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The Kurzweil integral
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Example:

Consider F : [0,1] — R given by

2 1

t<sin wE
F(t) = t

0, t=0.

0<t<1,

Assertion:
3 F'(t), vt € [0,1].

Let f = F'. Then

o IS NOT Lebesgue integrable.

e 7 IS Kurzweil-Henstock integrable (= Perron integrable)
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Tagged Divisions

A tagged division of [a, b] C R is a finite collection of

point-interval pairs (77, [si—1, Si]), with
a=s9<s51<...<sx=b and 7€ [s_1,s],

fori=1,2,...,|D|.

Gauges

| \

Given a function 0 : [a, b] — (0, 4+00) (called gauge of [a, b]), a

tagged-division D = (7}, [si_1, si]) is 0-fine, whenever

[si—1,si] C (7i = (7), 7i + 6(77)),

fori=1,2,...,|D|.

v
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The Kurzweil Integral

A function U (7, t) : [a, b] X [a, b] — X is Kurzweil integrable over
[a, b], if 31 | € X such that V € > 0, 3 a gauge ¢ of [a, b] such that
V o-fine tagged-division d = (7}, [si—1, si]) of [a, b],

b
In this case, | = / DU (1, t).
a

<e.

Z U (7i,si) — U(7i,si-1)] — |

v

Given a gauge 0 of [a, b], there is a d-fine tagged-division of [a, b].
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The Perron-Stieltjes integral

Let X be a Banach space and let F: [a, b] — L(X) and
g: [a, b] = X be s.t.

U(r,t) = F(t)g().

Then the integral

b b

| pute. = [ olF0e()

which is defined by means of sums of the form

> [F(t) — F(tim1)lg(m)
can be rewritten as )

| dFG)ets)



Generalized ODEs
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Let X be a Banach space, O C X be open [a, f] C [a,+00) and
Q=0 x[a, ]

Definition
A function x : [a, 5] — X is a solution on [«, 5] of the GODE

dx

== = DF(x,t
dT (X7 )’

whenever (x(t),t) € QV t € [o, f] and

x(v) = x(v) + /V DF(x(7), t), v, v € [a, [].

5
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Example

Let r: [0,1] — R be a continuous function which is nowhere

differentiable in [0, 1] and G(x, t) = r(t). Then

/ " DG(x(7), ) = / " Dr(t) = H(s2) — r(s1).

S1 S1

Moreover, x: [0,1] — R defined by

x(s) =r(s), se]0,1]
is a solution of the GODE

dx

e DG(x,t) = Dr(t).
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Impulsive measure FDEs

as Measure FDEs
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Consider the impulsive measure functional differential equation

x(v) — x(u) = /V f(xs,s)dg(s), u,v e Jy, ke {0,...,m},
ATx(te) = x(t7) — x(tx) = h(x(tk)), k € {1,...,m},
Xty = ¢,

where

@ 0 >0, g is a left-continuous function;
@ t1,...,tn are impulse moments, typ < t) < -+ < t, < tg + 0;

e Jo = [to, t1], Jk = (tk, tk+1] for k € {1,...,m —1}, and
Im = (tma to + U];

o I :R" - R".
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Remark:

The integral
[ fls)de(s). v e s

does not change if we replace g by a function g such that g — g is
a constant function on Jj (this follows easily from the definition of

the Kurzweil-Henstock-Stieltjes integral).
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Suppose
@ g is left continuous and continuous at ti,..., ty.
Then
t
ot »—>/ f(xs,s) dg(s) is continuous
to

and our problem

x(t) = x(to) + /t f(xs,5) dg(s) + > Ik(x(tk))He, (2),

to k=1

Xto = ¢7

iss.t. ATx(te) = I(x(tk)), ¥V k € {1,...,m}.
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Lemma - Federson, Mesquita, Slavik

Let f : [a,b] = R, g € G ([a, b],R) be continuous at t1,...,tm,

where a< t; <t <--- < tn<b. Let F,g: [a, b] — R be s.t.
o f(t)=f(t),Vte[abl\{ty..., tm}
@ g — g is constant in [a, t1], (t1, t2],. .., (tm—1, tm], (tm, b].

Then
b b
= / fdg <+<— 4 / f dg;
a a

b b
o/ fdgr:/ fdg+ > f(t)ATE(t).
a a ke{1,...,m},
te<b
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Theorem - Federson, Mesquita, Slavik

lettp <ty < - <tpm<tgto, BCR" I,....l,: B—R",
P = G([-r,0],B), f : Px|[to, to+o] — R", g € G~ ([to, to+0],R)
be continuous at ty, ..., ty,. Define

- f(y,t), t € [to, to+0\{t1,-.-,tm},
f(y, t) =
Ik(y(0)), t =ty paraalgum k € {1,..., m}.

Let ci,...,cm € R and define g : [to, to + 0] — R by

g(t), t € [to, t1],

g(t) =1 g(t)+ck, te (ty, txy1] paraalgum ke {1,...,m—1}

g(t)+cm, tE (tm to+ o]
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Theorem - continuation

Then x € G([to — r, to + o], B) is a solution of

x(t) = x(to)+ / F(xs,5) da(s) + 3 h(x(t) ey (2),

fo k=1

Xto — ¢7

iff x is a solution of
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Measure neutral FDEs

as GODEs
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Consider measure neutral functional differential equations (we

write measure NFDEs, for short) of the form

y(t) = y(0)+ /0 (e, 5)dg(s)
0
+ / dlju(t, )]y (t + 6) /

—r —

0
d[1(0, 0)lp(6)-

where

o yvi(0)=y(t+80),0¢c[-r0] ¢c G(-r,0,R"), r>0;
@ R xR —R™" (s left continuous on 6 € (—r,0),
e pis BV in 0 € [~r,0], with varjg gy pp — 0 as s = 0;

o u(t,0)=0,02>0, u(t,0) =p(t,—r), 0 < —r.
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Theorem - Federson, Frasson, Mesquita, Tacuri

Consider B, = {z € G([to — r,to + o], R"); ||z — X|| < c}, with
c>1,¢€Pc={x; x€Be, t€|tto+0]}, g:[to,t0+ 0] =
R nondecreasing and (H1), (H2), (H3), (H4), (H5) fulfilled. Let
G : B: x [to, to + 0] = G([to — r,to + o],R") be as defined and
y € Pc be a solution of the measure NFDE in [ty, to + o]. Define,
fort € [to—r,to+ 0],

()(6) = y(9), v€[to—r,t],

y(t), €t to+ o]

d
Then x : [to,to + o] — Bc is a solution of the GODE d—x =

-
DG(x, t).
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Theorem - Federson, Frasson, Mesquita, Tacuri

Let B. = {z € G([to — r,to + 0],R"); ||z — X|| < ¢}, with ¢ > 1,
¢ € Pc ={z;z € B, t € [to,t0 + 0]}, g : [to,to + 0] —
R nondecreasing and (H1), (H2), (H3), (H4), (H5) fulfilled. Let
G : Bc x [to,to + 0] = G([to — r,to + o],R") as defined and
x : [to, to + 0] — Bc be a solution of the GODE % = DG(x, t),
with initial condition x(tp)(¥) = &(¥) for 9 € [ty — r,tp], and
x(to)(V) = x(to)(to) for ¥ € [to, to + o]. Then y € B given by
x(to)(¥), to—r <9< to,

y(9) =
x(9)(9), to<I<ty+o.

is a solution of the measure NFDE in t € [ty — r, to + 0.
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The generalized Feynman integral
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Definition

Let / C R be an interval of the following type
(_007 V)a [U, V) or [U, +OO)
We say that the interval / is associated to 7 if

T = —00, T=uU Oor Vv or T = 400,

respectively.

| \

Definition

A partition of R is any finite collection of disjoints intervals / s.t.

Ul =R.

A\
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Let R =R U {—o0, +00}.

Definition

Let 6 : R — (0,00) be a positive function, / C R be an interval

associated to 7 € R. The pair (7, /) is 6-fine, whenever

1 1

v<—@, v—u<d(r) or u>——

respectively. The function ¢ is called gauge.
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Let N = {t1,...,t,} be a finite set, with R;, = R and Ry, = R.

Then we write
[T{®, : t; € v} =R".

An element of R" is denoted by

7= (7(t1), 7(t2), ..., 7(tn)) = (11,72, .., Tn)-

For each t; € N, let I; = I(t;) be an interval associated to 7;. Then
I'=hx...xI,is an interval of [[{Ry, : t; € N} = RN and the
pair (7, 1) is associated in RV, if each pair (75, 1;) is associated in

R, 1 <j < n. This means that 7 is a vertex of [ in @N.
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Definition

Given a function & : R" — (0,00), an associated pair (7, /) of the

domain RN is -fine, if each pair (75, 1;) fulfills the conditions
1 ~ 1
Vi< —=——, Vvj—uj <4(r) or uj > —,

5(t)’ 6(7)

depending on the corresponding interval ;.

Definition

A finite collection & = {(7;, /;)} of associated pairs (7}, /;), where
each pair (7}, /;) is associated in RV, is a tagged-division of RV, if

the intervals /; are disjoints s.t. Ul; = RN, The division is d-fine, if

each pair (7}, /;), 1 <j < n, is d-fine.
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Let B be an infinite set and F(B) the family of finite subsets of B.

Consider the product space

[ R: =RB, where R, =R, t€B.
teB

Then RB represents the set of functions from B to R.

Denote by 7 = 75 an element of R® and consider the set
N = NB:{tl,...,tn} G.F(B)
An element (71,...,7,) = (7(t1),...,7(tn)) of R" is denoted by

T(N) == T(NB).
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Consider the projection Py : RE — RN given by

PN(T) = (T(tl), cey T(tn)).

Similarly, consider the projection Py : R® — R".

For each interval Iy x ... x I, of RN, there is a cell
IIN] == Pyt(h x ... x I,) € R,
Instead of / x ... x I,, we write /(N) so that
I[N] = I(N) x RE\V,

Similarly, Pyn(78) = 7(N) € RY, for r = TB € R”.
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Definition

Given 7 € R® and a cell I[N] C RB, the point-cell pair (7, I[N]) is

associated in RB, if the point-interval pair (7(N), I(N)) is

associated in RV,

Definition
A finite collection & = {(r/, H[N]) : 7/ € R®, N € F(B)} of

associated point-cell pairs is a tagged-division of RE, if the pairs

(74, M[N]) are associated in RE and the cells I/[N] are disjoints

with union equal to RE. We denote this tagged-division by

& ={(, I[N])}-
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Consider applications
o Lg:R° = F(B), Lg(r) € F(B);
o 05 R® x F(B) = (0,00), 0 < dg(r,N) < co.

Let v := (Lg, dg). We call v a gauge.

Definition

An associated pair (7, /[N]) is vyg-fine, whenever
o N2 Lg(7);
o (7(N),I(N)) is §g-fine in RV

A tagged-division £ = {(7,I[N]) : 7 € @B, N € F(B)} of RB is
vg-fine, if each pair (7, /[N]) is yg-fine. We denote £ by £,p.

v
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Lemma (P. Muldowney)

Given an infinite set B and a gauge g, there exists a yg-fine

tagged-division of RE.

Given a ~yg-fine tagged-division € = {(7, /[N])}, the set of
restricted dimensions N for each cell /[N] in £,p includes some
minimal set of dimensions, given by a value of Lg. Thus, if we
make dg(7) successively smaller and Lg(7) successively larger, then

the cells in the corresponding vg-fine tagged-division will “shrink” .
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Shrinking of cells in RE.
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Let I(RB) = {/[N]; N € F(B)} be the collection of all cells in RE
and let (7, 1) € RE x I(RB).

Definition
A function U(, 1) is generalized Feynman integrable over RZ, with
integral a = [pg U(7, 1) (or simply oo = [ U), if V € > 0, there is

a gauge g s.t., V yg-fine tagged-division &, of RE, we have

> UGN - <e

(T,I[N])ES.YB
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Example:

Let C = C((a, b],R) and define f(7), for 7 € R(®P] by:

b
F(r) = exp (fa T(t)dt) , TeC,
0, 7€ R&A C.

Let u be defined on cells | of R(&2] with
I =I[Nl=hx...xl,xREE\VN Take || := v; — u; when
li = [uj, v;), and |l;| := 0 otherwise. Then

n

p(1) = [1IN]] == T T 151

j=1

We could ask if U(7, 1) = f(7)u(l) is integrable over R(2:4],
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Theorem - P. Muldowney

Every distribution function is generalized Feynman integrable.

Example: Consider
H_;]:].(VJ. - uj)? IJ = [uj7 VJ)? J=L2,....n

, otherwise.

[IN]| =

The Fresnel infinite-dimensional integrand, given by

GUIN) = (@) 1_]1 [ et

is generalized Feynman integrable over R® and G=1.
RB
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Thanks for your attention!
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