Mathematical Logic

Emil Jerabek

Based on course notes taken by Jindrich Novak

Charles University Prague
Faculty of Mathematics and Physics 24 October 2025

Course overview

Mathematical logic, in a broad sense, is the investigation of formal logical systems—that typically have
a syntactic component operating with expressions such as formulas, and a semantic component that
assigns a “meaning” to these expressions interpreted in suitable structures—by mathematical means and
methods, similar to, say, abstract algebra (whereas logic had been traditionally a domain of philosophy
since antiquity). In a narrower sense, mathematical logic studies formal systems relevant to the founda-
tions of mathematics, such as first-order logic and set theory. It also includes spin-off fields such as the
theory of computation.

The purpose of this course is to introduce three (related) basic topics in mathematical logic, each
part culminating with one of the major achievements of the field:

1. Classical propositional and first-order logic, leading up to the completeness theorem.
2. Computability, leading up to the undecidability of the halting problem.
3. Theories of arithmetic, leading up to Godel’s theorems.

These lecture notes also include a list of exercises (purely voluntary): besides helping to get a better
acquaintance of the material, many of them present additional side results that may interest dedicated
students, but for which there is no room in the main lecture due to time constraints.

A website for this course is maintained at

https://users.math.cas.cz/~jerabek/teaching/mathlog/mathlog.html.

It includes basic information about the course, and an updated detailed break-down of topics we covered
in each lecture.
Concerning literature, Part 1 seeks to be consistent with

e Lou van den Dries, Lecture notes on mathematical logic,
and Part 2 with
e Michael Sipser, Introduction to the theory of computation, 2nd ed., Thomson, 2006.
Part 3 does not follow any particular source. Other recommended literature:
e Vitézslav Svejdar, Logika: neiplnost, sloZitost a nutnost, Academia, Praha, 2002 (in Czech).

e René Cori and Daniel Lascar, Mathematical logic: A course with exercises (Part I and Part II),
Oxford University Press, 2000.

e Joseph R. Shoenfield, Mathematical logic, Addison-Wesley, London, 1967.

iii

https://users.math.cas.cz/~jerabek/teaching/mathlog/mathlog.html

v

MATHEMATICAL LOGIC

Contents

Course overview

1 Syntax and semantics of logic
1.1 Propositional logic

1.2 Completeness of propositional logic L oL L

1.3 First-order logic.
1.4 First-order proof system . .

1.5 Completeness of first-order logic L o
1.6 Consequences of the completeness theorem

2 Computability
2.1 Turing machines

2.2 Universal Turing machines and the halting problem
2.3 Computability of logical syntax L

3 Arithmetic

3.1 Robinson and Peano arithmetics

3.2 Xj-completeness of Q

3.3 Sequence encoding and definability of computation
3.4 Undecidability and incompleteness oL

3.5 Unprovability of consistency

Exercises (in 2024/25)

iii

23
23
29
32

35
35
37
39
43
45

49

vi

MATHEMATICAL LOGIC

Part 1

Syntax and semantics of logic

The goal of this part is to prove the completeness theorem for first-order logic (and for propositional logic).
We start from the beginning, that is, we introduce the syntax and semantics of propositional and first-
order logic and their basic properties. However, since these basics are included among the prerequisites
for the course, our treatment of them will be in the form of an extensive review of the material to make
sure we are all on the same page, and to fix notation and terminology. The presentation will be, therefore,
rather terse at times, and we will skip some proofs.

Convention 1.1. Throughout the course, N denotes the set of natural numbers including 0. Ordered
pairs and other tuples are denoted using the angle brackets (x, y).

Definition 1.2 (Strings). Given an alphabet X, the strings of a given length n over ¥ are elements
of ™. The set of all strings over X is

DI [_jo .

Notation 1.3. The length of w € ¥* is denoted |w|; i.e., |w| is the n € N such that w € X™.
Given u,v € ¥*, their concatenation (of length |u| + |v]) is denoted u_v, or simply uv.
The empty string (the unique string of length 0) is denoted €.

Convention 1.4. Even though there is a formal distinction between a symbol a € ¥ and the corre-
sponding string of length one from X!, both will be denoted the same.

1.1 Propositional logic

When formulating propositional logic, there is a somewhat arbitrary choice of which connectives are
postulated as basic, and which are introduced as abbreviations. In accordance with van den Dries’s lecture
notes, we formulate propositional logic in the De Morgan language using the connectives A (conjunction),
V (disjunction), = (negation), T (truth, verum), and L (falsity, falsum):

Definition 1.5 (Atoms, propositional formulas). Let A be a set of atoms (or propositional vari-
ables). The set Prop, of propositional formulas over A is the smallest subset of X*, where ¥ =
AU{A,V,—, T,L,(,)}, such that

(i) a€ A = a € Propy,

(ii) ¢,1p € Propy = (¢ A¥), (¢ V), ~@, T, L € Prop,.

Remark 1.6. It may not be immediately clear that there exists an object satisfying an inductive
definition such as the definition of Prop, above. (It is clear that if it exists, it is unique, as the can be
only one smallest set—meaning w.r.t. inclusion—with a given property.) This can be formally proved in
several ways:

2 MATHEMATICAL LOGIC

(i) Let F be the collection of all subsets of ¥* with the given property, and put Prop, = (| F. Using
the fact that the property X € F is defined by a collection of inductive clauses of the form “if
©0,¢1,--- € X then F(po,¢1,...) € X7, it is readily seen that Prop, € F, hence it is the smallest
set in F.

(ii) Define a sequence of sets X,, C ¥*, n € N, such that Xy = @, and X,,11 is the result of all the
inductive clauses applied to X,,; i.e., here,

Xng1 = A" U{(eAY), (0 V), 0, T, L:p, ¢ € X, }.

We can show X,, C X, 1 by induction on n. Put Prop, = UneNX Since all the inductive
clauses are finitary, we see that Prop, is closed under them, and it is the smallest set with this
property.

We will see other such inductive definitions later; they can all be formalized in a similar manner.
Notation 1.7. We introduce the shorthands (¢ —) = (- V ¥), (¢ <> ¥) = ((me V) A (= V ¢)).

Convention 1.8. When writing formulas, we will omit outermost brackets, and, in contexts where it
does not matter, brackets occurring in repeated conjunctions or disjunctions (e.g., ¥ A ¥ A w).

It is also a common convention that A and V bind more strongly than — and <, thus, e.g., the
expression ¢ A ¢ — x V w is understood as the formula ((p AY) = (x Vw)), i.e., (m(@A9) V (x Vw)).

Remark 1.9. We defined formulas using infiz notation, in which binary connectives are written in
between their two arguments. Logic is sometimes (e.g., in the van den Dries lecture notes) presented
using prefix (or Polish) notation, in which all connectives are placed in front of all their arguments. This
leads to a formally simpler development, as all connectives are treated in a uniform way, and there is no
need to use brackets: e.g., the formula ((p A =g) — (—p V1)) is written —Ap—¢V—-pr. (In fact, in actual
Polish notation as introduced by Lukasiewicz, connectives are denoted by certain capital letters: this
formula would be written CKpNgANpr.) We opted to stick to the more human-readable infix notation.

Notation 1.10. Given a finite sequence of formulas ¢y, . .., ,_1, their repeated conjunction (bracketed
in some canonical way, e.g., left-to-right) is denoted

/\901:900/\/\4,071—1

i<n
Analogous notation is introduced for logical disjunction. For n = 0, this is understood as A\; g = T,
\/i<0 i =1; forn =1, /\i<1 Yi = Vi<1 Yi = ¥o-

Lemma 1.11. (Unique readability) For any formula ¢ € Prop,, exactly one of the following cases
happens:

(i) ¢ € A (¢ is atomic).

(i

(iii

((,DO A gOl) fOT some Yo, P1 (S PYOpA
= (o V 1) for some o, 1 € Propy.

(iv
(v
(vi) ¢ = L.

Moreover, the formulas o and @1 in (ii)—(iv) are uniquely determined by .

= g for some po € Prop 4.

e
) ¢
) ¥
) ¢

Remark 1.12. The syntactic build-up of a formula may be described by a so-called syntactic tree: this
is an ordered binary tree each of whose nodes is labelled with an occurrence of a symbol in the formula,
such that atoms (and constants) are leaf nodes, and a node labelled with a connective has as its the
children the arguments of the connective. Lemma 1.11 can be generalized to show that every formula
has a unique syntactic tree.

PART 1. SYNTAX AND SEMANTICS OF LOGIC 3

Definition 1.13. A propositional assignment, or truth assignment, or simply an assignment, is a function
a: A — {0,1}. The set of all assignments on A is denoted {0,1}".

Lemma 1.14 (Formula evaluation). Any truth assignment o has a unique extension &: Prop, — {0,1}
such that for all ¢, € Prop4 and a € A,

d(a) = a(a),
a(p A) = min{a(p), a()},
a(e V1) = max{a(p),a(¥)},
V() =1 —a(y),
a(T) =1,
a(Ll)=0.
Observation 1.15. For any sequence of formulas ¢q, ..., on_1, we have

d(\/(pi) =1 < Ji<na(p;)=1

<n
and
d(/\%) =1 < Vi<nda(p) =1 0O
i<n

Definition 1.16. If &(p) = 1, we say that « satisfies ¢, or that « is a satisfying assignment of ; this
is denoted a F ¢.
A formula ¢ is a tautology, written as E ¢, if every truth assignment «: A — {0, 1} satisfies .
Dually, ¢ is satisfiable if there exists a truth assignment a: A — {0, 1} that satisfies .
Formulas ¢ and v are equivalent, written ¢ = 1, if

va € {0,1}" a(p) = a(v).
Observation 1.17. ¢ = if and only if E (¢ <). O

Definition 1.18 (Entailment). Let I' C Prop4 be a set of propositional formulas. We say that a truth
assignment « satisfies I' (or that « is a model of T'), written a F T, if « satisfies every formula ¢ € T".

T entails o, written as I' E ¢, if for each « € {0, l}A, whenever o F T', then a F .

Definition 1.19 (Boolean function). A Boolean function is any function of the form f: {0,1}" — {0,1}.
We can identify it with f: {0,1}* — {0,1} if |4| = n; i.e., A = {ag,...,an_1}. A formula ¢ € Prop
represents a Boolean function f if for each a € {0, 1}A we have f(a) = &(p).

Observation 1. 20 Every formula ¢ represents a unique Boolean function, namely the truth-table
function tt,: {0, 1} —{0,1} defined by tt,(o) = G(yp). O

Lemma 1.21. If A is a finite set of atoms, every Boolean function f: {0, 1}A — {0,1} can be represented
by a formula.

Proof. Check that

= N ARO= AV

aef-1(1)i€A aef~1(0)icA

where we write p! = p, p° = —p. O

This is often expressed by saying that the set of connectives {A,V,—, T, L} is functionally complete
on {0,1}. See Exercises 1-3.

4 MATHEMATICAL LOGIC

Definition 1.22. A literal is an atom or its negation.
A clause is a disjunction of a (possibly empty) set of literals.
A formula in conjunctive normal form, or a CNF, is a conjunction of a (possibly empty) set of clauses.

Dually, a formula in disjunctive normal form, or a DNF), is disjunction of a set of conjunctions of sets
of literals.

Conjunctions of sets of literals are also called terms, but we will refrain from this terminology to
avoid clash with Definition 1.47 below.

The proof of Lemma 1.21 actually shows:
Corollary 1.23. FEvery Boolean function can be represented by a CNF and by a DNF. O
Corollary 1.24. FEvery formula is equivalent to a CNF and to a DNF. O

Remark 1.25. It follows from the proof of Lemma 1.21 that any Boolean function in n variables can
be represented by a formula of size O(2"n) (where the size of a formula is its length as a string). We
can improve this to O(2™) by an inductive construction (see Exercise 7). One may ask if we could do
better. The answer is no, not by much.

In fact, there are Boolean functions f: {0,1}" — {0,1} such that any formula representing f has
size Q(2"/logn). (Conversely, every Boolean function has a formula of size O(2"/logn), but this small
improvement takes a lot of work to prove.)

This may be proved by a simple counting argument: a formula ¢ of size s is a string of length s made
of n + 7 possible symbols, thus the number of such formulas is < (n + 7)%, while there are 22" Boolean
functions. If all functions can be represented by formulas of size s, then 22" < (n + 7)°, which implies
2" < s-log(n+7), whence s > 2" /log(n + 7). The same argument actually shows that vast majority of
Boolean functions require formulas of size ©(2"/logn).

Despite that, it is an open problem to construct an explicit sequence of Boolean functions that require
formulas of size more than Q(n°) for all constants ¢. We can construct functions that require formulas
of cubic size, but we cannot do any better.

This falls into the field of study known as circuit complexity, which is related to various problems in
computational complexity.

Propositional logic may seem trivial at first sight, but it is related to many very difficult and very
intensively studied areas of mathematics.

Another open problem is the question: given a formula, how difficult is it to compute whether it
is satisfiable? One obvious way to go about this is to brute-force the solution by trying all possible
assignments. This is an inefficient algorithm, however, with computational complexity on the order of
2",

Another possibility is to convert the given formula to a DNF and check the satisfiability thereof.
Note that it is trivial to check the satisfiability of DNF's, which can be done in polynomial time. The
conversion itself, however, requires exponential time to compute (cf. Exercise 6).

Observe that we can easily verify that ¢ is satisfiable if we are given a satisfying assignment as a
witness. Problems like this, where a positive answer has an efficiently checkable witness, are said to
belong to the complexity class NP. In fact, satisfiability is a “complete” problem for NP in a suitable

sense. The famous question P Z NP in effect asks whether there exists an efficient (i.e., polynomial-time)
algorithm for satisfiability testing. It is generally conjectured that this is not the case, and in fact, that
every satisfiability-testing algorithm requires time 2(").

When checking validity or satisfiability of formulas by hand, or converting them to CNF or DNF, or
doing other manipulations, it is convenient to have a supply of basic equivalences that we can use. The
following lemmas can help.

Lemma 1.26 (Algebraic equivalences). Conjunction and disjunction are commutative, associative, and
idempotent operators up to equivalence. Moreover, T is a neutral element for conjunction, and a zero

PART 1. SYNTAX AND SEMANTICS OF LOGIC 5

element for disjunction; dually for T. We also have the lattice absorption and distributivity laws:

eAWAX)=(PAY) A X eV VX)=(pVY) VX
PAY=P Ay pVY =9V
pAPp=p pVe=gp

PA(pVY) = eV(pAY) =

N VX)=(pAY)V(pAX) eV AX)=(pVY)A(pVx)
PpANT =0 pVLI=ep
pANL=_1 pVT=T.

Lemma 1.27. The following so called De Morgan laws hold:

(e V) =—p A, “(pA) =V .

(We also have ~—p = ¢.) More generally,

_‘\/%‘E/\—'%’, ﬁ/\soiz\/ﬂgoi.

i<n i<n i<n i<n

Lemmas 1.26 and 1.27 show that the quotient structure (Prop 4, A, V,—, L, T) /= is a Boolean algebra.

When manipulating formulas using Lemmas 1.26 and 1.27, we do not apply them to the whole
formula, but to subformulas (= substrings that are themselves formulas; we will not formally introduce
this notion and/or propositional substitution). This is justified by the following lemma, whose proof we
also omit:

Lemma 1.28 (Substitution of equivalents). If ¢ = ¢', and ¢’ is obtained from v by replacing some
subformulas © with ', then ¥ ='.

1.2 Completeness of propositional logic

We want to characterize entailment in propositional logic by a proof system: a proof of ¢ from I is a
certificate or witness' whose existence guarantees that ¢ indeed follows from I', and whose correctness
is easily checkable.

Many different kinds of proof systems with different properties are considered in the literature on
proof theory and proof complexity, such as Hilbert-style proof systems, sequent calculi, natural deduction,
resolution, etc. Furthermore, the selection of axioms and inference rules in proof systems of one type
may differ.

We are going to work with a Hilbert-style proof system, also known as a Frege system: this means
that a proof is just a sequence of formulas consisting of axioms and of formulas inferred by specified
rules of inference. The advantage of such proof systems is that they are very simple to define; their
disadvantage is a lack of analogues of more advanced proof-theoretic tools such as cut elimination/proof
normalization, but these are outside the scope of this course anyway.

The De Morgan language is rather inconvenient to formulate Hilbert-style proof systems for: on
the one hand, it includes many redundant connectives, which means we need many axioms to fix their
properties; on the other hand, most natural axioms have the form of an implication, but — is not
included in the De Morgan language. To make our lives simpler, we will use in this section an alternative
language with only {—, L} as the basic connectives (which is readily seen to be functionally complete).
A complete proof system using the De Morgan language can be found in the van den Dries lecture notes;
alternatively, you can solve Exercise 12.

LUnlike satisfying assignments as witnesses for satisfiability (cf. Remark 1.25), proofs may in general be much larger than

the formulas they prove. Whether propositional proofs can be made polynomial size is closely related to the NP 2 coNP
question.

6 MATHEMATICAL LOGIC

Definition 1.29. A (propositional) logical aziom is any instance of one of the axiom schemata

(A1) o= (b — o),
(A2) (= W —=x) = (g —=9) = (¢ —x),
(A3) ((p—=L)—=1)— .

We also consider the schematic inference rule modus ponens:

(MP) From ¢ and ¢ — 9 infer 1.
Definition 1.30 (Proofs). Let ¢ € Prop, and I' C Prop,. A proof (or derivation) of ¢ from I" is a
sequence of formulas g, @1, ..., ps such that ¢s = ¢ and for every i = 0,...,s one of the following
holds:

o v, eI’

e (; is a logical axiom (i.e., it is an instance of one of the axiom schemata);
e there are j,k < ¢ such that ¢; is derived from ¢;, ¢} using modus ponens.

A formula ¢ is provable from T, written I' - ¢, if there exists a proof of ¢ from T
A proof of ¢ from the empty set @ is simply called a proof of ¢, and ¢ is called provable, written - ¢.
I is consistent if T' ¥ L.

Remark 1.31. Definition 1.30 is an inductive definition in thin disguise: we could have just said that
the set of formulas provable from I' (the deductive closure of I') is the smallest set of formulas that
includes T and logical axioms, and that is closed under modus ponens. The definition of proofs then
follows by unwinding the inductive definition along the lines of Remark 1.6 (ii). However, we want to
concentrate on proofs as objects of study, hence we prefer to state the definition explicitly in terms of
proofs up front.

We first observe some basic structural properties of provability. (Conditions (i)—(iii) say that F obeys
Tarski’s definition of an abstract consequence relation; condition (iv) say that the consequence relation
is finitary.)

Observation 1.32. Let I') A C Prop, and ¢, € Prop,.
(i) If o e, then T F .
(ii) IfTF @ and T C A, then AF .

(iii) IfT'F ¢, and A+ for each ¢ € T, then A F . (As a special case, if T,9 b ¢ and A F 1, then
LA @)

(iv) If T'F @, there exists a finite Ty CT' such that T'g F .

Proof. Exercise. We point out that (iv) follows from the important fact that any proof contains only
finitely many formulas. O

Our present goal is to prove the following theorem:
Theorem 1.33 (Soundness and completeness). For all ¢ € Prop, and T' C Propy,
I'Fp <= T'Eep.

The soundness theorem is the left-to-right implication (which is the easy part, and will be left as an
exercise); the completeness theorem proper is the right-to-left implication.

Lemma 1.34 (Deduction). For allT' C Prop, and ¢, € Prop,,

vk <= I'kyY — .

PART 1. SYNTAX AND SEMANTICS OF LOGIC 7

Proof. The right-to-left implication is trivial (it follows by a single application of modus ponens). We
shall now prove the left-to-right implication. By assumption, there is a proof ¢y, ..., v, = ¢ of ¢ from
T U {y}. We will show I' ¢ — ¢; by induction on ¢ < n. We distinguish the ways how ¢; could have
been derived:

e Suppose either ¢; is a logical axiom or ¢; € I'. Then I' I ¢;, and we infer I" - 1) — ¢; using the
instance ¢; — (¢ — ;) of (Al) and (MP).

e Suppose @; = 1. The following proof shows I' 1) — 1:

@ = (0 =9) =2 9) > (Y = (W =4) = (=) (A2)
Y= (¥ =) =) (A1)
W= W —=9) = @ —=19) (MP)
Y= (Y =) (A1)
Y=y (MP)

e Suppose ; has been derived by (MP) from ¢; and ¢j, for some j,k <4, i.e., or = (@; = @;). By
the induction hypothesis, I' F ¢ = ¢; and I' - ¢ — (p; = ;). We obtain I' - 9 — ¢; using the
instance

(= (9 = i) = (¥ = 95) = (¥ = @)
of (A2) and two applications of (MP). O
Corollary 1.35. T+ < T, (¢ — 1) F L.
Proof.

= A simple application of modus ponens.

<« Using the deduction lemma,

Ne—1lFlL =TF((E-o>1) -1
= 'k,

where the last line is obtained via (MP) from ((¢ — L) — L) — ¢, which is (A3). O

Definition 1.36 (Maximal consistent set). I' C Prop, is mazimal consistent if T' is consistent but all
I' C A C Propy are inconsistent.

Observation 1.37. A mazimal consistent set I' C Prop 4 is deductively closed, i.e., for any ¢ € Prop4,
'k = pel.

Proof. T'U {¢} is still consistent, as I',o F L and T' F ¢ implies I' -+ L by Observation 1.32. Thus,
I'U{ep} =T by the maximality of T. O

Remark 1.38. One can show (exercise) that maximal consistent sets are exactly the “complete theories”:
consistent deductively closed sets I' C Prop 4 such that I' - ¢ or I' - ¢ — L for every ¢ € Prop,.

Lemma 1.39. Every consistent set I' C Propy is included in a mazimal consistent set I cC Propy,.

Proof. We will use Zorn’s Lemma. For the partial order, take all consistent extensions A D I" ordered by
inclusion. The union of any, possibly infinite, chain (= linearly ordered set) C' of consistent extensions
is a consistent extension, due to Observation 1.32 (iv): if |JC were not consistent, contradiction could
be obtained from a finite subset of | JC; since C is linearly ordered, such a finite set would be included
in some A € C, which would contradict the consistency of A. Thus every chain has an upper bound.
Consequently, there exists a maximal element, which is a maximal consistent extension of I'. O

8 MATHEMATICAL LOGIC

Lemma 1.40. Every mazximal consistent set I' is satisfiable.
Proof. Let T' be maximal consistent and define an assignment «: A — {0,1} by
alp)=1 < peTl for all p € A.
We will show that this equivalence holds for all formulas ¢, not just for atoms:
alp)=1 <= pel.
It will follow that a F I'. We prove this by induction on the complexity of ¢:
e Suppose ¢ is an atom. Then &(p) =1 <= ¢ €T by definition.
e Suppose ¢ = L. Then &(L) =0, and L ¢ T" because I is consistent.
e Suppose ¢ = (¢ — x). We distinguish three cases:

— a(x) =1, thus &(¢v — x) = 1.
By the induction hypothesis, x € T', whence I' F ¢ — x using (Al) , and ©p — x € T by
Observation 1.37.

— G&(y) =0, thus &(¢ — x) = 1.
By the induction hypothesis, ¢y ¢ I', which implies I';% F L by the maximality of T', thus

'Y, x — LF L as well. It follows that I',9 F x by Corollary 1.35, whence I' - ¢ — x by the
deduction lemma, and ¥ — x € I by Observation 1.37.

— &(y¥) =1 and &(x) =0, thus &y — x) =0.
By the induction hypothesis, it follows that ¢ € T" and x ¢ T", whence ¥ — x ¢ I’ (otherwise
T2 {y,v — x} b x by (MP), which implies x € ', quod non). O

Theorem 1.41 (Propositional completeness theorem). Let I' C Prop, and ¢ € Propy. Then
'y <= T Eep.

Proof. Soundness (T' F ¢ implies T' E) is left to the reader as Exercise 8. For the converse implication,
assume I' ¥ ¢. Then T'U {p — L} is a consistent theory by Corollary 1.35, and we may extend it to a
maximal consistent theory T' by Lemma 1.39. There exists an assignment « satisfying I by Lemma 1.40.
Then, in particular, a F T', and &(p — L) = 1 implies a ¥ ¢. Consequently, " ¥ ¢. O

Theorem 1.42 (Propositional compactness theorem). Let I' C Prop, and ¢ € Prop,.
(i) T F ¢ iff there exists a finite subset Iy CT" such that Ty E .
(ii) T s satisfiable iff all finite To C T are satisfiable.
Proof. (i) follows from Theorem 1.41 and Observation 1.32. (ii): Take ¢ = L. O

Remark 1.43. The compactness theorem is a purely semantic statement that does not rely on any
underlying proof system; it may be proved directly without using the completeness theorem, for example
by topological considerations (using the compactness of the space of all assignments; see Exercise 13).

Our proof of the completeness theorem, hence of the compactness theorem, used the axiom of choice
in the form of Zorn’s lemma. One can show that both statements are (over the Zermelo-Fraenkel set
theory) equivalent to the Boolean prime ideal theorem, which is weaker than full axiom of choice. This
holds also for the completeness and/or compactness theorems of first-order logic below (Theorems 1.86
and 1.88).

The compactness theorem can be used to prove combinatorial statements that ostensibly do not
involve any logic, such as the De Bruijn—Erdds theorem below.

Recall that a graph G = (V, E) (where V is a set of vertices and F C {{u,v} cu,v € Viu #£ v} is a
set of edges) is k-colourable if there exists a mapping ¢: V' — [k] such that c¢(u) # ¢(v) for all {u,v} € E,
where k € N and [k] = {0,...,k — 1}.

PART 1. SYNTAX AND SEMANTICS OF LOGIC 9

Theorem 1.44 (De Bruijn, Erdés). For any k € N, a graph G = (V, E) is k-colourable iff all finite
subgraphs Go of G are k-colourable.

Proof. Consider a set of atoms
AG:{pu,i5U€‘/ai<k}v

where p,, ; intuitively means “c(u) = 4", and define a set of formulas over Ag by
I = {\/pm tu € V} U {_‘(pu,i Apyi): {u,v} € Eji < k;}
i<k
Then T'¢ is satisfiable iff G is k-colourable:

< Let ¢: V — [k] be a k-colouring of G. Then a F ', where a(py;) = 1 iff c(u) = 1.

= Given a F g, we define a k-colouring ¢: V' — [k] as follows: for any u € V, there is i < k s.t.
a(pyi) = 1; let ¢(u) be one such i (say, the first one). Then if {u,v} € E, then a F =(py,i A Po.i)
for each 4, thus c(u) # c(v).

If all finite subgraphs of G are k-colourable, then every finite I'y C I'¢ is satisfiable, as I'y C I'g, for
some finite subgraph Gy of G. Thus, I'¢ is satisfiable by compactness, whence G is k-colourable. O

1.3 First-order logic

Definition 1.45 (Language). A language or signature is a collection of relation and function symbols,
each of a given arity. Formally, L = <LT,Lf,ar> where L" N LY = @ and ar: L" U Lf — N. We also
require that L™ U L/ is disjoint from {A,V, =, T, 1,¥,3,=,(,),>} U Var (see Definition 1.47).

For any R € L", ar(R) = n signifies that R is an n-ary relation symbol. Similarly, F' € L/ with
ar(F) = n is an n-ary function symbol. Nullary function symbols are called constant symbols. Nullary
relation symbols are rarely used, but they behave essentially as propositional atoms. Relation symbols,
especially unary, are also called predicate symbols.

Definition 1.46. An L-structure is A = <A, {RA 'R e Lr} , {FA :F e Lf}> where
e A # & is the domain? (underlying set) of A;
e for any R € L" with ar(R) = n, R* C A",
e for any F' € Lf with ar(F) =n, F4: A" — A.

If se L" U LY, s is also called the interpretation of s in A.

Definition 1.47. The set of variables is Var = {v, : n € N}. We will denote variables with various
lowercase letters such as z, y, z,
The set Termy, of L-terms is the least set such that every variable is an L-term, and for every n-ary

function symbol F € L' and any L-terms to,...,t, 1, we have F(tg,...,t, 1) € Termp.
An atomic L-formula is an expression of the form R(tg,...,t,—1) or to = t1, where R € L" is an
n-ary relation symbol and tg,... are L-terms.

The set Formy, of L-formulas is the least set such that every atomic L-formula is an L-formula, and
if ¢ and ¢ are L-formulas, and z is a variable, then (¢ A), (¢ V), =, T, L, Jxp, and Vz @ are
L-formulas.

When L is understood from the context or immaterial, we will say just term, formula, etc.

2Sometimes, especially in model theory, A = @ is admitted as well.

10 MATHEMATICAL LOGIC

Convention 1.48. In practice, we will not follow the above formalities when specifying languages,
structures, terms, and formulas. We will typically write a language as a set of symbols, such as L =
{+,—,, <}, where the nature of the symbols (relation/function, arity) either follows their conventional
use, or is understood from the context, and we will write R € L and F' € L instead of R € L" and
FelLl.

Likewise, we will write structures as tuples listing the domain and interpretations of the symbols,
such as (Z,+,—,-, <); as also seen here, standard operations on common mathematical structures will
be identified just by their symbol (we do not need to write +7 instead of + if no confusion arises).

Common binary symbols such as + and < will be written in the usual infix notation, e.g., z +y and
x < y rather than +(z,y) and <(z,y). Sometimes, applications of function and relation symbols are
written without brackets and commas: Rtg...t,—1, Ftg...t,—1 (this is the official definition in some
sources); we will at least invariably omit brackets in constants, writing ¢ instead of the ¢() required by
Definition 1.47.

Following common practice, we will write ¢t # s for =t = s; we might do this also with other binary
relations, e.g., t £ s.

An interpretation of a constant ¢ in a structure A is formally supposed to be a function ¢*: A% — A.
Since |A°| = 1, such a function is uniquely specified by just giving its single value; thus, we will identify
cA with an element of A.

Definition 1.49. An occurrence of a variable = in a formula ¢ is bound if it occurs inside a subformula
(= a substring that is itself a formula) that starts with 3x or V. Such an occurrence is said to be within
the scope of the latter bounding quantifier. An occurrence that is not bound is called free.

A variable is said to be free in ¢ if it has a free occurrence in ¢ (it may or may not also have bound
occurrences).

Definition 1.50. A term or a formula is closed if it has no free variables; closed formulas are also called
sentences. A theory is a set of sentences.
A formula is called open or quantifier-free if it has no bound variables.

We mention that the definition of a theory varies in the literature: sometimes, theories are required
to be deductively closed, i.e., o € T whenever ¢ is a sentence such that T F ¢ (see Definition 1.69 below).

Definition 1.51 (Substitution). Let ¢ be a term and z a variable. Given a term s, we define s(t/x) as
the result of replacing every occurrence of x in s with ¢. If ¢ is a formula, then ¢(¢/x) denotes the result
of replacing every free occurrence of x in ¢ with ¢.

More generally, if tg,t1,...,t,—1 are terms and xg,x1,...,ZT,—1 are distinct variables, then for any
term s, s(to/xo, .- tn-1/Tn—1) is the result of simultaneously replacing every occurrence of each z;
with ¢; in s. For a formula ¢, the expression ¢(tg/xo,...,tn—1/Tn—1) is defined similarly, substituting

just for free occurrences of variables.

Remark 1.52. The set of free variables of a formula ¢ and the substitution p(to/xo, ..., tn_1/Tn—1)
can also be defined by induction on ¢ (exercise).

Notation 1.53. We will write t(zq, ..., 2,—1) or (g, ...,2,—1) to indicate that all variables that occur
free in ¢ or t are among xg, x1, - .., T,—1. Then we write p(to,...,tn—1) for p(to/xo,- .-, tn-1/Tn—1) and
likewise for terms. When n is not important or understood from context, we may also write (&) for
o(zo, ..., Tn-1), etc.

Remark 1.54. Intuitively, the meaning of ¢(t/x) is “the property expressed by ¢(z) applied to the
element denoted by ¢”. However, it does not always work that way. For a simple example, let ¢(x) be
the formula Jyy # x, whose meaning is “there is an element distinct from z”. When we substitute y
for x, we obtain the formula Jyy # y, which does not mean “there is an element distinct from y”, but
“there is an element distinct from itself”. The problem here is that we substituted the variable y into
a context where it is quantified by Jy, which means it locally does not denote the element referred to
by the free variable. To avoid such situations, we will only use substitution when it meets the condition
below:

PART 1. SYNTAX AND SEMANTICS OF LOGIC 11

Definition 1.55 (Term free for substitution). A term ¢ is free for x in ¢ (or more explicitly, free for
substitution for x in ¢) if no free occurrence of x in ¢ is in the scope of a quantifier of the form Jy or Vy
where y occurs in t.

Remark 1.56. Once we define the semantics, it will become possible to formally state and prove that
if ¢ is free for x in ¢, then p(t/x) indeed has the “p(z) applied to the element denoted by ¢’ meaning.
In fact, a variant of this property can be stated purely syntactically as the next lemma (this implies the
semantic version when we take for s; and r the constants a introduced below and used in the definition
of satisfaction).

Lemma 1.57 (Successive substitution). Ift(xo,...,Zn_1,y) is free fory in a formula o(xo, ..., Tn-1,Y),
then for all terms S, r, the formula (©(t/y))(So/T0,- - Sn—1/Tn-1,7/Y), denoting successive substitution,
is the same formula as (i.e., syntactically identical to) the formula o(so, ..., Sn—1,t(80, -, Sn—1,7))-

Proof. Exercise 15. O

Definition 1.58 (Constant-symbol language extension). For any L-structure A and X C A, let Lx =
LU{a:a€ X}, where each a is a new constant symbol distinct from all others and from all symbols
of L.
Then Ax is an Lx-structure with domain A, sAx = ¢4 for all s € L, and a®* =a for all a € X.
We will later cease underlining constant symbols unless needed for clarity.

Definition 1.59 (Evaluation). If A is an L-structure, and ¢ is a closed term, then we define tA € A by
induction on the complexity of t:

o If t = Flto,... ,tp—1) then tA = FA(tg',... t7)).
For any term t(zo, ..., Zn_1), we define t4: A" — A by t*(ag,...,an—1) = (t(ag, . ..,a,_1))*4.

Definition 1.60 (Satisfaction, model, logical consequence). Let A be an L-structure. Given an L -
sentence ¢, we define A F ¢ by induction on the complexity of ¢:

e If ¢ is R(to,...,t,—1) for some n-ary relation R and closed L 4-terms t;, then we put A E ¢ iff
(.. tA,) € RA.

e lfpist=s5 AF p < t"=sA
e We shall now define behaviour of F on logical operators and quantifiers:

AEpo N1 <= AE ¢y and AE @y,

AE oV <= AEpoor AE ¢,

AE - = AF p,

AET,

AFE 1,

AFE3Jzy <= there exists a € A such that AF ¢(a/x),
AEVz o < forallae A, AF p(a/x).

Observe that in the last two clauses, ¢(a/x) is again an L 4-sentence.

For a not necessarily closed formula ¢(zo,...,z,—1), we write A E ¢ if AFE ¢(ag,...,a,—1) for all
ag, - --,0n_1 € A; we say that ¢ holds in A, or A is a model of ¢. o

More generally, if I' C Formp,, we write A F I if for all ¢ € T' we have A E ¢; we say that A is a
model of T.

A formula ¢ is a logical consequence of T, or I entails o, or ¢ follows from I', written I' F ¢, if every
model A of T' is also a model of ¢.

Finally, ¢ is said to be logically valid (or a first-order tautology), written F ¢, if & F ¢ (ie., ¢ is
entailed by I' = @); in other words, if A E ¢ for all structures A.

12 MATHEMATICAL LOGIC

L-formulas ¢ and 1 are equivalent, written ¢ = 1, if for every L-structure A and every tuple
ag,...,an_1 € A, we have

AEp(ag, ... an-1) <= AFY(ag,. . ,an-1).

In other words, p = ¢ iff E (p <> ¢). More generally, L-theories T and S are equivalent if AFT <—
AE S for all L-structures A; or equivalently, if T'F ¢ <= S E ¢ for all L-sentences .

Definition 1.61 (Universal closure). For any formula ¢(zq, ..., %, 1), its universal closure " is
V.’L‘O .. .Vl‘n,1 (p(.’l?o, . ,Stl‘nfl).

In other words, all freely occurring variables of ¢ are made bound with universal quantifiers.
Remark 1.62. The definition of entailment I' F ¢ and/or provability T F ¢ (that we will introduce
later) sometimes varies in the literature when I' contains formulas with free variables. This is the reason
why it became standard to define theories to consist of sentences only, for which the common definitions
agree. On the other hand, there is a general convention that axioms of theories may be written with
outer universal quantifiers stripped, thus a formula given as an axiom of a theory really represents its
universal closure.

Under our definitions, these distinctions are not important: we observe immediately from the defini-
tion that every formula is mutually entailed with its universal closure, as stated in the next lemma, and
our proof system will also have this property.

Lemma 1.63. For any L-formula o, ¢ F ©° and ©" F ¢. O

Lemma 1.64. If o = ¢/, and v’ is obtained from a formula 1 by replacing some occurrences of ¢ as
subformulas with ¢, then ¥ =)',

Proof. By induction on the complexity of 1. O

Definition 1.65. A formula ¢(zo,...,2,—1) is in prenex normal form if it has the form

Qoyo e melqu 9($07 ey Tn—1,Y0, - - - aymfl)

where @Q; € {3,V}, the formula 6 is open, and the y; are pairwise distinct variables, distinct from the
SCjS.

Lemma 1.66. Let QQ be either the existential or the universal quantifier. Then

—dx o = V-,
=V p = Iz —p,
Qr o = Qye(y/z) if y is free for x in @,

(P AQz i) = Qu(p AY) L .

if x is not free in .
(pVQze)=Qu(p V)
The first two equivalences are called the De Morgan rules for quantifiers.

Lemma 1.67. Every formula is equivalent to a formula in prenex normal form.

Proof. Apply Lemma 1.66 systematically to bring all quantifiers out, renaming them in case of clashes.
O

PART 1. SYNTAX AND SEMANTICS OF LOGIC 13

1.4 First-order proof system

Definition 1.68. We consider the following list of axioms and rules for first-order logic:

Propositional axioms and rules of inference

Same as in Definition 1.29.
Axioms of equality

T =z,
r=yNr=2z—>y=2,
(Azi=u) = B - R@).
<n
(Azi=w)—F@ =r@
i<n
for each n-ary relation symbol R and n-ary function symbol F.

Quantifier axioms and rules

Supposing t is free for = in ¢:

Voo = o(t/x),
o(t/xz) = Jz .

Supposing x is not free in :

From ¢ — ¢ infer ¢ — Vz . (universal generalization, (VGen))
From ¢ — v infer 3z ¢ — 1. (existential generalization, (3Gen))

Definition 1.69 (Provability). Let I' C Formy and ¢ € Formy. Then ¢ is provable from T', written
T ¢, if there exists a sequence of formulas ¢y, ..., p, (called a proof or derivation of ¢ from I') such
that ¢, = ¢, and for each ¢ < n, one of the following holds:

e p;el}

e o, is a logical axiom;

e ¢, is derived by a rule of inference from some of the ¢;, j < 1.
If I' = @, we just say that ¢ is provable, and write F ¢.

Remark 1.70. Since we base our proof system on the propositional one from Definition 1.29, we again
need to adjust the language so that we use the propositional connectives {—, L} instead of {A,V,—, T, L}.
In particular, we should, strictly speaking, replace the conjunctions appearing in the axioms of equality
with equivalent {—, | }-formulas; since the conjunctions only occur as antecedents of implications, we
can do it elegantly by rewriting (A, z; = yi) = (R(Z) — R(J)) as

o=% — (x1 =91 — (- = (Tn_1 = Yn_1 — (R(T) = R(¥)))--)),

and similarly for the other formulas.

Alternatively, we could base our proof system on a propositional system that directly uses the De Mor-
gan connectives. In a way, since we already proved the propositional completeness theorem, the choice
of the propositional part of our calculus, including what set of basic connectives it employs, does not
matter much. We may essentially treat the propositional part of the proof system as a “black box”: the
exact selection of axioms and rules is not important as long as they are complete for propositional logic.
As the next lemma shows, we can allow any propositional tautologies as axioms, and any propositionally
valid rules as rules of inference. But in order not to confuse things further, we will formally stick with
{—, L} as the set of basic connectives in this and the next section.

14 MATHEMATICAL LOGIC

Lemma 1.71. If ¢(po,...,pn—1) is a propositional tautology, then

F ¢(¢0a s awn—l)

for any first-order formulas vy, ..., Yn_1. More generally, if

@0(@) e ~a$0m71(15&) = 90(17)

for propositional formulas g, ..., Pm-1,p, then

-, -,

800(1/’)7 L] ‘Pm—l(w) H @(J)

-, -, -,

We will say that o(v) follows from @o(v), ..., pm—1(1) by propositional reasoning.

Proof. By Theorem 1.41, we may fix a propositional proof xo(p), ..., xs(P) of ¢(p) from {p;(p) : i < m}.
(If the proof involves other atoms than p, we either substitute them with e.g. L, or we extend the 1) list.
This is not important.) Then xo(v), ..., xs(¥) is a first-order proof of p(v)) from {p;(¢) : i <m}. O
Remark 1.72. Using (VGen) and propositional reasoning, it is easy to derive a simpler version of the
(VGen) rule: ¢ + V. This implies that our proof system shares with the notion of entailment the
property that any formula is equiderivable with its universal closure, as we promised earlier:

Lemma 1.73. For any L-formula ¢, ¢ = ¢7 and ¢ F ¢. O

Remark 1.74. As in propositional logic, our basic tool for constructing proofs will be the deduction
lemma. We have to be slightly careful with its formulation: as we just observed, we have ¢ - Vzx ¢, but
in general ¥ ¢ — Vx ¢ as this formula is not logically valid. In order to fend off such examples, we will
require that the principal formula in the deduction lemma is a sentence.

Lemma 1.75 (Deduction). IfI' is a set of L-formulas, v is an L-formula, and ¢ is an L-sentence, then
Ioby < T'Fp— .

Proof. The right-to-left implication is a trivial application of (MP). For the left-to-right implication, let
©0s -« - n = 1 be a proof of ¢ from I' U {¢}. We show I' - ¢ — ¢; by induction on i:

(i) Suppose that ¢; € T'U{p}, or ¢; is an axiom, or ¢; is derived by (MP). Then the proof is identical
to that of Lemma 1.34.

(ii) Suppose ¢; is derived by the existential generalization rule; i.e., ¢; = Jx o — S is derived from
w; =a — [, j <1, where z is not free in 8. By the induction hypothesis, I' - ¢ — (o =), and

thus
F'kFy—=(a—=p) induction hypothesis
Fa—(p—p) propositional reasoning
FIza— (¢ — B) (3Gen)
Fo— EFza—p8) propositional reasoning.

We can use (3Gen) because ¢ is a sentence, thus z is not free in p — .

(iii) Finally, suppose ¢; is derived by universal generalization; i.e., that ¢; = 8 — Vz « is derived from
¢j = B — «. Similarly to the existential case, we can derive

F'Fe—(—a) induction hypothesis
FoAB =« propositional reasoning
FoAB = Vra (VGen)

Fo—(8—Vza) propositional reasoning. O

PART 1. SYNTAX AND SEMANTICS OF LOGIC 15

Our main goal in Part 1 is to prove that the first-order proof system we have defined adequately
captures logical consequence. Let us start with the easy part:

Theorem 1.76 (Soundness theorem). Let I' C Formy, and ¢ € Formy,. Then
I'Fp = T'kFe.

Proof. We fix a proof, say g, ..., @y, of ¢ from I'; and let A be an L-structure such that A E T". We will
show A F ¢; by induction on i, and hence A F ¢. In essence, we are proving that satisfaction is preserved
under the rules of inference. As before, we consider the various ways ¢; could have been derived from
some ¢;, j < i, and we analyse each case individually:

Derived propositionally. This case includes ¢; € I', ; being a logical axiom, and being derived by
(MP). We leave this to the reader as an exercise.

Derived by universal generalization. By the definition of (VGen), we need to verify that

AE B(Z) = a(Z,y) implies AE B(Z) = Yy a(Z,y),
—_——
®j Pi

where we indicated explicitly the free variables. Note that y does not occur free in 5 by assumptions
of the (VGen) rule. Assuming
AE B(T) = o(Z,y),

we will show
AF B(7) = Yy o, y)

using the definition of satisfaction: let @ € A be such that A F £(a@); then we need to check
AEVya(d,y).

Let b € A: we have A F (d) = «a(d,b), thus A F a(d,b). This means A F Vy«a(d,y) as b was
arbitrary.

Derived by existential generalization. Suppose A F a(Z,y) — S(Z); we need to show that A F
Jy a(Z,y) — B(Z). This can be proved by a similar argument as for (VGen).

Axiom of equality. This follows easily. For example, assume ¢; is the axiom

o =Yo N ANTp_1 =Ypn—1 = F(xo,...,2n-1) = F(yo, .-, Yn—-1)-

-,

For every Ei,l;E AifAE A, ., a; = b;, thenag = bgand ... and a,,—1 = b,_1, thus FA@) = FA(b),
ie., AE F(@) = F(b).

Quantifier axiom. Consider an axiom ¢; of the form «(t/y) — Ty a(Z,y). Recall that to postulate
this axiom, we require that ¢ be free for y in «. Indicating explicitly the free variables, ¢ is

o2, t(Z,y)/y) = Iy a(Z,y).

We need to show that this holds in any structure A. Let @,b € A be such that

AFE oZ, 1(Z,y)/y)(@/Z,b/y).
By Lemma 1.57, this means
AF a(@, t(d@,b)).

Putting ¢ = t4(d@,b), we obtain A F a(d,c) (Exercise 16). It follows that A & Jya(d@,y) by the
definition of satisfaction.

The argument for axioms of the form Vy a — «(t/y) is completely analogous. O

16 MATHEMATICAL LOGIC

1.5 Completeness of first-order logic
We aim to prove the completeness theorem:
Theorem 1.77. If T is a set of L-formulas and ¢ is an L-formula, then
'k = I't .
Definition 1.78. Let T be an L-theory. Then T is said to be
e consistent if T' ¥ 1;
e complete if for all L-sentences ¢, we have T't ¢ or T F —;

e Henkin if every existential statement has a witness: i.e., for every L-formula ¢(z), there is a
constant ¢ (called the Henkin constant for ¢) such that

T+ Jzp(x) — ¢(c).

Remark 1.79. Since our proof systems uses {—, L} as basic connectives, - in the definition of complete
theories formally denotes (¢ — L).

A complete theory is essentially the same thing as a maximal consistent set of sentences (a first-order
version of Definition 1.36; cf. Remark 1.38). We use the former instead of the latter as it is an notion
of independent interest outside the context of the proof of the completeness theorem (e.g., it will be of
central importance in Part 3). In this connection, we note for future reference that an L-sentence ¢ such
that T ¥ ¢ and T ¥ - is called independent of T (or undecidable in T, though this usage somewhat
clashes with the notion of algorithmic undecidability that we will see later in Definitions 2.6 and 2.32).
Sentences ¢ such that 7'+ -y are called refutable in T'.

An outline of our proof of Theorem 1.77 is as follows:

e Reduce it to proving that any consistent theory T" has a model.

o If T¥ L, there is a complete theory T D T, T ¥ L, in the same language.

o If T¥ 1, there is a Henkin theory Ty 2 T, Ty ¥ L (in an expanded language).
o If T 1 is complete and Henkin, there is a structure A such that AF T.

We shall proceed with the details. We start with the last point, which explains the motivation for intro-
ducing Henkin theories. But let us first observe that even though the definition of Henkin theories only
provides Henkin constants that witness existential sentences, we also obtain suitable Henkin constants
witnessing universal sentences:

Lemma 1.80. IfT is a Henkin L-theory, then for every L-formula ¢(x), there is a constant ¢ such that
TF o(c) = Vro(x).

Proof. By assumption, there is a constant ¢ such that 7'+ 3z —¢(x) — —¢(c). Then we have

T+ —p(x) = o —p(x) axiom
F 3z —¢(z) — —p(c) Henkin assumption
F —p(x) = —¢(c) propositional reasoning
Fo(e) = ¢(x) more propositional reasoning

F () = YV o(z) (VGen). 0

PART 1. SYNTAX AND SEMANTICS OF LOGIC 17

Lemma 1.81. If T is a complete and consistent Henkin theory, then T has a model.

Proof. Let C'T stand for the collection of all closed L-terms. We define an equivalence relation on CT
by t ~ s iff T Ft = s. The axioms of equality ensure that ~ is an equivalence relation, hence we may
define the quotient set A = CT/.. If ¢ is a closed term, let [t] denote the equivalence class of ¢.

We define an L-structure 4 with underlying set A by

FA([t0]7 cey [tn—l]) - [F(th s 7tn—1)]a
(lto], -, [tn1]) € R* <= TF R(to...tn_1)

for each n-ary function symbol F, and n-ary relation symbol R. In order to make sure that F* and R4
are well-defined, we need to check that the definitions are independent of the choice of representatives
of the equivalence classes: i.e., if [to] = [s0],- .-, [tn_1] = [Sn_1], then [F(#)] = [F(5)], and T + R(}) <=
T+ R(S). This follows from the equality axioms.

We can show t4 = [t] for each t € CT by induction on the complexity of ¢.

We claim that
AEp <<= Tk

for all sentences ¢, which implies A F T'. We proceed by induction on the complexity of ¢:
Atomic formula. Suppose ¢ is R(tg,...,tn—1). Then
AE Rty ty1) <= (t§,... .71) € RA
= ([to],-. ., [tn-1]) € RA
<~ T+ R(to,...,tn—1)-
The same argument also applies with = in place of R.
Falsum. Suppose ¢ is 1. Then T ¥ | by consistency, and A ¥ | by definition.
Implication. Suppose ¢ is @9 — 1. Then
AF oo = 1 <= AFE pgor AF ¢
<~ TF-pogorTHF induction hypothesis
< TFpy— 1.
For the last equivalence, “=" follows by propositional reasoning (we have —pg - @9 — 1 and

w1 F o — 1). To show “<” assume T F ¢ — ¢1. I T F g, we obtain T + ¢ by (MP);
otherwise, T'F —¢q by the completeness of T'.

Existential quantification. Suppose ¢ is Jx¢(x). Then
AEJzy(r) < (FteCT)AEY([t])

— (AeCT)AEY() using t4 = [t] = [t]*
<~ (FHelCT)THEY(t) induction hypothesis
— T+ Jzyx).

Concerning the last equivalence, for “=", use the axiom ¢ (t) — 3z (z); for “<”, T is Henkin
whence there exists a constant ¢ such that 7'+ 3z ¢ (z) — ¥(c).

Universal quantification. Suppose ¢ is Va ¢(x). We compute

AEVzip(z) <= (Vt € CT)AE¢([t])
— (Vte CT)AEY(t)
— (MtelCT)TF ¢(t)

— TkFVzyx)

similarly to the existential case. O

18 MATHEMATICAL LOGIC

Lemma 1.82. IfT is a consistent L-theory, then there exists a complete consistent L-theory T extending
it; i.e., T D T.

Proof. As in the propositional case, we use Zorn’s lemma to show that there exists a maximal consistent
L-theory T such that T D T (recall that the union of a chain of consistent theories is consistent).

To see that T is complete, let © be a sentence such that T ¥ ¢; we will show T' proves -y, i.e.,
¢ — L. By the maximality of T, the theory T U {¢} is inconsistent: T, - L. Thus, T+ ©w — L by the
deduction theorem. O

Lemma 1.83 (Constants). Let T be an L-theory, ¢(x) an L-formula, and ¢ a constant symbol such that
c¢ L. Then
TF ¢(c) implies TF o(x).

Proof. Let o, ...,pn be a proof of ¢(c) in T, and y be a variable that does not occur in the proof.

Then ¢o(y/c), ..., on(y/c) is still a valid proof of (¢(c/x))(y/c) = ¢(y/x) from T. (The meaning of

“(y/c)” is that we replace each occurrence of ¢ with y; this is not formally a substitution according to

Definition 1.51 as ¢ is not a variable.) Thus, T proves ¢(y/z); we may infer Yy ¢o(y/x) using (VGen),

and then ¢(x) using the axiom Vy ¢(y/x) — (p(y/z))(x/y). O
—_———

o(x)

Lemma 1.84. If T is a consistent L-theory, ¢ ¢ L a constant symbol, and p(x) an L-formula, then the
following theory is consistent:

TU {3z p(x) = p(c)} -
Proof. Tt T, 3z p(x) = p(c) F L, let y be a variable not occurring in ¢(x). Then

TF (3ze(x) = pc) = L deduction theorem
TE@ze(x) = ey) = L lemma on constants
TF 3y Fze(z) = o(y)) — L (3Gen).
But F Jy (3z p(x) — ¢(y)) (Exercise 18), hence T F L, which is a contradiction. O

Lemma 1.85. Let T be a consistent L-theory; then there exists a language Ly O L and a consistent
Henkin Ly -theory Ty D T.

Proof. We construct the language Ly and the theory Ty inductively as follows?:

Lyo=1L Lpty1 =L, U{c, : p(x) is an L,-formula}
To=T Thy1 =T, U{3zp(z) = ¢(cy) : p(x) is an L,-formula}
Ly =] Ln Ty = J Tn

neN neN

Clearly, Ty is an Lg-theory such that Ty D T. If p(z) is an Lg-formula, then ¢(z) is an L,-formula for
some n € N, hence Ty D T, includes the Henkin axiom 3z ¢(x) — ¢(c,). Thus, Ty is a Henkin theory.
It remains to show that Ty is consistent. It suffices to show that T}, ¥ L for all n € N. We do this
by induction on n. For the base case, Ty = T is consistent by assumption.
Let us show the induction step for n + 1. Assume that T,, ¥ 1, and suppose T, 11 F L towards a
contradiction. Then
T, U{3z@i(x) = pi(cy,): i <m}t L

for some m € N and some L,-formulas ¢;, ¢ < m. But this theory is consistent by m applications of
Lemma 1.84 (more formally, we should prove this by induction on m). This is a contradiction. O

3Note that once () is an Lp-formula, it is also an Ly,-formula for every m > n, hence we introduce (wastefully) a new
constant c, in each Ly,, m > n, even though this is not indicated in the notation. That is, we should formally distinguish
the constants by writing something like c, » for the constants newly introduced in L, 1; alternatively, we could define
Ly, 41 so that we add the Henkin constants only for formulas that do not already have them. We will not bother with these
technicalities as they do not really matter.

PART 1. SYNTAX AND SEMANTICS OF LOGIC 19

Theorem 1.86 (Completeness). Let I' be a set of L-formulas and ¢ an L-formula. Then
| implies T'F .

Proof. Assume I' ¥ ¢. Then I'V ¥ " by Lemma 1.73, thus the theory 7' =I'V U {ﬁgov} is consistent. By
Lemma 1.85, T may be extended to a consistent Henkin Lg-theory Ty, which in turn may be extended
to a consistent complete Ly-theory T by Lemma 1.82. T remains a Henkin theory.

Since T is a consistent complete Henkin theory, it has a model Ay E T by Lemma 1.81. Observe Ay
is, in particular, an Ly-structure.

Let A be the L-reduct of Ag; i.e., we forget about the interpretations of symbols outside of L.

Then A F T, whence A F TV and A ¥ ¢". Tt follows that A F ' and A ¥ ¢ (Lemma 1.63), which
proves I' ¥ . O

Before we forget the proof of the completeness theorem, let us observe that it also gives an upper
bound on the minimal cardinality of models of consistent theories (the cardinality of an L-structure is
understood to be the cardinality of its underlying set):

Theorem 1.87 (Downward Lowenheim—Skolem theorem). Let T be an L-theory and k > |L| an infinite
cardinal. If T has a model, then it has a model AE T such that |A| < k.

Proof. Let us estimate the size of the model of T constructed in the proof of Theorem 1.86. Since L-
formulas in a language L of cardinality |L| < k are finite strings made of < k many possible symbols,
there are at most K<“ = xk many L-formulas. It follows by induction on n that the languages L,, from
the proof of Lemma 1.85 satisfy |L,| < k: for the induction step, we have

|Lnt1| < |Ln|+[{cy : @(2) is an L,-formula}| < k.
-

<k <k

This implies |Ly| < k, and in particular, there are < k closed Ly-terms. Thus, the model of the Henkin
completion of T" in language Ly defined in the proof of Lemma 1.81 has cardinality at most k. O

1.6 Consequences of the completeness theorem

Theorem 1.88 (Compactness). Let I" be a set of L-formulas.
(i) T E ¢ iff there is a finite subset To C T such that To F ¢.

(ii) T has a model iff every finite Ty C T has a model.

Proof.
(i) “=7 is trivial; for “<”, T' F ¢ implies T ¢ by the Completeness Theorem. By definition, there
is a proof g, ..., ¢n of @ from I". Let Tg =T N{po,...,0n}. Then I'y C T is finite and Ty - ¢,
thus I'g F .
(ii) We apply (i) with ¢ = L. O

Definition 1.89. Let A and B be L-structures for some language L. An isomorphism of A to B is a
bijection f: A — B such that

e R%ag,...,an_1) <= RB(f(ao),...,f(an_1)) for all n-ary relations R € L and ay,...a,_ 1 € A;
e FB(f(ag),..., flan_1)) = f(FA(ag,...,a,_1)) for n-ary functions F € L and ay,...,a, 1 € A.

We write f: A~ B if f is an isomorphism of A to B. We say A and B are isomorphic, written A ~ B,
if there exists an isomorphism f: A ~ B.

20 MATHEMATICAL LOGIC

Lemma 1.90. Let f: A~ B and ayg,...,an—1 € A. Write f(a@) for the tuple f(ag),..., f(an—1).
(i) tB(f(a)) = f(tA(@)) for each term t(Z).
(ii) AFE p(d) < BFE ¢(f(a)) for each formula ¢(Z).

Proof. By induction on the complexity of ¢ and ¢. O

Definition 1.91. If A is an L-structure, the (complete) theory of Ais Th(A) = {p: AE ¢}.
The standard model of arithmetic isN = (N, 0,1, 4+, -, <); its theory Th(N) is called the true arithmetic.
Models of arithmetic not isomorphic to N are called nonstandard.

Example 1.92. There exists a nonstandard model of true arithmetic. We can prove this using the
compactness theorem as follows. We extend the language of arithmetic L to L' = L U {c} and put

T=Th(N)U{c>n:neN}, wheren=1+4---+1.
—_———

n

Every finite Ty C T has a model: if n is the largest such that ¢ > 7 occurs in Tp, then (N,n + 1) E T.
The compactness theorem then implies 7" has a model M.

M is a model of Th(N), not isomorphic to N. Note that N is embedded in M as an initial segment
via the inclusion n € N — 7™, these are called the standard elements of M, and we will pretend that N
is outright a subset of M. The axioms of T ensure that ¢™ is a nonstandard element.

The full structure of M is very complicated, but we can at least understand how (M, <) looks like:

The ordering of M is discrete, thus each nonstandard element a € M belongs to a convex subset
{a + n : n € Z} order-isomorphic to Z. These are equivalence classes of the equivalence relation
a~b < |a—0b € N. The induced order on these equivalence classes, i.e., the quotient structure
(M, <) /~, is a dense linear order with a least element N and without a largest element: e.g., if @ and b
belong to different classes, then the class of |(a + b)/2] is strictly between the classes of a and b.

The compactness theorem is also useful for proving undefinability results:

Example 1.93. Let L = {P(x)}. There is no L-sentence ¢ such that for every finite L-structure M,
ME @ = |PM| > M~ PM|.

Assume for contradiction that ¢ is such a sentence, and define

T:{Hf(T; # T N Pxi),ﬂf(T; £ xi N ﬁPxi)} .
i<é\<n # ’ i/<\n () i<{\<n 7& ’ i/<\n () neN
Every finite Ty C T is consistent with ¢ and with =¢. By compactness, both T'U {¢} and T U {—¢}
have models: AFE T U {p} and B E T U {-¢p}. We may assume both A and B to be countable by the
downward Léwenheim—Skolem theorem.

Then writing A = <A, PA>, we have that A, P4, A~ PA are countably infinite and the same for B.
Thus, A is isomorphic to B, but A F ¢, B ¢. This is a contradiction.

Example 1.94. No sentence can define the class of connected graphs.
We can usefully generalize the construction in Example 1.92 to all first-order theories:

Theorem 1.95 (Lowenheim—Skolem theorem). Let T be an L-theory and k > |L| an infinite cardinal.
Let us assume that T either has an infinite model, or it has arbitrarily large* finite models. Then T has
a model of cardinality k.

4T.e., for every n € N, T has a model of cardinality at least n.

PART 1. SYNTAX AND SEMANTICS OF LOGIC 21

Proof. The basic idea is to employ x many constants to ensure that any model has size > k, and apply
the downward L-S theorem.

Let L, = LU{c, : @ < k} be new constants and T, =T U {cy # cg : @ < § < k}. Let us check that
every finite T C T, has a model. T” only mentions the new constants ¢, for a € I, where I C & is finite.
Let A E T be such that |A| > ||; pick distinct ¢! € A for a € I, and pick arbitrary ¢t € A for o ¢ I.
Then

(At ia<k)ET.

By compactness, T, has a model A. Since |L,| = k, we may assume |A| < k by the downward
Lowenheim—Skolem theorem. Because A F T}, the interpretations {cé o< /{} are pairwise distinct.
Thus, |A| > &, whence |A| = k. O

In Example 1.92, we constructed a nonstandard model of arithmetic. The Lowenheim—Skolem theo-
rem tells us that there are such models of arbitrary cardinality.
We are also going to extract a useful general statement from the argument in Example 1.93:

Definition 1.96. Let T be an L-theory and x > Wy a cardinal. Then T is k-categorical if all AE T of
cardinality x are isomorphic.

Theorem 1.97 (Vaught’s test). Let x > |L| be an infinite cardinal. If T is a k-categorical L-theory
without finite models, then T is complete.

Proof. Assume for contradiction that 7' is not complete, and fix a sentence ¢ such that T'U {¢} and
T U {—¢} are consistent. Then there exist models A E T'U{p}, BE T U{-¢}, |A| = |B| = & by the
Lowenheim—Skolem theorem. We have A F ¢ and B ¥ ¢, thus A and B are not isomorphic. O

Example 1.98. The theory DLO of dense linear orders without endpoints has language L = {<} and
the following axioms:

x £ x,

r<ynNy<z—rr<z,
r<yVe=yVy<uz,

VeVy (x <y— Jz(x<zAz<y)),
Ve dyz <y,

Ve dyy < z.

This theory is Ny-categorical, hence complete. This can be shown by a back-and-forth argument: given
two countable models A = (A4, <) and B = (B, <) of DLO, we enumerate them as A = {a,, : n € N} and
B = {b, : n € N}. We construct an isomorphism between them as a union of a chain of finite partial
isomorphisms, starting from the empty partial mapping, and extending it with one element at a time,
alternately adding the first unused element from {a,, : n € N} to the domain, or the first unused element
from {b, : n € N} to the codomain. We use density and the other axioms of DLO to make sure that
a suitable image or preimage exists for each element as it is being added. We leave the details to the
reader (who might have very well seen this famous argument before, anyway).

22

MATHEMATICAL LOGIC

Part 2
Computability

We wish to formalize the notion of an effective algorithm. There are several motivations for this:

First, it is intrinsically interesting as effective computability seems to be a fundamental concept for
which we would like to have a formal counterpart.

Second, it allows us to mathematically formulate and answer questions about computability of partic-
ular problems or about general properties of computable problems. If a problem is computable, we can
show this just by exhibiting an algorithm, for which an intuitive understanding of the concept suffices.
However, if we want to prove that some problem is not computable, we need a precise definition so that
we can argue about the collection of all algorithms.

A specific problem suggested by Part 1 is the so-called Entscheidungsproblem':

Is there an algorithm that decides whether a given first-order sentence ¢ is logically valid?

We know that validity of propositional formulas is algorithmically decidable by trying all assignments (see
also Remark 1.25). For first-order sentences, we have a “one-sided” algorithm: we may systematically
enumerate all possible proofs. The completeness theorem ensures that if a sentence is valid, we will (in
principle) find its proof sooner or later; however, if a sentence is not valid, this algorithm will run forever
and never halt. We will eventually show that the Entscheidungsproblem is not decidable; for that, we
will need to develop a formal definition of algorithms.

Third, effective algorithms and related concepts are an important tool for investigation of first-order
theories of arithmetic, as we will see in Part 3.

2.1 Turing machines

Many different formal models of computation have been proposed:
e Turing machines
e General recursive functions
e J\-calculus
e Random-access machines
o ...

However, all of these turn out to be equivalent. This leads to the so-called Church—Turing thesis, which
posits that a problem is effectively computable in the informal sense iff it is computable by a Turing
machine.

Turing machines are what we will use as our formal model. Intuitively speaking, this is an abstract
model of a simple physical device consisting of an internal logic circuitry that can be in finitely many

1Which literally just means “decision problem” in German, but it was borrowed to English with a more specific meaning.

23

24 MATHEMATICAL LOGIC

states, with access to a tape divided into discrete cells, each of which can hold one symbol. The tape
provides the machine with input, and it is subsequently used as a working memory. We assume the
tape has a beginning, but it is (at least potentially) infinite in the other direction, and the machine,
therefore, may not run out of memory to write into. The machine can scan one cell of the tape using a
reading-writing head that can move along the tape.

infinite tape
A
. IR
HAOREDODEE
tape symbols 2 — ~_head

finite
control

What the machine does at any given moment is determined by its current state and the input symbol
it is scanning at that moment: the machine can write a new symbol on the tape, switch to a different
state, and move left or right?, as specified by the transition function. There are three special states: the
initial state that the machine is in when the computation starts, and the accepting and rejecting states
that terminate the computation, indicating a YES/NO answer.

The input of the machine is a string of symbols (e.g., digits, letters, or other symbols) from the input
alphabet; for convenience, the machine may write on the tape symbols from a larger alphabet called the
tape alphabet during the computation. The tape alphabet also includes the blank symbol .. that denotes
“empty” cells; this is the only symbol that may occur infinitely many times on the tape. When the
computation begins, all cells after the actual input string contain the blank symbol.

The formal definition follows:

Definition 2.1. A Turing machine is a septuple M = (Q, X,T', 6, qo, Gace, Grej) Where

e the set of states () is a finite set that contains the initial state qg, the accepting state gacc, and the
rejecting state grej such that gace 7 Grej;

e the input alphabet ¥ is a finite nonempty set such that o ¢ ¥;
e the tape alphabet T is a finite set such that T' 2 X U {_};
e and the transition function is a function §: @ xI' —» Q x T x {L, R}.

This defines a Turing machine as a syntactic object, but what we really need is to define how it
computes.

Definition 2.2. A configuration of a Turing machine M is (q, h,u) where ¢ € @Q is the current state,
h € w is the head position, and u € T'“ is the tape content. We denote the ith cell of u as u;. A
configuration (g, h,u) is accepting if ¢ = Gace; rejecting if ¢ = qrej; and halting if it is accepting or
rejecting.

The initial configuration corresponding to an input z € X* is (go,0,z_ %) (i.e., the machine is in
the initial state, and the head is at the beginning of the tape, whose content is the input string followed
by infinitely many blanks).

A nonhalting configuration (g, h,u) yields a configuration (¢’, h’,u’) defined as follows. Let a = uy
be the current symbol, and §(q,a) = (¢’,a’,t). Then h' € w and v’ € T'¥ are defined by

W h+1 ift=R, o a’ fori=h,
N max{h — 1,0} ift=1L, " lw fori€w,i#h.

2The machine may not stay put in place. We could allow that, but a moment’s reflection shows that it would be
pointless: if the head does not move, the output of the transition function (the new state and new symbol written on
the tape) completely determines what happens next. Thus, we can just keep applying the transition function until the
head does move (or the computation terminates or enters an infinite loop); i.e., we can modify the machine by collapsing
steps when the head does not move with the following step. However, this argument does not work for multi-tape Turing
machines (see below), hence their heads are allowed not to move.

PART 2. COMPUTABILITY 25

We observe that any nonhalting configuration yields exactly one new configuration; we view this as
performing one step of the computation.

Definition 2.3. A run of a Turing machine M on input & € 3* is a sequence of configurations Cy, . .., C;
where Cj is the initial configuration on input z, and C; yields C;y; for each i < t.
M accepts, resp. rejects, x, if there is a run Cjy,...,Cy of M on x where C; is an accepting, resp.

rejecting, configuration.

Remark 2.4. As can be seen from the definitions above, the values of the transition function 6(g,a) for
q € {qaccs @rej } are irrelevant, as the machine always halts in such states anyway. Thus, we could have
defined ¢ as only a function (Q \ {¢acc, grej}) X I' = @ x I' x {L, R}. We keep the domain to be all of Q
for consistency with Sipser’s book.

Definition 2.5. A decision problem (or language; not to be confused with first-order languages) is any
subset L C ¥*. That is to say, it is a collection of possible inputs for a Turing machine.

For historical reasons, computability is replete with lots of parallel terminology (even the field itself
was rebranded from recursion theory to computability in recent decades). We could of course choose a
particular set of terms and stick to it, but it is important to at least be aware of the synonyms as they
are all used in common sources.

Definition 2.6 (Decidability). A Turing machine M is said to decide, or compute, a decision problem L
if for every input x € ¥*:

x € L = M accepts z; x ¢ L = M rejects x.

A decision problem L is decidable (or computable, or recursive) if there exists a Turing machine M that
decides L.

Definition 2.7 (Semidecidability). A Turing machine M is said to recognize (or semidecide) a decision
problem L if for every input z € ¥* we have

zel = M accepts x.

L is said to be semidecidable (or recognizable, computably enumerable, recursively enumerable, or
partially decidable, abbreviated c.e. or r.e.) if L is recognized by some Turing machine M. The language
of M is

L(M) ={x €¥*: M accepts z}.

Remark 2.8.

e Every Turing machine recognizes exactly one language, viz. L(M). That is, a language L is
recognized by a Turing machine M iff L = L(M).

e M decides L iff M recognizes L (i.e., L = L(M)) and M halts on every input = € ¥*.

That is, the difference between recognizing and deciding a language is that a decider must reject every
input = ¢ L in finitely many steps, whereas a recognizer may run forever on such inputs and never halt.

Observation 2.9. FEvery decidable language is semidecidable. O

Decision problems formalize the notion of computational tasks that admit a YES/NO answer. How-
ever, not all problems we might consider computing by an algorithm are of this kind. We will also work
with more general problems where the solution can be an arbitrary string; these are called function
problems®:

3Even more generally, we could consider problems that admit more than one valid solution; these are called search
problems, and are important in computational complexity, but we will not see them in this course.

26 MATHEMATICAL LOGIC

Definition 2.10. A partial function f: X — Y is a function f: X’ — Y where X’ C X i.e., f is possibly
defined only on a portion of X and not necessarily everywhere. The domain of f is dom(f) = X’. In this
context, a function is said to be total if dom(f) = X; i.e., if f obeys the usual definition of a function
X =Y.

A function problem is partial function f: ¥* — ¥*.

Definition 2.11 (Function-problem computation). A Turing machine M is said to output y € ¥* on
input « € ¥* if there is an accepting run Cy, ..., Cy of M on input z such that C; = (qacc, b, yo o).

M computes a function problem f: ¥* — ¥* if L(M) = dom(f) and for each x € dom(f), M outputs
f(x) on input z.

f: X% = ¥* is a partial computable function (or partial recursive function) if there is a Turing machine
M that computes it. A partial computable function f that is total (i.e., defined everywhere on ¥*) is
called simply a computable function (or recursive function).

Example 2.12. Consider the language
PALINDROMES = {w € {a,b}" : w = w'},

where the string reversal operator R is defined by (wp. .. wn_l)R = Wp_1...wo. In other words, the
language consists of words over a 2-letter alphabet {a, b} that read the same in both directions; e.g., bab
or abba. We will now design a Turing machine that decides whether a given word is a palindrome.

A simple algorithm is to repeatedly check that both symbols at the ends of the string are the same
and cross them out, until we either detect an inconsistency or end up with a string of length < 1. A
Turing machine cannot operate at both ends simultaneously, but we can achieve something similar by
moving the head back and forth: the machine removes the left-most symbol and “remembers” it in its
internal state, moves to the right end, checks that the last symbol agrees with the remembered one and
removes it, and rewinds back to the left.

Formally, we define the machine as

M = <Q7 {av b}) {(L, b» u} 757 q07qaCCaQrej> 3
Q = {QO7 Qacca QTeja Q1,(l7 ql,b7 q2,aa Q2,ba q3}7

where the transition function d is given by the following diagram:

a—)a,Rmb%b,R

1) = @
2
a—u, R / a—w, L
- b
e A
O\amZ ot (1))
?\ b—b,L
[a

b—,R \ b—wi, L

EE—
ez
a—)a,RUb—w,R

Remark 2.13. Programming Turing machines down to an explicit listing of the transition function
table can be a tedious endeavour that requires a lot of determination and patience, while the result is
not very illuminating and obscures the ideas behind the algorithm. The purpose of Example 2.12 is to
present during the lecture at least once a complete Turing machine with all the bells and whistles that
computes something sensible to show that it can be done, but from now on we will rather describe Turing
machines using an informal pseudo-code, assuming that the reader can imagine how to translate it to a
formal presentation if required.

PART 2. COMPUTABILITY 27

If desired—to get a better feeling for what can be implemented on Turing machines and how, or
just for fun—there are a number of online Turing machines simulators one can play with, e.g., https:
//turingmachinesimulator.com. The palindrome machine from Example 2.12 can be found at
https://turingmachinesimulator.com/shared/slylgbjruc.

Remark 2.14. One can find many variant definitions of Turing machines in the literature. Some of the
common modifications include:

e A two-sided infinite tape, or different conventions for handling attempts to move past the end of
the tape.

e Different halting conditions: e.g., using a partial transition function (the machine halts when § is
undefined in the current configuration), or allowing more than one accepting/rejecting state.

e Restrict the tape alphabet to be just X U {_}.

o Multi-tape Turing machines: the machine has k tapes (where k is a fixed number that’s part of
the specification of the machine) including an input tape (usually read-only), several work tapes,
and—if we are interested in function problems—an output tape (usually write-only); each tape has
its own head that can move (or stay put) independently.

e Nondeterministic, alternating, randomized, or quantum machines: these are considered to be dif-
ferent models of computation rather than simple variants. They generally yield the same class of
computable problems as ordinary Turing machines, but they may be able to solve some problems
more efficiently, whence they are important in computational complexity.

Lemma 2.15. Any problem computable on a k-tape Turing machine is computable on a single-tape
Turing machine.

Proof sketch. Represent the content of all & tapes (including markers indicating head positions) on one
tape using a new tape alphabet (I' x {0,1})* U{_}. To simulate one step of the original machine, sweep
the tape to locate the head positions of the simulated tapes and read the symbols at these positions,
remembering them in the state of the new machine. When this information is collected, the machine
knows what to do in the next step (write new symbols, move tape heads); it traverses the tape again to
implement these changes. O

We remark that even though multi-tape Turing machines are equivalent to single-tape machines in
the sense above, it is often easier or more efficient to solve a problem on a multi-tape machine. For
example, to decide PALINDROMES on a two-tape Turing machine, we can simply copy the string to a
work tape and then traverse the two copies in opposite directions. Multi-tape Turing machines are the
standard model of computation in computational complexity as they tend to correspond more closely in
terms of efficiency to an informal notion of algorithms.

Multi-tape Turing machines are also sometimes handy for simplifying proofs, such as the next im-
portant lemma:

Lemma 2.16. A language L C ¥* is decidable iff L and ¥* . L are semidecidable.
Proof.

= Suppose L is decidable; then so is ¥* \ L (we may take a Turing machine deciding L and swap the
accepting and rejecting states). It follows ¥* \ L is semidecidable, while L itself is semidecidable
trivially.

< Let My recognize (semidecide) L, and M; recognize ¥* \ L. A 2-tape Turing machine M described
by the following pseudo-code decides L:

(1) Copy the input onto the second tape.
(2) Run My and M; in parallel on the two tapes.
(3) If My accepts, then ACCEPT. If M; accepts, then REJECT.

https://turingmachinesimulator.com
https://turingmachinesimulator.com
https://turingmachinesimulator.com/shared/slylqbjruc

28 MATHEMATICAL LOGIC

Observe that M has to eventually halt by definition of language recognition: any input = belongs
to either * or its complement ¥* \. L. Hence x is accepted by exactly one of My and M7, and the
algorithm halts in finite time with the correct response. O

Remark 2.17. Let us convince ourselves that any Turing machine with input alphabet of size |X| > 2
can be simulated by one with tape alphabet I' = ¥ U {_}. Given a machine

M = <Z7F7 Qa 5) q0, Gacc; Qrej> ;

we fix k such that |T'| < (|Z] + 1)*, and an injective encoding e: I' — (X U {_})*. We may assume
e(u) = LF. We simulate M using k-tuples of symbols from ¥ U {_.} to represent each symbol on the
tape using e. To simulate one step, we read and remember the k-tuple of symbols to the right of the
head position, and apply the original transition function: we write a new k-tuple of symbols, and move
the head k positions to the left or to the right.

We need to expand the input to the tape encoding at the beginning of the simulation. This may be
done one cell at a time: we take a symbol a that had not been encoded yet, shift the content of the
tape to the right of the symbol by k — 1 positions to make room, go back to write the encoding e(a),
and repeat until we get to the end of the original input. If we care about the output string, we have to
similarly decode it after the simulation halts.

Remark 2.18. We introduced computability of problems (sets, functions) on finite strings, but in other
accounts, the primary definition of computability is often stated for problems on nonnegative integers
(in particular, this is standard in the set-up of general recursive functions). We want to consider such a
definition as well: besides the fact that there are various intrinsically interesting computational problems
dealing with integers, we will need it as a tool for investigation of first-order theories of arithmetic in the
third part of this course.

We can accommodate integers in our set-up by encoding them with suitable finite strings (as we can
do with other objects that we might want to compute with, such as finite graphs). Perhaps the simplest
encoding is the unary representation, where n € N is represented by the string 1" := 11...1 (possibly

n
using other symbol in place of 1). This requires a string of length n. A more efficient representation
is to express integers in binary, decimal, or more generally, base-k positional notation for some k > 2:
n € N is written as a;_1...a0 € {0,...,k — 1}!, where n = Y ict a;k’. The length of this representation
is [log,(n +1)].

While this may be the most natural choice, it has the drawback that distinct strings may represent
the same integer due to leading 0Os: e.g., 000101 = 101. For some purposes it may be more convenient
to use a representation that is a bijection between N and ¥*: e.g., when we will arithmetize Turing
machines and their computation, we will need to assign each string a distinct number. An elegant way
to accomplish this is to use the following variant of the positional notation:

Definition 2.19. Let k£ > 1, and assume X is the finite alphabet {1,2,3,...,k}. The bijective base-k
numeration (also called dyadic in the case k = 2) is the following encoding:

N —)N, '—ao...at_l—‘:Zaiki.

i<t

(Up to the choice of writing direction this is the same formula as for normal base-k notation, but crucially,
we use digits {1,...,k} rather than {0,...,k — 1}. Note that for k¥ = 1, we obtain the unary encoding
described above.)

We also call "w™ the Gédel* number of w.

Lemma 2.20. For any k > 1, "—7 is a bijection between N and {1,... k}*.

Proof. Exercise. O

4This is not really the encoding originally used by Gédel. In general, this term refers to any encoding of finite objects
(e.g., graphs, Turing machines, ...) by natural numbers.

PART 2. COMPUTABILITY 29

We also note that the dyadic representation of n can be constructed by taking the binary represen-
tation of n + 1, stripping the leading digit 1, and adding 1 to each remaining digit.

Definition 2.21. We say that L C N is (semi)decidable if its dyadic encoding {w € {1,2}" : "w™ € L}
is (semi)decidable.

We say F: N — N is computable if G: {1,2}" — {1,2}" is computable, where G is uniquely deter-
mined by F("w™) = "G(w)™. In other words, G is given by the following commutative diagram:

2 -1 N
e O I
P r—1—— N

Exercise 25 shows that the choice of representation of natural numbers does not actually affect what
sets or functions on N are computable.
It is also convenient to extend the definition of computability to k-ary relations and functions:

Definition 2.22. We say R C (X*)* is (semi-)decidable if

{woHwi# - - #wi—1 : {wo, ..., wxg—1) € R} C (ZU{#}"

is (semi-)decidable, where # ¢ X is a new separator symbol.

Similarly, F': (X*)F — X* is computable if the partial function G: (X U {#})* — ¥* such that
G(woH#wi# - - - #wi—1) = F(wo, ..., wk_1) is computable.

By combining this with Definition 2.21, we can also define (semi-)decidability of relations R C NF
and computability of partial functions f: N¥ — N.

We remark that a more elegant way of defining computability of k-ary relations and functions might
be to use a variant of multi-tape Turing machines with k input tapes.

2.2 Universal Turing machines and the halting problem

We don’t need a different computer for every task that we want to get done: we just need one universal
computer that can run arbitrary programs that it reads as data. This paradigm applies to Turing
machines, too.

Warning. While we continue to use angle brackets (—) to denote finite sequences, in computability
theory they are also commonly used for strings encoding finite objects (analogues of Gédel numbers, but
with the result being a string rather than a number). In particular, they will denote strings encoding
Turing machines.

Theorem 2.23. Let X be an alphabet with at least two symbols. Then there exists a universal Turing
machine Uy, with the following property:
For every Turing machine M on the same alphabet ¥, there is a code (M) € ¥* such that

Us((M)z) ~ M(x) for each x € &*.
Here, “~” means that Us accepts (M) x iff M accepts x, and it rejects (M) x iff M rejects x.
Moreover, Us; outputs y € X* on input (M) x iff M outputs y on input x.

Proof. Let M = (Q,%,T,0,¢0, ¢ace; drej) be a Turing machine on the alphabet 3, where we assume
I' =X U{_} (see Remark 2.17). We fix an enumeration @ = {g; : ¢ < s}, where go the initial state as
indicated above, ¢1 = gacc, and gz = grej. We also fix an enumeration I' = {a; : j < k}.

30 MATHEMATICAL LOGIC

The code (M) of M will describe the transition function §: Q@ xI' — Q@ x ' x {L, R}. For convenience,
we will use some auxiliary extra symbols (#, #, 0, 1, L, R) to define (M) and the operation of Us; (also,
(M) may include blanks). Officially, Us; is required to have input alphabet ¥, and in particular, we should
make (M) € ¥*; we achieve this by encoding the expanded alphabet ¥’ = XU {, #,#,0,1, L, R} by ¢-
tuples of symbols from ¥ for a suitable ¢, similarly to Remark 2.17. (This is where we use the assumption
5> 2,

We define

(M) = ### (0(qo, ao)) # (0(qo, a1)) # - - - # ((qo, ar—1))
(0(q1,a0)) # (0(q1,a1)) # - # (6(q1, ak—1))

(0(qs—1,a0)) # - #(6(gs—1, ak 1))
where if 6(g;, a;) = (¢i, a5, t) € Q X X x {L, R}, we define the encoding of 6(¢;,a;) as

(0(gs, a;)) = a;it0" .

Here, 0 denotes a string of zeroes of length 4.

We shall now describe the operation of the universal Turing machine Uy. It maintains on its tape a
representation of the current configuration of M it works in an endless loop where on each iteration, it
simulates the effects of one step of M. It will be convenient for this purpose to represent a configuration
of M as

Ug ... Up-1 <M> UpUR41 - - -

where ug ... up—1 is the content of the simulated tape to the left of the head position &, and upupy1 .. -
the rest of the tape from the head position onward. During the simulation, some parts of (M) will be
modified a little; we will still refer to it as (M). In particular, we need to indicate the current state g;
of M: we do this by replacing the # in front of the entry (§(g;,ap)) of the encoded transition function
table (i.e., the beginning of the row of the table corresponding to ¢;) with the symbol #.

Note that the encoding of ¥ by X¢ is applied only to the (M) part of the configurations; the symbols
u; of the simulated tape will be written literally.

During the simulation, the head will be kept inside (M), except possibly venturing one step outside
to read/write the current symbol of the simulated machine, or to move the simulated head. We can
rewind the tape to the left or right end of (M) at any time, because these can be recognized by the
substring ## (or ##); this works even after the encoding of ¥’ by 3¢ because we never go far away
from (M), and therefore we cannot lose track of whether we are currently seeing an encoded symbol of
Y’ or an unencoded symbol of X.

Let us now describe the operation of Uy, using pseudo-code. In the beginning of the simulation, Uy
starts with (M) z on the input tape, which is almost a valid representation of the initial configuration
of M on input x—we only need to mark the row of the transition function table corresponding to the
initial state qg:

(00) Move right and replace the second # with #.

Next comes the main loop of Uy, simulating one step of the computation of M. Suppose that the tape
contains a representation of a configuration as above. We first have to locate the entry of the transition
table corresponding to the current state ¢; and the symbol a; under the head of the simulated machine:

(01) Move past the right end of (M).

(02) Read and remember u; = a;.

(03) Locate the # symbol, and replace it with #.

(04) Repeat j times: move right towards the next # symbol.

The head is now at the # symbol in front of the string (5(g;,a;)) = a;jt0" .

(05) Read and remember aj;; and t.

PART 2. COMPUTABILITY 31

We now have to mark the table row corresponding to the new state g;; with #. Unlike a;/ or ¢, we cannot
just read 7" and remember in the state of Us;, because the number of states of M may be arbitrarily large
(it is not bounded by a constant). We proceed as follows: we convert the 07 in (5(g;,a;)) to 1°, mark
the row corresponding to qg, and then use a loop that converts the 1s back to Os one by one, each time
moving the marker to the next row.

However, we must take care to abort the simulation if the new state is halting. Note that we can
count up to 2 in the state of Us, thus we can check if i/ = 1 or ¢/ = 2, even if we cannot remember an
arbitrarily large ¢’. (This is the reason we fixed the accepting and rejecting states to be ¢; and ¢s, resp.)

(06) Move right to the next #, replacing 0 with 1 as we go.
(07) If the total number of Os was 1, then ACCEPT.

(08) If the total number of Os was 2, then REJECT.

(09) Locate the left end of (M).

(10) Change the second # to #.

Now comes the loop for moving the marker. Note that each row of the table has k = |T'| = |X|+1 entries,
which is a constant that we can count up to in the state of Us.

(11) Move right to locate the first 1.

(12) If none is found before the end of (M), go to (18).
(13) Change the 1 to 0.

(14) Locate the # symbol and change it to #.

(15) Move to the kth # to the right.

(16) Change it to #.

(17) Move to the beginning of (M), and go to (11).

We have now placed # correctly to mark the new state. We have yet to update the symbol under the
simulated head, and move the head. Note that upon exiting the loop above, the head of Uy, is past the
right end of (M), i.e., at the position of uy,.

(18) If t=R:

(19) Shift (M) to the right (overwriting wp).

(20) Write aj; in the free space to the left of it.

(21) 1f t=1L:

(22) Write aj .

(23) Locate the left end of (M).

(24) If it is at the beginning of the tape, go to (01).
(25) Remember the symbol up_; = a;» to the left of it.
(26) Shift (M) to the left (overwriting uj_1) .

27) Write a;» in the free space to the right.

(28) Go to (01).

This finishes the simulation for decision problems. If we care about computation of functions, Us
cannot literally halt in step (07): it must first clean up the tape (i.e., remove (M) and shift upupyq ...
accordingly) so that its output is the same as the output of M. O

Definition 2.24. The halting problem for a given alphabet ¥ is the language
Ax = {{M)x : M accepts x} C X*.
Theorem 2.25. The halting problem Asx, is semidecidable, but not decidable.

Proof. Ay is recognized by the universal Turing machine Us. To see it is not decidable, we assume
towards a contradiction that Ay is decided by some Turing machine H. This means that H accepts the
pair (M) x if M accepts x, and rejects it otherwise.

We define a new Turing machine D on the input alphabet ¥ that works as follows:

32 MATHEMATICAL LOGIC

(1) Duplicate the input x to zz.
(2) Run H.
(3) If H accepts, then REJECT; if H rejects, then ACCEPT.

We run D on input (D), and obtain a contradiction:

D accepts (D) <= H rejects (D) (D) definition of D
< (D) (D) ¢ Asx, H decides Ay,
<= D does not accept (D) definition of As. O

Remark 2.26. D stands for “diagonal machine”, as the proof of Theorem 2.25 is a variant of Cantor’s
diagonal argument. We imagine the infinite matrix indexed by strings where rows enumerate codes (M)
of Turing machines, columns enumerate inputs z, and a 0/1 entry in the matrix indicates whether M
accepts z or not. The machine D computes the diagonal of the matrix with 0/1 flipped, but this clearly
cannot agree with any row of the matrix.

Remark 2.27. The undecidability of the halting problem is a fundamental result of the theory of
computation. It implies the undecidability of many other problems concerning the behaviour of Turing
machines by means of reductions: the general idea is that is we assume for contradiction that problem
X is computable, we can use an algorithm solving X as a subprogram to build an algorithm that decides
the halting problem (which is impossible). The full extent of the idea of “using A as a subprogram to
compute B” leads to so-called Turing reductions. We will not define them formally as this requires a
modification of the Turing machine model; rather, we will introduce a more strict notion of many-one
reductions, which is much easier to define.

It might seem that the halting problem is not robustly defined as it depends on the—rather arbitrary—
encoding of Turing machines we devised in the proof of Theorem 2.23. One should not worry about this:
in fact, all “reasonable” encodings of Turing machines yield halting problems of the same complexity
(i.e., reducible to each other). Better yet, as we will see later in Part 3, we can use reductions from the
halting problem to prove undecidability of “pre-existing” problems of independent interest that do not
mention Turing machines at all, in particular, the Entscheidungsproblem. In this way, the undecidability
of the halting problem is not just an important result on its own, but also a useful tool: once we identified
one undecidable problem, we can show the undecidability of many other.

Definition 2.28. Let A, B C ¥*. We say A is many-one reducible (or mapping reducible) to B, written
A <,, B, if there is a computable f: ¥X* — ¥* such that for all x € X* we have

zeA — f(x) € B.

We say A and B are many-one equivalent, written A =, B, if A <,, B and B <,,, A.
Lemma 2.29. If A <,, B and B is (semi)decidable, then A is (semi)decidable.

Proof. If M (semi)decides B, and M’ computes f, then A is (semi)decided by the Turing machine that
simulates M’ to compute f(x) and then simulates M. O

Example 2.30. We defined the “halting problem” to be Ay in accordance with Sipser’s book, but it
would be more logical to call As, the “acceptance problem”, and reserve the name “halting problem” for
Hy, = {{M)x : M halts on input z} (which is indeed the traditional definition). Fortunately, this does
not make a significant difference: it is a simple exercise to prove that Hy, =, As.

2.3 Computability of logical syntax

We are particularly interested in computing problems associated to logical theories. If L is a finite first-
order language, then L-terms, L-formulas, and other syntactic objects such as proofs can be manipulated
by Turing machines as they are just finite strings. A minor issue is that as defined in Definition 1.45,
formulas are strings over an infinite alphabet, as there are infinitely many variables. This is easy to fix:
we may, e.g., denote variables v,, by strings of the form v1001101, where 1001101 is the representation
of n in binary. It is then easy to show that basic features of logical syntax are computable:

PART 2. COMPUTABILITY 33

Lemma 2.31. The following sets and functions are computable for a fixed finite language L:

@i
(ii

) The set of L-terms.
)

(iii) {(p,2) : z is a free variable of a formula @} .
)
)

The set of L-formulas.

(iv) The substitution function: given a formula ¢, a variable x and a term t, compute o(t/x).

(v) {(T',p,m) : m is a proof of p € Formy, from a finite set T' C Formyp,}.
Proof. Exercise 28. O

The established terminology concerning decidability of first-order theories is a bit confusing; or rather,
it reflects an alternative definition of theories that requires them to be deductively closed sets of sentences:

Definition 2.32. If T is a theory in a finite language L, then T is said to be decidable if Thm(T) =
{¢ : ¢ is an L-sentence, T F ¢} is a decidable set of strings.

A theory T in a finite language L is said to be recursively axiomatized, or computably axiomatized,
if T—considered as a set of axioms (i.e., without the requirement of deductive closure)—is decidable.
A theory T is recursively (or computably) aziomatizable if it is equivalent to a recursively axiomatized
theory.

Lemma 2.33.
(i) Every recursively aziomatizable theory is semidecidable.
(ii) Fvery complete, recursively aziomatizable theory is decidable.

Proof.

(i): We may assume T is recursively axiomatized. Given a sentence ¢, we exhaustively enumerate all
pairs (I,). We accept if 7 is a proof of ¢ from I" and all ¢ € T" are in T.

(ii): Thm() is semidecidable by (i). Then

Y N Thm(T) = {¢: ¢ is not an L-sentence} U {¢ : T F =y}
is also semidecidable and, therefore, Thm(7') is decidable by Lemma 2.16. O

Remark 2.34. Conversely, every semidecidable theory is recursively axiomatizable; in particular, a
theory is “semidecidably axiomatizable” iff it is recursively axiomatizable, hence there is no need to
introduce this notion separately. This can be shown by so-called Craig’s trick, whose idea is that each
sentence has many equivalent sentences that can be used to additionally encode arbitrary data. See
Exercise 30. It is also good to mention that every consistent decidable theory has a complete consistent
decidable extension (Exercise 31).

One more useful general observation is that adding finitely many axioms cannot increase the com-
plexity of a theory; in particular, if an extension of a theory by finitely many axioms is undecidable, the
theory itself is undecidable:

Lemma 2.35. Let T be an L-theory, where L is a finite language, and X a finite set of L-sentences.
Then Thm(T + X) <,, Thmm(T).

Proof. T+X|—<piHT|—(a—)gp),whereOz:/\weXW &

34

MATHEMATICAL LOGIC

Part 3

Arithmetic

We are interested in this part in properties of the structure of natural numbers (N, +,-,...) and related
theories that encompass elementary integer arithmetic:

e Can we present the theory of N by an effective proof system (say, as a recursively axiomatized
first-order theory)?

e Can we decide whether a given number-theoretic statement (i.e., a first-order sentence over N) is
true?

e Can we prove the consistency of the theory of elementary arithmetic by finitary methods?

(Here, “finitary” means roughly that we are only allowed to reason with natural numbers, finite
strings, and other finite objects, but not infinite sets. Of course, the theory of N is consistent as it has,
by definition, a model. But this argument requires infinite sets such as N and the satisfaction relation
on N.) We will see that the answers to all of these are negative.

These questions, particularly the last one, arose in connection to the foundations of mathematics
at the turn of the 19th/20th century. During the 19th century, the focus of mathematics shifted from
the study of “concrete” objects such as natural and real numbers or geometric shapes towards more
abstract reasoning, such as abstract algebra (group theory, field theory) and, especially, set theory. This
opened a realm of very powerful methods that were, however, met with suspicion and skepticism of
many mathematicians,! especially after the discovery of various paradozes (such as Russell’s paradox)
that showed that naive set theory in the form initiated by Cantor was untenable, and put in doubt the
consistency of infinitary methods at large.

Hilbert’s program sought to put the theory of abstract, infinitary mathematics on a firm footing by
formally proving its consistency by proof-theoretic means in an incontroversial finitary theory, such as a
theory of arithmetic.

Proof theoretic analysis of foundational theories is not, on the whole, an unreasonable idea, and
some progress had been made early on: notably, Presburger provided a complete axiomatization of the
theory of (N,0,1,+, <), and proved it consistent and decidable by proof-theoretic means; later, Tarski
did the same for theories of (R,0,1,+,-, <) and elementary geometry. However, Hilbert’s program as
such was all but killed by Gaodel’s theorems, establishing that any effectively presented theory capable of
expressing basic integer arithmetic is incomplete, and cannot even prove its own consistency, let alone
the consistency of a considerably stronger theory.

3.1 Robinson and Peano arithmetics

The idea of an axiomatic definition of natural numbers ties in with the general axiomatic approach in
mathematics, including axiomatic definitions of other basic structures such as (R, 0,1, +,-, <) being the

1Cf. the oft-quoted comment attributed to P. Gordan, “this is not mathematics; this is theology,” on Hilbert’s solution
of Gordan’s problem in invariant theory, involving what we now know as Hilbert’s basis theorem.

35

36 MATHEMATICAL LOGIC

unique completely ordered field up to isomorphism. An early axiomatic description of N, which actually
defines it uniquely up to isomorphism, is given by the Dedekind-Peano axioms. Up to some differences
in terminology, they essentially postulate that there is a natural number 0 € N and a function $: N — N
(the successor function, normally denoted = + 1) such that:

(i) Vo,y e N(S(z) = S(y) =z =y).
(ii) Ve e NS(z) #0.
(iii) Any set X C N that contains 0 and is closed under S equals N.

While the first two axioms are straightforward, the last axiom (the induction principle) is not expressible
by a first-order sentence as it quantifies over subsets of N rather than just its elements. (One can do this
in second-order logic.) One might think we could amend this by considering a structure with domain
P(N), but this does not really work either because for any theory in such a language, there is no way of
enforcing that its model includes all subsets of N using first-order axioms.

After all, we know from Part 1 that any first-order theory of arithmetic will have nonstandard models
of arbitrarily large cardinality, hence there is no way it could define N up to isomorphism; but we may
still hope to capture all first-order sentences valid in N by a nice explicit set of natural axioms (as is
possible for (N,0,1,+,<) and (R,0,1,4+,-,<)). A natural attempt at such an axiomatization is Peano
arithmetic that postulates the induction axiom for sets definable by first-order formulas, which seems to
be all one can do in first-order logic.

Definition 3.1 (Robinson and Peano arithmetics). The language of arithmetic* is Lpa = {0, S, +,-, <}.
Robinson’s arithmetic Q is the Lpa-theory with axioms

(Q1) S(z) =S(y) =z =y,
(Q2) S(z) #0,

(Q3) r#0—= ISy =z,
(Q4) z+0=uz,

(Q5) z+5(y) =Sz +y),
(Q6) z-0=0,

(Q7) z-Sy)=z-y+ua,
(Q8) r<y<dzz+x=uy.

Peano arithmetic PA is Q extended with the schema of induction

©(0) AV (p(z) = ¢(S(x))) = Va ()

for all formulas ¢. We allow ¢ to have other free variable besides x; these are called the parameters of
the induction axiom. Thus, more formally, the universal closure of

©(0/z) AVz (p = (S(z)/x)) = Vo

is an axiom of PA for every Lpa-formula .

Recall that the standard model of arithmetic is N = (N,0,1,+,-, <); its theory Th(N) is called the
true arithmetic. An Lpa-sentence ¢ is called true if N F ¢, and false otherwise; an Lpa-theory T is called
sound if NF T.

Observation 3.2. PA is sound. O

2The Dedekind-Peano axioms could make do with just 0 and S as they define N up to isomorphism; common arithmetical
operations such as +, - are then definable using second-order recursion. However, this is impossible in first-order logic—the
first-order theory of (N, 0, S) is expressively very poor. We thus need to explicitly include + and - in the language.

PART 3. ARITHMETIC 37

PA is a first-order version of the Dedekind—Peano axioms, and may look as a plausible candidate for
a complete axiomatization of true arithmetic. However, we will prove that it is in fact incomplete, and
it cannot be made complete by adding any semidecidable set of axioms; furthermore, this holds already
for extensions of the rudimentary theory Q. This is the content of Gddel’s first incompleteness theorem.

In contrast to PA, Robinson’s arithmetic Q is a very weak base theory, and it is not a reasonable
approximation of the theory of N on its own (it cannot prove even basic identities such as Vz 0 + z = x;
cf. Exercises 34 and 35). It is introduced in a utilitarian way as a minimal-ish theory for which (or
rather, for whose arbitrary extensions) we can prove Godel’s theorem. Here, the weakness of Q becomes
its strength-—the weaker the base theory is, the more broadly applicable Goédel’s theorem is, and the
easier it is to verify its assumptions in a given application. It is, in particular, technically convenient
that Q is (unlike PA) finitely axiomatized.

We will derive the incompleteness of extensions of Q from their undecidability (cf. Lemma 2.33).
Towards that goal, we will show that we can “represent” semidecidable sets X C N in the theory, and
then undecidability of the theory will follow by reduction from the halting problem. We do this in two
steps:

e Semidecidable sets are definable by so-called ¥; formulas in N.

— The main technical ingredient here is that Lpa is expressive enough to define encoding of finite
sequences.

e True X; sentences are provable in Q.

We start with the second bullet point.

3.2 Yji-completeness of Q

Definition 3.3. Bounded quantifiers are the abbreviations
Jr<tp=Tz(z<tAyp), Ve <tp=Vr(x<t—p),

where ¢ is a term not containing x.
A formula is bounded, or Ag, if all its quantifiers are bounded.
A formula (&) is X; if it has the form 37 60(Z, §) where 0 is bounded.

Remark 3.4. The motivation for the definition is that a bounded quantifier 9 < ¢ ... or Vo <t ...
only quantifies over a finite set {0,...,¢}, hence we can verify its truth by checking all the cases one by
one. This may not be literally true if ¢ depends on other variables, as then—if we are in a nonstandard
model M—the interval {z € M : x <™ ¢} may actually be an infinite set when viewed from outside of
the model. However, if the value of ¢ is a standard number, this argument works, even in a very weak
theory like Q. This is the intuition behind the fact that all true 3, sentences are provable in Q that we
are aiming to prove.

Definition 3.5. The numeral representing n € N is the closed term

n=5(5(---(5(0))).
times

Formally, we define 7 by induction (in the meta-theory) as 0 = 0 and n + 1 = S(m). It follows immediately
from the definition that
= n.

Remark 3.6. The next key lemma expresses that Q can evaluate arithmetic operations on standard
numbers, and bounded quantifiers with standard bounds. We note that essentially all our subsequent
results about Q (X;-completeness, the undecidability and incompleteness theorems) only rely on this
lemma rather than any other properties of Q; that is, they hold when Q is replaced with the theory
axiomatized by the sentences listed in the statement of Lemma 3.7 (this is a variant of the theory known
in the literature as Robinson’s theory R).

38 MATHEMATICAL LOGIC

Lemma 3.7. Let n,m € N.
(i) QFn+m=n+m.
(ii) QF 7 -m = mm.

(i) Ifn#m, then Q-1 £m
(iv)

Proof.

QFVz(x<m+x=0V

I
=l
<
<
8
I
3

(i) By induction (in the meta-theory!) on m. The base case m = 0 is clear:

QFa+m+1=a+Sm) ESHmE+m) =Sn+m)=n+m+ 1

(ii) Again, the proof is by meta-induction on m. The base case m = 0 is Q6. For the induction step,

Q proves
nom+1E7-S(m) En-m+n 2 am+ a2 pm + .
——
n(m+1)
(iii) By meta-induction on min {n, m}. First suppose m = 0 < n. Then
— def — @
QFm=S(n—-1)#0.
Similarly if m > 0 = n. Finally, if n,m > 0, we have
QFn=m—->n—-1=m-1 Q1,
QFn—-1#m-1 induction hypothesis.
(iv) (+) If m <mn, then
QFT=n—-m+m by (i),
Fm<mn by Q8.

(—) By meta-induction on n:

Base case n = 0. Let us reason in Q. If x < 0, then z + x = 0 for some z by Q8. By Q3,
either 2 = 0 and we are done, or 2 = S(y) for some y. But then 0 = z+ S(y) = S(z +)
by Q5, contradicting Q2.

Induction step n+ n + 1. Reason in Q, and assume x < n + 1. Again, we have n + 1 =
z + x for some z by Q8, and either x = 0 (in which case we are done) or z = S(y) for

some Y.
In the latter case, S(z +y) =n+ 1= 5(n) by Q5, thus Q1 implies z+y =7, i.e., y <7
by Q8.
Then y is 0 or 1 or ... or m by the induction hypothesis, thus = is 1 or 2 or ... or
n+ 1. O

Corollary 3.8. Ift is a closed Lpp-term, and t~ = n, then Q -t = 7.

Proof. By induction on the complexity of ¢ using (i) and (ii) of Lemma 3.7. O

PART 3. ARITHMETIC 39

Lemma 3.9. Let 0 be a Ay sentence. Then

NEO — QF+ 6,
NEOH — QF —6.

Proof. By induction on the complexity of 6:

Atomic formulas. Suppose 6 is t = s or t < s for some closed terms ¢ and s (they have to be closed as
0 is a sentence). Let n = tN and m = M. By Corollary 3.8, Q¢ =n and Q F s = m. Moreover,
using Lemma 3.7,

NEt=s —= n=m — QFn=m,

NEt=s = n#m = QFn#m by (iii),
NEt<s = n<m = QFn<m by (iv),
NEtds = ng€m = QFngm by (iv) and (iii).

Conjunction, Disjunction, Negation. This case is left as an exercise.

Universal quantification. Suppose 6 = Vax < t6(z) for some closed term ¢. As before, we have
QF t =7, where n = ¢V,

e Suppose N E 0. It follows that for each m < n, we have N E §y(m), thus Q F 0y(m) by the
induction hypothesis. Moreover,

QFz<t—sz=0Vz=1V.---Vz=n
by (iv), thus
QFz <t — by(x),
whence Q FVz < t6y(z).
e Suppose N ¥ . Then there is m < n such that N ¥ 60y(m); whence by the induction
hypothesis, Q F =6 (7). Moreover, QM <7 =t by (iv), hence Q F =V < ¢ y(x).

Existential quantification. This is analogous to universal quantification; details are left as an exercise.
O

Theorem 3.10 (X;-completeness). Fvery true 31 sentence ¢ is provable in Robinson’s arithmetic Q.

Proof. Let ¢ = Jxg,...,x5—1 0(Z) be a X1 sentence, where § € Ag. Then N F ¢ implies there are some
ng,...,nk—1 € N such that N E 0(77), which implies Q F 0(ng, . ..,7g_1) by the previous lemma, whence
QF 3Z0(Z). O

3.3 Sequence encoding and definability of computation

Our next goal is to express Turing computation by formulas in the language of arithmetic. We will forget
about Q for the moment: we will work exclusively with true arithmetic Th(N) in this section, which is
much more convenient, as we do not have to verify the formal provability of anything. The results will
be linked back to Q by means of its ¥;-completeness: we will make sure to express everything relevant
by ¥; formulas.

In order to make our life simpler, we will allow certain definable functions to appear inside Ag and
31 formulas, with complexity low enough so that they can be eliminated.

Definition 3.11. An R C N* is a Aq relation if it is definable in N by a Ay formula 0(%), i.e.,
R(7) < NE0(n)

for all 7 € N*.
A Ay function is a partial function f: N¥ — N such that

40 MATHEMATICAL LOGIC

e f is bounded by an Lpa-term t (i.e., a polynomial with coefficients from N): f(&) < (i) for all
7i € dom(f); and

e the graph of f, i.e., {(fi,m) € N**1: f(i7) = m}, is a A relation.

Example 3.12. The function z — y = max{z — y,0} is a A function, as ¢ ~y < z, and z ~ y = z iff
r=y+zV(@<yAnz=0).

The functions |z/y| and rem(z,y) = z — y|z/y] for y > 0 (i.e., rem(x,y) is the unique r such that
0<r<yand z =r (mod y)) are Ag functions: they are again bounded by z, and their graphs are
Ag-definable by

lz/y| =2 <= yz<zAhz<y(z+1),
rem(z,y) =2 <= z<yAIu<zzr=yu+z

Definition 3.13. If L O Lpa, an L-formula 0 is a Ag(L) formula if all quantifiers in 6 are bounded. A
%1 (L) formula is an L-formula of the form 35 0(Z,), where 0 is a Ag(L) formula.

(Thus, the difference between Ay and Ag(L) formulas is that the latter may use the extra relations
and functions from L in atomic formulas, and in the case of functions, in quantifier bounds; likewise for

1 (L) formulas.)
We can now formally state that Ag relations and functions can be eliminated in the following way:

Lemma 3.14. Let L O Lpa, and N(L) be an L-structure expanding the standard model N such that
the interpretations of relations and functions from L\ Lpa in N(L) are Ag relations and Ao functions,
respectively.

Then any Ao(L) formula is equivalent in N(L) to a Ag formula, and any X1(L) formula is equivalent
in N(L) to a ¥y formula.

Proof. Tt suffices to prove the result for Ag(L) formulas. We can replace each (L \ Lpa)-relation symbol
with its Ag definition. We have to be slightly more careful with functions, as they may appear nested
in terms. However, they can be successively eliminated inside out: if f(3) is an occurrence of an
(L ~\ Lpa)-function f inside an atomic subformula ¢ (f(3),...), where § are Lpa-terms, then we rewrite
it as Ju < t(3) (0(5,u) A (u,...)), where t is a bounding Lpa-term for f, and 6 is a Ag definition of
the graph of f; likewise if f(5) appears in a quantifier bound Qz < t'(f(5),...)¢(z,...). Each such
replacement decreases the number of occurrences of the new function symbols, hence we will eventually
eliminate all of them. O

Let us now go back to Lpa-definability of computation. The main tool we are missing yet is encoding
of finite sequences: we need to be able to express that x is accepted by a Turing machine M iff there
exists a sequence of configurations of M with certain properties, and so on.

It is straightforward to encode sequences of fixed length, which can be reduced to ordered pairs:

Lemma 3.15. The Lpa-term [x,y] = (z + y)? + 2 is a pairing function: i.e.,
NEVz,y, o'y ([z,y] = [,y mz =y na' =y).

Proof. We have (z+y)? < [z,y] < (x+y+1)2. Thus, if [z,y] = [2/,y'], then (x +y)? = (2’ +v')?, which

implies z +y = 2’ + v/, which implies z = 2, whence y = y/'. O

It is much less obvious how to encode sequences of variable length. There are several strategies how
to accomplish that; we will use an elegant definition due to Gédel based on the idea that a number z
can encode the sequence (rem(z, mg), rem(x, my),...) for suitable moduli mg, my,.... (Some alternative
sequence encoding schemes are introduced in Exercises 37-41.)

What makes Godel’s encoding work is the Chinese remainder theorem: this is a well-known result in
elementary number theory/algebra, but we include a short proof for completeness.

PART 3. ARITHMETIC 41

Lemma 3.16 (Chinese remainder theorem). If mg, mq,...,mp_1 are pairwise coprime natural numbers,
then for every xg,x1,...,Tr—1 € N, there exists x € N such that
x=x; (mod m;) for alli < k.

Proof. Put m = [],_,. m;, and consider the abelian group homomorphism f: Z/mZ — [, Z/m;Z
given by f(z) = (x mod m; : i < k). We see that f is injective: x € ker(f) only if = is divisible by
all m;, which—in view of their being pairwise coprime—means that z is divisible by m. But Z/mZ
and [];., Z/m;Z are finite sets of the same size, viz. m, hence the injectivity of f implies that it is
surjective. O

In order to apply the Chinese remainder theorem, we also need a suitable definable sequence of
pairwise coprime moduli:

Lemma 3.17. If1,...,k | m, then {1 +im :i < k} are pairwise coprime.

Proof. If i < j <k and p | 1 +im, 1+ jm is prime, then p | (i — j)m implies p | m?, whence p | m and
thus p | 1: a contradiction. O

Definition 3.18. Gddel’s B-function is B(x, m,i) = rem(z,1+ (i + 1)m).

Theorem 3.19 (Sequence encoding). B(xz,m,i) is a Ag function such that for any k € N and any
Zg,...,Tp—1 € N, there are x,m € N that encode this sequence via B in the following sense:

Blx,m,i) = x; for all i < k.
Proof. We have B(x,m,i) < x, and the graph of § is definable by the Aq formula
B(z,m,i) =y <= g <zz=y+q- S(S>E) m).

Thus, B is a Ag function.

Let k and xg,...,2x,—1 be given. Fix some m such that 1,...,k | m and m > z; for all ¢ < k. Since
1+m,...,1+ km are coprime by Lemma 3.17, the Chinese remainder theorem tells us there is some x
such that

z=z; (mod 1+ (1+i)m) for all 7 < k.
Also z; <14 (1 +i)m, thus x; = rem(x,1 4+ (1 4 ¢)m) = S(x, m,1). O

Example 3.20. Sequence encoding allows us to express recursive definitions in the language of arith-
metic. For instance, (the graph of) the powering function z¥ is 3;-definable as

¥ =2z < Jz,m (B(z,m,0) =1AB(x,my)=2AVi<yB(xz,m,i+1)=z-B(z,mi)).

As defined, Godel’s S-function requires a pair of numbers x, m to encode a sequence xg,...,Tk_1,
and even so it does not determine the length of the sequence (i.e., k). Thus, we introduce a slightly more
convenient variant of the function that uses the number [[x, m], k] as the code:

Definition 3.21. We introduce A, functions seq and len by
seq(w,i) =y <= Jx,m,k <w (w=[z,m],k]Ni<kAB(x,m,i)=1y),
len(w) =k <= Jz,m <ww = [[z,m], k].

The intention is that w encodes a sequence of length len(w) whose ith entry is seq(w, i) for ¢ < len(w).
(The functions as defined are partial—w only codes a sequence if it is of the form [[z,m], k] for some
x,m, k. This will not be a concern.)

Theorem 3.22. FEvery semidecidable set of natural numbers X C N is ¥1-definable; i.e., there exists a
Y1 formula o(x) such that

neX < NEo(n) for alln € N.

42 MATHEMATICAL LOGIC

Proof. Fix a Turing machine M = (Q, %, T, ¢o, Gacc Grej, 0) that semidecides X, or more precisely, the set
of strings {w € {1,2}* : "w™ € X} (see Definition 2.21). Thus, ¥ = {1,2}; we assume w.l.o.g. that the
elements of @ and I' are natural numbers as well (in particular, we identify ., with some natural number
#1,2).

We represent configurations of M by natural numbers using sequence encoding. We cannot literally
follow Definition 2.2 as we cannot encode infinite sequences, thus we represent a configuration as (a code
of) a sequence (g, h, wy, ..., ws) where ¢ € @ is the current state, h is the head position, w; is the content
of ith cell of the tape, and s > h is such that w; = . for all ¢ > s. Note that the representation of a
given configuration is non-unique, because the representation may use arbitrarily large s, and regardless
of that, a given finite sequence can be coded by infinitely many different numbers.

Working with this representation, we will present formulas Initial(u,x) expressing “u is the initial
configuration on input z”, Accepting(u) expressing “u is an accepting configuration”, and Yields(u, v)
expressing “u yields v”. Then we can define X by the formula

o(z) = Jw [len(w) > 1 A Initial (seq(w, 0), z)
A Accepting (seq(w, len(w) - 1))
AVi < len(w) = 1 Yields(seq(w,), seq(w, i + 1))]

expressing Definition 2.3. Note that the Ag functions seq, len, and = can be eliminated by Lemma 3.14;
thus, we can write o(x) as a ¥; formula as long as Initial and Accepting are 3; formulas (whose initial
existential quantifiers can be prenexed out of the square bracket), and Yields is a Ag formula.

It remains to define the formulas Initial, Accepting, and Yields with the properties above. Again, we
can use Ag functions such as seq and len freely.

We can define

Accepting(u) = seq(u, 0) = Gacc,
Yields(u,v) = \/ Nextq.a,q" ar,t (U V),

(g,0)€QXT
5(q,a):<q’,a/7t>

where Nextg 4 4,01 (4, v) denotes

seq(u,0) = g Aseq(u,seq(u, 1) +2) =a

Alen(v) > max{len(u),seq(v, 1) + 3}

q i=0,
seq(u,1)+1 i=1At=R,

D=1 i=1At=1,
AVi < len(v) seq(v,i) = seq(u, 1) !

a i =seq(u,1) + 2,
seq(u, 1) 2 <i<len(u) Ni # seq(u,1) + 2,
- i > len(u)

(the last expression can be written using disjunctions and conjunctions as there are only a fixed number
of cases).

The main problem with description of the initial configuration is to check that the digits a; € {1,2}
on the tape form the bijective base-2 representation

T = Z 2 a;
i<k
of the given input z € N. In order to do this, we use an auxiliary sequence w with values

seqwni) = Y Vary,

j<k—i

PART 3. ARITHMETIC 43

for i < k, which satisfies the backwards recurrence
seq(w, k) =0, seq(w, i) = 2seq(w, i+ 1) + a;,
and we check that seq(w,0) = z. Below, a; = seq(u,i + 2) and k = len(u) — 2 = len(w) — 1:
Initial(u,) = seq(u,0) = go A seq(u,1) =0

A Jw (len(w) > 1 Alen(u) > max{len(w) + 1,3}
Aseq(w,0) =
Aseq(w,len(w) - 1) =0
AVi <len(w) =1 (1 < seq(u,i+2) <2
Aseq(w, i) = 2seq(w, i + 1) + seq(u,i + 2))
AVi <len(u) (len(w) + 1 < i — seq(u,i) = u))

We mention that conversely, any X1-definable subset of N is semidecidable (Exercise 36).

3.4 Undecidability and incompleteness

We have now everything in place to prove the main results of Part 3, but we need one more technical
assumption.

Definition 3.23. An Lpa-theory T is Xq-sound if all ¥, sentences o provable in T are true; i.e.,
THo = NEo.

Observe that any sound theory (Definition 3.1) such as Q or PA is ¥;-sound, and any 3;-sound theory
is consistent.

Although the following statement is often lumped together with Godel’s first incompleteness theorem,
it is more properly called the undecidability theorem:

Theorem 3.24 (Kleene’s undecidability theorem). Every 31-sound theory T O Q is undecidable.

Proof. Let X C N be an undecidable but semidecidable set, which exists by Theorem 2.25 and Defi-
nition 2.21, and let o(z) be a Xi-definition of X, which exists by Theorem 3.22. Then n — o(7) is a
computable function (cf. Lemma 2.31) that provides a many-one reduction of X to Thm(T), as

neX < NFo@) < Tk o).

In the second equivalence, “=" follows from the Yi-completeness of Q C T, and “<” from the X;-
soundness of T'. Thus, Thm(T") is undecidable by Lemma 2.29. O

Theorem 3.25 (Godel’s first incompleteness theorem).
Every ¥1-sound, recursively axiomatizable theory T O Q is incomplete.

Proof. If T were complete, then T would be decidable by Lemma 2.33, contradicting Theorem 3.24. [
Let us recall our motivating problem from the beginning of Part 2:

Definition 3.26. The Entscheidungsproblem for a given finite language L is
{¢: ¢ is an L-sentence, F ¢} = Thm(2)

(where @ denotes the L-theory with an empty set of nonlogical axioms).

44

MATHEMATICAL LOGIC

Theorem 3.27 (Church). The Entscheidungsproblem for Lpa is undecidable.

Proof. By Theorem 3.25 and Lemma 2.35 applied with T'= @ and X = Q. O

Remark 3.28. While we will not go into the details, it is good to mention that the undecidability and
incompleteness theorems above can be sharpened in various ways:

(i)

(i)

(iii)

The assumption of ¥;-soundness in Theorems 3.24 and 3.25 may be simplified to plain consistency;
this is the Gddel-Rosser theorem. Explicitly, every consistent extension of Q is undecidable, and
therefore incomplete if recursively axiomatizable.

Even better, in view of Lemma 2.35, we see that a theory T in a language L O Lpp is undecidable,
and thus incomplete if recursively axiomatizable, whenever it is consistent with Q (i.e., T 4+ Q is
consistent).

A useful tool for proving this is the concept of representation of computable sets and functions,
see Exercises 42-43, upgrading the notion of definability in N from Theorem 3.22.

The results from the previous point even hold when Q is replaced with the weaker theory R
mentioned in Remark 3.6. (Since R is not finitely axiomatizable, the fact that mere consistency of
T + R suffices for undecidability is not automatic from Lemma 2.35; this is a nontrivial result of
Cobham.)

We are interested not just in theories in the language of arithmetic, but for example in foundational
theories in the language of set theory such as ZFC. The Godel-Kleene—Rosser theorems can be
applied to ZFC in the following way: given an Lpa-sentence ¢, we define its translation ¢“ into the
language of set theory by restricting all quantifiers to w and replacing arithmetical functions and
relations such as +, -, < with their set-theoretical definitions. (We need to expand compound terms
similarly to the proof of Lemma 3.14.) Then T = {¢ : ZFC I ¢“} is an extension of Q (or even
PA), which is consistent if ZFC is, whence T is undecidable. The function ¢ — ¢* is computable,
and it provides a many-one reduction of Thm(7) to Thm(ZFC), hence ZFC is undecidable as
well. Moreover, T is semidecidable, thus recursively axiomatizable by Remark 2.34; thus it is
incomplete. If ¢ is a sentence independent of T' (i.e., neither provable nor refutable), then ¢ is a
sentence independent of ZFC.

This approach can be generalized using the notion of (relative) interpretation. The details are
somewhat technical, but the basic idea is as follows. A translation * of a language Ly to a lan-
guage L; is specified by an L;-formula §,(z) that defines the domain of the objects of Ly (e.g.,
“r € w” in the interpretation of PA in ZFC above), an L;-formula =* y, L;-formulas R*(Z) for
each Ly-relation R(Z), and Lq-formulas F*(&,y) for each Lo-function F' (representing the graph
of F). Given an Ly-sentence ¢, we define its translation ¢* by restricting all quantifiers with J,,
and replacing = and all relation and function symbols with their x-ed definitions (again, we need
to quantify over intermediate results to expand compound terms). If the languages are finite, then
© — ©* is a computable function. (Sometimes even more complicated translations are considered:
e.g., we may represent objects of Ly by k-tuples of objects of L, for a fixed & > 1, thus each variable
translates to a k-tuple of variables. This is useful e.g. to interpret plane geometry in Th(R).)

Then * is an interpretation of an Lo-theory Ty in an Ly-theory T if it is a translation of Ly to Ly
such that T} proves 3z J.(x) and the translations of axioms of Ty and axioms of equality. It follows
that Ty F ¢ = T1 F ¢* for all Ly-sentences ¢. Thus, if Ly is finite, ¢ +— ¢* provides a many-one
reduction of Thm(7T) to Thm(T}), where T = {¢ : T1 F ¢*} 2 Tp.

We obtain the following generalization of the undecidability and incompleteness theorems: if T' is
a consistent theory such that Q (or just R) is interpretable in T, then T is undecidable, and it is
incomplete if recursively axiomatizable.

PART 3. ARITHMETIC 45

(iv) (Szmielew, Tarski) As a ready-made application of the previous point to set theories, the adjunctive
set theory (AST) with axioms

Vit ¢ z,
VeVyIzVt(tez e teaxVi=y)

(postulating that @ and = U {y} exist) interprets Q. Thus, every theory consistent with AST is
undecidable, and it is incomplete if recursively axiomatizable.

The even weaker Vaught set theory (VS), axiomatized by the schema

Vro,...,Tn_1 2Vt (th(—) \/t:xi)

i<n

for n € N (including n = 0, which gives the axiom of empty set), interprets Robinson’s theory R.
Thus, again, every theory consistent with VS is undecidable, and it is incomplete if recursively
axiomatizable.

(v) Replacing Q with AST in the proof of Theorem 3.27, we see that the Entscheidungsproblem is
undecidable for a language with just one binary relation symbol (and therefore for a language with
a binary function, or with a relation or function symbol of higher arity).

In fact, an exact characterization is known: the Entscheidungsproblem for a finite language L is
undecidable iff L contains at least one at least binary symbol (relation or function), or at least two
unary functions.

3.5 Unprovability of consistency

While Theorem 3.25 shows that any sufficiently strong theory (and in particular, any theory that could
serve as the foundation of mathematics) is incomplete, it does not exhibit an explicit statement inde-
pendent of the theory. This is remedied by Godel’s second incompleteness theorem:

Theorem 3.29. If T is a consistent recursively axiomatized theory extending PA, then T does not prove
the sentence Cony expressing its own consistency.

In a way, this is still not entirely satisfactory, as the true but unprovable sentence Cony it provides
is not something that would be recognized as an arithmetical result by a number theorist; rather, it is a
statement of logic encoded in the first-order language of arithmetic. Nevertheless, it is a statement with
an intuitively clear concrete meaning, and one whose unprovability is of independent interest (for one
thing, it dooms Hilbert’s program to failure).

We are not going to prove Theorem 3.29 as there is not enough time in the course to do it properly;
however, we will outline the main ideas that go into it and explain where the difficulties are.

Before we can even start to think about the proof, the first difficulty is the actual statement of the
theorem: what is Cong, really?

Since the consistency of 7" means that T does not prove |, a natural definition of Cony is

CODT = PI‘T(FL—')

where Prp(x) is a provability predicate for T: a formula expressing “(the sentence encoded by) z is
provable in 7”. But this just shifts the problem to what is Prp.

We know from Theorem 3.22 that Thm(7') is definable in N by a ¥; formula, and we may consider
taking any such formula as Pry. But a moment’s reflection shows that even though this is a useful and
perhaps desirable property for Pry to have, it is far from sufficient to establish Theorem 3.29: e.g., if
o(z) is any ¥; formula that defines Thm(T'), then o(z) Az # T L7 is also a ¥; formula that defines
Thm(T) (as T is, in fact, consistent), and the consistency of the latter provability predicate is trivially
provable.

46 MATHEMATICAL LOGIC

Rather than relying on the “extensional” definability of Thm(T") by Prr, we should construct an
“intensional” definition that closely mimics the actual definition of provability from Section 1.4. Going
in a top-down fashion, we put

Pry(x) = 3p Proofr(p, x)

where Proofr(p, z) is supposed to describe “p is a proof of 2”. In turn, we can define Proofr(p, z) using
sequence encoding as

len(p) > 0 A seq(p,len(p) = 1) ==
AVi < len(p) (7(seq(p, 7))
V AxP(seq(p, 1)) V AxQ(seq(p,i)) V AxE(seq(p, 1))
V 3j, k < i MP(seq(p, 1), seq(p, j), seq(p, k))
V 3j < i Gen(seq(p, i), seq(p, 5))),

where 7(x) is fixed ¥; formula that defines the set of axioms of T'; AxP(z), AxQ(z), and AXxE(x) mean
“r is a propositional axiom”, “r is a quantifier axiom”, and “z is an axiom of equality”, respectively;
MP(z,y, z) means “z is inferred from y and z by modus ponens”, and Gen(z,y) “z is inferred from y by
a generalization rule”.

We proceed to define the formulas AxP etc. in a similar fashion; in the process, we will need to define
formulas expressing things like “x is a term”, “x is a formula”, “w is the result of substitution of free
occurrences of variable x for a term y in a formula z”. It is reasonably obvious that we can express
all such things using sequence encoding to mimic the definitions from the real world, but it should be
equally obvious that carrying this out down to the last iota is quite tedious.

Note that our definition of Prp and Cony depends on the choice of the formula 7 describing the axiom
set of T, not just on T itself; thus, we should indicate this in the notation more properly by writing Pr,
and Con,. But we will not bother with this.

With some effort, it can be checked that Pry is (provably equivalent to) a ¥; formula, and by
construction, it defines Thm(7') in N. But it has many other natural properties as well. In particular,
the proof of Theorem 3.29 essentially relies on the following statement, which is, in fact, the most difficult
and most technical part of the proof.

Theorem 3.30. If Pry is the provability predicate of a recursively axiomatized theory T O PA constructed
as outlined above, then Prr satisfies the following Hilbert—Bernays—Lob derivability conditions for all
sentences ¢ and :

(DY) If T proves @, then T proves Prp(Tp™).

(D2) T proves Prp("p) — PrﬂW)

(D3) T proves Prr(Tp —) APrp(Tp) — Pro(T97).

Proof sketch.

(D1) follows from the X;-completeness of T 2 Q: if T proves ¢, then Prr(Tp) is a true ¥; sentence.

(D3) is a formalization of the closure of provability under modus ponens, and it is fairly straightfor-
ward: we take the proofs of ¢ — ¥ and ¢, concatenate them (as sequences), add ¢ at the end, and argue
that this is a proof of .

(D2) is the most difficult part. It is, in effect, a formalization of (D1) inside T itself as a meta-
theory; since (D1) was proved by appealing to Xj-completeness, (D2) can be proved as a special case of
formalized X, -completeness®: T proves

o(u) = Prp(To(a)7)

for every ¥y formula o(x) (here, the deceptively simple notation "o ()™ hides the rather complicated
operation that given a number u, we construct (the Gédel number of) the closed term @, and substitute

3We apply formalized Y1-completeness with o being the sentence Prr(T¢7), but the version with free variables is needed
for the inductive proof.

PART 3. ARITHMETIC 47

it into o for x, taking the Godel number of the resulting sentence). This can be shown by induction on
the complexity of o, but we have to basically formalize the whole proof of Lemma 3.9 in T O

The original proof of Gédel’s first incompleteness theorem did not rely on results from computability
theory as we have done (Godel did not have a general definition of computability), but it proceeded by
syntactic manipulations using the provability predicate. The role played by the diagonal argument in
the proof of Theorem 2.25 was taken by the so-called Gédel’s diagonal lemma:

Lemma 3.31. For every Lpa-formula o(x), there is an Lpa-sentence o such that Q proves a <+ o(Ta’).

Proof. Exercise 44. O

Using the diagonal lemma, we can construct Gddel’s sentence v that satisfies
QF v+ —Prp(Tv7)
(i.e., v says “I am unprovable in T7). If T is consistent, then v is unprovable:
Ty = TFPrp(v) = TF-wv = Tk 1

using X;-completeness (i.e., (D1)) and the definition of v. (Thus also, if T is consistent, then N F
= Prr("v"), hence N E v, hence T ¥ —wv if T is ¥1-sound. This provides an alternative proof of Theo-
rem 3.25.)

Now, the proof of Gédel’s second incompleteness theorem is essentially a formalization of this argu-
ment in T itself. More precisely, we have:

Theorem 3.32. Let T be a consistent extension of Q, and Prr a provability predicate for T that satisfies
the Hilbert-Bernays—Lob derivability conditions. Then T ¥ = Prp("L7).

Proof. Let v be as above. Since T proves Prr(Tv7) — (v — 1), it proves

Pro("Pro(Tv7) = (v — 1)),
Prr("Prp(Tv7)7) = Pro(Tv — 1),
Prr("Pro(7v7)7) = (Prr(77) = Pro(T10))
by applying (D1) and (D3) twice. Using also (D2), we obtain
T+ Prr(Tv7) — Prp(TL7).

Assuming for contradiction that 7' = = Prp(TL7), we infer T = =Prp("v7), whence T F v by the

definition of v, and T F Prp("v™7) by (D1), thus T is inconsistent. O

Remark 3.33. (For those familiar with modal logic.) The proof of Theorem 3.32 does not overtly use
any quantifiers; it essentially looks like a proof in a propositional modal logic where Prp plays the role
of the necessity modal operator [J. Elaboration of this idea leads to so-called provability logic.

Remark 3.34. As with Godel’s first incompleteness theorem, we can apply the second incompleteness
theorem to theories in other languages than Lpa by means of interpretations. But surprisingly, this idea
can can be used to significantly improve the statement of the incompleteness theorem even for theories
of arithmetic, by exploiting the fact that Q interprets some weak fragments of PA such as induction for
Ay formulas (“bounded arithmetic”), that are nevertheless strong enough to carry out some form of the
proof of Theorem 3.30. We can obtain the following elegant formulation that applies to theories in any
language, and brings the base theory down from PA to Q, even though Q is too weak to directly prove
the Hilbert—Bernays—Lo6b derivability conditions:

Theorem 3.35 (Pudldk). If T is a consistent recursively aziomatized theory, then T cannot interpret
Q + COHT.

48

MATHEMATICAL LOGIC

Exercises (in 2024 /25)

We have seen in the lecture that the De Morgan language {A,V,—, T, L} is functionally complete, and
specifically, that every Boolean function can be represented by a CNF or DNF of size O(2™n).

1. Prove that {V,—}, {—, L}, and {1} are functionally complete, where x 1y denotes the Sheffer
stroke = (z A y).

2. Prove that {—=}, {A,V, T, 1}, and {«+, T, L} are not functionally complete.
[Hint: Find a nontrivial property of Boolean functions which is preserved by composition, and holds for
functions in the given basis.]

3. For any Boolean function f: {0,1}" — {0, 1}, the following are equivalent:

(i) {f} is functionally complete.

(ii) f(0,...,0) =1, f(1,...,1) =0, and there exists an assignment (e, ...,e,—1) € {0,1}" such that
fleos .. en1) = f(=eq,...,m€n_1).

[Hint: For (ii) — (i), look at functions obtained from f by identifying some of the variables.]

4. For any n € N, the parity function @,_,, =;: {0,1}" — {0,1} is defined as (},_, z;) mod 2.
Show that any DNF or CNF representing @, _, «; has size (2"n). [Hint: What terms of the form
Niey it can imply one of @,_, x; =0 or @,_,, x; = 1?7 Here, I C [n], ¢; € {0,1}, 2! =z, 20 = —z]

5. There are formulas representing €, _,, z; of size O(n°) for some constant c.

[Hint: Consider a balanced tree of binary parities. You may get it down to ¢ = 2.]

6. Any DNF equivalent to the CNF A, _, (z; V ;) has size Q(2"n).

7. Every Boolean function f: {0,1}" — {0,1} can be represented by a formula of size O(2").
[Hint: Inductively express a formula in n + 1 variables as a combination of formulas in n variables.]

8. Prove the propositional soundness theorem: for all I' C Prop, and ¢ € Propy, if I' - ¢, then
TEe.

9. Let I'A CPropy and ¢,1 € Prop,. Show that if I' - ¢ and A, ¢ F 1, then I', A F 9.

10. For every ¢ € Prop,, its De Morgan dual ¢¢ € Prop, is obtained by exchanging A with V, and
T with L inside . Formally, we define ¢ by induction on the complexity of ¢:

Td=1, 1=,
(e AY) = (¢ V), (V) = (¢ AyT).

Show that for all assignments v: A — {0,1}, v(¢?) = v_ (=), where v_: A — {0,1} is the assignment
defined by v-(a) =1 —v(a) for each a € A.

11. Let ¢,9 € Propy,.
(i) ¢ = if and only if ¢ = .
(i) ¢ F 9 if and only if ¥4 F .

49

50 MATHEMATICAL LOGIC

In the lecture, we have proved completeness of a proof system using connectives {—, L }. A complete
system using the De Morgan language {A,V,—, T, L} is given in the van den Dries lecture notes, but the
next exercise shows how to construct one mechanically.

12. For any {—, L}-formula ¢, let ¢* denote the De Morgan formula such that p* = p for atoms p,
1* =1, and (¢ — ¥)* = (=p* V1p*). Similarly, given a De Morgan formula 1, let 9# be its translation
to a {—, L}-formula using fixed {—, L}-translations of all De Morgan connectives. Let ko denote a
sound and complete Hilbert-style proof system for {—, L }-formulas such as the one given in the lecture,
and let -1 be the Hilbert-style proof system in the De Morgan language that has inference rule schemata
0, ..., 0% | @b for each rule schema ¢1,..., 95 / @o of Fo (where axioms are treated as rules with
k = 0), and axiom schemata —c(g, . .., Pr_1) Ve (00, s @r—1), (@0, -, Pr_1)Vc(Poy ..\ Pr_1)
for each k-ary De Morgan connective c¢. Then I is a sound and complete proof system in the De Morgan
language. [Hint: You will need to show F; —¢) V o#* -1 =p#* v 4 for all De Morgan formulas).]

13. (If you are familiar with topology.) Give a direct proof of the propositional compactness theorem,
not using the completeness theorem.
[Hint: Consider the product topology on the set {0,1}# of all assignments.]

14. A set of propositional or first-order sentences S is independent if S is not equivalent to S’ for any
proper subset S’ C S.

(i) S is independent iff S\ {p} ¥ ¢ for all p € S.

(ii) Show that every countable theory T has an independent axiomatization, i.e., an independent set
of sentences S equivalent to T'. [Hint: Try to generalize the fact that {¢, ¥} = {¢, ¥ V ~¢}.]

(Uncountable theories have independent axiomatizations as well by a theorem of I. Reznikoff, but this
is more difficult to prove.)

15. Prove Lemma 1.57: if a term t(xo, ..., Z,—1,y) is free for y in a formula ¢(xg,...,2n—_1,y), then
for all terms so, ..., s,—1, 7, the formula (¢(t/y))(so/Zo, - - ., Sn—1/Tp—1,7/y) is syntactically identical to
the formula ¢ (s0/o, ..., Sn—1/Tn-1,t(50/Z0, - - -+ Sn—1/Tn—1,7/Y)/Y)-

16. Let A be an L-structure, ¢ a closed L-term such that t* = a € A, and ¢(z) an L-formula. Show
that A E p(t) iff AF p(a).

17. Consider a modification of the first-order proof system given in the lecture such that the axioms
of equality are replaced with the axiom x = z and the axiom schema ¢ = s A p(t/x) — ¢(s/z) for all
formulas ¢ and terms t, s free for = in ¢. Show that this is equivalent to the original proof system.

18. For any formula ¢(z) and variable y free for = in ¢, show that the formula Jy (3z p(z) — ©(y))
is provable.

19. Using Vaught’s test, show the completeness of the theory of a successor: it has a language with
one unary function symbol s, and axioms s(z) = s(y) — = =y, Yoy s(y) = =z, and s"(x) # z for each
n € Nsg, where s™ denotes the n-fold iteration of s (i.e., s°(x) is x, and s"*1 is s(s"(x))).

20. For each n € N, let P, denote the path graph of length n, i.e., the structure ([n], E,), where
[n] ={0,...,n—1} and E, = {(i,5) € [n]? : |i — j| = 1}. Show that there is no sentence ¢ such that for
alln € N, P, E ¢ iff n is odd. [Hint: Adapt the previous exercise.]

21. Fix a field F. The theory of vector spaces over F' has a language consisting of the language
{+, —,0} of abelian groups and unary functions a - for each a € F; it has the usual algebraic axioms
(axioms of abelian groups, ab-z = a-(b-z), l-x =z, (a+b)-x =a-x+b-x,a-(x+y) = a-z+a-y). Show
that the theory of infinite vector spaces over F (i.e., with additional axioms Jzq ... 3z, /\i<]. T # Ty
for n € N) is complete and x-categorical for all infinite x > |F'|. [Hint: Every vector space has a basis.]

22. An atom in a Boolean algebra A = (A;0,1,A,V, —, <) is an element a € A such that a > 0, but

0 <x <afornoxe A; Ais atomless if 0 # 1 and A has no atoms. Show that the theory of atomless
Boolean algebras is Ny-categorical, hence complete.
[Hint: Construct an isomorphism between two countable atomless Boolean algebras A and B by a back-
and-forth argument, as a union of a sequence of isomorphisms between finite subalgebras. It might help
to observe that if A is a finite subalgebra of A, and A is the algebra generated by Ao U {b} for some
b € A, then each atom of Ay either remains an atom in Aq, or splits into two atoms.]

EXERCISES 51

23. Show that the functions +: N2 — N and -: N> — N are computable when the input and output
are represented in unary.

24. The same when the input and output are represented in binary.

25. Show that there are computable functions converting natural numbers from one representation
to another (unary, ordinary base-k, bijective base-k, considering also different ks).

26. Fix an alphabet X.

(i) The following functions are computable: the constant function e; the functions s,: ¥* — X* for
a € X, defined by s,(x) = x_a; the projections nl* : (X*)" — X*, 7" (zg, ..., Tn-1) = ;.

(i) If f: (%) — ¥* and g;: (X*)™ — ¥*, i < n, are computable functions, their composition
h: (%)™ = X%, h(Z) = f(go(D),- .., gn-1(F)), is computable.

(iii) If fo: (X*)" = X* and f,: (X*)"? = ¥*, a € ¥, are computable, the function h: (X*)" ! — ©*
defined from them by the recursion

is computable.

Functions in the smallest class that contains the functions from (i) and that is closed under the operations
(ii) and (iii) are called primitive recursive. (Usually, the definition of primitive recursive functions is
stated for functions N — N, corresponding to our definition with |X| = 1 and the integers represented
in unary. Our more general definition is equivalent up to the bijective base-|X| numeration.)

27. The set of well bracketed strings over the alphabet ¥ = {(;,); : ¢ < k} is the smallest set of
strings such that the empty string ¢ is well bracketed, and if z and y are well bracketed and ¢ < k, then
xy and (;z); are well bracketed. E.g., (3(1)1(2()0)2(1)1)3(2)2 is well bracketed. Show that the set of well
bracketed strings is decidable.

The next exercise is to prove Lemma 2.31:

28. Let L be a finite first-order language. Show that the following sets and functions are computable:

(i) The set of L-terms.

(ii) The set of L-formulas.

)

)
(iii) The set of pairs (@, x) where x is a free variable of an L-formula .
(iv) The substitution function: given an L-formula ¢, a variable z, and an L-term ¢, compute ¢(t/x).
)

(v) The set of triples (T, ¢,) where 7 is a proof of an L-formula ¢ from a finite set of L-formulas T.

29. A language X C X* is semidecidable iff it can be represented as Jw € X* P(z,w) for a finite
alphabet ¥’ (which we might take to be ¥ itself if || > 2) and a decidable predicate P.
[Hint: Consider a description of an accepting run of a Turing machine, or—if you are already familiar
with the section on arithmetic—a 3;-formula that defines X in N/

30. (Craig’s trick.) Every semidecidable theory is recursively axiomatizable. [Hint: Express Thm(7T)
as Jw P(p,w) with P decidable. Given ¢ and w, devise a sentence equivalent to ¢ that encodes w.]

31. Show that every decidable consistent theory T has a decidable complete extension.
[Hint: Consider a completion procedure that enumerates sentences ¢ one by one, and extends the current
list of axioms with ¢ or —p, whichever maintains consistency with 7'.]

32. Prove QFVz(x <mVn <z) for each n € N.
33. Qprovesz-y=0—2=0Vy=0, and more generally, z-y=m — x =0Vy <7 for each n € N.

52 MATHEMATICAL LOGIC

34. The standard model N extends to an Lpa-structure N> with domain NU {oo}, co ¢ N, so that
N> E Q. Moreover, we are free to choose (0-00)N" in an arbitrary way (while the rest of the model is
uniquely determined by the axioms of Q). Conclude that Q does not prove any of the formulas S(z) £ ,
z-y=y-x,or0-z#1.

35. Qdoesnot provex+y=y+zor0+(zx+y)=0+z)+y.

[Hint: Modify the previous exercise to a model with two “infinities”.]

36. All X;-definable sets are semidecidable.

In the lecture, we developed an encoding of sequences in the language of arithmetic using Godel’s
B-function. In the next three exercises, you will devise an alternative sequence encoding scheme due to
E. Nelson, as simplified by P. Pudlék.

37. Theset {z:3In € Na = 2"} of powers of 2 is definable by a A formula, not using the 2™ function.
[Hint: Consider the divisors of x.]

38. Consider an encoding of finite sets X C N by pairs [r, w] where the binary expansion of w is a
concatenation of binary expansions of elements of X, and the binary expansion of r acts as a “ruler” such
that the positions of 1s mark where the individual elements of X start in w. Show that the predicate “x
is in the set encoded by [r,w]” is Ag-definable.

39. Construct a Ay encoding of finite sequences based on Exercise 38.

As yet another alternative, we will look at a representation of binary strings introduced by A. A.
Markov Jr., who attributes it to J. Nielsen. The idea of using it for encoding strings in weak theories of
arithmetic is due to J. Murwanashyaka; the extension to sequences of integers is due to A. Visser.

40. Let (SLy(N),1,-) denote the monoid of non-negative integer matrices (¢ s) € N2%2 of determi-

nant 1, with - being matrix multiplication and I = ((1) ?) Put Ag = ((1J %) and A; = G (IJ)

(i) Given ¢ = 0,1, which M € SLy(N) are of the form NA; for N € SLy(N)? [Hint: Focus on
comparisons between the entries of M.]

(ii) Using (i), show that each M € SLy(N) \ {I} can be written in a unique way as N Ay or NA; with
N e SLQ(N)

(iii) Conclude that SLa(N) ~ ({0,1}*, e, _).

41. Develop a Ag encoding of finite sequences based on the previous exercise. [Hint: You may
represent {ng,...,ng_1} by Aj°--- A A" ' Ay, using AR = ((1)). Then encode sequences by sets.]
A formula ¢(x) represents a set X C N in a theory T if T F (@) for all n € X, and T + —p(z) for
alln e NN X.

A formula p(z,y) represents in T' a partial function f: N —= N if T+ Vy (¢(71,y) +> y = m) for all
n,m € N such that f(n) =m.

42. All decidable sets are X;-representable in Q.
[Hint: Starting with 3;-definitions of X and N \ X, write a 3; formula expressing “there is a witness
for © € X smaller than any witness for ¢ ¢ X”. Use Exercise 32 to show that it works.]

43. All partial computable functions are ¥i-representable in Q.
[Hint: Using a 3;-definition of the graph of f, adapt the witness comparison argument from Exercise 42.]

44. Prove Godel’s diagonal lemma (Lemma 3.31): for every formula ¢(z), there exists a sentence «
such that Q F a < ¢o("a™).
[Hint: Using representability of a suitable computable function, construct a formula (x) such that

QFY(™XT) ¢ o("x(Tx)7) for all x(z).]

	Course overview
	Syntax and semantics of logic
	Propositional logic
	Completeness of propositional logic
	First-order logic
	First-order proof system
	Completeness of first-order logic
	Consequences of the completeness theorem

	Computability
	Turing machines
	Universal Turing machines and the halting problem
	Computability of logical syntax

	Arithmetic
	Robinson and Peano arithmetics
	1-completeness of Q
	Sequence encoding and definability of computation
	Undecidability and incompleteness
	Unprovability of consistency

	Exercises (in 2024/25)

