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Blahopřánı́ k životnı́mu jubileu
profesora Jaroslava Kurzweila

May 13, 2016
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Let (X , ‖ · ‖) be a Banach space, f : [0, 1] −→ X a function
and let λ denote the Lebesgue measure.

f is called measurable if it is a pointwise almost
everywhere limit of a sequence of step-functions.

f is called scalarly null if for every x∗ ∈ X ∗ the composition
x∗◦f is a Lebesgue-null function.

We say that f is Pettis integrable on [0,1] if for every
x∗ ∈ X ∗ the composition x∗◦f is Lebesgue inegrable and
for every measurable set E ∈ [0, 1] there is xE ∈ X such
that x∗(xE) =

∫
E x∗

(
f (t)

)
dλ(t) for every x∗ ∈ X ∗.

We say that f is Bochner integrable on [0,1] if f is
measurable and the function [0, 1] 3 t 7−→ ‖f (t)‖ ∈ R is
Lebesgue integrable.
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Mari án Fabian Coincidence of Pettis and McShane integrability



Let (X , ‖ · ‖) be a Banach space, f : [0, 1] −→ X a function
and let λ denote the Lebesgue measure.

f is called measurable if it is a pointwise almost
everywhere limit of a sequence of step-functions.

f is called scalarly null if for every x∗ ∈ X ∗ the composition
x∗◦f is a Lebesgue-null function.

We say that f is Pettis integrable on [0,1] if for every
x∗ ∈ X ∗ the composition x∗◦f is Lebesgue inegrable and
for every measurable set E ∈ [0, 1] there is xE ∈ X such
that x∗(xE) =

∫
E x∗

(
f (t)

)
dλ(t) for every x∗ ∈ X ∗.

We say that f is Bochner integrable on [0,1] if f is
measurable and the function [0, 1] 3 t 7−→ ‖f (t)‖ ∈ R is
Lebesgue integrable.
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We say that f is McShane integrable on [0,1] if there
exists x ∈ X such that for every ε > 0 there are η ∈ (0, 1)
and a gauge function δ assigning to every t ∈ [0, 1] an
open subset of t ∈ δ(t) ⊂ [0, 1] such that:

for every r ∈ N, for every points t1, . . . , tr ∈ [0, 1], and for
every pairwise disjoint measurable subsets E1, . . . , Er of
[0, 1], such that λ

(
E1 ∪ · · · ∪ Er

)
> η, and

δ(tj) ⊃ Ej , j = 1, . . . , r , we have
∥∥∑r

j=1 λ(Ej)f (tj)− x
∥∥ < ε;

this x is then called the McShane integral of f over [0, 1].

We say that f is Kurzweil-Henstock integrable on [0,1] if,
in the definition of McShane integrability, we add that
Ej 3 tj , j = 1, . . . , r .
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Well known:

If f is Bochner integrable over [0, 1], then it is McShane
integrable over [0, 1].

If f is Mcshane integrable over [0, 1], then it is Pettis
integrable over [0, 1].

Every Mcshane integrable f over [0, 1] is Kurzweil-
Henstock integrable over [0, 1].

If f is both Henstock-Kurzweil and Pettis integrable over
[0, 1], it is Mcshane integrable over [0, 1].

If f is scalarly null, then it is Pettis integrable, with integral
equal to 0.
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A Banach space X is called weakly compactly generated
if it contains a weakly compact set which is linearly dense
in it.

X is called Hilbert generated provided that there are a
Hilbert space Y and a linear bounded mapping from Y
into X whose range is dense in X .

A compact space is called Eberlein (uniform Eberlein) if it
can be continuously injected into a Banach space (into a
Hilbert space) provided with the weak topology.

A compact space K is Eberlein (uniform Eberlein) if and
only if the corresponding Banach space C(K ) is weakly
compactly generated (Hilbert generated)
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In [DR], R. Deville and J. Rodrı́guez prove that

If K is a uniform Eberlein compact space, then every
Pettis integrable function f : [0, 1] −→ C(K ) is already
McShane integrable.

In [APR], A. Avilés, G. Plebanek, and J. Rodrı́guez
construct

A compact space which is Eberlein but not uniform
Eberlein, and a scalarly null (hence Pettis integrable)
function f : [0, 1] −→ C(K ) that is not McShane integrable.
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Theorem 1
(Leiderman-Sokolov, Argyros-Farmaki)Let ∆ be an
uncountable set and consider a family F ⊂ ∆≤ω such that
K :=

{
1A : A ∈ F

}
is a compact space. Then K is

Eberlein (uniform Eberlein) if and only if

there is a

partition ∆ =
⋃∞

n=1 ∆n such that

∀ A ∈ F ∀ n ∈ N #(A ∩∆n) < ω (< n).
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From now on ∆ := [0, 1] and we consider only compact
spaces of form KF :=

{
1A : A ∈ F

}
where F ⊂ ∆≤ω

if not
even F ⊂ ∆<ω.

We say that F ⊂ [0, 1]≤ω is MC-filling if there exists
ε ∈ (0, 1) such that for every partition [0, 1] =

⋃∞
i=1 Ωi

there is A ∈ F such that

λ∗
( ⋃ {

Ωm : m ∈ N and A ∩ Ωm 6= ∅
})

> ε.

Proposition 2
If F ⊂ [0, 1]≤ω is such that the corresponding KF is a
uniform Eberlein compact space, then F is not MC-filling.

Mari án Fabian Coincidence of Pettis and McShane integrability



From now on ∆ := [0, 1] and we consider only compact
spaces of form KF :=

{
1A : A ∈ F

}
where F ⊂ ∆≤ω if not

even F ⊂ ∆<ω.

We say that F ⊂ [0, 1]≤ω is MC-filling if there exists
ε ∈ (0, 1) such that for every partition [0, 1] =

⋃∞
i=1 Ωi

there is A ∈ F such that

λ∗
( ⋃ {

Ωm : m ∈ N and A ∩ Ωm 6= ∅
})

> ε.

Proposition 2
If F ⊂ [0, 1]≤ω is such that the corresponding KF is a
uniform Eberlein compact space, then F is not MC-filling.
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Proposition 3
If F ⊂ [0, 1]≤ω is such that the corresponding KF is a
compact space, then F is not MC-filling if and only if

the evaluation mapping e : [0, 1] −→ C
(
KF

)
defined by

e(t)(1A) = 1A(t), A ∈ F , t ∈ [0, 1],

is McShane integrable, with integral equal to 0.
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Counterexamples

Benyamini-Starbird simplified by Argyros-Farmaki and still
a bit tuned

Leiderman-Sokolov (Siberian) a bit tuned

Avilés-Plebanek-Rodriguez method of inflating Eberlein
not uniformly Eberlein compact spaces
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Let Γ be a given uncountable set with #Γ ≤ c. By a
Γ-partition of the interval [0, 1] we mean the equality
[0, 1] =

⋃
γ∈Γ Zγ where the sets Zγ ’s are pairwise disjoint

and moreover λ∗(Zγ) = 1 for every γ ∈ Γ;

The existence of Γ-partitions is proved, for instance, in [F,
419I].

From now on, fix one Γ-partition [0, 1] =
⋃

γ∈Γ Zγ. Define
ϕ : [0, 1] −→ Γ by ϕ�Zγ≡ γ for every γ ∈ Γ.
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Facts.
Consider a weakly compact set K ⊂ c0(Γ) and let
H ⊂ c0([0, 1]) be an adequate inflation of it. Then

(i) The set H is weakly compact (equivalently, H is
norm-bounded and pointwise compact).

(ii) H, in the pointwise topology, is a uniform Eberlein
compact set if and only if so is K .
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Theorem 4
(Main) Let Γ be an uncountable set with #Γ ≤ c. Let
K ⊂ c0(Γ) be a weakly compact set such that it is not
uniform Eberlein.

Let H ⊂ c0([0, 1]) be the adequate
inflation of K subordinated to a Γ-partition [0, 1] =

⋃
γ∈Γ Zγ.

Then there exists a scalarly null (hence Pettis integrable)
function f : [0, 1] −→ C(H) which is not McShane
integrable. Moreover, f ([0, 1]) is linearly dense in C(H).

Question. Is it possible to takeH := K in the theorem above?
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Mari án Fabian Coincidence of Pettis and McShane integrability



I A. Avilés, G. Plebanek, J. Rodrı́guez, The McShane
integral in weakly compactly generated spaces, J.
Functional Anal. 259 (2010), 27762792
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