A simplified lower bound on intuitionistic implicational proofs

Emil Jeřábek

Institute of Mathematics Czech Academy of Sciences jerabek@math.cas.cz/ https://users.math.cas.cz/~jerabek/

Computer Science Seminar Univerzita Palackého, Olomouc, 2 Nov 2023

Outline

1 Classical proof complexity

2 Non-classical proof complexity

3 Lower bound for implicational logic

Classical proof complexity

1 Classical proof complexity

2 Non-classical proof complexity

3 Lower bound for implicational logic

Propositional proof systems

Proof system (pps): relation $P \subseteq Form \times \Sigma^*$ s.t.

- P is decidable in polynomial time
- $ightharpoonup \varphi$ is a tautology $\iff \exists \pi \, P(\varphi, \pi)$

Main measure: length (=size) of proofs

- ▶ P polynomially bounded if all tautologies φ have P-proofs of size $\leq |\varphi|^c$
- ▶ P p-simulates Q ($P \ge_p Q$): polynomial-time translation of Q-proofs to P-proofs
- ▶ P and Q are p-equivalent $(P \equiv_p Q)$: $P \geq_p Q \& Q \geq_p P$

Theorem (Cook & Reckhow '79):

 $NP = coNP \iff \exists$ polynomially bounded pps

Frege (aka Hilbert-style) systems

R: finite set of schematic Frege rules $\alpha_1, \ldots, \alpha_k \vdash \alpha_0$

R-derivation of φ from Γ : $\varphi_0, \ldots, \varphi_t = \varphi$ where each φ_i derived from φ_i , j < i by an instance of an *R*-rule, or $\varphi_i \in \Gamma$

If
$$\Gamma \vdash_R \varphi \iff \Gamma \vDash \varphi$$
: Frege system F_R

- ▶ typically: modus ponens + axiom schemata
- ▶ all Frege systems p-equivalent (Reckhow '76) ⇒ write $F = F_R$
- p-equivalent to tree-like Frege F* (Krajíček '94)
- p-equivalent to sequent calculus and natural deduction (Reckhow '76)
- known lower bounds: number of lines $\Omega(n)$, size $\Omega(n^2)$ (Krajíček '95)

Boolean circuits

Formulas: trees

Circuits: directed acyclic graphs (dag)

- finite dag labelled with variables and connectives
- each node appropriate number of incoming edges
- one node designated as output

As a model of computation:

- ▶ $L \subseteq \{0,1\}^*$ is in **P**/**poly** if for each n, $L_n = L \cap \{0,1\}^n$ is computable by circuits C_n , $|C_n| \le n^c$
- nonuniform version of P

Monotone circuits:

 \triangleright only connectives \land , \lor (possibly 0, 1)

Feasible interpolation

General lower bound method for weak pps (Krajíček '97):

P has feasible interpolation if for every P-proof Π of

$$\beta(\vec{p}, \vec{r}) \rightarrow \alpha(\vec{p}, \vec{q})$$

there exists a Boolean circuit $C(\vec{p})$, $|C| \leq |\Pi|^c$, s.t.

$$\models \beta(\vec{p}, \vec{r}) \rightarrow C(\vec{p}), \qquad \models C(\vec{p}) \rightarrow \alpha(\vec{p}, \vec{q})$$

Feasible interpolation

General lower bound method for weak pps (Krajíček '97):

P has feasible interpolation if for every P-proof Π of

$$\alpha(\vec{p}, \vec{q}) \vee \beta(\vec{p}, \vec{r})$$

there exists a Boolean circuit $C(\vec{p})$, $|C| \leq |\Pi|^c$, s.t.

$$C(\vec{p}) \vDash \alpha(\vec{p}, \vec{q}), \qquad \neg C(\vec{p}) \vDash \beta(\vec{p}, \vec{r})$$

Feasible interpolation

General lower bound method for weak pps (Krajíček '97):

P has feasible interpolation if for every P-proof Π of

$$\alpha(\vec{p}, \vec{q}) \vee \beta(\vec{p}, \vec{r})$$

there exists a Boolean circuit $C(\vec{p})$, $|C| \leq |\Pi|^c$, s.t.

$$C(\vec{p}) \vDash \alpha(\vec{p}, \vec{q}), \qquad \neg C(\vec{p}) \vDash \beta(\vec{p}, \vec{r})$$

Theorem: If P has f.i., and \exists a disjoint NP-pair $\langle A, B \rangle$ not separable in P/poly, then P is not polynomially bounded

Proof idea: express A_n by $\exists \vec{q} \neg \alpha_n(\vec{p}, \vec{q})$ and B_n by $\exists \vec{r} \neg \beta_n(\vec{p}, \vec{r})$

Circuit lower bounds

Lower bounds on the size of general circuits:

- random functions $\{0,1\}^n \to \{0,1\}$: size $\geq 2^n/n$ whp
- ▶ explicit functions: size $\geq 5n$ or so \implies f.i. only yields conditional lower bounds

Monotone circuits:

- Razborov '85: superpolynomial lower bound for Clique
- ▶ Alon & Boppana '87: improved to exponential lower bound
- also applies to the Clique–Colouring NP-pair (Tardos '87)
- variant: Colouring—Cocolouring (Hrubeš & Pudlák '17)

Monotone feasible interpolation

P has monotone feasible interpolation if for every P-proof Π of

$$\alpha(\vec{p}, \vec{q}) \vee \beta(\vec{p}, \vec{r})$$

where \vec{p} only occur positively in α , there exists a monotone circuit $C(\vec{p})$, $|C| \leq |\Pi|^c$, s.t.

$$C(\vec{p}) \vDash \alpha(\vec{p}, \vec{q}), \qquad \neg C(\vec{p}) \vDash \beta(\vec{p}, \vec{r})$$

Theorem: If P has m.f.i. then P is not polynomially bounded

Example:

Resolution has f.i. and m.f.i.

Frege likely does not

Non-classical proof complexity

1 Classical proof complexity

2 Non-classical proof complexity

3 Lower bound for implicational logic

Non-classical Frege systems

 $\it L$ finitely axiomatizable propositional logic \implies Frege system $\it L$ -F

Unconditional exponential lower bounds for many logics L:

- ► Hrubeš '07,'09: some modal logics, intuitionistic logic (Frege, Extended Frege)
- ▶ J. '09: extensions of K4 or IPC with unbounded branching
- ▶ Jalali '21: extensions of FL included in . . .

Further strengthening:

- exponential separation between Extended Frege and Substitution Frege (J. '09)
- purely implicational tautologies (J. '17)

Feasible disjunction property

P proof system for $L \supset IPC$: P has the feasible disjunction property if given a P-proof of $\varphi_0 \vee \varphi_1$, we can compute in polynomial time $i \in \{0,1\}$ such that $\vdash_{I} \varphi_{i}$ Modal logics: the same with $\Box \varphi_0 \lor \Box \varphi_1$ Example: IPC-F has f.d.p. (Buss & Mints '99, ...) (Pudlák '99) f.d.p. can serve the role of f.i. ⇒ conditional lower bounds (Hrubeš '07) analogue of monotone f.i. ⇒ unconditional lower bounds

f.d.p. serving as f.i.

 $P \ge_p \mathsf{IPC}\mathsf{-F}$ closed under substitution of 0, 1:

 $ightharpoonup \alpha(\vec{p}, \vec{q}) \vee \beta(\vec{p}, \vec{r})$ classical tautology \implies IPC proves

(*)
$$\bigwedge_{i < n} (p_i \vee \neg p_i) \to \neg \neg \alpha(\vec{p}, \vec{q}) \vee \neg \neg \beta(\vec{p}, \vec{r})$$

▶ if P has f.d.p. and (*) has a short P-proof: small circuit C such that for all $\vec{a} \in \{0,1\}^n$,

$$C(\vec{a}) = 1 \implies \vdash \neg \neg \alpha(\vec{a}, \vec{q})$$
$$C(\vec{a}) = 0 \implies \vdash \neg \neg \beta(\vec{a}, \vec{r})$$

f.d.p. serving as f.i.

 $P \geq_p \mathsf{IPC-F}$ closed under substitution of 0, 1:

• $\alpha(\vec{p}, \vec{q}) \vee \beta(\vec{p}, \vec{r})$ classical tautology \implies IPC proves

(*)
$$\bigwedge_{i < p} (p_i \vee \neg p_i) \to \neg \neg \alpha(\vec{p}, \vec{q}) \vee \neg \neg \beta(\vec{p}, \vec{r})$$

if P has f.d.p. and (∗) has a short P-proof:
 small circuit C such that

$$C(\vec{p}) \vDash \alpha(\vec{p}, \vec{q}), \qquad \neg C(\vec{p}) \vDash \beta(\vec{p}, \vec{r})$$

In a galaxy far, far away

Persistent claims (2016-) by L. Gordeev and E. H. Haeusler:

- implicational IPC tautologies have polynomial-size proofs in dag-like natural deduction
- ► NP = PSPACE
- ▶ published ('19,'20), some people seem to take it seriously

Flatly contradicts known lower bounds, but this requires a complex argument, hard to track down by non-specialists:

- ► IPC-F lower bounds (Hrubeš '07)
- ▶ monotone circuit lower bounds (Alon–Boppana '87, ...)
- reduction to implicational logic (J. '17)
- simulation of natural deduction by Frege (idea Reckhow '76, Cook–Reckhow '79, but for a different system)
- ⇒ desire for something simpler/more direct

Lower bound for implicational logic

1 Classical proof complexity

2 Non-classical proof complexity

3 Lower bound for implicational logic

Intuitionistic/minimal implicational logic

Language: \rightarrow , atoms p_0, p_1, p_2, \dots

the set of formulas: Form

Notation:
$$\varphi \to \psi \to \chi \to \omega = (\varphi \to (\psi \to (\chi \to \omega)))$$

Frege system F_{\rightarrow} :

$$\vdash (\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to (\varphi \to \chi)$$
$$\vdash \varphi \to \psi \to \varphi$$

$$\varphi, \varphi \to \psi \vdash \psi$$

Sequent calculus LJ→: structural rules (incl. cut) +

$$\frac{\Gamma \Longrightarrow \varphi \quad \Gamma, \psi \Longrightarrow \alpha}{\Gamma, \varphi \to \psi \Longrightarrow \alpha} \qquad \frac{\Gamma, \varphi \Longrightarrow \psi}{\Gamma \Longrightarrow \varphi \to \psi}$$

Natural deduction

Prawitz-style tree-like natural deduction: $[\varphi] \leftarrow$ discharged \vdots

$$(\rightarrow E) \ \frac{\varphi \quad \varphi \rightarrow \psi}{\psi} \qquad \qquad (\rightarrow I) \ \frac{\psi}{\varphi \rightarrow \psi}$$

every leaf of the proof tree must be discharged

Gordeev & Haeusler dag-like natural deduction NM→:

- every leaf of the proof dag must be discharged on every path to the root
- checkable in polynomial-time: inductively compute for each node v ∈ V the set

$$A_v = \{ \gamma_u : u \text{ leaf, undischarged on some path to } v \}$$

Notation: $\langle V, E \rangle$ underlying dag, $\gamma_{\nu} =$ formula label of node ν

Efficient Kleene's slash

For $P \subseteq Form$: a P-slash is a unary predicate $|\varphi|$ on Form s.t.

$$|(\varphi \to \psi) \iff (\underbrace{|\varphi \text{ and } \varphi \in P}_{\|\varphi} \implies |\psi)$$

- \blacktriangleright free to choose |p| for atoms p
- ► Kleene's original $\Gamma \mid \varphi$ has $P = \{\varphi : \Gamma \vdash \varphi\}$, we take for P an efficiently computable finite set

$$NM_{\rightarrow}$$
-proof Π : P is Π -closed if $\forall v (A_v \subseteq P \implies \gamma_v \in P)$

Lemma: Π proof of φ , P is Π -closed, | is a P-slash $\implies |\varphi|$

by induction on the length of the proof

Constructibility of ∏-closure

$$\operatorname{cl}_{\Pi}(X) = \operatorname{smallest} \Pi \operatorname{-closed} \operatorname{set} P \supseteq X$$

Observation:
$$\varphi \in \mathsf{cl}_\Pi(X) \implies X \vdash \varphi$$

 $cl_{\Pi}(X)$ is computable in polynomial time, moreover:

Lemma: Π NM $_{\rightarrow}$ -proof, $\{\varphi_i : i < n\} \subseteq \text{Form}, \varphi \in \text{Form} \implies \exists \text{ monotone circuit } C \text{ of size } |\Pi|^3 \text{ s.t.}$

$$C(x_0,\ldots,x_{n-1})=1\iff \varphi\in\mathsf{cl}_{\Pi}(\{\varphi_i:x_i=1\})$$

- describe inductive construction of closure
- only involves formulas from Π
- ightharpoonup terminates in $|\Pi|$ steps

Feasible disjunction property

Theorem: Given a NM_{\rightarrow} -proof Π of

$$\varphi = (\alpha_0(\vec{p}) \to u) \to (\alpha_1(\vec{p}) \to u) \to u,$$

we can compute in polynomial time $i \in \{0,1\}$ s.t. $\vdash \alpha_i$

Proof:
$$P = \operatorname{cl}_{\Pi}(\alpha_0 \to u, \alpha_1 \to u)$$
, let | be P -slash s.t. $\nmid u$

We have $|\varphi$, thus $\not\parallel(\alpha_0 \to u)$ or $\not\parallel(\alpha_1 \to u)$

We can compute i s.t. $\alpha_i \in P$

Then:
$$\alpha_0 \to u, \alpha_1 \to u \vdash \alpha_i$$

Substitute \top for $u \implies \text{get} \vdash \alpha_i$

Monotone feasible interpolation

Theorem: Given a NM_{\rightarrow} -proof Π of

$$\begin{split} & \left((p_0 \to u) \to (p'_0 \to u) \to u \right) \\ & \to \left((p_1 \to u) \to (p'_1 \to u) \to u \right) \\ & \to \left((p_2 \to u) \to (p'_2 \to u) \to u \right) \\ & & \ddots \\ & \to \left((p_{n-1} \to u) \to (p'_{n-1} \to u) \to u \right) \end{split}$$

$$\rightarrow (\alpha_0(\vec{p}, \vec{q}) \rightarrow u) \rightarrow (\alpha_1(\vec{p}', \vec{r}) \rightarrow u) \rightarrow u,$$

there is a monotone circuit C of size $|\Pi|^3$ such that

$$C(\vec{p}) \vDash \alpha_0(\vec{p}, \vec{q}), \qquad \neg C(\vec{p}) \vDash \alpha_1(\neg \vec{p}, \vec{r})$$

Monotone feasible interpolation

Notation:
$$\langle \varphi_i \rangle_{i < n} \to \psi = \varphi_{n-1} \to \cdots \to \varphi_1 \to \varphi_0 \to \psi$$

Theorem: Given a NM_{\rightarrow} -proof Π of

$$\langle (p_i \to u) \to (p'_i \to u) \to u \rangle_{i < n}$$

 $\to (\alpha_0(\vec{p}, \vec{q}) \to u) \to (\alpha_1(\vec{p}', \vec{r}) \to u) \to u,$

there is a monotone circuit C of size $|\Pi|^3$ such that

$$C(\vec{p}) \vDash \alpha_0(\vec{p}, \vec{q}), \qquad \neg C(\vec{p}) \vDash \alpha_1(\neg \vec{p}, \vec{r})$$

Colouring-Cocolouring disjoint NP pair

Observation: Any graph $G=\langle V,E\rangle$ with V=[n] satisfies $\chi(G)\chi(\overline{G})\geq n$

 $c: V \to [k]$ colouring of G,

 $c' \colon V \to [k']$ colouring of \overline{G}

 $\implies c \times c' \colon V \to [k] \times [k']$ is injective

Colouring-Cocolouring disjoint NP pair

Observation: Any graph $G = \langle V, E \rangle$ with V = [n] satisfies

$$\chi(G)\chi(\overline{G}) \geq n$$

Colouring-Cocolouring disjoint NP pair: distinguish

- ▶ graphs G s.t. G is k-colourable from
- ightharpoonup graphs G s.t. \overline{G} is k-colourable

where
$$k = \lceil \sqrt{n} \rceil - 1$$

Represent E by an $\binom{n}{2}$ -tuple of Boolean variables

Theorem (Hrubeš & Pudlák '17):

Any monotone circuits separating the Colouring–Cocolouring pair must have size $2^{\Omega(n^{1/8})}$

$$p_{ij}$$
 $(i < j < n)$: represent E q_{il} , r_{il} $(i < n, l < k)$: k -colouring of G and \overline{G} (respectively)

Classical tautologies:

$$\neg \left[\left(\bigwedge_{i < n} \bigvee_{l < k} q_{il} \wedge \bigwedge_{\substack{i < j < n \\ l < k}} \neg (q_{il} \wedge q_{jl} \wedge p_{ij}) \right) \right.$$

$$\wedge \left(\bigwedge_{i < n} \bigvee_{l < k} r_{il} \wedge \bigwedge_{\substack{i < j < n \\ l < k}} \neg (r_{il} \wedge r_{jl} \wedge \neg p_{ij}) \right) \right]$$

$$p_{ij}$$
 $(i < j < n)$: represent E q_{il} , r_{il} $(i < n, l < k)$: k -colouring of G and \overline{G} (respectively)

Classical tautologies:

$$\left(\bigwedge_{i < n} \bigvee_{l < k} q_{il} \rightarrow \bigvee_{\substack{i < j < n \\ l < k}} (q_{il} \land q_{jl} \land p_{ij})\right)$$

$$\lor \left(\bigwedge_{\substack{i < n}} \bigvee_{\substack{l < k \\ l < k}} r_{il} \rightarrow \bigvee_{\substack{i < j < n \\ l < k}} (r_{il} \land r_{jl} \land \neg p_{ij})\right)$$

$$p_{ij}, p'_{ij}$$
 $(i < j < n)$: represent E and its complement q_{il}, r_{il} $(i < n, l < k)$: k -colouring of G and \overline{G} (respectively)

Classical tautologies:

$$\bigwedge_{i < j < n} (p_{ij} \lor p'_{ij}) \to \left[\left(\bigwedge_{i < n} \bigvee_{l < k} q_{il} \to \bigvee_{\substack{i < j < n \\ l < k}} (q_{il} \land q_{jl} \land p_{ij}) \right) \\
\lor \left(\bigwedge_{i < n} \bigvee_{l < k} r_{il} \to \bigvee_{\substack{i < j < n \\ l < k}} (r_{il} \land r_{jl} \land p'_{ij}) \right) \right]$$

$$p_{ij}, p'_{ij}$$
 $(i < j < n)$: represent E and its complement q_{il}, r_{il} $(i < n, l < k)$: k -colouring of G and \overline{G} (respectively)

Intuitionistic tautologies:

$$\bigwedge_{i < j < n} (p_{ij} \lor p'_{ij}) \to \left[\left(\bigwedge_{i < n} \bigvee_{l < k} q_{il} \to \bigvee_{\substack{i < j < n \\ l < k}} (q_{il} \land q_{jl} \land p_{ij}) \right) \\
\lor \left(\bigwedge_{i < n} \bigvee_{l < k} r_{il} \to \bigvee_{\substack{i < j < n \\ l < k}} (r_{il} \land r_{jl} \land p'_{ij}) \right) \right]$$

 p_{ij} , p'_{ij} (i < j < n): represent E and its complement q_{il} , r_{il} (i < n, l < k): k-colouring of G and \overline{G} (respectively) u: auxiliary

Intuitionistic tautologies:

$$\left[\left(\bigwedge_{i < n} \bigvee_{l < k} q_{il} \to \bigvee_{\substack{i < j < n \\ l < k}} (q_{il} \land q_{jl} \land p_{ij})\right) \to u\right]$$

$$\to \left[\left(\bigwedge_{i < n} \bigvee_{l < k} r_{il} \to \bigvee_{\substack{i < j < n \\ l < k}} (r_{il} \land r_{jl} \land p'_{ij})\right) \to u\right]$$

$$\to \bigwedge_{\substack{i < j < n \\ l < k}} (p_{ij} \lor p'_{ij}) \to u$$

 p_{ij} , p'_{ij} (i < j < n): represent E and its complement q_{il} , r_{il} (i < n, l < k): k-colouring of G and \overline{G} (respectively) u, v, w: auxiliary

Intuitionistic tautologies:

$$\left[\left(\left(\bigvee_{\substack{i < j < n \\ l < k}} (q_{il} \land q_{jl} \land p_{ij}) \to v\right) \to \bigwedge_{i < n} \bigvee_{l < k} q_{il} \to v\right) \to u\right]$$

$$\to \left[\left(\left(\bigvee_{\substack{i < j < n \\ l < k}} (r_{il} \land r_{jl} \land p'_{ij}) \to w\right) \to \bigwedge_{i < n} \bigvee_{l < k} r_{il} \to w\right) \to u\right]$$

$$\to \bigwedge_{i < i < n} (p_{ij} \lor p'_{ij}) \to u$$

 p_{ij}, p'_{ij} (i < j < n): represent E and its complement q_{il}, r_{il} (i < n, l < k): k-colouring of G and \overline{G} (respectively) u, v, w: auxiliary

Intuitionistic implicational tautologies τ_n :

$$\langle (p_{ij} \to u) \to (p'_{ij} \to u) \to u \rangle_{i < j < n} \to (\alpha_n \to u) \to (\alpha'_n \to u) \to u$$

where

$$\alpha_{n} = \left\langle \left\langle q_{il} \to v \right\rangle_{l < k} \to v \right\rangle_{i < n} \to \left\langle q_{il} \to q_{jl} \to p_{ij} \to v \right\rangle_{i < j < n} \to v$$

$$\alpha'_{n} = \left\langle \left\langle r_{il} \to w \right\rangle_{l < k} \to w \right\rangle_{i < n} \to \left\langle r_{il} \to r_{jl} \to p'_{ij} \to w \right\rangle_{i < j < n} \to w$$

The lower bound

$$\tau_n$$
: IPC $_{\rightarrow}$ tautologies of size $O(n^2k) = O(n^{2.5})$

Monotone feasible interpolation \implies

Lemma: If τ_n has a proof of size s, then there is a monotone circuit of size s^3 separating the Colouring–Cocolouring **NP** pair

Hrubeš–Pudlák bound ⇒

Theorem: Any NM $_{\rightarrow}$ -proof of τ_n has size $2^{\Omega(n^{1/8})}$

Corollary: There are infinitely many intuitionistic implicational tautologies φ that require NM $_{\rightarrow}$ -proofs of size $2^{\Omega(|\varphi|^{1/20})}$

(Clique–Colouring tautologies with $k \approx n^{2/3}$: $2^{\Omega(|\varphi|^{1/10-\varepsilon})}$)

Other calculi

The argument adapts to F_{\rightarrow} or LJ_{\rightarrow} :

▶ adjust the definition of Π-closed sets

Actually:
$$F_{\rightarrow} \equiv_{p} LJ_{\rightarrow} \equiv_{p} NM_{\rightarrow} \equiv_{p} \underbrace{F_{\rightarrow}^{*} \equiv_{p} LJ_{\rightarrow}^{*} \equiv_{p} NM_{\rightarrow}^{*}}_{tree-like versions}$$

- ► $F_{\rightarrow} \equiv_{p} LJ_{\rightarrow} \equiv_{p} NM_{\rightarrow}$ go back to Reckhow '76
- ► $F_{\rightarrow} \equiv_{p} F_{\rightarrow}^{*}$ due to Krajíček '94, implicational version J. '17

Further extensions of the lower bound (as in J. '09, J. '17):

- ► full language of IPC
- ▶ superintuitionistic logics IPC $\subseteq L \subseteq BD_2$
- exponential separation between Extended Frege and Substitution Frege

References (1/2)

- N. Alon, R. B. Boppana: The monotone circuit complexity of Boolean functions, Combinatorica 7 (1987), 1–22
- S. R. Buss, G. Mints: The complexity of the disjunction and existential properties in intuitionistic logic, APAL 99 (1999), 93–104
- S. A. Cook, R. A. Reckhow: The relative efficiency of propositional proof systems, JSL 44 (1979), 36–50
- L. Gordeev, E. H. Haeusler: Proof compression and NP versus PSPACE, Studia Logica 107 (2019), 53–83
- Proof compression and NP versus PSPACE II, Bull. Sect. Logic Univ. Łódź 49 (2020), 213–230
- : Proof compression and NP versus PSPACE II: addendum, Bull. Sect. Logic Univ. Łódź 51 (2022), 197–205
- P. Hrubeš: Lower bounds for modal logics, JSL 72 (2007), 941–958
- ► _____: A lower bound for intuitionistic logic, APAL 146 (2007), 72–90
- : On lengths of proofs in non-classical logics, APAL 157 (2009), 194–205
- P. Hrubeš, P. Pudlák: Random formulas, monotone circuits, and interpolation, Proc. 58th FOCS, 2017, 121–131

References (2/2)

- R. Jalali: Proof complexity of substructural logics, APAL 172 (2021), art. 102972, 31 pp
- E. J.: Substitution Frege and extended Frege proof systems in non-classical logics, APAL 159 (2009), 1–48
- Proof complexity of intuitionistic implicational formulas, APAL 168 (2017), 150–190
- A simplified lower bound for implicational logic, 2023, 31 pp, arXiv:2303.15090 [cs.LO]
- S. Jukna: Boolean function complexity: Advances and frontiers, Springer, 2012, xvi+620 pp
- J. Krajíček: Bounded arithmetic, propositional logic, and complexity theory, Cambridge Univ. Press, 1995, xiv+343 pp
- J. Krajíček: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic, JSL 62 (1997), 457–486
- A. A. Razborov: Lower bounds on the monotone complexity of some Boolean functions, Math. USSR, Doklady 31 (1985), 354–357
- R. A. Reckhow: On the lengths of proofs in the propositional calculus, Ph.D. thesis, Univ. Toronto, 1976
- É. Tardos: The gap between monotone and non-monotone circuit complexity is exponential, Combinatorica 7 (1987), 141−142