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Reaction-diffusion equations

Classical reaction-diffusion equation:

∂tu(x , t) = k∂xxu(x , t) + f (u(x , t))

Spatial discretization (lattice differential equation; x ∈ Z, t ∈ R+
0 ):

∂tu(x , t) = k(u(x + 1, t)− 2u(x , t) + u(x − 1, t)) + f (u(x , t))

Spatial and temporal discretization: (x ∈ Z, t ∈ N0)

u(x , t+1)−u(x , t) = k(u(x+1, t)−2u(x , t)+u(x−1, t))+f (u(x , t))
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Time scales – basic definitions

Time scale: closed set T ⊆ R
σT(t) = inf{s ∈ T; s > t}, t ∈ T
[a,b]T = {t ∈ T; a ≤ t ≤ b}
∆-derivative:

f ∆(t) =


lim
s→t

f (t)−f (s)
t−s if σT(t) = t ,

f (σT(t))−f (t)
σT(t)−t if σT(t) > t .



Lattice reaction-diffusion equation with general time

We study the equation

u∆(x , t) = au(x + 1, t) + bu(x , t) + cu(x − 1, t) + f (u(x , t), x , t),

where a,b, c ∈ R, x ∈ Z, t ∈ [t0,T ]T, T ⊆ R is a time scale, and
u∆ denotes the delta derivative with respect to time.

We consider the initial-value problem with the condition

u(x , t0) = u0
x , x ∈ Z,

where u0 = {u0
x}x∈Z is a bounded real sequence.



Conditions (H1)–(H3)

u∆(x , t) = au(x + 1, t) + bu(x , t) + cu(x − 1, t) + f (u(x , t), x , t)

(H1) f is bounded on each set B × Z× [t0,T ]T, where B ⊂ R is
bounded.

(H2) f is Lipschitz-continuous in the first variable on each set
B × Z× [t0,T ]T, where B ⊂ R is bounded.

(H3) For each bounded set B ⊂ R and each choice of ε > 0 and
t ∈ [t0,T ]T, there exists a δ > 0 such that if
s ∈ (t − δ, t + δ) ∩ [t0,T ]T, then |f (u, x , t)− f (u, x , s)| < ε
for all u ∈ B, x ∈ Z.



Examples

1) Fisher-type equation

u∆(x , t) = au(x+1, t)+bu(x , t)+cu(x−1, t)+λu(x , t) (1− u(x , t))

2) Nagumo-type equation

u∆(x , t) = au(x+1, t)+bu(x , t)+cu(x−1, t)+λu(x , t)
(

1− u(x , t)2
)

3) Logistic population model with variable carrying capacity

u∆(x , t) = au(x+1, t)+bu(x , t)+cu(x−1, t)+λu(x , t)(d(x , t)−u(x , t))

Conditions (H1)–(H3) hold e.g. in the following cases:
d(x , t) = e(t), where e : R→ R is continuous and periodic
d(x , t) = e(x − γt), where e : R→ R is continuous,
monotone, and bounded



Local existence

Theorem
Assume that f : R× Z× [t0,T ]T → R satisfies (H1)–(H3). Then
for each u0 ∈ `∞(Z), the initial-value problem

u∆(x , t) = au(x + 1, t) + bu(x , t) + cu(x − 1, t) + f (u(x , t), x , t),

u(x , t0) = u0
x , x ∈ Z,

has a bounded local solution defined on Z× [t0, t0 + δ]T.
The solution is obtained by letting u(x , t) = U(t)x , where
U : [t0, t0 + δ]T → `∞(Z) is a solution of the abstract dynamic
equation

U∆(t) = Φ(U(t), t), U(t0) = u0,

with Φ : `∞(Z)× [t0,T ]T → `∞(Z) being given by

Φ({ux}x∈Z, t) = {aux+1 + bux + cux−1 + f (ux , x , t)}x∈Z.



Global uniqueness

Even in the linear case f ≡ 0, the solutions of the initial-value
problem are not unique. To get uniqueness, we restrict
ourselves to the class of bounded solutions.

Theorem
Assume that f : R× Z× [t0,T ]T → R satisfies (H1) and (H2).
Then for each u0 ∈ `∞(Z), the initial-value problem has at most
one bounded solution u : Z× [t0,T ]T → R.



Towards the maximum principle

Given an initial condition u0 ∈ `∞(Z), let

m = inf
x∈Z

u0
x , M = sup

x∈Z
u0

x .

If u : Z× [t0,T ]T → R is a bounded solution of our initial-value
problem, is it true that

m ≤ u(x , t) ≤ M

for all x ∈ Z, t ∈ [t0,T ]T?

Additional assumptions are needed to derive this result.



Conditions (H4)–(H6)

Denote
µT = max

t∈[t0,T )T
(σ(t)− t).

(H4) a, b, c ∈ R are such that a, c ≥ 0, b < 0, and a + b + c = 0.
(H5) µT ≤ −1/b.
(H6) There exist r ,R ∈ R such that r ≤ m ≤ M ≤ R, and one of

the following statements holds:
1 µT = 0 and

f (R, x , t) ≤ 0 ≤ f (r , x , t)

for x ∈ Z, t ∈ [t0,T ]T.
2 µT > 0 and

(1/µT + b) (r − u) ≤ f (u, x , t) ≤ (1/µT + b) (R − u)

for u ∈ [r ,R], x ∈ Z, t ∈ [t0,T ]T.



Condition (H6) – geometric meaning

M

m

R

r
u

f

f

µT → 0+

µT → 0+

ψ1

ψ2

µT > 0, (1/µT + b) (r − u) ≤ f (u, x , t) ≤ (1/µT + b) (R − u)

µT = 0, f (R, x , t) ≤ 0 ≤ f (r , x , t)

Note: (H4), (H5)⇒ 1/µT + b ≥ 0



Maximum principle and global existence

Theorem
Assume that (H1)–(H6) hold. If u : Z× [t0,T ]T → R is
a bounded solution of the initial-value problem, then

r ≤ u(x , t) ≤ R for all x ∈ Z, t ∈ [t0,T ]T.

Theorem

If u0 ∈ `∞(Z) and (H1)–(H6) hold, then the initial-value
problem has a unique bounded solution u : Z× [t0,T ]T → R.



Maximum principle – proof outline

1 Establish the maximum principle for discrete time scales
(isolated points only)

2 Prove that solutions depend continuously on the choice of
the time scale

3 Use continuous dependence to extend the maximum
principle to all time scales



Extension of time scale functions

Let gT : [t0,T ]→ R be given by

gT(t) = inf{s ∈ [t0,T ]T; s ≥ t}, t ∈ [t0,T ].

Each function x : [t0,T ]T → X can be extended to a function
x∗ : [t0,T ]→ X by letting

x∗(t) = x(gT(t)), t ∈ [t0,T ].



Continuous dependence with respect to time scale

Theorem
Let X be a Banach space, B ⊆ X. Consider an interval
[t0,T ] ⊂ R and a sequence of time scales {Tn}∞n=0 such that
t0 ∈ Tn and supTn ≥ T for each n ∈ N0, T ∈ T0, and gTn ⇒ gT0

on [t0,T ]. Denote T =
⋃∞

n=0 Tn.
Suppose that Φ : B × [t0,T ]T → X is continuous on its domain
and Lipschitz-continuous with respect to the first variable. Let
xn : [t0,T ]Tn → B, n ∈ N0, be a sequence of functions satisfying

x∆
n (t) = Φ(xn(t), t), t ∈ [t0,T ]Tn , n ∈ N0,

and xn(t0)→ x0(t0). Then x∗n ⇒ x∗0 on [t0,T ].



Continuous dependence – a more general result

Theorem
Let X be a Banach space, B ⊆ X. Consider a sequence of
nondecreasing left-continuous functions gn : [t0,T ]→ R,
n ∈ N0, such that gn ⇒ g0 on [t0,T ]. Assume that
Φ : B × [t0,T ]→ X is Lipschitz-continuous in the first variable.
Let xn : [t0,T ]→ B, n ∈ N0, be a sequence of functions
satisfying xn(t0)→ x0(t0) and

xn(t) = xn(t0) +

∫ t

t0
Φ(xn(s), s) dgn(s), t ∈ [t0,T ], n ∈ N0,

where the integral is the Kurzweil-Stieltjes integral. Suppose
finally that the function s 7→ Φ(x0(s), s), s ∈ [t0,T ], is regulated.
Then xn ⇒ x0 on [t0,T ].



Approximation by discrete time scales

Theorem
If T0 ⊂ R is a time scale with t0,T ∈ T0, there exists a
sequence of discrete time scales {Tn}∞n=1 with Tn ⊆ T0,
minTn = t0, maxTn = T , and such that gTn ⇒ gT0 on [t0,T ].
The sequence {Tn}∞n=1 can be chosen so that

if µT0
> 0, then µTn = µT0

for all n ∈ N;
if µT0

= 0, then limn→∞ µTn = 0.
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