Periodic boundary value problem for second-order ordinary differential equations: resonance like case

Alexander Lomtatidze

$$u'' = f(t, u); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

 $f \colon [0,\omega] \times \mathbb{R} \to \mathbb{R}$ – Carathéodory function

Lower and upper functions

$$\begin{split} &\sigma_1''(t) \geq f(t,\sigma_1(t)) \quad \text{pro} \quad t \in [0,\omega], \quad \sigma_1(0) = \sigma_1(\omega), \quad \sigma_1'(0) \geq \sigma_1'(\omega) \\ &\sigma_2''(t) \leq f(t,\sigma_2(t)) \quad \text{pro} \quad t \in [0,\omega], \quad \sigma_2(0) = \sigma_2(\omega), \quad \sigma_2'(0) \leq \sigma_2'(\omega) \end{split}$$

$$u'' = f(t, u); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

 $f \colon [0,\omega] \times \mathbb{R} \to \mathbb{R}$ – Carathéodory function

Lower and upper functions

$$\begin{split} &\sigma_1''(t) \geq f(t,\sigma_1(t)) \quad \text{pro} \quad t \in [0,\omega], \quad \sigma_1(0) = \sigma_1(\omega), \quad \sigma_1'(0) \geq \sigma_1'(\omega) \\ &\sigma_2''(t) \leq f(t,\sigma_2(t)) \quad \text{pro} \quad t \in [0,\omega], \quad \sigma_2(0) = \sigma_2(\omega), \quad \sigma_2'(0) \leq \sigma_2'(\omega) \end{split}$$

Definition.

- $p \in \mathcal{D}(\omega)$: u'' = p(t)u; u(a) = 0, u(b) = 0 only $\equiv 0$ solution $\forall b a < \omega$
- $\mathcal{D}(\omega) = \mathcal{V}^-(\omega) \cup \mathcal{V}_0(\omega) \cup \mathcal{V}^+(\omega)$ and $\overline{\mathcal{D}(\omega)} = \mathcal{D}(\omega)$
- $p \in \mathcal{V}^-(\omega)$ (resp. $p \in \mathcal{V}^+(\omega)$): $u(0) = u(\omega), u'(0) = u'(\omega)$ \Rightarrow $u(t) \leq 0$ (resp. $u(t) \geq 0$)
- $p \in \mathcal{V}_0(\omega)$: u'' = p(t)u possesses u > 0 solution
- $p(t) \stackrel{\text{def}}{=} p = Const.$ $\mathcal{V}^{-}(\omega) =]0, +\infty[, \mathcal{V}_{0}(\omega) = \{0\}, \mathcal{V}^{+}(\omega) = [-\frac{\pi^{2}}{\omega^{2}}, 0[$
- Int $\mathcal{D}(\omega) = \mathcal{V}^-(\omega) \cup \mathcal{V}_0(\omega) \cup \text{Int } \mathcal{V}^+(\omega)$ $p \in \text{Int } \mathcal{D}(\omega) \colon u'' = p(t)u; \ u(a) = 0, \ u(b) = 0 \text{ only } \equiv 0 \text{ solution } \forall b - a \leq \omega$

$$u'' = f(t, u); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (1)

Theorem 1. Let $\exists \sigma_1, \sigma_2 \ (arbitrarily \ ordered),$

$$f(t, x) \operatorname{sgn} x \ge p(t)|x| - q(t, |x|)$$
 pro $t \in [0, \omega], x \in \mathbb{R},$
 $p \in \operatorname{Int} \mathcal{D}(\omega),$

q is a sublinear function (i. e., $\lim_{r\to+\infty}\frac{1}{r}\int_0^\omega|q(s,r)|\mathrm{d}s=0$). Then the problem (1) has a solution u and $\exists t_u$:

$$\alpha(t_u) \le u(t_u) \le \beta(t_u),$$

where $\alpha(t) \stackrel{\text{def}}{=} \min\{\sigma_1(t), \sigma_2(t)\}, \ \beta(t) \stackrel{\text{def}}{=} \max\{\sigma_1(t), \sigma_2(t)\}$

Remark. C. De Coster, M. Tarallo, Foliations, associated reductions and lower and upper solutions, Calc. Var. Partial Differential Equations 15 (2002), No. 1, 25–44.

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u + q(t, u); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (2)

- $p \in \mathcal{V}_0(\omega)$
- $h \not\equiv 0, \lambda \in]0,1[, q \text{Carath\'eodory}, \text{ and } \lim_{r \to +\infty} \frac{1}{r^{\lambda}} \int_0^{\omega} |q(s,r)| \mathrm{d}s = 0$

resonance like case

$$u_0: u'' = p(t)u; u(0) = u(\omega), u'(0) = u'(\omega), u_0 > 0, \text{ and } ||u_0|| = 1$$

Theorem 2. Let $\int_0^{\omega} h(s)u_0^{\lambda+1}(s)ds \neq 0$. Then the problem (2) is solvable.

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u + q(t, u); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$

- $p \in \mathcal{V}_0(\omega)$
- $h \not\equiv 0, \lambda \in]0,1[, q \text{Carath\'eodory}, \text{ and } \lim_{r \to +\infty} \frac{1}{r^{\lambda}} \int_0^{\omega} |q(s,r)| \mathrm{d}s = 0$

resonance like case

$$u_0: u'' = p(t)u; u(0) = u(\omega), u'(0) = u'(\omega), u_0 > 0, \text{ and } ||u_0|| = 1$$

Theorem 2. Let $\int_0^{\omega} h(s) u_0^{\lambda+1}(s) ds \neq 0$. Then the problem (2) is solvable.

Theorem 3. Let $\lambda \in [\frac{1}{2}, 1[, \int_{0}^{\omega} h(s)u_{0}^{\lambda+1}(s)ds = 0, and$

$$\limsup_{r \to +\infty} \frac{1}{r^{2\lambda - 1}} \int_0^\omega u_0(s) |q(s, r)| \mathrm{d}s < \eta^*,$$

$$\eta^* \stackrel{\text{def}}{=} \lambda \min \left\{ \int_0^\omega \frac{1}{u_0^2(s)} \left(\int_x^s h(\xi) u_0^{\lambda + 1}(\xi) \mathrm{d}\xi \right)^2 \mathrm{d}s : x \in [0, \omega] \right\}.$$

Then the problem (2) is solvable.

(2)

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u + q(t); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (3)

• $p \in \mathcal{V}_0(\omega), \lambda \in]0,1[, h \not\equiv 0$

Corollary 4. Let either $\lambda \in]\frac{1}{2},1[$ or

$$\lambda \in]0, \frac{1}{2}]$$
 and $\int_0^\omega h(s)u_0^{\lambda+1}(s)\mathrm{d}s \neq 0$

Then the problem (3) is solvable (for any q).

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u + q(t); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (3)

• $p \in \mathcal{V}_0(\omega), \lambda \in]0,1[, h \not\equiv 0]$

Corollary 4. Let either $\lambda \in]\frac{1}{2},1[$ or

$$\lambda \in]0, \frac{1}{2}]$$
 and $\int_0^\omega h(s)u_0^{\lambda+1}(s)\mathrm{d}s \neq 0$

Then the problem (3) is solvable (for any q).

What happens if

$$\lambda \in]0, \frac{1}{2}]$$
 and $\int_0^\omega h(s)u_0^{\lambda+1}(s)\mathrm{d}s = 0$?

•
$$\lambda = \frac{1}{2}$$

$$u'' = p(t)u + h(t)\sqrt{|u|}\operatorname{sgn} u + q(t); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (4)

• $p \in \mathcal{V}_0(\omega)$, $\int_0^\omega h(s) u_0^{\frac{3}{2}}(s) ds = 0$

Corollary 5. Let

$$\int_0^{\omega} u_0(s)[q(s)]_+ ds < c^*, \qquad \int_0^{\omega} u_0(s)[q(s)]_- ds < c^*,$$

where

$$c^* \stackrel{\mathrm{def}}{=} \frac{1}{2} \min \left\{ \int_0^\omega \frac{1}{u_0^2(s)} \left(\int_x^s h(\xi) u_0^{\frac{3}{2}}(\xi) \mathrm{d}\xi \right)^2 \mathrm{d}s : x \in [0,\omega] \right\}.$$

Then the problem (4) is solvable.

• $\lambda = \frac{1}{2}$

$$u'' = p(t)u + h(t)\sqrt{|u|}\operatorname{sgn} u + q(t); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
(4)

• $p \in \mathcal{V}_0(\omega)$, $\int_0^\omega h(s) u_0^{\frac{3}{2}}(s) ds = 0$

Corollary 5. Let

$$\int_0^{\omega} u_0(s)[q(s)]_+ ds < c^*, \qquad \int_0^{\omega} u_0(s)[q(s)]_- ds < c^*,$$

where

$$c^* \stackrel{\mathrm{def}}{=} \frac{1}{2} \, \min \left\{ \int_0^\omega \frac{1}{u_0^2(s)} \left(\int_x^s h(\xi) u_0^\frac32(\xi) \mathrm{d}\xi \right)^2 \mathrm{d}s : x \in [0,\omega] \right\}.$$

Then the problem (4) is solvable.

q is "small enough"

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u + \mu q(t); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (5)

- $p \in \mathcal{V}_0(\omega)$
- $\lambda \in]0, \frac{1}{2}], \int_0^{\omega} h(s) u_0^{\lambda+1}(s) ds = 0$

Theorem 6. Problem (5) is solvable $\forall \mu \in \mathbb{R}$ if and only if

$$\int_0^\omega u_0(s)q(s)\mathrm{d}s = 0.$$

Remark. Let $\int_0^\omega u_0(s)q(s)\mathrm{d}s \neq 0$. Then $\exists 0 < \mu^*(<+\infty)$ such that the problem (5) has no solution $\forall |\mu| > \mu^*$.

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u + \mu q(t); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (5)

- $p \in \mathcal{V}_0(\omega)$
- $\lambda \in]0, \frac{1}{2}], \int_0^{\omega} h(s) u_0^{\lambda+1}(s) ds = 0$

Theorem 6. Problem (5) is solvable $\forall \mu \in \mathbb{R}$ if and only if

$$\int_0^\omega u_0(s)q(s)\mathrm{d}s = 0.$$

Remark. Let $\int_0^\omega u_0(s)q(s)\mathrm{d}s \neq 0$. Then $\exists 0 < \mu^*(<+\infty)$ such that the problem (5) has no solution $\forall |\mu| > \mu^*$.

What happens for "small enough" μ ?

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u + \mu q(t); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (5)

- $p \in \mathcal{V}_0(\omega)$
- $\lambda \in]0, \frac{1}{2}], \int_0^{\omega} h(s) u_0^{\lambda+1}(s) ds = 0$

Theorem 7. $\forall q \; \exists \mu_q > 0 \; such \; that \; the \; problem (5) \; is \; solvable \; provided \; \mu \in]-\mu_q, \mu_q[$.

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u + \mu q(t); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (5)

- $p \in \mathcal{V}_0(\omega)$
- $\lambda \in]0, \frac{1}{2}], \int_0^\omega h(s) u_0^{\lambda+1}(s) ds = 0$

Theorem 7. $\forall q \; \exists \mu_q > 0 \; such \; that \; the \; problem (5) \; is \; solvable \; provided \; \mu \in]-\mu_q, \mu_q[$.

For $\lambda = \frac{1}{2}$ it is possible to estimate μ_q .

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u + \mu q(t); \quad u(0) = u(\omega), \ u'(0) = u'(\omega)$$
 (5)

- $p \in \mathcal{V}_0(\omega)$
- $\lambda \in]0, \frac{1}{2}], \int_0^\omega h(s) u_0^{\lambda+1}(s) ds = 0$

Theorem 7. $\forall q \; \exists \mu_q > 0 \; such \; that \; the \; problem (5) \; is \; solvable \; provided \; \mu \in]-\mu_q, \mu_q[$.

For $\lambda = \frac{1}{2}$ it is possible to estimate μ_q .

Theorem 8. Let $q(t) \ge 0$ and $q \ne 0$. Then $\exists 0 < \mu^*(< +\infty)$ such that the problem (5) is solvable for $\mu \in]-\mu^*, \mu^*[$ and has no solution for $|\mu| > \mu^*$.