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Abstract The maximum mass of a neutron star is about
three solar masses. In this case the radius of such neutron
star is approximately equal to the Schwarzschild radius.
Adding a small amount of matter to this star, a black hole
arises. Thus its interior could contain a star with neutron or
quark density just below the event horizon instead of the
proposed point singularity. We also show that the Hawk-
ing miniature black hole evaporation is improbable, since
it would yield unrealistic mean mass densities.

Keywords Black hole · Neutron star · Relativistic volume ·
Chandrasekhar limit · TOV limit

1 Introduction

Generally, it is believed that the center of any real black hole
contains a point singularity with infinite mass density. This
seems to be only a mathematical idealization, since no phys-
ical quantity can attain infinite values. In this article we sug-
gest that the hidden center of any black hole could be oc-
cupied by a neutron-like star composed of neutrons and/or
quark-gluon plasma.

The mass of the neutron is (see Patrignani et al. 2016)

m = 1.675 · 10−27 kg (1)

and its interaction diameter is given by d = √
4σ/π ≈ 1.65 ·

10−15 m, where σ is the effective cross section. Assuming
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spherical symmetry, the neutron density is approximately

ρn ≈ m

1
6πd3

≈ 0.712 · 1018 kg/m3. (2)

In our Galaxy, more than 2000 neutron stars are already
known. By Burgio et al. (2002) most of their masses fall
in a relatively narrow interval from 1.45M� to 1.65M�,
where M� = 2 · 1030 kg is the mass of the Sun. Their mass
is usually greater than the Chandrasekhar limit 1.4M� for
white dwarfs. However, rarely there exist neutron stars with
masses close to M� (see Lattimer and Prakash 2004), since
during the collapse of a white dwarf onto a neutron star,
some amount of matter is thrown away.

The mass of each neutron star is smaller than the Tolman–
Oppenheimer–Volkoff limit which is approximately (see e.g.
Abbott et al. 2017; Lattimer and Prakash 2004; Linares et al.
2018)

M := 3M�. (3)

The neutron star mass density is likely not constant and in-
creases towards the center. Thus, the mean density of a neu-
tron star should be even higher than (2), i.e. denser than an
atomic nucleus. It is assumed that the central part of any
neutron star is occupied by a quark-gluon plasma which is a
Fermi liquid satisfying the Pauli Exclusion Principle. There-
fore, the central quark density could be several times higher
than (2).

Assuming, for example, a double mean density ρ = 2ρn,
we find for

M = 4

3
πR3ρ
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given by (3) that the maximum radius of such a neutron star
is about

R = 3

√
3M

4πρ
≈ 10 km. (4)

Recalling the definition of the Schwarzschild radius

S = 2GM

c2
, (5)

we find that S corresponding to M = 3M� has a very similar
size as (4), namely

S = 9 km.

In Sects. 2 and 3 we will derive finer estimates that take
into account that the space inside the neutron star is curved
and thus it has a larger relativistic volume than the Eu-
clidean volume of a massless ball with the same circumfer-
ence (cf. Fig. 1). Adding a small amount of mass to the TOV
limit in (3), the body becomes a black hole, but its central
part below the event horizon could still remain in the state
of neutron matter and/or quark-gluon plasma, see Sect. 4. It
need not collapse to a point singularity. In the Appendix, we
present a purely geometrical method for estimating the mass
of the black hole Sgr A∗.

2 Interior Schwarzschild solution

If o is the circumference of a mass ball, then its apparent
radius

R = o

2π
(6)

is called the coordinate radius. The first nonvacuum solu-
tion of Einstein’s equations was found by Schwarzschild
(1916). He supposed that the ball with coordinate ra-
dius R > 0 contains an ideal incompressible fluid. In this
way, we may avoid a possible internal mechanical stress
in the solid that could have a nonnegligible influence on
the resulting gravitational field. Using Ellis (2012) (see
also Stephani 2004, p. 213; Florides 1974, p. 529; https://
en.wikipedia.org/wiki/Interior_Schwarzschild_metric) the
corresponding time independent static metric (i.e. dt = 0)
is defined by

dl2 = R3

R3 − Sr2
dr2 + r2 sin2 θ dϕ2 + r2 dθ2, (7)

where r ∈ [0,R], ϕ ∈ [0,2π), and θ ∈ [0,π] are the stan-
dard spherical coordinates and S is given by (5).

The equality (7) is said to be the interior Schwarzschild
solution, see Stephani (2004, p. 213). To avoid the division

by zero in the first coefficient on the right-hand side of (7),
we assume that

R3

R3 − Sr2
=

(
1 − Sr2

R3

)−1

> 0 for all r ∈ [0,R].

Hence (cf. (4) and (5)),

R > S. (8)

Now we shall determine the relativistic radius of the ball.
For dϕ = 0 and dθ = 0 the identity (7) clearly reduces to

dl2 = dr2

1 − α2r2
, (9)

where

α =
√

S

R3
. (10)

For r ∈ [0, α−1) one can easily check that

F(r) = 1

α
arcsin(αr) (11)

is a primitive function of

f (r) = 1√
1 − α2r2

. (12)

According to (8) and (10), we observe that

R < R

√
R

S
= α−1.

Using (9), (11), and (12), we shall introduce the relativistic
(proper) radius of the homogeneous mass ball given by the
relation

R̃ =
∫ R

0

dr√
1 − α2r2

= 1

α
arcsin(αR). (13)

Here the tilde indicates that we deal with a curved space.
For example, for an idealized homogeneous neutron star

with radius R = 10 km as in (4), we obtain by (5), (10),
and (13) that R̃ = 13.2 km (see Fig. 1), which is in a good
agreement with Steiner et al. (2013).

3 Relativistic volume of a homogeneous
mass ball

In this section, we first derive a relation for the relativistic
volume of a homogeneous mass ball. From (7) and (9), we
see that the volume element is

dṼ = dr√
1 − α2r2

· (r sin θ dϕ) · (r dθ). (14)

https://en.wikipedia.org/wiki/Interior_Schwarzschild_metric
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Fig. 1 Relativistic radius R̃ is greater than the coordinate radius R de-
fined by (6)

One can easily verify by differentiation that

H(r) = 1

2α3
arcsinαr − r

2α2

√
1 − α2r2 (15)

is a primitive function of

h(r) = r2

√
1 − α2r2

on the interval [0, α−1), i.e. dH(r)/dr = h(r), cf. Peebles
(1993, p. 298).

According to (13), (15), and (14), the relativistic (proper)
volume of the homogeneous ball is given by

Ṽ =
∫ R

0

r2 dr√
1 − α2r2

·
∫ π

0

(∫ 2π

0
sin θ dϕ

)
dθ

= H(R) · 4π

= 2π

α2

(
arcsin(αR)

α
− R

√
1 − α2R2

)

= 2π

α2

(
R̃ − R

√
1 − α2R2

)
. (16)

For a fixed R > 0 it can be derived by l’Hospital’s rule and
definition (10) that

Ṽ → V := 4

3
πR3 for α → 0. (17)

Consider now an idealized neutron star described by a
homogeneous ball with mass M = 3M� = 6 · 1030 kg and
coordinate radius R = 10 km (cf. (3)–(4)). Then by (16) and
(17) we get quite a large relativistic effect, namely, the ratio
between the relativistic volume and the Euclidean volume
equals

Ṽ

V
= 3

2S
(R̃ − R

√
1 − S/R) = 1.666. (18)

Consequently, the relativistic volume Ṽ is 67% larger than
the Euclidean volume V defined in (17). This means that the

Table 1 The Schwarzschild radius R• and the mean mass density ρ•
of various objects

R• (in meters) ρ• (in kg/m3)

1 kg 10−27 1080

Earth 0.009 1030

M� 3000 1020

3M� 9000 1018

Sgr A∗ 1010 106

M87∗ 1.5 · 1013 1

mean mass density ρ̃ = M/Ṽ is smaller than ρ = M/V and
ρ̃/ρ = 0.6.

The matter inside a mass ball defends to gravitational
compression in such a way that it increases its relativistic
volume Ṽ when R is fixed and M increases. In other words,
the greater M is, the greater is Ṽ for a fixed circumference
and fixed V .

Since the density gradient of a real neutron star is not
known, formula (18) represents only a lower estimate. The
true ratio Ṽ /V is probably larger. Moreover, the relativistic
volume extension could be sufficient to prevent density in-
crease above the neutron or quark densities. The definition
of mass density under strong gravitational field conditions
is not an evident quantity, because the volume is influenced
by the curved geometry of space under gravity. For deriva-
tions of density expressions under such conditions we refer
to Fischer (2017) (see also Fahr and Sokaliwska 2012).

4 The interior of a black hole

It is estimated that there are approximately 107 black holes
in our Galaxy and 1018 in the whole observable universe.
First, let us recall the well-known formula for their coordi-
nate Schwarzschild radius

R• = 2G

c2
M• (19)

for a given mass M•. Then the corresponding mean mass
density is

ρ• ≈ const.
M•
R3•

≈ Const.
c6

G3

M•
M3•

≈ 1080 1

M2•
(20)

with some small (cf. (18)) dimensionless constants const.
and Const. In Table 1 we present hypothetical values of
black hole mean densities of various objects.

The values in Table 1 associated to the central black hole
Sgr A∗ of the Milky Way are derived in Appendix (see (25)
and (26)). The last line of Table 1 corresponds to the su-
permassive black hole in the center of the M87 galaxy (see
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Fig. 2 Actual and observed
trajectory of the star S2. The
segments a, b, and
c = √

a2 + b2 are orthogonally
projected on a’, b’, and c’

Akiyama et al. 2019). By (19) and (20) its mean mass den-
sity is ρ• ≈ 1 kg/m3, since this black hole is about 1500×
more massive than Sgr A∗. This mean density is thus like
the density of air. Note that the mean mass density of our
universe is only a few protons per m3, i.e., approximately
10−27 kg/m3 (cf. (1)). Note that the universe cannot be
treated as a black hole, since it has a completely different
topology (of maximally symmetric manifolds) than ordinary
black holes.

The limit values M� and 3M� appearing in Table 1 were
investigated in previous sections. From Table 1 we further
observe that the Earth being a black hole would have an in-
credibly large mean density, 12 orders higher than the neu-
tron density (2). Moreover, 1 kg ball would have by (20)
density 1080 kg/m3.

Anxieties that in CERN miniature black holes could be
produced are unjustified, since they would have unrealistic
density. Another argument is that maximum energy of each
proton in LHC is about 1012 eV, while from the universe
we receive protons having over 1020 eV and nothing hap-
pens. Namely, in our neighborhood we do not observe any
miniature black holes, even though the surface of the Earth
and other planets is continually bombarded by particles of
cosmic rays with extremely high energies.

The existence of Hawking’s miniature black holes due to
the Hawking radiation is thus also very improbable. By (20)
their density would require to be much larger than (2), see
Table 1.

So we can conclude that gravity cannot compress objects
with mass smaller than M� to densities larger than the neu-
tron density (2) or quark density. On the other hand, the inte-
rior of black holes with mass larger than 3M� could contain
below the event horizon a star �• composed of dense neutron
or quark matter instead of a point singularity.

Acknowledgements The author is indebted to Yurii V. Dumin, Attila
Mészáros, Vladimír Novotný, Lawrence Somer, and Vladimír Wagner
for fruitful discussions and to Filip and Pavel Křížek for drawing the
figures. This paper was supported by RVO 67985840 of the Czech Re-
public.

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Appendix: Calculation of the mass of Sgr A∗

According to Schödel et al. (2002), the star S2 orbits the
supermassive black hole Sgr A∗ in the center of our Galaxy
along elliptic trajectory. We shall assume that the Newtonian
mechanics is a good approximation of reality in this case. By
present measurements, S2 is about 26 500 ly from us and its
orbital period is

T = 16.08 yr ≈ 507 · 106 s. (21)

First we show that the eccentricity e of the actual ellipti-
cal trajectory can surprisingly be derived from the observed
trajectory.

Denote by F ’ the point corresponding to the strong X-ray
source Sgr A∗, which is the orthogonal projection of the fo-
cus F of the actual orbit. Consider the line S’F ’ and denote
by A’ its intersection with the projected orbit. The semima-
jor axis a that contains the focus F is then projected to the
line segment A’S’. Therefore, we have (see Fig. 2)

e = ε

a
= |FS|

|AS| = |F ′S′|
|A′S′| , (22)

where the ratio on the right-hand side can be evaluated, | · |
denotes the length, and ε = |FS| = √

a2 − b2 is the linear
eccentricity. For the observed trajectory illustrated in Fig. 3
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Fig. 3 Projection of S2-orbit on the celestial sphere. Its semimajor axis
a = 4.55 ld (light days) is less than a

we get by (22) that the eccentricity of the actual trajectory is
e = 0.885.

Further, we construct the point B’ on the observed orbit
so that the line B’S’ is parallel with the tangent at A’ and
that the angle A’S’B’ is nonobtuse. Then the triangles ABS,
AA’S, and BB’S are right and we have

a2 + b2 = c2 = c’2 + (√
a2 − a’2 +

√
b2 − b’2)2

,

where a’ = |A’S’|, b’ = |B’S’|, and c’ = |A’B’|. From this
we obtain

a’2 + b’2 − c’2 = 2
√

a2 − a’2
√

b2 − b’2.

Squaring this equation, the substitution b2 = (1 − e2)a2

leads to quartic equation for one unknown a,

(
1 − e2)(a2)2 − [(

1 − e2)a’2 + b’2]a2 + a’2b’2

− 1

4

(
a’2 + b’2 − c’2)2 = 0. (23)

Since this equation does not contain any cubic and linear
term, it is, in fact, a quadratic equation for a2.

By angular measurements we know that a’ = 3.99 ld,
b’ = 2.49 ld, and c’ = 4.01 ld. Substituting these data into
(23), we get

a = 5.61 ld = 970 au = 145 · 1012 m. (24)

The second positive solution of (23) is not physical, since it
is smaller than a’. From (21), (24), and Kepler’s third law
we obtain

M• = 4π2a3

GT 2
≈ 7 · 1036 kg ≈ 3.5 · 106 M�.

The resulting mass is, of course, very sensitive on precise
measurements of a and T . The corresponding Schwarzschild
radius is

R• = 2GM•
c2

≈ 1010 m ≈ 0.07 au (25)

and the mean mass density

ρ• = M•
Vrelativistic

<
M•

4
3πR3•

≈ 1.67 · 106 kg/m3. (26)
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