On the complexity of addition

Emil Jeřábek

Institute of Mathematics Czech Academy of Sciences jerabek@math.cas.cz https://math.cas.cz/~jerabek/

Czech Gathering of Logicians University of Ostrava, 2 June 2023

Addition algorithms

1 Addition algorithms

2 Amortized analysis

Computational complexity of arithmetic

Time complexity of integer arithmetic operations:

- Standard computational complexity model:
 - ▶ multitape Turing machines (RAM model has + built in ⇒ trivial cheat)
 - ightharpoonup integers X, Y, \ldots written in binary (or decimal)
 - how many steps does it take, measured in terms of the size of input: $n = ||X|| + ||Y|| + \cdots$, $||X|| \approx \log X$
- \triangleright X + Y, X Y, X < Y
 - linear time O(n)
 - optimal: need to read the input
- $\triangleright X \cdot Y, |X/Y|$
 - still not quite settled after many decades of research
 - best known upper bound: $O(n \log n)$ [HvdH21]
 - lower bounds?

 (network coding conjecture \implies circuit LB: $\Omega(n \log n)$ wires [ACKL19])

Output tape: ...

 Input tape 0:
 ...
 1 1 0 1

 Input tape 1:
 ...
 1 1 0 1 0 1

 Output tape:
 ...
 0

Output tape: ... 10

 Input tape 0:
 ...
 1 1 0 1

 Input tape 1:
 ...
 1 1 0 1 0 1

 Output tape:
 ...
 0 1 0

Output tape: ... 0010

 Input tape 0:
 ...
 1 1 0 1

 Input tape 1:
 ...
 1 1 0 1 0 1

 Output tape:
 ...
 0 0 0 1 0

Input tage 0: ... 11101

Output tape: ... 000010

Output tape: ... 1000010

State: halt

Sequence sum

What if we want to add more than two numbers?

SEQSUM

- ▶ input: sequence of integers $\langle X_i : i < k \rangle$ separated with "+"
- ightharpoonup output: $\sum_{i < k} X_i$

Size of input:
$$n = k + \sum_{i \le k} n_i$$
, $n_i = ||X_i||$

Question:

- ► What is the time complexity of SEQSUM?
- ightharpoonup Can we do it in time O(n)?

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

Use one tape as an accumulator
$$Y$$
: $Y \leftarrow 0$ for $i < k$ do: $Y \leftarrow Y + X_i$ $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Input tape: $X_1 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_4 \qquad X_5 \qquad$

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

Use one tape as an accumulator
$$Y$$
: $Y \leftarrow 0$ for $i < k$ do: $Y \leftarrow Y + X_i$ $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Input tape: $X_1 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_3 \qquad X_2 \qquad X_1 \qquad X_0$

carry 0

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

Use one tape as an accumulator
$$Y$$
: $Y \leftarrow 0$ for $i < k$ do: $Y \leftarrow Y + X_i$ $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Input tape: $X_1 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_4 \qquad X_5 \qquad$

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

Use one tape as an accumulator
$$Y$$
: $Y \leftarrow 0$ for $i < k$ do: $Y \leftarrow Y + X_i$ $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Input tape: $X_1 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_3 \qquad X_2 \qquad X_1 \qquad X_0$

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

Use one tape as an accumulator
$$Y$$
: $Y \leftarrow 0$ for $i < k$ do: $Y \leftarrow Y + X_i$ $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Input tape: $X_1 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_4 \qquad X_5 \qquad$

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

State: rewind

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

rewind

State:

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

State: rewind

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

Use one tape as an accumulator
$$Y$$
: $Y \leftarrow 0$ for $i < k$ do: $Y \leftarrow Y + X_i$ $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Input tape: $\cdots \qquad \boxed{101 + 110 + 1100}$ Y Output tape: $\cdots \qquad \boxed{1100}$

State: rewind

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

Use one tape as an accumulator
$$Y$$
: $Y \leftarrow 0$ for $i < k$ do: $Y \leftarrow Y + X_i$ $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Input tape: $X_1 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_3 \qquad X_4 \qquad X_5 \qquad X$

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

Use one tape as an accumulator
$$Y$$
: $Y \leftarrow 0$ for $i < k$ do: $Y \leftarrow Y + X_i$ $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Input tape: $X_1 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_3 \qquad X_2 \qquad X_1 \qquad X_0$

carry 0

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

State: rewind

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

Use one tape as an accumulator
$$Y$$
: $Y \leftarrow 0$ for $i < k$ do: $Y \leftarrow Y + X_i$ $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Input tape: $X_1 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_4 \qquad X_5 \qquad$

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

Use one tape as an accumulator
$$Y$$
: $Y \leftarrow 0$ for $i < k$ do: $Y \leftarrow Y + X_i$ $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Input tape: $X_1 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_4 \qquad X_5 \qquad$

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

Use one tape as an accumulator
$$Y$$
: $Y \leftarrow 0$ for $i < k$ do: $Y \leftarrow Y + X_i$ $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Input tape: $X_1 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_4 \qquad X_5 \qquad$

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

carry 1

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

State: rewind

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

rewind

State:

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

Use one tape as an accumulator
$$Y$$
:
$$Y \leftarrow 0$$
 for $i < k$ do:
$$Y \leftarrow Y + X_i$$

$$X_3 \qquad X_2 \qquad X_1 \qquad X_0$$
 Input tape:
$$\cdots \qquad \boxed{101 + 110 + 11100}$$

$$Y$$
 Output tape:
$$\cdots \qquad \boxed{10011}$$

State:

rewind

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

State: rewind

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

Use one tape as an accumulator
$$Y$$
: $Y \leftarrow 0$ for $i < k$ do: $Y \leftarrow Y + X_i$ $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Input tape: $X_1 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_3 \qquad X_2 \qquad X_1 \qquad X_0$

Simple SEQSUM algorithm

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

Use one tape as an accumulator
$$Y$$
: $Y \leftarrow 0$ for $i < k$ do: $Y \leftarrow Y + X_i$ $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Input tape: $X_1 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_3 \qquad X_2 \qquad X_1 \qquad X_0$ Output tape: $X_4 \qquad X_5 \qquad$

Simple SEQSUM algorithm

$$Y \leftarrow 0$$
 for $i < k$ do: $Y \leftarrow Y + X_i$

halt State:

Time complexity analysis

The content of Y before adding X_i : $Y_i = \sum_{j < i} X_j$, $m_i = ||Y_i||$

$$Y \leftarrow Y + X_i$$
 takes time $O(n_i + m_i) \subseteq O(n)$ as $m_i \le n$
 \implies total time: $O(nk) \subseteq O(n^2)$

- even if $n_i < m_i$, $Y \leftarrow Y + X_i$ may take time up to $\approx m_i$ due to carry propagation
- we may have $m_i = \Omega(n)$ for all i > 0, and $k = \Omega(n)$: take $\underset{\text{take}}{\mathsf{huge}} X_0$ and $\underset{\text{constant-size } X_1, \ldots, X_{k-1}, \ k \approx \|X_0\|$

The complexity of SEQSUM

SEQSUM is computable in time $O(n^2)$

Question: Can we do better?

The complexity of SeqSum

SEQSUM is computable in time $O(n^2)$

Question: Can we do better?

Answer:

- \triangleright Yes, we can! SEQSUM is computable in time O(n)
- We don't even need a better algorithm: we just need a better analysis!

Amortized analysis

1 Addition algorithms

2 Amortized analysis

Amortized complexity

Identified as a concept and named by [Tar85]

- ▶ If an operation is used many times in an algorithm, it may happen that its average (amortized) cost is smaller than its maximal cost
- ▶ NOT average-case analysis: still worst-case wrt the input!
- Typical use case: data structures
- Example: stack implemented by an array
 - when capacity exhausted, reallocate double size and copy
 - ightharpoonup algorithm performs n stack operations (push, pop)
 - \implies each operation may cost up to O(n) steps
 - but: the average cost is only O(1)! total cost of reallocations is $O(n + \frac{n}{2} + \frac{n}{4} + \cdots) = O(n)$
- Basic strategies: aggregate analysis, accounting method, potential method

Binary counter

Basic example (see e.g. [CLRS22]):	0
Counter	1
	10
holds an integer in binary	11
starts with 0, performs n increments	100
$0 o 1 o \cdots o n$	101
	110
Cost of an increment:	111
$ ightharpoonup$ maximal $O(\log n)$: carry propagation	1000
	1001
▶ amortized <i>O</i> (1)	1010
	1011
	1100

Binary counter

Basic example (see e.g. [CLRS22]):

Counter

- holds an integer in binary
- > starts with 0, performs *n* increments $0 \rightarrow 1 \rightarrow \cdots \rightarrow n$

Cost of an increment:

- \triangleright maximal $O(\log n)$: carry propagation
- \triangleright amortized O(1): aggregate analysis

updates: $n \times \text{position } 0, \frac{n}{2} \times \text{pos. } 1, \frac{n}{4} \times \text{pos. } 2, \dots$

$$\implies$$
 total cost $n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \cdots < 2n$

- 101 110
- 111
- 1000
- 1001
- 1010
- 1011

Increments \rightarrow sums?

Counter \approx accumulator ${\tt SEQSUM}$ algorithm for $1+1+\cdots+1$

Can we generalize the amortized analysis to the full algorithm?

- direct aggregate analysis not easy
- accounting method:
 - pay the cost of excess carries from "credits" saved earlier
- potential method:
 - define "potential energy" of TM configurations
 - changes of the potential account for work on carries

Improved analysis of SEQSUM

Recall: input
$$\langle X_i : i < k \rangle$$
, $n_i = ||X_i||$, $n = k + \sum_{i < k} n_i$

The cost of one addition $Y \leftarrow Y + X_i$:

- regular costs: $n_i + 1 \implies \text{total}$: $k + \sum_{i < k} n_i = n$
- **paid** from credit: carries $1 \rightarrow 0$
 - the "1" got there by a regular change $0 \rightarrow 1$ earlier! \implies cover all credits by charging regular costs twice
- \triangleright grand total: 2n (actually 4n due to rewinds)

Potential method

Potential function Φ = the number of 1s in Y

 Φ_i = the value of Φ before the addition $Y \leftarrow Y + X_i$

By the same argument: the cost of $Y \leftarrow Y + X_i$ is at most

$$2(n_i+1)+\Phi_i-\Phi_{i+1}$$

Since $\Phi_0 = 0$ and $\Phi_k \ge 0$, the total cost is at most

$$\sum_{i < k} \left(2(n_i + 1) + \Phi_i - \Phi_{i+1} \right) = 2\left(k + \sum_{i < k} n_i \right) + \Phi_0 - \Phi_k \le 2n$$

Summary

Computational complexity of $\sum_{i < k} X_i$:

- ▶ the obvious algorithm appears to require time $O(n^2)$ on the first sight
- ▶ it actually runs in time 4n
- extension of a common example in amortized complexity
- seems to be missing in standard literature, even though it is a fundamental algorithmic problem

References

- P. Afshani, C. B. Freksen, L. Kamma, K. G. Larsen: Lower bounds for multiplication via network coding, ICALP 2019, LIPIcs 132 (2019), 10:1–12
- T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: Introduction to algorithms, MIT Press, 2022 (4th ed.)
- D. Harvey, J. van der Hoeven: Integer multiplication in time O(n log n), Ann. of Math. 193 (2021), 563−617
- ► E. Jeřábek: Can we do integer addition in linear time?, Theoretical Computer Science Stack Exchange, https://cstheory.stackexchange.com/q/52391
- R. E. Tarjan: Amortized computational complexity, SIAM J. Algebraic Discrete Methods 6 (1985), 306–318