) continuous provided F is lower semicontinuous with convex
values,

(b) of bounded ϕ-variation if F has compact values and
F ∈ BVϕ([0, 1], c(X )),

(c) of bounded variation if F has compact values and
F ∈ BV ([0, 1], c(X )),

(d) Riemann measurable if F is lower semicontinuous at almost
every point,

(e) measurable if F is measurable and X is separable.
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Regulated selections

Corollary

If the convex-valued multifunction F ∈ BV ([0, 1], c(X )) is
lower semicontinuous outside the countable set {t1, t2, ...}, then
there exists a regulated selection f (t) ∈ F (t).

Theorem

([MC, KC, B. Satco]) If the multifunction F : [0, 1]→ 2X

with convex values is lower semicontinuous outside the countable
set {t1, t2, ...} and at every point tk (k = 1, 2, ...) there exist lower
limits Lit→t−k

F (t) = {x̃k}, Lit→t+k
F (t) = {xk} (x̃k , xk ∈ X) and

limt→tkdiam(F (t)) = 0, then there exists a regulated selection
f (t) ∈ F (t), t ∈ [0, 1].
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Example

Example

Consider F (t) = {t · sin 1
t } for −1 ≤ t < 0,

F (t) = {3 + t · sin 1
t } for 1 ≥ t > 0 and F (0) = [1, 2]. All the

values of F are compact, F is not lower semicontinuous at t = 0
and F 6∈ BV ([−1, 1],R), but Lit→t− F (t) = {0} 6= ∅ and
Lit→t+ F (t) = {3} 6= ∅. Clearly, F has a regulated selection,
but there is neither continuous nor bounded variation selections
for F . It is unique up to a value at 0. If we expect more
selections, we can modify our example by putting
G (t) = [t · sin 1

t − |t|, t · sin 1
t + |t|] for −1 ≤ t < 0 and an

analogous change for the remaining points. However G has
compact values (not singletons) and satisfies
limt→0 diamG (t) = {0}. Note, that G has many regulated
selections.
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Theorem

([MC, KC, B. Satco]) Let F : [0, 1]→ cl(X ) be a
convex-valued multifunction such that at each point t0 ∈ [0, 1] the
sets F (t0−) = Lit→t0−F (t), F (t0+) = Lit→t0+F (t) are nonempty
and they satisfy the following conditions:

i) F (t0−) ⊂ Lit→t0−F (t−) ∩ Lit→t0−F (t+);

ii) F (t0+) ⊂ Lit→t0+F (t−) ∩ Lit→t0+F (t+).

Then F has at least one regulated selection.
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The use of Hausdorff left and right limits instead of
Kuratowski inferior limit allows one to get one more selection
result.

For a closed, bounded and convex-valued multifunction
F : [0, 1]→ 2X , define the left limit FH(t0±) = Limt→t0±F (t) in
the sense of Pompeiu-Hausdorff distance.

Theorem

([MC, KC, B. Satco]) Let F : [0, 1]→ 2X be a closed and
convex-valued multifunction such that at each point t0 ∈ [0, 1]
there exist limits FH(t0−),FH(t0+) and they are nonempty. Then
F has at least one regulated selection.
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Thank you!
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Professor Jaroslav Kurzweil

HAPPY 90th BIRTHDAY !!!
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