GODEs: overview and trends

Márcia Federson

"Stories" behind a joint work with Everaldo Bonotto, Matheus Bortolan, Rodolfo Collegari and Jaqueline Mesquita

Universidade de São Paulo, Brazil

1988: IME and Non Absolute Integration

S. Schwabik, C. Hönig, M. Federson, G. Monteiro

2008

2006

2008: students with Prof. Schwabik

2009: students with Prof. Kurzweil

2009: photo by Jaqueline Mesquita who is missing...

2011: ... Milan Tvrdý, Plácido Táboas...

2012: Eduard, Patricia, Rodolfo, Maria Carolina, Fabio, Jaqueline, Rafael, Manoel.

2016: ... with Jana B. Vampolová, Irena Rachunková, Milan Tvrdý, Joseph Diblik...

The Kurzweil integral

Example:

Consider $F:[0,1] \to \mathbb{R}$ given by

$$F(t) = \begin{cases} t^2 \sin \frac{1}{t^2}, & 0 < t \le 1, \\ 0, & t = 0. \end{cases}$$

Assertion:

$$\exists F'(t), \forall t \in [0,1].$$

Let f = F'. Then

- f IS NOT Lebesgue integrable.
- f IS Kurzweil-Henstock integrable (= Perron integrable)

Tagged Divisions

A **tagged division** of $[a, b] \subset \mathbb{R}$ is a finite collection of point-interval pairs $(\tau_i, [s_{i-1}, s_i])$, with

$$a = s_0 \le s_1 \le \ldots \le s_k = b$$
 and $\tau_i \in [s_{i-1}, s_i]$,

for i = 1, 2, ..., |D|.

Gauges

Given a function $\delta: [a,b] \to (0,+\infty)$ (called **gauge** of [a,b]), a tagged-division $D=(\tau_i,[s_{i-1},s_i])$ is δ -fine, whenever

$$[s_{i-1}, s_i] \subset (\tau_i - \delta(\tau_i), \tau_i + \delta(\tau_i)),$$

for
$$i = 1, 2, ..., |D|$$
.

The Kurzweil Integral

A function $U(\tau,t):[a,b]\times[a,b]\to X$ is **Kurzweil integrable** over [a,b], if $\exists !\ I\in X$ such that $\forall\ \varepsilon>0$, $\exists\ a\ \text{gauge}\ \delta$ of [a,b] such that $\forall\ \delta$ -fine tagged-division $d=(\tau_i,[s_{i-1},s_i])$ of [a,b],

$$\left\|\sum_{i}\left[U\left(\tau_{i},s_{i}\right)-U\left(\tau_{i},s_{i-1}\right)\right]-I\right\|<\varepsilon.$$

In this case, $I = \int_{a}^{b} DU(\tau, t)$.

Cousin Lemma

Given a gauge δ of [a, b], there is a δ -fine tagged-division of [a, b].

The Perron-Stieltjes integral

Let X be a Banach space and let $F: [a, b] \to L(X)$ and $g: [a, b] \to X$ be s.t.

$$U(\tau, t) = F(t)g(\tau).$$

Then the integral

$$\int_{a}^{b} DU(\tau,t) = \int_{a}^{b} D[F(t)g(\tau)]$$

which is defined by means of sums of the form

$$\sum [F(t_i) - F(t_{i-1})]g(\tau_i)$$

can be rewritten as

$$\int_{a}^{b} d[F(s)]g(s).$$

Generalized ODEs

Let X be a Banach space, $\mathcal{O} \subset X$ be open $[\alpha, \beta] \subset [a, +\infty)$ and $\Omega = \mathcal{O} \times [\alpha, \beta]$.

Definition

A function $x : [\alpha, \beta] \to X$ is a solution on $[\alpha, \beta]$ of the GODE

$$\frac{dx}{d\tau} = DF(x, t),$$

whenever $(x(t), t) \in \Omega \ \forall \ t \in [\alpha, \beta]$ and

$$x(v) = x(\gamma) + \int_{\gamma}^{v} DF(x(\tau), t), \qquad \gamma, \ v \in [\alpha, \beta].$$

Example

Let $r \colon [0,1] \to \mathbb{R}$ be a continuous function which is nowhere differentiable in [0,1] and G(x,t) = r(t). Then

$$\int_{s_1}^{s_2} DG(x(\tau),t) = \int_{s_1}^{s_2} Dr(t) = r(s_2) - r(s_1).$$

Moreover, $x \colon [0,1] \to \mathbb{R}$ defined by

$$x(s)=r(s), \quad s\in[0,1]$$

is a solution of the GODE

$$\frac{dx}{d\tau} = DG(x, t) = Dr(t).$$

Impulsive measure FDEs as Measure FDEs

Consider the impulsive measure functional differential equation

$$\begin{cases} x(v) - x(u) = \int_{u}^{v} f(x_{s}, s) dg(s), u, v \in J_{k}, k \in \{0, \dots, m\}, \\ \Delta^{+}x(t_{k}) := x(t_{k}^{+}) - x(t_{k}) = I_{k}(x(t_{k})), k \in \{1, \dots, m\}, \\ x_{t_{0}} = \phi, \end{cases}$$

where

- $\sigma > 0$, g is a left-continuous function;
- t_1, \ldots, t_m are impulse moments, $t_0 \le t_1 < \cdots < t_m < t_0 + \sigma$;
- $J_0=[t_0,t_1],\ J_k=(t_k,t_{k+1}]\ ext{for}\ k\in\{1,\dots,m-1\},\ ext{and}\ J_m=(t_m,t_0+\sigma];$
- $I_k: \mathbb{R}^n \to \mathbb{R}^n$.

Remark:

The integral

$$\int_{u}^{v} f(x_{s}, s) dg(s), \quad u, v \in J_{k},$$

does not change if we replace g by a function \tilde{g} such that $g - \tilde{g}$ is a constant function on J_k (this follows easily from the definition of the Kurzweil-Henstock-Stieltjes integral).

Suppose

• g is left continuous and continuous at t_1, \ldots, t_m .

Then

•
$$t \mapsto \int_{t_0}^t f(x_s, s) dg(s)$$
 is continuous

and our problem

$$\begin{cases} x(t) = x(t_0) + \int_{t_0}^t f(x_s, s) \, dg(s) + \sum_{k=1}^m I_k(x(t_k)) H_{t_k}(t), \\ x_{t_0} = \phi, \end{cases}$$

is s.t.
$$\Delta^+ x(t_k) = I_k(x(t_k)), \forall k \in \{1, ..., m\}.$$

Lemma - Federson, Mesquita, Slavik

Let $f: [a,b] \to \mathbb{R}$, $g \in G^-([a,b],\mathbb{R})$ be continuous at t_1, \ldots, t_m , where $a \le t_1 < t_2 < \cdots < t_m \le b$. Let $\tilde{f}, \tilde{g}: [a,b] \to \mathbb{R}$ be s.t.

- $\tilde{f}(t) = f(t), \forall t \in [a, b] \setminus \{t_1, \ldots, t_m\};$
- $\tilde{g} g$ is constant in $[a, t_1], (t_1, t_2], \dots, (t_{m-1}, t_m], (t_m, b].$

Then

$$\bullet \ \exists \ \int_a^b \tilde{f} \, d\tilde{g} \iff \exists \ \int_a^b f \, dg;$$

$$\bullet \int_a^b \tilde{f} d\tilde{g} = \int_a^b f dg + \sum_{\substack{k \in \{1,\ldots,m\},\\t,s \in b}} \tilde{f}(t_k) \Delta^+ \tilde{g}(t_k).$$

Theorem - Federson, Mesquita, Slavik

Let $t_0 \leq t_1 < \dots < t_m < t_0 + \sigma$, $B \subset \mathbb{R}^n$, $I_1, \dots, I_m : B \to \mathbb{R}^n$, P = G([-r, 0], B), $f : P \times [t_0, t_0 + \sigma] \to \mathbb{R}^n$, $g \in G^-([t_0, t_0 + \sigma], \mathbb{R})$ be continuous at t_1, \dots, t_m . Define

$$ilde{f}(y,t) = egin{cases} f(y,t), & t \in [t_0,t_0+\sigma] \setminus \{t_1,\ldots,t_m\}, \ I_k(y(0)), & t = t_k ext{ para algum } k \in \{1,\ldots,m\}. \end{cases}$$

Let $c_1,\ldots,c_m\in\mathbb{R}$ and define $ilde{g}:[t_0,t_0+\sigma] o\mathbb{R}$ by

$$ilde{g}(t) = egin{cases} g(t), & t \in [t_0, t_1], \ g(t) + c_k, & t \in (t_k, t_{k+1}] ext{ para algum } k \in \{1, \ldots, m-1\}, \ g(t) + c_m, & t \in (t_m, t_0 + \sigma]. \end{cases}$$

Theorem - continuation

Then $x \in G([t_0 - r, t_0 + \sigma], B)$ is a solution of

$$\begin{cases} x(t) = x(t_0) + \int_{t_0}^t f(x_s, s) dg(s) + \sum_{k=1}^m I_k(x(t_k)) H_{t_k}(t), \\ x_{t_0} = \phi, \end{cases}$$

iff x is a solution of

$$\begin{cases} x(t) = x(t_0) + \int_{t_0}^t \tilde{f}(x_s, s) d\tilde{g}(s), \\ x_{t_0} = \phi. \end{cases}$$

Measure neutral FDEs as GODEs

Consider measure neutral functional differential equations (we write measure NFDEs, for short) of the form

$$y(t) = y(0) + \int_0^t f(y_s, s) dg(s) + \int_{-r}^0 d[\mu(t, \theta)] y(t + \theta) - \int_{-r}^0 d[\mu(0, \theta)] \varphi(\theta).$$

where

- $y_t(\theta) = y(t+\theta), \ \theta \in [-r,0], \ \phi \in G([-r,0],\mathbb{R}^n), \ r > 0;$
- $\mu : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^{n \times n}$, μ is left continuous on $\theta \in (-r, 0)$,
- μ is BV in $\theta \in [-r, 0]$, with $var_{[s,0]} \mu \to 0$ as $s \to 0$;
- $\mu(t,\theta) = 0$, $\theta \ge 0$, $\mu(t,\theta) = \mu(t,-r)$, $\theta \le -r$.

Theorem - Federson, Frasson, Mesquita, Tacuri

Consider $B_c = \{z \in G([t_0 - r, t_0 + \sigma], \mathbb{R}^n); \|z - \tilde{x}\| < c\}$, with $c \geq 1$, $\phi \in P_c = \{x_t; \ x \in B_c, \ t \in [t_0, t_0 + \sigma]\}$, $g : [t_0, t_0 + \sigma] \rightarrow \mathbb{R}$ nondecreasing and (H1), (H2), (H3), (H4), (H5) fulfilled. Let $G : B_c \times [t_0, t_0 + \sigma] \rightarrow G([t_0 - r, t_0 + \sigma], \mathbb{R}^n)$ be as defined and $y \in P_c$ be a solution of the measure NFDE in $[t_0, t_0 + \sigma]$. Define, for $t \in [t_0 - r, t_0 + \sigma]$,

$$x(t)(\vartheta) = \begin{cases} y(\vartheta), & \vartheta \in [t_0 - r, t], \\ y(t), & \vartheta \in [t, t_0 + \sigma]. \end{cases}$$

Then $x:[t_0,t_0+\sigma]\to B_c$ is a solution of the GODE $\frac{dx}{d\tau}=DG(x,t)$.

Theorem - Federson, Frasson, Mesquita, Tacuri

Let $B_c = \{z \in G([t_0 - r, t_0 + \sigma], \mathbb{R}^n); \|z - \tilde{x}\| < c\}$, with $c \ge 1$, $\phi \in P_c = \{z_t; z \in B_c, t \in [t_0, t_0 + \sigma]\}$, $g : [t_0, t_0 + \sigma] \rightarrow \mathbb{R}$ nondecreasing and (H1), (H2), (H3), (H4), (H5) fulfilled. Let $G : B_c \times [t_0, t_0 + \sigma] \rightarrow G([t_0 - r, t_0 + \sigma], \mathbb{R}^n)$ as defined and $x : [t_0, t_0 + \sigma] \rightarrow B_c$ be a solution of the GODE $\frac{dx}{d\tau} = DG(x, t)$, with initial condition $x(t_0)(\vartheta) = \phi(\vartheta)$ for $\vartheta \in [t_0 - r, t_0]$, and $x(t_0)(\vartheta) = x(t_0)(t_0)$ for $\vartheta \in [t_0, t_0 + \sigma]$. Then $y \in B_c$ given by

$$y(\vartheta) = \begin{cases} x(t_0)(\vartheta), & t_0 - r \le \vartheta \le t_0, \\ x(\vartheta)(\vartheta), & t_0 \le \vartheta \le t_0 + \sigma. \end{cases}$$

is a solution of the measure NFDE in $t \in [t_0 - r, t_0 + \sigma]$.

The generalized Feynman integral

Definition

Let $I \subset \mathbb{R}$ be an interval of the following type

$$(-\infty, v)$$
, $[u, v)$ or $[u, +\infty)$.

We say that the interval I is associated to τ if

$$\tau = -\infty$$
, $\tau = u$ or v or $\tau = +\infty$,

respectively.

Definition

A partition of \mathbb{R} is any finite collection of disjoints intervals I s.t.

$$\cup I = \mathbb{R}$$
.

Let $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}.$

Definition

Let $\delta: \mathbb{R} \to (0, \infty)$ be a positive function, $I \subset \mathbb{R}$ be an interval associated to $\tau \in \overline{\mathbb{R}}$. The pair (τ, I) is δ -fine, whenever

$$v<-rac{1}{\delta(au)}, \quad v-u<\delta(au) \qquad ext{ or } \qquad u>rac{1}{\delta(au)},$$

respectively. The function δ is called gauge.

Let $N=\{t_1,\ldots,t_n\}$ be a finite set, with $\mathbb{R}_{t_j}=\mathbb{R}$ and $\overline{\mathbb{R}}_{t_j}=\overline{\mathbb{R}}$. Then we write

$$\prod \{\overline{\mathbb{R}}_{t_j}: t_j \in N\} = \overline{\mathbb{R}}^N.$$

An element of $\overline{\mathbb{R}}^N$ is denoted by

$$\tau = (\tau(t_1), \tau(t_2), \ldots, \tau(t_n)) = (\tau_1, \tau_2, \ldots, \tau_n).$$

For each $t_j \in N$, let $I_j = I(t_j)$ be an interval associated to τ_j . Then $I = I_1 \times \ldots \times I_n$ is an interval of $\prod \{\mathbb{R}_{t_j} : t_j \in N\} = \mathbb{R}^N$ and the pair (τ, I) is associated in \mathbb{R}^N , if each pair (τ_j, I_j) is associated in \mathbb{R}^N . This means that τ is a vertex of I in $\overline{\mathbb{R}}^N$.

Definition

Given a function $\widetilde{\delta}: \overline{\mathbb{R}}^N \to (0, \infty)$, an associated pair (τ, I) of the domain \mathbb{R}^N is $\widetilde{\delta}$ -fine, if each pair (τ_j, I_j) fulfills the conditions

$$v_j < -rac{1}{\widetilde{\delta}(au)}, \quad v_j - u_j < \widetilde{\delta}(au) \qquad ext{ or } \qquad u_j > rac{1}{\widetilde{\delta}(au)},$$

depending on the corresponding interval I_j .

Definition

A finite collection $\mathcal{E} = \{(\tau_j, I_j)\}$ of associated pairs (τ_j, I_j) , where each pair (τ_j, I_j) is associated in \mathbb{R}^N , is a tagged-division of \mathbb{R}^N , if the intervals I_j are disjoints s.t. $\cup I_j = \mathbb{R}^N$. The division is δ -fine, if each pair (τ_i, I_i) , $1 \le j \le n$, is δ -fine.

Let B be an infinite set and $\mathcal{F}(B)$ the family of finite subsets of B. Consider the product space

$$\prod_{t \in B} \mathbb{R}_t = \mathbb{R}^B, \text{ where } \mathbb{R}_t = \mathbb{R}, \ t \in B.$$

Then \mathbb{R}^B represents the set of functions from B to \mathbb{R} .

Denote by $au= au_B$ an element of $\overline{\mathbb{R}}^B$ and consider the set

$$N = N_B = \{t_1, \ldots, t_n\} \in \mathcal{F}(B).$$

An element $(\tau_1, \ldots, \tau_n) = (\tau(t_1), \ldots, \tau(t_n))$ of $\overline{\mathbb{R}}^N$ is denoted by $\tau(N) = \tau(N_B)$.

Consider the projection $P_N: \mathbb{R}^B \to \mathbb{R}^N$ given by

$$P_N(\tau) = (\tau(t_1), \ldots, \tau(t_n)).$$

Similarly, consider the projection $\overline{P}_N : \overline{\mathbb{R}}^B \to \overline{\mathbb{R}}^N$.

For each interval $I_1 \times ... \times I_n$ of \mathbb{R}^N , there is a cell

$$I[N] := P_N^{-1}(I_1 \times \ldots \times I_n) \subset \mathbb{R}^B.$$

Instead of $I_1 \times \ldots \times I_n$, we write I(N) so that

$$I[N] = I(N) \times \mathbb{R}^{B \setminus N}.$$

Similarly, $\overline{P}_N(\tau_B) = \tau(N) \in \overline{\mathbb{R}}^N$, for $\tau = \tau_B \in \overline{\mathbb{R}}^B$.

Definition

Given $\tau \in \mathbb{R}^B$ and a cell $I[N] \subset \mathbb{R}^B$, the point-cell pair $(\tau, I[N])$ is associated in \mathbb{R}^B , if the point-interval pair $(\tau(N), I(N))$ is associated in \mathbb{R}^N .

Definition

A finite collection $\mathcal{E} = \{(\tau^j, l^j[N]) : \tau^j \in \mathbb{R}^B, N \in \mathcal{F}(B)\}$ of associated point-cell pairs is a tagged-division of \mathbb{R}^B , if the pairs $(\tau^j, l^j[N])$ are associated in \mathbb{R}^B and the cells $l^j[N]$ are disjoints with union equal to \mathbb{R}^B . We denote this tagged-division by $\mathcal{E} = \{(\tau, l[N])\}.$

Consider applications

- $L_B: \overline{\mathbb{R}}^B \to \mathcal{F}(B), \quad L_B(\tau) \in \mathcal{F}(B);$
- $\delta_B : \overline{\mathbb{R}}^B \times \mathcal{F}(B) \to (0, \infty), \quad 0 < \delta_B(\tau, N) < \infty.$

Let $\gamma_B := (L_B, \delta_B)$. We call γ_B a gauge.

Definition

An associated pair $(\tau, I[N])$ is γ_B -fine, whenever

- $N \supseteq L_B(\tau)$;
- $(\tau(N), I(N))$ is δ_B -fine in \mathbb{R}^N .

Definition

A tagged-division $\mathcal{E} = \{(\tau, I[N]) : \tau \in \overline{\mathbb{R}}^B, N \in \mathcal{F}(B)\}$ of \mathbb{R}^B is γ_B -fine, if each pair $(\tau, I[N])$ is γ_B -fine. We denote \mathcal{E} by $\mathcal{E}_{\gamma B}$.

Lemma (P. Muldowney)

Given an infinite set B and a gauge γ_B , there exists a γ_B -fine tagged-division of \mathbb{R}^B .

Given a γ_B -fine tagged-division $\mathcal{E}=\{(\tau,I[N])\}$, the set of restricted dimensions N for each cell I[N] in $\mathcal{E}_{\gamma B}$ includes some minimal set of dimensions, given by a value of L_B . Thus, if we make $\delta_B(\tau)$ successively smaller and $L_B(\tau)$ successively larger, then the cells in the corresponding γ_B -fine tagged-division will "shrink".

Shrinking of cells in \mathbb{R}^B .

Let $I(\mathbb{R}^B) = \{I[N]; N \in \mathcal{F}(B)\}$ be the collection of all cells in \mathbb{R}^B and let $(\tau, I) \in \mathbb{R}^B \times I(\mathbb{R}^B)$.

Definition

A function $U(\tau,I)$ is generalized Feynman integrable over \mathbb{R}^B , with integral $\alpha = \int_{\mathbb{R}^B} U(\tau,I)$ (or simply $\alpha = \int_{\mathbb{R}^B} U$), if $\forall \ \epsilon > 0$, there is a gauge γ_B s.t., $\forall \ \gamma_B$ -fine tagged-division $\mathcal{E}_{\gamma B}$ of \mathbb{R}^B , we have

$$\left|\sum_{(\tau,I[N])\in\mathcal{E}_{\gamma B}}U(\tau,I[N])-\alpha\right|<\epsilon.$$

Example:

Let $C = C((a, b], \mathbb{R})$ and define $f(\tau)$, for $\tau \in \mathbb{R}^{(a, b]}$, by:

$$f(au) = \left\{ egin{array}{ll} \exp\left(\int_a^b au(t)dt
ight), & au \in \mathcal{C}, \ 0, & au \in \mathbb{R}^{(a,b]} \setminus \mathcal{C}. \end{array}
ight.$$

Let μ be defined on cells I of $\mathbb{R}^{(a,b]}$, with $I=I[N]=I_1\times\ldots\times I_n\times\mathbb{R}^{(a,b]\setminus N}$. Take $|I_j|:=v_j-u_j$ when $I_j=[u_j,v_j)$, and $|I_j|:=0$ otherwise. Then

$$\mu(I) = |I[N]| := \prod_{j=1}^{n} |I_j|.$$

We could ask if $U(\tau, I) = f(\tau)\mu(I)$ is integrable over $\mathbb{R}^{(a,b]}$.

Theorem - P. Muldowney

Every distribution function is generalized Feynman integrable.

Example: Consider

$$|I[N]| := \begin{cases} \prod_{j=1}^{n} (v_j - u_j), & I_j = [u_j, v_j), \ j = 1, 2, \dots, n; \\ 0, & \text{otherwise.} \end{cases}$$

The Fresnel infinite-dimensional integrand, given by

$$G(I[N]) := \left(\sqrt{\frac{-i}{2\pi}}\right)^n \prod_{j=1}^n \int_{I_j} e^{\frac{i}{2}\tau_j^2} d\tau_j,$$

is generalized Feynman integrable over \mathbb{R}^B and $\int_{\mathbb{R}^B} G = 1$.

Thanks for your attention!