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Abstract
In 1915, Albert Einstein derived a formula for an additional relativistic perihe-
lion shift of Mercury. We give several critical comments of how this formula is
treated, since the perihelion shift of Mercury is an ill-conditioned problem. We
also present various sources of nonnegligible errors, which should be taken into
account.
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1 INTRODUCTION

The perihelion shift (advance) of Mercury’s orbit is con-
sidered to be one of the fundamental tests of the valid-
ity of the general theory of relativity, see Figure 1 and
Foster & Nightingale (2006); Misner et al. (1997); Rose-
veare (1982); Rydin (2011). This paper is a continuation of
our previous paper Křížek (2017), where we present the
main drawbacks in the methodology of how this test is
handled.

In 1915, Albert Einstein published (1915, p. 839) a for-
mula for the relativistic perihelion shift, for one period, of

𝜀 = 24𝜋3 a2

T2c2
(
1 − e2

) = 5.012 × 10−7 rad ≈ 0.1′′, (1)

where according to contemporary data.
T = 7.6005× 106 s is the orbital period of Mercury,
e = 0.2056 is the numerical eccentricity of its (almost)

elliptical orbit,
a = 57.909× 109 m is the length of its corresponding

semimajor axis,
c = 299,792,458 m/s is the speed of light in vacuum.
Substituting these values into Equation (1), we obtain

a value of

E = 𝜀

𝜏

T
180
𝜋

3600′′ = 43′′ per century, (2)

where 𝜏 = 3,155,814,954 s is the number of seconds in one
century. We have to treat the angle 𝜀 ≈ 0.1′′ from (1) or
E ≈ 0.01◦ cy−1 from Equation (2) very carefully, since it is
extremely small. The value (2) is in a good agreement with
calculations made by Le Verrier (1859) and later also by
Newcomb, namely,

E = 43.37′′ per century, (3)

see Newcomb (Newcomb 1895, chap. IX, p. 184).
In astrophysical community, it is believed that the

small difference between (2) and (3) is not just a coin-
cidence, and thus the simple formula (Equation [1]) is
applied to test the validity of the general theory of relativ-
ity without any doubts how it was derived and what are its
properties.

2 A METHOD OF ALBERT
EINSTEIN

Einstein did not solve his equations of the general the-
ory of relativity for the Solar system analytically, since
they are represented by a very complicated nonlinear sys-
tem of hyperbolic partial differential equations. Their exact
solution is not even known for two bodies with positive
masses. Therefore, Einstein had to make a whole series
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F I G U R E 1 Idealized uniform aphelion and perihelion shifts
of Mercury in the direction of circulation

of simplifications to get some value of the perihelion shift
of Mercury (see [2]). In other words, Formula (1) has not
been derived as a consequence of Einstein’s equations in
terms of mathematical implications.

For instance, Einstein restricts himself only to the
equatorial plane. Mercury is substituted by a massless
test particle and the gravitational influence of other plan-
ets is not taken into account to get a pure relativistic
effect. Einstein considers the zero right-hand side of his
field equations outside the Sun. He neglects higher-order
nonlinear terms when calculating the Christoffel sym-
bols corresponding to space variables. After five pages
of other approximations, Einstein (1915, pp. 833–837)
obtains (without any error estimates) an ordinary differen-
tial equation for angle𝜙whose solution leads to the elliptic
integral (see Figure 2)

𝜙 = [1 + 𝛼 (𝛼1 + 𝛼2)]∫
𝛼2

𝛼1

dx
√
− (x − 𝛼1) (x − 𝛼2) (1 − 𝛼x)

,

(4)
where 𝜙> 180◦ is the angle between the radius-vector of
perihelion and the radius-vector of aphelion of Mercury’s
orbit (see Figure 3),

𝛼1 =
1

a(1 + e)
= 1.432 ⋅ 10−11 m−1

,

𝛼2 =
1

a(1 − e)
= 2.174 ⋅ 10−11 m−1

, (5)

where
𝛼 =

2GM
⊙

c2 = 2953 m (6)

F I G U R E 2 Page 838 from the original paper (Einstein 1915)
which contains an erroneous integration over the interval [𝛼1, 𝛼2]
due to Proposition 1, see Appendix A

is the Schwarzschild radius of the Sun and G is the gravi-
tational constant.

Because the integral in Equation (4) has no known ana-
lytical solution, Einstein employs the linear part of the
following Taylor expansion

1
√

1 − 𝛼x
= 1 + 1

2
𝛼x + 3

8
𝛼

2x2 + · · ·

which is a fairly good approximation on the interval [𝛼1,
𝛼2], since 𝛼𝛼i ≪ 1 for i = 1, 2. Hence, the angle 𝜙 from
Equation (4) is expressed as follows:

𝜙 = [1 + 𝛼 (𝛼1 + 𝛼2)]∫
𝛼2

𝛼1

(
1 + 1

2
𝛼x
)

dx
√
− (x − 𝛼1) (x − 𝛼2)

?
= 𝜋

[
1 + 3

4
𝛼 (𝛼1 + 𝛼2)

]
= 𝜋

[

1 + 3𝛼
2a

(
1 − e2

)

]

, (7)

where the first equality should be replaced by ≈, as
explained above, and the last equality holds due to (5).
However, Einstein does not present any details as to how
the above integration denoted by

?
=was performed. We will

postpone this question to Appendix A. Note that the singu-
larities near the end points 𝛼1 and 𝛼2 in (7) are integrable.

Finally, from Equations (7) and (6), and Kepler’s third
law a3∕T2 = GM

⊙

∕
(
4𝜋2), it follows that after one period
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F I G U R E 3 The letters S, P, and A stand for the Sun, the
perihelion, and the aphelion of Mercury’s orbit, respectively. The
angle ∠PSA between the perihelion radius-vector and the aphelion
radius-vector is denoted by 𝜙. The lengths of these vectors are
|PS| = a(1− e) and |AS| = a(1+ e)

(more precisely, between two successive perihelion pas-
sages) the perihelion shifts about the angle

𝜀 = 2(𝜙 − 𝜋) = 3𝜋 𝛼

a
(
1 − e2

) = 3𝜋
2GM

⊙

ac2
(
1 − e2

)

= 24𝜋3 a2

T2c2
(
1 − e2

) , (8)

that is, the relationship (1), which according to (2) yields
the idealized value of the relativistic perihelion shift of
Mercury 43′′ per century. Here, one subtracts two numbers
of almost the same size, namely 𝜙 – 𝜋, which is a delicate
numerical operation, see Brandts et al. (2016).

3 SEVERAL CRITICAL REMARKS
ON FORMULA (1)

Remark 1. Einstein derived Formula (1) for weak gravi-
tational fields and small velocities v≪ c. Anyway, it is often
applied also to other systems, for example, to the star S2
orbiting around the supermassive black hole Sgr A* and
reaching the maximum velocity 7,650 km/s. Its orbit is
seen in the projection to the celestial sphere and the first
orbit of S2 was measured only very roughly. Despite that,
Abuter et al. (2020) claim that the measured pericenter
shift corresponds exactly to the value 𝜀 = 11′, which is

obtained from Equation (1) for T = 16 yr, a ≈ 970 au, and
e = 0.885 (note that it would be more precise to measure
apocenter shift). Furthermore, note that the rotation of the
central black hole was not taken into account. There are,
of course, many other errors coming from various sources
like the pixel structure of CCD detectors, calibration errors,
errors in the determination of physical constants, system-
atic errors, tidal forces, influence of neighboring stars, and
so forth. Anyway, Abuter et al. (2020) claim that their
measurements represent another proof that the general
relativity is valid (see also Genzel (2020)).

Remark 2. Notice that the input parameters a, T, and e
to Formula (1) are squared. Therefore, this formula is very
sensitive to their precise measurements. For instance, we
have

(a + Δa)2 = a2 + 2aΔa + (Δa)2.

Hence, if the relative error in determining the semimajor
axis a is, for example, 1%, then the error in a2 is about 2%
(we usually have |Δa|≪ a).

Remark 3. It is curious that Formula (1) always yields a
positive perihelion shift 𝜀> 0 even for the zero eccentric-
ity e = 0. In this case, there are infinitely many perihelia,
namely, the perihelion is at each point of a circular trajec-
tory. In fact, by Equation (1) we always have

𝜀 ≥ 24𝜋3a2T−2c−2
> 0.

However, this does not allow us to consider a retro-
grade perihelion shift with negative 𝜀, i.e., when 𝜙<𝜋 in
Figure 3. For instance, Andrea Ghez claims that her team
observed that the movement of the pericenter of the star S2
around the black hole Sgr A* is retrograde (see Ghez (2020,
45 min)).

Remark 4. For Newtonian elliptic orbits, the eccentricity
is defined as follows

e =
√

a2 − b2

a
,

where b is the length of the corresponding semiminor axis.
However, what is the definition of e for non-elliptic orbits?
(cf. Figure 5.) How do we define the semiminor axis b
for the situation sketched in Figure 3? Is b = |BD|/2 or
b = |CD|/2? How to define B, C, and D at all? Should we
define a as a = |AP|/2 or a = (|AS|+ |PS|)/2 or by another
manner? Formula (1) thus contains not well-defined quan-
tities a and e. Moreover, the static space around the
Sun is curved. So are 𝛼1 and 𝛼2 from Equation (5) well
defined?

Remark 5. Also, T in Equation (1) is not well defined.
Note that all three of Kepler’s laws describe the reality
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only approximately, since there is always a modeling error.
Nevertheless, a natural question arises: Are we justified to
use Kepler’s third law in deriving the relativistic formula (8)
which leads to (1)? The period T appearing in Kepler’s third
law corresponds to angle 2𝜋 exactly. Hence, we should
replace the last equality in Equation (8) by the ≈ sign,
since the radius-vector of Mercury makes a larger angle
than 2𝜋 between two passages of neighboring aphelia (or
perihelia), see Figure 1.

Remark 6. Elliptical orbits of test particles can only be
obtained for the central force field, which is proportional
to the gravitational potential 1/r. Nevertheless, this does
not hold in the Solar system. According to Rydin (2011),
the solar oblateness (quadrupole moment) contributes to
the overall perihelion shift of Mercury only 0.0254′′ per
century (see also Pireaux & Rozelot (2003)). On the other
hand, a somewhat much larger value of 3.4′′ per century
is presented in the study by Weinberg (1972, p. 200). He
claims that the most probable reason for this effect is that
the length of the rotational axis of the Sun oscillates. Also, a
differential rotation of the inner Sun may have a nonnegli-
gible effect, see Dicke & Goldberg (1967). If the central core
is an axially symmetric ellipsoid that rotates more rapidly
than the surface of the Sun, then a part of the Mercury’s
perihelion shift (1) could be explained in another
way.

Remark 7. Many small errors can produce a total error
larger than the tiny relativistic effect (1). For instance,
Mercury is tidally locked, which surely has an influence on
its orbit, see also the previous Remark 1 to 6.

Remark 8. In 1898, Paul Gerber derived the following for-
mula for the speed of light by means of retarded potentials
(see Gerber (1898))

c2 = 24𝜋3 a2

T2
(
1 − e2

)
Φ
, (9)

where Φ is the perihelion shift of Mercury during one
orbital period. We see that this formula is the same as
Equation (1) for

𝜀 = Φ.

Therefore, the corresponding tests of the validity of gen-
eral theory of relativity by means of Formula (1) have to
yield exactly the same value as tests of Gerber’s theory of
retarded potentials. So which theory do we test?

Remark 9. According to Janssen & Renn (2022); Wein-
stein (2022), in 1913, Einstein wrote a manuscript on
the motion of the perihelion of Mercury together with
his friend Michele Besso. Although Besso corrected many

errors in their common calculations, Einstein does not
mention him in the final version, Einstein (1915).

So Einstein worked on the problem of Mercury’s
perihelion shift for at least 2 years before the paper
(Einstein 1915) appeared. Nonetheless, after that Einstein
claimed: I have not mentioned the work by Gerber origi-
nally, because I did not know it when I wrote my work on
the perihelion motion of Mercury.1 However, it is interest-
ing that Einstein used a similar notation as Gerber (1898),
namely, the angle 𝜙 from Figure 3 satisfies 𝜙=Φ/2, where
Φ appears in Gerber’s formula (9).

Remark 10. Although Formula (1) was derived for a
massless test particle representing Mercury, it is often
applied to close binaries whose components have pos-
itive masses M1 and M2 (see, e.g., Avdeev et al. 2020;
Bowler 2010; Guinan & Maloney 1985; Hilditch 2001; Sto-
vall et al. 2018; Susobhanan et al. 2018; Weisberg & Tay-
lor 2005). Note that PSR J0737–3039 is the only known
double pulsar. By Lyne (2006), it has a large relativistic
periastron advance. The mass M

⊙

is usually replaced by
the sum M1 +M2, see, e.g., Will (2014, p. 47). However, the
exact solution of Einstein’s equations for two bodies with
positive masses is not known. Hence, we cannot reliably
verify if such an approximation is correct.

4 WHY THIS PROBLEM IS
ILL- CONDITIONED?

The eccentricity of Mercury’s orbit is a relatively large
number e = 0.2056, but since the semiminor axis of
Mercury has the length

b = a
√

1 − e2 ≈ 0.98a,

the orbit is almost circular, with the Sun being at one of
the foci (see Figure 4). The problem of finding its perihe-
lion is thus ill-conditioned, since for a circular orbit, the
perihelion occurs at each point.

Consider now a rectangular heliocentric system whose
position is unchanged with respect to the fixed distant
stars. Denote by the letter O the observed value of Mer-
cury’s perihelion shift per century with respect to the Sun,
and by C the calculated value per century using Newtonian
mechanics. Since the vertex of O lies in the Sun, this angle
seems always to be much smaller when it is observed from

1Ich habe die Gerbersche Arbeit ursprünglich schon deshalb nicht
erwähnt, weil ich sie nicht kannte, als ich meine Arbeit über die
Perihelbewegung des Merkur schrieb.
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F I G U R E 4 The angle O corresponds to the observed
Mercury’s perihelion shift per century. For better visualization, the
angular distance O between two perihelia P1 and P2 in figure is
magnified 200 times. The observational data from the Earth must be
recalculated to find the value of angle O in the heliocentric
coordinates

the Earth (see Figure 4). Therefore, it must be recalculated
to the heliocentric coordinates.

In the current astrophysical community, it is generally
accepted that

O − C = E,

where E is the value (2) predicted by Einstein. How-
ever, this is again an ill-conditioned problem due to the
subtraction of two quite inexact numbers of almost equal
magnitude, see Brandts et al. (2016). An appropriate mixed
polynomial-trigonometric interpolation of observed val-
ues leads to O, see Bretagnon & Francou (1988) (also
Folkner et al. 2014), whereas C is obtained by numerical
solution of the classical N-body problem (see, e.g., Narlikar
& Rana 1985; Rana 1987). However, these values are sub-
jected to many errors, which should not be ignored. For
example, they include inexact input data, the modeling
error of the Newtonian mechanics, numerical integration
errors, and rounding errors. Also, note that the Newtonian
barycenter of the Solar system shifts by about 1,000 km
every day (cf. Figure 5 and Remark 4), whereas the ide-
alized relativistic perihelion shift of Mercury according to
Equation (2) is only 2𝜋a(1 - e)E/100 = 96 km per year and
the average speed of Mercury is about 50 km/s.

The quantities O ∼ 575′′ cy−1 and C ∼ 532′′ cy−1 are
not uniquely established in the literature. For instance,
according to Amelkin (2019), the average perihelion shift
of the orbit of Mercury, calculated in the framework of the
planar limited problem, is C= 556.5′′ cy−1. By Rana (1987),
the perihelion shift may increase about 24′′ or decrease
about 11′′ within less than 1 year, which surely has a non-
negligible influence on the average shift per century. Thus,

F I G U R E 5 The trajectory of the Newtonian barycenter of the
Solar system for the period 2000–2050. It causes a tortuous path of
Mercury. The barycenter shifts each day by about 1,000 km, whereas
the additional relativistic shift is on average only 96 km per year

E = O−C is highly imprecise, since it is influenced by a
large amount of various errors. Nevertheless, most authors
claim that Equation (2) is exact, although they present dif-
ferent values of C, see, for example, Křížek (2017, p. 50). It
is clear that if at least one term in relation E = O−C is not
correctly established, then this proclaimed equality cannot
be properly used and the value E given by Equation (2) may
differ from reality.

Hundreds of publications claim that the value E = 43′′
per century from Equation (2) is very precise, that it
nicely fits astronomical observations, and thus it per-
fectly confirms the general theory of relativity, see, for
example, Clemence (1947); Duncombe (1956); Foster &
Nightingale (2006); Kraniotis & Whitehouse (2003); Mis-
ner et al. (1997); Narlikar & Rana (1985); Nobili &
Will (1986); Park et al. (2017); Pireaux & Rozelot (2003);
Rana (1987); Ridao et al. (2014); Roseveare (1982).
However, when applying Formula (1), we should keep
in mind the way it was derived and what are its
properties.
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APPENDIX A

In 2010, Anatoli Andrei Vankov pointed out without any
proof that there is a computational error in Einstein’s eval-
uation of the integral appearing in (7), see Vankov (2010,
p. 21). Therefore, we introduce a detailed calculation, so
that everyone can check that Vankov is right. The next
statement is rather an example, but since it yields a dif-
ferent value of 𝜙 than Einstein’s value from (7), see also
Figure 2, we will call it a proposition.

Proposition 1. We have

[1 + 𝛼 (𝛼1 + 𝛼2)]∫
𝛼2

𝛼1

(
1 + 1

2
𝛼x
)

dx
√
− (x − 𝛼1) (x − 𝛼2)

= 𝜋

[
1 + 5𝛼

4
(𝛼1 + 𝛼2) +

𝛼

2

4
(𝛼1 + 𝛼2)2

]
.

Proof Define the linear transformation 𝓁: [𝛼1, 𝛼2]→
[−1, 1] by

𝓁(x) = x − s
h

, (A1)

where

s = 𝛼1 + 𝛼2

2
(A2)

is the midpoint of [𝛼1, 𝛼2] and h = 𝛼2 − s half its width.
Then 𝓁(𝛼1) = −1 and 𝓁(𝛼2) = 1, but also

√
− (x − 𝛼1) (x − 𝛼2) =

√
−(hy + h)(hy − h) = h

√
1 − y2

,

https://www.youtube.com/watch?v=DWF1uNb9Q1Q
https://www.youtube.com/watch?v=DWF1uNb9Q1Q
https://cds.cern.ch/record/2746536
https://doi.org/10.1002/asna.20220016
https://doi.org/10.1002/asna.20220016
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where the substitution y = 𝓁(x) with inverse

x = hy + s

was used. Hence, dx = hdy and by (A1) we obtain

∫
𝛼2

𝛼1

(
1 + 1

2
𝛼x
)

dx
√
− (x − 𝛼1) (x − 𝛼2)

=
(

1 + 𝛼s
2

)

∫
1

−1

dy
√

1 − y2

+ 𝛼h
2 ∫

1

−1

ydy
√

1 − y2
=
(

1 + 𝛼s
2

)
𝜋, (A3)

because the right-most integral exists over [0, 1] and can-
cels the one over [−1, 0], whereas the middle integral has
arcsin y as antiderivative and thus evaluates to π.

Multiplying (A3) by [1+ 𝛼(𝛼1 + 𝛼2)] and applying (A2),
we find that

[1 + 𝛼 (𝛼1 + 𝛼2)]∫
𝛼2

𝛼1

(
1 + 1

2
𝛼x
)

dx
√
− (x − 𝛼1) (x − 𝛼2)

= [1 + 𝛼 (𝛼1 + 𝛼2)]𝜋
[
1 + 𝛼

4
(𝛼1 + 𝛼2)

]

= 𝜋

[
1 + 5𝛼

4
(𝛼1 + 𝛼2) +

𝛼

2

4
(𝛼1 + 𝛼2)2

]
.

The proof is completed. ■

By Proposition 1 the missing integration denoted by
?
=

in (7) we get

𝜙 = 𝜋

[
1 + 5𝛼

4
(𝛼1 + 𝛼2) +

𝛼

2

4
(𝛼1 + 𝛼2)2

]

≈ 𝜋

[
1 + 5

4
𝛼 (𝛼1 + 𝛼2)

]
(A4)

neglecting the quadratic term (of dimensionless order
10−15). However, this differs from Equation (7), see also the
middle of Figure 2. Hence, by Equations (5) and (6), we
have

𝜀 = 2(𝜙 − 𝜋) = 𝜋

5𝛼
2
(𝛼1 + 𝛼2) = 8.364 ⋅ 10−7 rad

for one period which is a larger value than that in
Equation (1). This is 5/3 times the value that Einstein com-
puted. Therefore, Vankov in Einstein (1915, p. 11) proposes
to replace the first factor 1+ 𝛼(𝛼1 + 𝛼2) in Equation (7) by
1+ 1/2𝛼(𝛼1 + 𝛼2), which then leads to the right-hand side
of Equation (7), see also Janssen & Renn (2022, p. 69). Then
Formula (1) is obtained from Equation (8). At present,
there are several other independent ways of deriving (1),
see, for example, Brumberg (1991); Kopeikin et al. (2011);
Straumann (2013).
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