Coincidence of Pettis and McShane integrability

Marián Fabian

Mathematical Institute, Czech Academy of Sciences, Prague

Marián Fabian Coincidence of Pettis and McShane integrability

Coincidence of Pettis and McShane integrability

Marián Fabian

Mathematical Institute, Czech Academy of Sciences, Prague

Blahopřání k životnímu jubileu profesora Jaroslava Kurzweila May 13, 2016

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

f is called measurable if it is a pointwise almost everywhere limit of a sequence of step-functions.

f is called measurable if it is a pointwise almost everywhere limit of a sequence of step-functions.

f is called scalarly null if for every $x^* \in X^*$ the composition $x^* \circ f$ is a Lebesgue-null function.

f is called measurable if it is a pointwise almost everywhere limit of a sequence of step-functions.

f is called scalarly null if for every $x^* \in X^*$ the composition $x^* \circ f$ is a Lebesgue-null function.

We say that *f* is Pettis integrable on [0,1] if for every $x^* \in X^*$ the composition $x^* \circ f$ is Lebesgue inegrable and for every measurable set $E \in [0, 1]$ there is $x_E \in X$ such that $x^*(x_E) = \int_E x^*(f(t)) d\lambda(t)$ for every $x^* \in X^*$.

f is called measurable if it is a pointwise almost everywhere limit of a sequence of step-functions.

f is called scalarly null if for every $x^* \in X^*$ the composition $x^* \circ f$ is a Lebesgue-null function.

We say that *f* is Pettis integrable on [0,1] if for every $x^* \in X^*$ the composition $x^* \circ f$ is Lebesgue inegrable and for every measurable set $E \in [0, 1]$ there is $x_E \in X$ such that $x^*(x_E) = \int_E x^*(f(t)) d\lambda(t)$ for every $x^* \in X^*$.

We say that *f* is Bochner integrable on [0,1] if *f* is measurable and the function $[0, 1] \ni t \mapsto ||f(t)|| \in \mathbb{R}$ is Lebesgue integrable.

3

We say that *f* is McShane integrable on [0,1] if there exists $x \in X$ such that for every $\varepsilon > 0$ there are $\eta \in (0, 1)$ and a gauge function δ assigning to every $t \in [0, 1]$ an open subset of $t \in \delta(t) \subset [0, 1]$ such that:

We say that *f* is McShane integrable on [0,1] if there exists $x \in X$ such that for every $\varepsilon > 0$ there are $\eta \in (0, 1)$ and a gauge function δ assigning to every $t \in [0, 1]$ an open subset of $t \in \delta(t) \subset [0, 1]$ such that: for every $r \in \mathbb{N}$, for every points $t_1, \ldots, t_r \in [0, 1]$, and for every pairwise disjoint measurable subsets E_1, \ldots, E_r of [0, 1], such that $\lambda(E_1 \cup \cdots \cup E_r) > \eta$, and $\delta(t_j) \supset E_j, \ j = 1, \ldots, r$, we have $\|\sum_{j=1}^r \lambda(E_j)f(t_j) - x\| < \varepsilon$;

We say that *f* is McShane integrable on [0,1] if there exists $x \in X$ such that for every $\varepsilon > 0$ there are $\eta \in (0, 1)$ and a gauge function δ assigning to every $t \in [0, 1]$ an open subset of $t \in \delta(t) \subset [0, 1]$ such that: for every $r \in \mathbb{N}$, for every points $t_1, \ldots, t_r \in [0, 1]$, and for every pairwise disjoint measurable subsets E_1, \ldots, E_r of [0, 1], such that $\lambda(E_1 \cup \cdots \cup E_r) > \eta$, and $\delta(t_j) \supset E_j$, $j = 1, \ldots, r$, we have $\|\sum_{j=1}^r \lambda(E_j)f(t_j) - x\| < \varepsilon$; this *x* is then called the McShane integral of *f* over [0, 1].

A D A D A D A

We say that *f* is McShane integrable on [0,1] if there exists $x \in X$ such that for every $\varepsilon > 0$ there are $\eta \in (0, 1)$ and a gauge function δ assigning to every $t \in [0, 1]$ an open subset of $t \in \delta(t) \subset [0, 1]$ such that: for every $r \in \mathbb{N}$, for every points $t_1, \ldots, t_r \in [0, 1]$, and for every pairwise disjoint measurable subsets E_1, \ldots, E_r of [0, 1], such that $\lambda(E_1 \cup \cdots \cup E_r) > \eta$, and $\delta(t_j) \supset E_j, j = 1, \ldots, r$, we have $\|\sum_{j=1}^r \lambda(E_j)f(t_j) - x\| < \varepsilon$; this *x* is then called the McShane integral of *f* over [0, 1].

We say that *f* is Kurzweil-Henstock integrable on [0,1] if, in the definition of McShane integrability, we add that $E_j \ni t_j, j = 1, ..., r$.

(同) (三) (三) (

3

Marián Fabian Coincidence of Pettis and McShane integrability

(日)

= 990

If f is Bochner integrable over [0, 1], then it is McShane integrable over [0, 1].

Marián Fabian Coincidence of Pettis and McShane integrability

Э.

< 回 > < 三 > < 三 >

If f is Bochner integrable over [0, 1], then it is McShane integrable over [0, 1].

If f is Mcshane integrable over [0, 1], then it is Pettis integrable over [0, 1].

If f is Bochner integrable over [0, 1], then it is McShane integrable over [0, 1].

If f is Mcshane integrable over [0, 1], then it is Pettis integrable over [0, 1].

Every Mcshane integrable f over [0, 1] is Kurzweil-Henstock integrable over [0, 1].

If f is Bochner integrable over [0, 1], then it is McShane integrable over [0, 1].

If f is Mcshane integrable over [0, 1], then it is Pettis integrable over [0, 1].

Every Mcshane integrable f over [0, 1] is Kurzweil-Henstock integrable over [0, 1].

If f is both Henstock-Kurzweil and Pettis integrable over [0, 1]*, it is Mcshane integrable over* [0, 1]*.*

If f is Bochner integrable over [0, 1], then it is McShane integrable over [0, 1].

If f is Mcshane integrable over [0, 1], then it is Pettis integrable over [0, 1].

Every Mcshane integrable f over [0, 1] is Kurzweil-Henstock integrable over [0, 1].

If f is both Henstock-Kurzweil and Pettis integrable over [0, 1], it is Mcshane integrable over [0, 1].

If f is scalarly null, then it is Pettis integrable, with integral equal to 0.

X is called Hilbert generated provided that there are a Hilbert space Y and a linear bounded mapping from Y into X whose range is dense in X.

X is called Hilbert generated provided that there are a Hilbert space Y and a linear bounded mapping from Y into X whose range is dense in X.

A compact space is called Eberlein (uniform Eberlein) if it can be continuously injected into a Banach space (into a Hilbert space) provided with the weak topology.

X is called Hilbert generated provided that there are a Hilbert space Y and a linear bounded mapping from Y into X whose range is dense in X.

A compact space is called Eberlein (uniform Eberlein) if it can be continuously injected into a Banach space (into a Hilbert space) provided with the weak topology.

A compact space K is Eberlein (uniform Eberlein) if and only if the corresponding Banach space C(K) is weakly compactly generated (Hilbert generated)

Marián Fabian Coincidence of Pettis and McShane integrability

æ

If K is a uniform Eberlein compact space, then every Pettis integrable function $f : [0, 1] \longrightarrow C(K)$ is already McShane integrable.

A B A A B A

If K is a uniform Eberlein compact space, then every Pettis integrable function $f : [0, 1] \longrightarrow C(K)$ is already McShane integrable.

In [APR], A. Avilés, G. Plebanek, and J. Rodríguez construct

If K is a uniform Eberlein compact space, then every Pettis integrable function $f : [0, 1] \longrightarrow C(K)$ is already McShane integrable.

In [APR], A. Avilés, G. Plebanek, and J. Rodríguez construct

A compact space which is Eberlein but not uniform Eberlein, and a scalarly null (hence Pettis integrable) function $f : [0, 1] \longrightarrow C(K)$ that is not McShane integrable.

If K is a uniform Eberlein compact space, then every Pettis integrable function $f : [0, 1] \longrightarrow C(K)$ is already McShane integrable.

In [APR], A. Avilés, G. Plebanek, and J. Rodríguez construct

A compact space which is Eberlein but not uniform Eberlein, and a scalarly null (hence Pettis integrable) function $f : [0, 1] \longrightarrow C(K)$ that is not McShane integrable.

Theorem 1

(Leiderman-Sokolov, Argyros-Farmaki) Let Δ be an uncountable set and consider a family $\mathcal{F} \subset \Delta^{\leq \omega}$ such that $K := \{ 1_A : A \in \mathcal{F} \}$ is a compact space. Then K is Eberlein (uniform Eberlein) if and only if

Theorem 1

(Leiderman-Sokolov, Argyros-Farmaki) Let Δ be an uncountable set and consider a family $\mathcal{F} \subset \Delta^{\leq \omega}$ such that $K := \{ 1_A : A \in \mathcal{F} \}$ is a compact space. Then K is Eberlein (uniform Eberlein) if and only if there is a

partition $\Delta = \bigcup_{n=1}^{\infty} \Delta_n$ such that

Theorem 1

(Leiderman-Sokolov, Argyros-Farmaki) Let Δ be an uncountable set and consider a family $\mathcal{F} \subset \Delta^{\leq \omega}$ such that $K := \{ 1_A : A \in \mathcal{F} \}$ is a compact space. Then K is Eberlein (uniform Eberlein) if and only if there is a

partition $\Delta = \bigcup_{n=1}^{\infty} \Delta_n$ such that

 $\forall A \in \mathcal{F} \ \forall n \in \mathbb{N} \ \#(A \cap \Delta_n) < \omega \ (< n).$

From now on $\Delta := [0, 1]$ and we consider only compact spaces of form $K_{\mathcal{F}} := \{ 1_{\mathcal{A}} : \ \mathcal{A} \in \mathcal{F} \}$ where $\mathcal{F} \subset \Delta^{\leq \omega}$

Marián Fabian Coincidence of Pettis and McShane integrability

We say that $\mathcal{F} \subset [0, 1]^{\leq \omega}$ is MC-filling if there exists $\varepsilon \in (0, 1)$ such that

We say that $\mathcal{F} \subset [0, 1]^{\leq \omega}$ is MC-filling if there exists $\varepsilon \in (0, 1)$ such that for every partition $[0, 1] = \bigcup_{i=1}^{\infty} \Omega_i$ there is $A \in \mathcal{F}$ such that

$$\lambda^* \big(\bigcup \big\{ \Omega_m : \ m \in \mathbb{N} \ \text{ and } A \cap \Omega_m \neq \emptyset \big\} \big) > \varepsilon.$$

We say that $\mathcal{F} \subset [0, 1]^{\leq \omega}$ is MC-filling if there exists $\varepsilon \in (0, 1)$ such that for every partition $[0, 1] = \bigcup_{i=1}^{\infty} \Omega_i$ there is $A \in \mathcal{F}$ such that

$$\lambda^* \big(\bigcup \big\{ \Omega_m : \ m \in \mathbb{N} \ \text{ and } A \cap \Omega_m \neq \emptyset \big\} \big) > \varepsilon.$$

Proposition 2

If $\mathcal{F} \subset [0, 1]^{\leq \omega}$ is such that the corresponding $K_{\mathcal{F}}$ is a uniform Eberlein compact space, then \mathcal{F} is not MC-filling.

Proposition 3

If $\mathcal{F} \subset [0,1]^{\leq \omega}$ is such that the corresponding $K_{\mathcal{F}}$ is a compact space, then \mathcal{F} is not *MC*-filling if and only if

Proposition 3

If $\mathcal{F} \subset [0,1]^{\leq \omega}$ is such that the corresponding $K_{\mathcal{F}}$ is a compact space, then \mathcal{F} is not MC-filling if and only if the evaluation mapping $e : [0,1] \longrightarrow C(K_{\mathcal{F}})$ defined by

$$e(t)(1_A) = 1_A(t), \ A \in \mathcal{F}, \ t \in [0, 1],$$

Proposition 3

If $\mathcal{F} \subset [0,1]^{\leq \omega}$ is such that the corresponding $K_{\mathcal{F}}$ is a compact space, then \mathcal{F} is not MC-filling if and only if the evaluation mapping $e : [0,1] \longrightarrow C(K_{\mathcal{F}})$ defined by

$$e(t)(1_A) = 1_A(t), \ A \in \mathcal{F}, \ t \in [0, 1],$$

is McShane integrable, with integral equal to 0.

Marián Fabian Coincidence of Pettis and McShane integrability

(日) (四) (日) (日) (日)

E 99€

Benyamini-Starbird simplified by Argyros-Farmaki and still a bit tuned

Э.

∃ ► < ∃ ►</p>

Benyamini-Starbird simplified by Argyros-Farmaki and still a bit tuned

Leiderman-Sokolov (Siberian) a bit tuned

Benyamini-Starbird simplified by Argyros-Farmaki and still a bit tuned

Leiderman-Sokolov (Siberian) a bit tuned

Avilés-Plebanek-Rodriguez method of inflating Eberlein not uniformly Eberlein compact spaces

Let Γ be a given uncountable set with $\#\Gamma \leq \mathbf{c}$. By a Γ -partition of the interval [0, 1] we mean the equality $[0, 1] = \bigcup_{\gamma \in \Gamma} Z_{\gamma}$ where the sets Z_{γ} 's are pairwise disjoint and moreover $\lambda^*(Z_{\gamma}) = 1$ for every $\gamma \in \Gamma$;

Let Γ be a given uncountable set with $\#\Gamma \leq \mathbf{c}$. By a Γ -partition of the interval [0, 1] we mean the equality $[0, 1] = \bigcup_{\gamma \in \Gamma} Z_{\gamma}$ where the sets Z_{γ} 's are pairwise disjoint and moreover $\lambda^*(Z_{\gamma}) = 1$ for every $\gamma \in \Gamma$;

The existence of Γ -partitions is proved, for instance, in [F, 419I].

Let Γ be a given uncountable set with $\#\Gamma \leq \mathbf{c}$. By a Γ -partition of the interval [0, 1] we mean the equality $[0, 1] = \bigcup_{\gamma \in \Gamma} Z_{\gamma}$ where the sets Z_{γ} 's are pairwise disjoint and moreover $\lambda^*(Z_{\gamma}) = 1$ for every $\gamma \in \Gamma$;

The existence of Γ -partitions is proved, for instance, in [F, 419I].

From now on, fix one Γ -partition $[0, 1] = \bigcup_{\gamma \in \Gamma} Z_{\gamma}$. Define $\varphi : [0, 1] \longrightarrow \Gamma$ by $\varphi \upharpoonright_{Z_{\gamma}} \equiv \gamma$ for every $\gamma \in \Gamma$.

э.

Facts.

Consider a weakly compact set $K \subset c_0(\Gamma)$ and let $H \subset c_0([0, 1])$ be an adequate inflation of it. Then

A ►

Facts.

Consider a weakly compact set $K \subset c_0(\Gamma)$ and let $H \subset c_0([0, 1])$ be an adequate inflation of it. Then (i) The set H is weakly compact (equivalently, H is norm-bounded and pointwise compact).

Facts.

Consider a weakly compact set $K \subset c_0(\Gamma)$ and let $H \subset c_0([0, 1])$ be an adequate inflation of it. Then (i) The set H is weakly compact (equivalently, H is norm-bounded and pointwise compact).

(ii) H, in the pointwise topology, is a uniform Eberlein compact set if and only if so is K.

(Main) Let Γ be an uncountable set with $\#\Gamma \leq c$. Let $K \subset c_0(\Gamma)$ be a weakly compact set such that it is not uniform Eberlein.

(Main) Let Γ be an uncountable set with $\#\Gamma \leq \mathbf{c}$. Let $K \subset c_0(\Gamma)$ be a weakly compact set such that it is not uniform Eberlein. Let $H \subset c_0([0, 1])$ be the adequate inflation of K subordinated to a Γ -partition $[0, 1] = \bigcup_{\gamma \in \Gamma} Z_{\gamma}$.

(Main) Let Γ be an uncountable set with $\#\Gamma \leq \mathbf{c}$. Let $K \subset c_0(\Gamma)$ be a weakly compact set such that it is not uniform Eberlein. Let $H \subset c_0([0, 1])$ be the adequate inflation of K subordinated to a Γ -partition $[0, 1] = \bigcup_{\gamma \in \Gamma} Z_{\gamma}$. Then there exists a scalarly null (hence Pettis integrable) function $f : [0, 1] \longrightarrow C(H)$ which is not McShane integrable.

(Main) Let Γ be an uncountable set with $\#\Gamma \leq \mathbf{c}$. Let $K \subset c_0(\Gamma)$ be a weakly compact set such that it is not uniform Eberlein. Let $H \subset c_0([0, 1])$ be the adequate inflation of K subordinated to a Γ -partition $[0, 1] = \bigcup_{\gamma \in \Gamma} Z_{\gamma}$. Then there exists a scalarly null (hence Pettis integrable) function $f : [0, 1] \longrightarrow C(H)$ which is not McShane integrable. Moreover, f([0, 1]) is linearly dense in C(H).

(Main) Let Γ be an uncountable set with $\#\Gamma \leq \mathbf{c}$. Let $K \subset c_0(\Gamma)$ be a weakly compact set such that it is not uniform Eberlein. Let $H \subset c_0([0, 1])$ be the adequate inflation of K subordinated to a Γ -partition $[0, 1] = \bigcup_{\gamma \in \Gamma} Z_{\gamma}$. Then there exists a scalarly null (hence Pettis integrable) function $f : [0, 1] \longrightarrow C(H)$ which is not McShane integrable. Moreover, f([0, 1]) is linearly dense in C(H).

Question. Is it possible to take H := K in the theorem above?

- A. Avilés, G. Plebanek, J. Rodríguez, *The McShane* integral in weakly compactly generated spaces, J. Functional Anal. **259** (2010), 27762792
- R. Deville, J. Rodríguez, *Integration in Hilbert generated Banach spaces* Israel J. Math. **177** (2010), 285–306
- M. Fabian, On the coincidence of the Pettis and McShane integrals, to appear in Czechoslovak Math. J. 65 (140) (2015), no. 1, 83–106.

- A. Avilés, G. Plebanek, J. Rodríguez, *The McShane* integral in weakly compactly generated spaces, J. Functional Anal. **259** (2010), 27762792
- R. Deville, J. Rodríguez, *Integration in Hilbert generated Banach spaces* Israel J. Math. **177** (2010), 285–306
- M. Fabian, On the coincidence of the Pettis and McShane integrals, to appear in Czechoslovak Math. J. 65 (140) (2015), no. 1, 83–106.
- ► Y. Benyamini, T. Starbird, *Embedding weakly compact sets into Hilbert space*, Israel J. Math. 23 (1976), 137–141.
- M. Fabian, G. Godefroy, V. Montesinos, V. Zizler, Inner characterizations of weakly compactly generated Banach spaces and their relatives, J. Math. Anal. Appl. 297 (2004), 419–455.

< 回 > < 回 > < 回 >

- V. Farmaki, The structure of Eberlein, uniformly Eberlein and Talagrand compact spaces in Σ(ℝ^Γ), Fundamenta Math. **128** (1987), 15–28.
- D.H. Fremlin, *Measure theory, Vol 4.* Torres Fremlin, Colchester, 2006, Topological measure spaces. Part I, II, Corrected second printing of the 2003 original.
- A.G. Leiderman, G.A. Sokolov, Adequate families of sets and Corson compacts, Comment. Math. Univ. Carolinae 25 (1984), 233–245.

THANK YOU

Marián Fabian Coincidence of Pettis and McShane integrability

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

= 990

THANK YOU fabian@math.cas.cz

Marián Fabian Coincidence of Pettis and McShane integrability

э

∃ ► < ∃ ►</p>