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Abstract. We give a brief overview ofZdeněk Kopal' s life, his activities in the Czech 
Astronomical Society, his collaboration with Vladimír Vand, and his studies at Charles 
University, Cambridge, Harvard, and MIT. Then we survey Kopal's professionaJ life. 
He published 26 monographs and 20 conference proceedings. We will concentrate on 
Kopal 's extensive monograph Numerical Analysis ( 1955, 1961 ) that i s widely accepted 
to be the first comprehensive textbook on numerical methods. It describes, for instance, 
methods for polynornial interpolation, numerical differentiation and integration, numer­
ical solution of ordinary differential equations with initial or boundary conditions, and 
numerical solution of integral and integro-differential equations. Special emphasis will 
be laid on error analysis. Kopal himself applied numerical methods to celestial mechan­
ics, in particular to the N-body problem. He also used Fourier analysis to investigate 
light curves of close binaries to discover their properties. This is, in fact, a problem 
from mathematical analysis. 

1. Short Biography 

Zdeněk Kopal was boru on Apríl 4, 1914, in Litomyšl , the centra! part of the Czech 
Republic. Hi s father, Josef Kopal (1883-1966), was a member of the Royal Bohemian 
Society of Learning, the Bohemian Academy of the Sciences and the Arts, and Pro­
fessor of the Charles University. Zdeněk's mother, Ludmila Kopalová (1884-1973), 
was a housewife as was quite usual at that time. Her father (Josef Lelek), who was a 
school teacher interested mainJy in natural sciences (such as biology), very much in­
ftuenced his grandson Zdeněk. In 1938, Zdeněk Kopal married his classmate Alena 
Miildnerová with whom he had three daughters: Georgiana, Zdenka, and Eva. There 
exists a very rich literature devoted to Kopal's life (see, e.g., Grygar 2004; Kopal1991 , 
2014; Skřivánek et al. 1994; Šolcová & Křížek 2004, 2011). So we will very briefty 
recall only a few special issues and then concentrate on Kopal as a numerical analyst. 

In 1923, Kopal's family moved to Prague. At the age of 14, Zdeněk constructed 
his first telescope and started to visit the Štefánik Observatory (see Figure 2). In 1946, 
he wrote in Říše hvězd(= Realm of the Stars), in the journal ofthe Czech Astronomical 
Society : 

.. . I will never jorget that the Czech Astronomical Society and the Štejanik Obser­
vatory in Prague were my kindergarten. 

At the age of 15, Kopal became a member of the Czech Astronomical Society 
(CAS). Rostislav Rajchl, in Říše Hvězd , 10 (1929) , p. 180, emphasizes that Zd. Kopal 
made many maps ojthe celestial sphere with variable stars. According to Říše Hvězd, 
ll (1930), p. 130, the number of observations of variable stars provided by leading 
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Figure 1.: Zdeněk Kopal during his stay in Prague in 1964 (photo by Antonín Riikl). 

observers was as follows: Kopal 2268, Kadavý 590, Rajchl 339, Izera 220, Černov 
167, ... , which nicely illustrates Kopa1 's activity in this area. At the age of 16, he be­
came the chair of the Variable Stars Section of the CAS. Together with Hubert S louka, 
he wanted to establish a Mathematica1 Section of the CAS. Unfortunately, this good 
idea was never realized. At the age of 19, he translated the monograph The Mysterious 
Universe by James Jeans into the Czech language. 

Figure 2.: Štefánik Observatory in Prague. 
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Zdeněk Kopal graduated from gymnasium in Smichov (Drtinova street) in June 
1933. The teacher dearest to his heart was Dr. Ladislav Klír, who taught him mathe­
matics for four years. Kopal in (Kopal 1991, p. 52) recollects: 

His constant message that mathematics was 'tru.th and beauty' I have always tried 
to imitate and pass on to others in the course oj my own teaching career in different 
parts ojthe world. To be inspired and guided by such a teacher in thejormative years 
oj o ne' s lije was a g ift which can neve r be repaid in the fu ll ... 

During the petiod 1933-1937, Kopal studied mathematics, physics, and astron­
omy at the Faculty of Science of Charles University in Prague. Hi s teachers were, e.g., 
E. Cech, V. Dolej šek, V. Hlavatý, W.W. Heinrich, J. Heyrovský, V. Nechvíle, F. Nušl, 
F. Záviška. ln 1935, Kopal attended the General Assembly of the IAU in Paris and 
became an IAU member. The next year he organized an expedition to Japan to observe 
a total Solar eclipse. In 1937 he obtained the prestigious Denis scholarship at Cam­
bridge, UK; his advisor was Sir Arthur Eddington. In 1938, Kopal received his PhD 
from Charles University and then went to Harvard Observatory in the USA, where he 
had gotten another scholarship. From 1942, he worked at the Massachusetts Institute 
of Technology (MIT) and in 1948 became Professor of Numerica] Analysis at MIT. In 
1951, Kopal returned to Europe. He became the head of the Department of Astronomy 
in Manchester. In the late fifties, he started to collaborate with NASA on the Apollo 
rnission. In order to find possible landing sites on the Moon, he organized the tak­
ing of about 60,000 photos of its surface using the 60 cm refractor at the Pic-du-Midi 
Observatory in France (Kopal 1991 , p. 271). 

Zdeněk Kopal returned for the first time (after the war) to Czechoslovakia in the 
Spring of 1957. He wanted to meet several Czech astronomers. After 1957 he came 
quite often to his homeland. In 1967 Kopal visited the Institute of Mathematics of the 
Czechoslovak Academy of Sciences, and met Prof. Ivo Babuška, a leading expert on 
numerical analysis in Prague. ln the same year Kopal was elected as the Honorary 
member of the Czech Astronomical Society. In 1974 he became Honorary Doctor 
in Patras (Greece) and also in Kraków (Poland). Kopal died in Wilmslow (close to 
Manchester) in 1993. His tomb is situated in Vyšehrad in Prague (Šolcová & Křížek 
2004). 

2. Bibliography of Zdeněk Kopal 

During his professional life, Kopal published about 400 research papers, 26 mono­
graphs, and 20 conference proceedings - their list is given in Šolcová & Křížek (2004). 
Eighty of his mathematics papers were reviewed by the Zentra1blatt fiir Mathematik. 

At the age of 16, Kopal wrote his first popularization paper in the Czech journa1 
Říše hvězd (Kopal 1930). In 1931 he published his first scientific paper on variab1e 
stars (Kopal & Kadavý 1931), a modified version ofwhich appeared in Astronomische 
Nachrichten. 

At the age of 19, Kopal published together with V1adirnir Vand the Atlas oj Vari­
able Stars (Kopal & Vand 1933), which had a remarkab1e success abroad, both among 
professionals as well as in amateur circles. Shortly after its publication, one could read 
in the journal of CAS, Říše hvězd, 16 ( 1938), p. 118: 

We are asking the members oj the CAS, who own the Atlas and no Ianger need it, 
to kindly se ll their copy back to the CAS. 
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The first edition was sold out, and was acquired by the University Observatory in Berlín 
and the Yerkes Observatory, among other institutions. The Atlas contains 28 charts. 

Kopal published eight monographs about clo se binary systems Kopal ( 1946, 1950, 
1956, 1959, 1978, 1979b, 1989, 1972) and also eight monographs about the Moon 
(Kopal 1961 , 1965, 1966, 1968, 1969, 1971 , 1974a,b), three monographs about the 
Solar system (Kopal 1972, 1979a, 1984), two monographs about our Universe (Kopal 
1970b, 1976), a monograph about artificial satellites (Kopal 1960), and one about space 
telescopes (Kopal 1970a). 

From 1940 on, Kopal began publishing numerical analysis papers mostly about 
the investigation of light curves by means of the Fourier transform. Many of his papers 
also deal with the Roche lobes of a close binary system. The first edition of Kopal's 
monograph Numerical Analysis is widely considered to be the first systematic mono­
graph about numerical methods (see Kopal1955 , 556 pp.). In the Preface, Kopal writes: 

The present volume contains, in brief, an introduction to the numerical analysis oj 
the functions oj a single real variable, based on courses given by the writer to students 
oj science and engineering at the Massachusetts Institute oJ Technology in Cambridge, 
U.S.A., between 1947 and 1951. The aim ofthe book has been to develop, in a system­
atic manner, the analytical basis oj such numerical processes as are necessary for an 
algebraization and numerical solution oj a wide range oj problems oj the infinitesimal 
calculus which are en.countered daily in physics or engineering, but are not amenable 
to solution by forma[ mathematical methods. 

The contents of this monograph are devoted to methods for polynomial interpo­
lation, numerical differentiation, numerical solution of ordinary differential equations 
with initial or boundary conditions, numerical quadrature, and numerical solution of 
integral and integro-differential equations. Kopal only briefly mentions methods for 
solving large systems of linear algebraic equations, since this topíc was treated in many 
other boo ks . Bach chapter contains a splendid account of the hi s tory of the subject with 
extensive bibliographical notes. The author precedes the main body of the text with an 
historical and philosophical introductory chapter. 

The second edition of Numerical Analysis was published by John Wiley & Sons, 
New York, 1961 , 600 pp. It contains a new chapter presenting systematic applications 
of the operational calculus to numerical analysis, particularly those based on the use of 
rational, rather than polynomial, approximations. The associated Padé tables have been 
added to Appendix . The second edition was translated into Chinese and published in 
Shanghai. 

3. General Computational Scheme 

The genera1 computational scheme for solving problems of mathematical physics is 
sketched in Figure 3. Since no equation describes physica1 reality absolutely exactly, 
we always make an error eo (modeling error). Mathematical models are usually ex­
pressed as infinite dimensional problems. They are given by ordinary or partial differ­
ential equations, integro-differential or integral equations, systems of these equations, 
variational inequalities, systems of differential-algebraic equations , etc. Their solution 
can be searched for instance in the space of continuous functions whose dimension is 
infinite. For computer implementation we have to approximate them by finite dimen­
sional problems, which yields the error e 1 (discretization error) . This error may also 
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include the error of numerical integration, error of approximation of the boundary of 
the examined region , etc. Finally, the error e2 arises during a computation of the dis­
crete model. It contains, of course, round-off errors, but may include other errors (such 
as iteration errors, etc.). 

-eo -el -~ 
Figure 3.: General computational scheme. 

Numerical analysis investigates only the errors e 1 and e2, but not eo. In a spíte of that, 
Jet us take now a closer look also at the modeling error which may be essential, but is 
often ignored. 

3.1. Modeling Error eo 

Without exception every equation in mathematical physics has limitations regarding 
the size of the objects investigated. For instance, the standard heat conduction equation 
(stationary or non-stationary) approximates very well the true temperature in solids of 
size about 1 meter, which can be verified by direct measurements (see Křížek & Neit­
taanmaki 1996). However, in applying the heat equation on the atomic Ieve! in a cube 
w-10 m on a side, we get nonsensical numbers, and similarly in a cube with size 1010 

m, which would in fact immediately collapse into a back hole (note that the diameter of 
our Sun is 1.4 x 109 m). The same is true for linear elasticity equations, semiconductor 
equations, supra-conductivity equations, Navier-Stokes equations for fluids , Maxwell 's 
equations, Korteweg-de Yries equations, magneto-hydro-dynamic equations, and so on. 
Analogously, we should not apply Keplerian laws on scales of 10- 10 mor, similarly, 
the Schrodinger equation to objects that have the size of a cat. Similar arguments apply 
also for time scales. For instance, the standard predator-prey equation or the N-body 
problem on the interval of 1010 years do not describe reality well . Therefore, in any 
calculation we must take into account the modeling error, which is small only under 
some restrictive space-time limits. 

Despite this, when deriving the standard cosmological Friedmann equation, the 
Einstein equations are applied to the entire Universe. This is considered as a platitude 
and almost no one deals with the question of whether it is justified to perform such a 
fearless extrapolation without any observational support. It should be noted that gen­
eral relativity was "checked" only for much smaller scales such as the Solar System 
(slowdown of electromagnetic waves and bending of light in the gravitational field of 
the Sun, measuring the curvature of spacetime near the rotating Earth by means of the 
Lense-Thirring precession effect, perihelion advance of Mercury 's orbit, etc.). Note 
that galaxies have a diameter on the order of 1010 astronomical units and the Universe 
is at least five orders of magnitude larger. 

Fritz Zwicky (Zwicky 1933) and Vera Rubín (Rubín 1997) made use of overly 
simplistic models and insufficient data involving a number of selection effects to pre­
dict dark matter (Křížek et al. 2014). For instance, at the end of the last century, as­
tronomers believed that only 3 o/o of all stars are red dwarfs (Binney & Merrifield 1998, 
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p. 93). However, from Hipparcos data and other sources we now know that 70-80% of 
all stars are red dwarfs. Therefore, the proposed ratio 27 : 5 between the amount of dark 
matter and baryonic matter may be considerably overestimated. Moreover, the (nor­
malized) Friedmann equation was derived under an incorrect extrapolation ignoring the 
modeling error (Křížek & Somer 2014, p. 442). Of course, in 1922 when A. Friedmann 
published his famous paper (Friedmann 1922), he had no idea of the size of our Dni­
verse, as galaxies were discovered only in 1924 by E. Hubble. Thus, it would seem that 
cosmologists solve incorrectly-derived equations and then report the results to rather 
high accuracy (up to three significant digits). 

3.2. Discretization Error e1 

The difference between the true solution of a mathematical model and its numerical 
approximation is often estimated using various apriori or a posteriori error estimates. 
This step is very important, since real-life problems are often nonlinear, large scale, 
ill-conditioned, or non-stable. They may have multiple solutions, singularities, etc. If 
we do not perform a reliable error analysis, we do not know, in fact, how close the 
numerical solution is to the exact one. 

To be more concrete, consider the Gaussian quadrature rule 

b 11 i g(x)dx """ I w;g(a;), 
a i= l 

(1) 

where g is a continuous function, the nodes a; are roots of Legendre polynornials, and 
w; E JR are appropriate weights. The approximation in Eq.(l) is exact for all polynorni­
als g of degree 2n- 1. For example, choosing n = 2, 

[a,b] = [-1, 1], w 1 = w2 = 1, a;=± "Ý3/3, 

the Gaussian quadrature is exact for all cubic polynomials and thus its order of accuracy 
is four. ln Kopal (1955), he gives a list of all coefficients up to n = 16. For large n, the 
discretization error is much smaller than rounding errors (depending on the computer). 

Z. Kopal presents also a long series of numerical methods of various orders for 
solving the initial value problem for ordinary differential equations 

Y = f(x, y), 

y(xo) = Yo, 

where y = y(t) stands for the time derivative of the searched solution y = y(t), f is a 
given function , and Yo is the initial condition. He establishes sufficient conditions under 
which these methods converge (see, e.g., Kopal 1955, p. 130), and examines the order 
of truncation (discretization) errors. For higher order methods the total numerical error 
is usually not dueto truncation, but to round-otf (see Kopal 1955, p. 194). Let us point 
out that, at present, there are many popular modifications of these methods, such as the 
six-stage fifth-order modification of the Runge-Kutta method by Cash & Karp (1990) 
for initial value problems with rapidly varying right-hand sides. 

--
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3.3. Round-Off Errors e2 

Zdeněk Kopal devoted considerable effort to studying the propagation and detection of 
rounding errors in tabular differences . ln Kopal (1955, p. 69) he emphasizes: 

... all numerical data with which we shall have to deal can be given and used only 
to a finite number of significant figures. 
In particular, we should carefully exarnine any subtraction of numbers of almost the 
same size, which may lead to catastrophic loss of accuracy (see, e.g., Rice 1993, Chapt. 
3). Here we recall two shocking examples from Muller et al. (2009) and Cuyt (2001) 
showing that we should never underestimate the impact of rounding errors. 

Example 1. Let a, = e- I = 1.718281828 ... , where e is the Euler number, and 
consider the thoroughly innocent-looking sequence 

a11 = n (an - l - 1) for n = 2, 3, ... , 25. (2) 

By induction we easily find that 

( 
1 1 1 

an. =n! n! + (n+ 1)! + (n+2)! + ··· ). 

From this we see that the sequence (a 11 ) is decreasing and its limit is one, i.e., all a11 

have a very reasonable size in the interval (1 , 2) . However, perforrning only 24 subtrac­
tions and 24 multiplications in Eq.(2) with a different number of significant digits in 
MATLAB, we get the following numbers: 

a25 = -1.306946 X 10 13 in reaJ-precision arithmetic (6 bytes), 
fl25 = 1.201807 X 109 in double-precision arithmetics (8 bytes), 
a2s = -7.355732 x 106 in extended-precision arithmetic (10 bytes). 

So let us extend the number of significant digits. In arithmetic with D decima! digits, 
the first 12 significant digits are: 

D a2s(D) 

20 615990.413139 

21 -4457.98859386 

22 -4457.98859386 

23 195.374419140 

24 40.2623187072 

25 -6.27131142281 

26 1.48429359885 
-

The values for D = 21 and D = 22 are the same, since the 21st decima! digit of the 
Euler number e is equal to zero. Only for D ;:: 30 do numerical results start to resemble 
the exact value 

a2s = 1.03993872967 .. . 

For instance, if D = 30, we get a2s(30) = 1.039897 .. . 
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Let us take a closer look at the main reason for this strange behavior. Denote by s; 
the rounding error at the ith step. We then have 

a1 = e- 1 + SJ =OJ + SJ, 

2ž2 = 2(CiJ - 1) + S2 = 2(aJ +S] - 1) + S2 = a2 + 2!SJ + S2, 

2ž25 = 25(2ž24- 1) + S25 = a25 + 25!SJ + 25!s2/2! + 25!s3/3! + · · · + S25· 

Therefore, the total rounding error is a25 - 2í25 = -25!(s1 + s2/2! + S3/3! + · · · + 
s 25 /25 !) and its size depends particularly on the several initial rounding errors s 1, s2, ... 
This sophisticated example illustrates why it is necessary to check subtraction of two 
numbers of almost the same si ze during numerical calculation, such as in Eq.(2), where 
the rounding error grows exponentially with n. 

Example 2. Evaluate 

u(x,y) = 333.75l + x2(llx2i- y6
- 121/- 2) + 5.5i + ~ (3) 

2y 

at x = 77617.0 and y = 33096.0, i.e., this is a polynomial of the 8th degree plus the 
trivia! rational function x/(2y). We observe that no recUJTence relation as in Eq.(2) is 
evaluated and we perform only three subtractions and a few other arithmetic operations. 
Contrary to Example I, we get almost the same numbers: 

u(x, y) = 1.172603 in single-precision arithmetics (4 bytes), 
u(x, y) = l.l726039400531 in double-precision arithmetic (8 bytes), 
u(x, y) = 1.172603940053178 in extended-precision arithmetic (10 bytes) 

on an outmoded IMB 370 computer (see Rump 1988). The MAPLE program with 

D = 7,8,9, 10, 12, 18,26,27 

decima! digits produces very similar results. However, we should not rejoice over the 
above results, since the exact value is 

u(x,y) = -0.827396 ... NEGATIVE! 

Numerical results by MAPLE and MATLAB only begin to be realistic starting at D = 
37, 38, ... and D :;::- 30, respectively. A detailed numerical analysis of this catastrophic 
behavior of rounding errors i s presented by Cuyt (200 1). 

Thus, we should keep in mind that a very small amount of roundings (Eqs.(2) and 
(3)) may completely destroy the exact solution (Rump 201 0) . This fact should be taken 
into account in long-term numerical simulations of the N-body problem. 

4. To tal Error of the N -body Problem 

4.1. Modeling Error eo 

For an integer N :;::- 2 consider an isolated system of N point-mass bodies that mutually 
interact only gravitationally. Let r; = r;(t) , i E { 1, ... , N) be the so-called radius-vector 
in JR3 describing the position of the ith body with mass m; at time t :;::- O. Denoting the 
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aravitational constant by G, the classical N-body problem is described by the following 
~onlinear system of ordinary differential equations for the unknown trajectories r;, 

N 

I 
m{r · - r-) 

ř; = G J J I 

Ir · - r·l3 ' i*j J I 

(4) 

with some initial conditions at to = O and over a time interval [0, T] in which it is 
assumed the bodies do not collide. This system is autonomous, since the right-hand 
side ofEq.(4) does not explicitly depend on time. 

Can we believe numerical simulations of the evolution of the Solar System based 
on Eq.(4) for billions of years in the past or future? The answer is NO for several 
reasons. Newtonian mechanics does not allow any delay given by the finite speed of 
gravitational interaction. Eq.(4) is a system of ordinary differential equation whose 
solution in the interval [0, T] depends only on the value at point to = O, and not on the 
history. An extremely small modeling error s > O during one year may yield an error 
of order 109s after 1 Gyr that may be quite large (Křížek 2012). Also, various non­
gravitational forces are not included in Eq.(4). These facts are usually not taken into 
account, e.g., in the well-known NICE model. The corresponding calculations over a 
time interval of several Gyr resemble a weather forecast for many months in advance. 

The system in Eq.(4) is not Lyapunov stable, i.e., extremely small changes of ini­
tial conditions or other perturbations cause very large changes in the final state provided 
the time interval is long enough. The right-hand side of Eq.(4) does not satisfy the fa­
mous Caratheodory conditions. The nonlinear system Eq.(4) also has many unrealistic 
solutions; see, for example, Chenciner & Montgomery (2000) and Saari & Xia ( 1995). 

4.2. Discretization Error e 1 

For N > 2 Isaac Newton stated: 
An exact solution. exceeds, if I am not mistaken, the farce of an.y human mind. 
Henri Poincaré knew that the N-body problem for N > 2 has an analytical solution 

in a few special cases, but there is no explicit formula for its general solution. Therefore, 
this problem must be solved numerically by means ofRunge-Kutta methods, multi-step 
methods, symplectic methods, etc. 

Z. Kopal (1955) in his Numerical An.alysis on p. 16 wrote: 
... the Finnish mathematician. Sun.dman, Acta Math. 36 (1913), 105, has suc­

ceeded at last in establishing the solution. of the three-body problem ( under certain re­
strictions) in terms of the series which converge absolutely and un.iformly for all time. 
Yet- alas- their convergen.ce turn.ed out to be tantalizingly slow; so slow, in.fact, that 
the sum of approximately one mil/ion terms would be needed to establish the positions 
of the plan.ets for the time incremen.t of o ne day to the degree of precision. attainable by 
the well-known and simple asymptotic expansions. 

If an integration step h gives almost the same numerical results as h/2 the inte­
gration of the system Eq.(4) is usually stopped. However, this heuristic criterion need 
not work properly. Here we present another way how to check whether our numerical 
results are good. It is based on backward integration of Eq.(4) as sketched in Figure 4. 
Let r = (rl, ... , rN) denote a vector with 3N entries and let f = f(r) stand for the 
right-hand hand side of Eq.(4). 

Theorem. Let r = r(t) be the unique solution of the system 

ř = f(r) (5) 



28 Křížek 

in the interval [0, T] with given initial conditions 

r(O) = r0 and r(O) = v0 . (6) 

Then the function s = s(t) defined by 

s(t) = r(T - t) (7) 

solves the same system Eq.(5) with initial conditions s(O) = r(T), s(O) = -r(T), and 
we have 

s(T) = ro and s(T) = -vo. (8) 

Pro o f. According to Eq.(S) and Eq.(7), we obtain 

š(t) = ( -r(T- t))' = ř(T- t) = f(r(T- t)) = f(s(t)). 

We see that s satisfies the same system Eq.(5) as r. For the final conditions, by Eq.(6) 
and Eq.(7) we obtain the relations in Eq.(8), 

s(T) = r(O) = r0 a s(T) = -t(T- T) = -r(O) = -vo. O 

I 
r 

r*/" 
i ,#~ ' 

-------==="""'=- - ......... : "' ... -.......... s* 
-- ---

t 

o T 

Figure 4.: Application of the theorem, as described in the text, to a numerical solution 
of the N-body problem. The symbol r stands for the true solution, r* is the numerical 
solution, and s* is the control backward solution. 

The above theorem can be applied to long-term intervals as follows. Denote by r* 
and s* a numerical solution of the system Eq.(4) with initial conditions Eq.(7) and 

s(O) = r*(T) and s(O) = -r*(T), 

respectively. If 6 > O is a given tolerance and 

ls*(T)- rol + ls*(T) + vol » 6, 

then it cannot hold that lr(T)- r *(T)I + lr(T)- r*(T)I < 6, where r is the exact solution, 
i.e. , the numerical error of the original problem from Eq.(4) and Eq.(7) would be also 
large, as is schematically depicted in Figure 4. 

Finally, let us point our that the previous theorem and computational strategy can 
be easily generalized to the evolution of partial differentia1 equations. 
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4.3. Round-off Errors e2 

From Eq.(4) we observe that when two bodies are close to each other (rj ::::: r;), whkh is 
an important case, e.g., in space aeronautics, then we subtract in the denominator two 
numbers of almost the same size. This may lead to a catastrophic loss of accuracy (see, 
e.g. , Examples 1 and 2). 

Moreover, numerical error usually grows exponentially with time. This fact has 
serious consequences. For instance, on April 13, 2029, the distance of the asteroid 
Apophis from the Earth will be about 30,000 km. However, for the next approach in 
2036 the distance cannot be reliably calculated, since the system Eq.(4) is unstable. 

Also note that examples showing a deterministic chaos are usually incorrectly un­
derstood, since rounding errors are not taken into account (Muller et a!. 2009). In many 
of these examples chaos appears just due to rounding. 

5. Fina! Remarks 

During his life Professor Zdeněk Kopal received many prizes and other expressions 
of recognition, such as the golden medal of the Czechoslovak Academy of Sciences 
(1968) and the silver medal of the Charles University (1991) . He was norninated to the 
Greek Academy in Athens (1976) and was appointed honorary citizen of the town of 
Delf ( 1978) and also of the town of Litomyšl ( 1991 ). Asteroid No. 2628 was named 
Kopal by the decision of the Intemational Astronornical Society. 

Z. Kopal admired three scientists: I. Newton, C. F. Gauss, and H. J. Poincaré (see 
Kopal 1991, p. 461 ). Also many famous artists, writers, and scientists inftuenced him, 
such as L. Baarová, Van Dyk, A. Einstein, A. Jirásek, G. Lemaitre, H. N. Russell, 
H. Shapley, V. Vand, N. Wiener, F. Zwicky, and others . 

M. V. Wilkers, D. J . Wheeler, and S. Gill wrote in the Preface of their monograph 
'The preparation of programs for an electronic digital computer', Cambridge, 1951: 

We would also like to express aur gratitude to Dr. Z. Kopal for the help he has 
freely given in proofreading and in seeing the book through the press. 

Also, Anthony Ralston in his famous book 'A First Course in Numerical Analysis', 
McGraw-Hill, 1965, thanks Zdeněk Kopal as follows : 

I have a debt to many numerical analysts both path and present. But my debt 
is particularly great to three men, each the author oj a standard text in numerical 
analysis. I ha ve had the privilege oj being a student oj two oj them - Zdenek Kopal 
and F B. Hildebrand- a colleague ofthe third- R. W Hamming. To anyonefamiliar 
with their books, my debt will be particularly clear. 

Professor Zdeněk Kopal was one of several outstanding personalities whose con­
tributions exceeded national borders in crucial- for the twentieth cen tury - develop­
ments of applied mathematics and astronomy. 
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