Emil Jefdbek Institute of Mathematics
Czech Academy of Sciences

jerabek@math.cas.cz
https://math.cas.cz/~ jerabek/

Czech Gathering of Logicians
University of Ostrava, 2 June 2023



1 Addition algorithms

Amortized analysis



Computational complexity of arithmetic

Time complexity of integer arithmetic operations:

» Standard computational complexity model:
» multitape Turing machines
(RAM model has + built in = trivial cheat)

> integers X, Y, ... written in binary (or decimal)
> how many steps does it take, measured in terms of the
size of input: n= || X[+ Y] +---, || X] = log X

> X+Y, X-Y, X<Y
» linear time O(n)
» optimal: need to read the input
> XY, [X/Y]
» still not quite settled after many decades of research
> best known upper bound: O(nlogn) [HvdH21]
> lower bounds?

(network coding conjecture = circuit LB: Q(nlog n) wires [ACKL19])
Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Input tape 0: LT [afafoft]
Input tape 1: - L[] Taf1fo]1]of1]
Output tape: LTI
State: carry 0



Input tape 0: LT T [afafola]
Input tape 1: L[] [afs]ofs]ol1]
Output tape: LTI [of
State: carry 1



Input tape 0: LT [afa]ofd]
Input tape 1: - L[] Taf1fo]1]of1]
Output tape: LT T [afo]
State: carry 0



Input tape 0: L1111 [1]t]o]1]
Input tape 1: L[] Itl1]o]t]o]1]
Output tape: LTI [o]t]o]
State: carry 1



Input tape 0: 1T 111 [1]t]o]1]
Input tape 1: L1 ] It]1]o]t]o]1]
Output tape: | | | | | | |O|O|1|O|
State: carry 1



Input tape 0: LT LT [a]1]o]d]
Input tape 1: L[] 1t[t]o]t]o]1]
Output tape: - | 1] [o]o]o]t]o]
State: carry 1



Input tape 0: o LT ] e]a]ola]
Input tape 1: L1 1] [t[1]o]1]o]1]
Output tape: <« | | ] [o]o]o]o]1]o]
State: carry 1



Input tape 0: LT T [afa]ola]
Input tape 1: L1 1] [t[1]o]1]o]1]
Output tape: <« | | |t[o]o]o]o]1]o0]
State: halt



Sequence sum

What if we want to add more than two numbers?

SEQSUM
» input: sequence of integers (X; : i < k) separated with "+"
> output: >, X

Size of input: n =k + >, n, ni = ||Xj||

Question:

» What is the time complexity of SEQSUM?
» Can we do it in time O(n)?

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava 3:12




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X1 Xo
Input tape: - L[ [afola[+[1[1]of+[1]+[1]1]o]0]
Y
Outputtape: -« [ [ [ [[[[[[[]LTLI]]]
State: carry 0

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X1 Xo
Input tape: - L[ [afola[+[1]1]of+[1]+[1]1]0]0]
Y
Outputtape: -« [ [ [ [ [ [ L[ []LT[[]]o]
State: carry 0

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X1 Xo
Input tape: - L[ [afola[+[]1]o]+[1]+[1]1]o]0]
Y
Outputtape: -« [ [ [ [ [ [[[[[][][] [o]o]
State: carry 0

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X1 Xo
Input tape: - L[ [afolaf+[1]1]of+[1]+]1]1]0]0]
Y
Outputtape: -« [ [ [ [ [ [ [ [[[[][]] [t]o]o]
State: carry 0

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X1 Xo
Input tape: - L[ [afola[+[1]1]of+[1]+[1]1]o]0]
Y
Outputtape: -« [ [ [ [ [ [ [ [ [ [ ][] [1]1]o]o]
State: carry 0

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X Xo
Input tape: - L[ [afofef+[1]1]o+[1]+[1]1]o]0]
Y
Output tape: -~ [ [ [ [ [ [T T [ [T 1T [t]1]o]o]
State: rewind

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X Xo
Input tape: - L[ [afofef+[1]1]o+[1]+[1]1]o]0]
Y
Output tape: -~ [ [ [ [ [ [T T [ [T ]1T[1]1]ofo]
State: rewind

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X Xo
Input tape: - L[ [afofef+[1]1]o+[1]+[1]1]o]0]
Y
Output tape: - [ [ [ [ [ [T T [ [T ]1T[1]1]ofo]
State: rewind

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X Xo
Input tape: - L[ [afofef+[1]1]o+[1]+[1]1]o]0]
Y
Output tape: - [ [ [ [ [ [T T [ [T 1T [1]1]o]o]
State: rewind

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X1 Xo
Input tape: - L[ [afola[+[1]1]of+[1]+[1]1]o]0]
Y
Outputtape: -« [ [ [ [ [ [ [ [ [ [ ][] [1]1]o]o]
State: carry 0

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X1 Xo
Input tape: - L[ [afolaf+[1]1]o]+[1]+[1]1]o]0]
Y
Outputtape: -« [ [ [ [ [ [ [ [ [ [ ][] [1]t]o]1]
State: carry 0

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X Xo
Input tape: - L[ [afofef+[1]1]o]+[1]+]1]1]o]0]
Y
Output tape: -~ [ [ [ [ [ [T T [ [T 1T [1]1]o]1]
State: rewind

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X1 Xo
Input tape: - L[ [afolaf+[a[1]o[+[1]+[1]1]o]0]
Y
Outputtape: -« [ [ [ [ [ [ [ [ [ [ ][] [1]1]o]1]
State: carry 0

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X1 Xo
Input tape: - L[ [afolaf+[a]1]of+[1]+[1]1]0]0]
Y
Outputtape: -« [ [ [ [ [ [ [ [ [ [ ][] [1]t]o]1]
State: carry 0

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X1 Xo
Input tape: - L[ [afolaf+[1[1]o]+[1]+[1]1]o]0]
Y
Outputtape: -« [ [ [ [ [ [ [ [ [ [ ][] [a]t[a]1]
State: carry 0

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X1 Xo
Input tape: - L[ [afolaf+[1]1]of+[1]+[1]1]o]0]
Y
Outputtape: -« [ [ [ [ [ [ [ [ [ [ ][] [1]of1]1]
State: carry 1

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X1 Xo
Input tape: - L[ [afolaf+[1]1]of+[1]+[1]1]o]0]
Y
Output tape: -« [ [ [ [ [ [ [ [ [ [ ][] [o]o[1]1]
State: carry 1

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X Xo
Input tape: - L[ [afofe]+[1]1]o+[1]+]1]1]o]0]
Y
Output tape: - [ [ [ [ [ [T T [ [ 1] [1]ofo]1]1]
State: rewind

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X Xo
Input tape: - L[ [afofe]+[1]1]o+[1]+]1]1]o]0]
Y
Output tape: -~ [ [ [ [ [ [T [ [ [ 1] [1]ofof1]1]
State: rewind

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X Xo
Input tape: - L[ [afofe]+[1]1]o+[1]+]1]1]o]0]
Y
Output tape: -~ [ [ [ [ [ [T [ [ [ || [1]ofo]1]1]
State: rewind

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X Xo
Input tape: - L[ [afofe]+[1]1]o+[1]+]1]1]o]0]
Y
Output tape: -~ [ [ [ [ [ [T [ [ [ ] [1]ofo]1]1]
State: rewind

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X1 Xo
Input tape: - L[ [afolaf+[1]1]o]+[1]+[1]1]o]0]
Y
Output tape: -« [ [ [ [ [ [ [ [ [ [ ][ [t]ofo[1]1]
State: carry 0

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X1 Xo
Input tape: - L[ [afolaf[+[1]1]o]+[1]+[1]1]o]0]
Y
Output tape: -« [ [ [ [ [ [ [ [ [ [ ][ [1]o]o]1]o]
State: carry 1

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 X Xi Xo
Input tape: [ T T It]o]1]+]1]1]o]+]1]+]1]1]o]0]
Y
Output tape: -~ [ [ [ [ [ [T [ [ [ ] [1]ofofo]o]
State: carry 1

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo X1 Xo
Input tape: - L] [afolaf[+[1]1]of+[1]+[1]1]0]0]
Y
Output tape: -~ [ [ [ [ [ [ [ [ [ [ ][ [t]o]o[o]o]
State: carry 1

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Simple SEQSUM algorithm

Use one tape as an accumulator Y: | Y <0

for i < k do:
X3 Xo Xi Xo
Input tape: - L] [afofaf+[1]1]o]+[1]+[1]1]o]0]
Y
Output tape: - [ [ [ [ [ [T [ [ [ ] [1][1]o]ofo]
State: halt

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava




Time complexity analysis

The content of Y before adding X: Y; =3, ; X;, m; = [|Yi|

Y < Y + X; takes time O(n; + m;) C O(n) as m; < n
—> total time: O(nk) C O(n?)

» even if n; < m;, Y < Y 4+ X; may take time up to ~ m;
due to carry propagation

» we may have m; = Q(n) for all i >0, and k = Q(n):

take huge XO and constantsice x4, ., %1, K 22 || Xo|

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava 5:12




SEQSUM is computable in time O(n?)

Question: Can we do better?



SEQSUM is computable in time O(n?)
Question: Can we do better?

Answer:

> Yes, we can! SEQSUM is computable in time O(n)

» We don't even need a better algorithm:
we just need a better analysis!



1 Addition algorithms

2 Amortized analysis



Amortized complexity

|dentified as a concept and named by [Tar85]

» If an operation is used many times in an algorithm,
it may happen that its average (amortized) cost
is smaller than its maximal cost
» NOT average-case analysis: still worst-case wrt the input!
» Typical use case: data structures
» Example: stack implemented by an array
» when capacity exhausted, reallocate double size and copy
> algorithm performs n stack operations (push, pop)
= each operation may cost up to O(n) steps
> but: the average cost is only O(1)!
total cost of reallocations is O(n+ 5 + 7 +---) = O(n)
> Basic strategies: aggregate analysis, accounting method,
potential method

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava 7:12




Binary counter

Basic example (see e.g. [CLRS22]):

Counter

» holds an integer in binary

» starts with 0, performs n increments
0O—=1—=---—=n

Cost of an increment:

» maximal O(log n): carry propagation
» amortized O(1)

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava

10
11
100
101
110
111
1000
1001
1010
1011
1100

8:12




Binary counter

Basic example (see e.g. [CLRS22]):

Counter

» holds an integer in binary

» starts with 0, performs n increments
0O—=1—=---—=n

Cost of an increment:

» maximal O(log n): carry propagation

» amortized O(1): aggregate analysis
updates: n x position 0, g X pos. 1, g X pos. 2, ...

— totalcostn+§+£+§+---<2n

Emil Jetdbek | On the complexity of addition | CGL 2023, Ostrava

_

et i el
[ Hlo oI I
= @] N (e (1 (o] [ (e}

'_L
o
o O
—~ 1O

[N
o




Increments — sums?

Counter ~ accumulator SEQSUM algorithm for 1 +1+--- 41
Can we generalize the amortized analysis to the full algorithm?

» direct aggregate analysis not easy

» accounting method:
P pay the cost of excess carries from ‘“credits” saved earlier

» potential method:
> define “potential energy” of TM configurations
» changes of the potential account for work on carries

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava 9:12




Improved analysis of SEQSUM

Recall: input (X : i < k), ni = ||Xj||, n=k+>_,_,ni

The cost of one addition Y + Y + X;:

X;: LLTT LTI [s]ofsfafofo]1]

old Y: [ | [1]o]o]1]1]1]of1]1]o1]0]1]

new Y: | | [1]o]1]ofo]o]o]o]of1[1]1]0]
n;

» regular costs: nj +1 = total: k + Z,-<k n;=n
» paid from credit: carries 1 — 0

> the “1" got there by a regular change 0 — 1 earlier!
—> cover all credits by charging regular costs twice

» grand total: 2n (actually 4n due to rewinds)

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava 10:12




Potential method

Potential function ® = the number of 1s in Y

®; = the value of ® before the addition Y + Y + X;

By the same argument: the cost of Y <— Y + X; is at most
2(ni + 1)+ &, — b1y

Since ®y = 0 and ¢, > 0, the total cost is at most

Z(2(n,~+ 1)+¢, - ¢,‘+1) = 2(k+znl> +¢0 - (Dk S 2n

i<k i<k

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava 11:12




Summary

Computational complexity of 3., X;

> the obvious algorithm appears to require time O(n?)
on the first sight

v

it actually runs in time 4n

v

extension of a common example in amortized complexity

» seems to be missing in standard literature,
even though it is a fundamental algorithmic problem

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava 12:12




References

» P. Afshani, C. B. Freksen, L. Kamma, K. G. Larsen: Lower
bounds for multiplication via network coding, ICALP 2019,
LIPlcs 132 (2019), 10:1-12

» T.H. Cormen, C.E. Leiserson, R. L. Rivest, C. Stein:
Introduction to algorithms, MIT Press, 2022 (4th ed.)

> D. Harvey, J. van der Hoeven: Integer multiplication in time
O(nlogn), Ann. of Math. 193 (2021), 563-617

> E. Jefdbek: Can we do integer addition in linear time?,
Theoretical Computer Science Stack Exchange,
https://cstheory.stackexchange.com/q/52391

» R.E. Tarjan: Amortized computational complexity, SIAM J.
Algebraic Discrete Methods 6 (1985), 306-318

Emil Jefdbek | On the complexity of addition | CGL 2023, Ostrava



https://cstheory.stackexchange.com/q/52391

	Addition algorithms
	Amortized analysis
	Appendix

