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Time Dilation Observed in Type Ia Supernova Light Curves and
Its Cosmological Consequences
Václav Vavryčuk

Faculty of Science, Charles University, Albertov 6, 128 00 Praha, Czech Republic; vavrycuk@natur.cuni.cz

Abstract: The cosmic time dilation observed in Type Ia supernova light curves suggests
that the passage of cosmic time varies throughout the evolution of the Universe. This obser-
vation implies that the rate of proper time is not constant, as assumed in the standard FLRW
metric, but instead is time-dependent. Consequently, the commonly used FLRW metric
should be replaced by a more general framework, known as the Conformal Cosmology
(CC) metric, to properly account for cosmic time dilation. The CC metric incorporates both
spatial expansion and time dilation during cosmic evolution. As a result, it is necessary to
distinguish between comoving and proper (physical) time, similar to the distinction made
between comoving and proper distances. In addition to successfully explaining cosmic
time dilation, the CC metric offers several further advantages: (1) it preserves Lorentz
invariance, (2) it maintains the form of Maxwell’s equations as in Minkowski spacetime,
(3) it eliminates the need for dark matter and dark energy in the Friedmann equations, and
(4) it successfully predicts the expansion and morphology of spiral galaxies in agreement
with observations.

Keywords: cosmic time dilation; cosmic expansion; curvilinear coordinates; FLRW metric;
general relativity; supernova light curves

1. Introduction
The concept of an expanding Universe dates back to Lemaître [1] and Hubble [2], who

observed a systematic redshift of nearby galaxies, which was roughly proportional to their
distance. This observation, known as the Hubble–Lemaître law, was initially interpreted
as a Doppler effect caused by galaxies moving away from Earth due to the expansion of
the Universe. Although this interpretation was later revised, the idea of an expanding
Universe within the framework of general relativity became a cornerstone of modern
cosmology. Today, the cosmological redshift is understood as the effect of the increasing
wavelength of photons traveling through expanding space, which is described by the
Friedmann–Lemaître–Robertson–Walker (FLRW) metric [3–5]

ds2 = −c2dt2 + a2(t)dl2 , dl2 =
dr2

1 − kr2 + r2dΩ2 , (1)

where ds is the spacetime element, a(t) is the scale factor defining cosmic expansion, c is
the proper speed of light, t is the cosmic time, l is the comoving space distance, k is the
Gaussian curvature of space, r is the comoving radial distance, and Ω is the comoving
solid angle.

Cosmological redshift is not the only relativistic effect observed in the Universe.
Another important effect is cosmic time dilation, detected in Type Ia supernova (SN Ia)
light curves. The SN Ia events serve as standard candles in the Universe, making them
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valuable for probing the cosmic expansion [6,7]. Additionally, they act as standard clocks
due to their uniform luminosity evolution over time [8,9]. Cosmic time dilation, evidenced
by the time-stretching of light curves in the observer frame, has been well documented
by many authors [8,10–13]. Goldhaber et al. [13] analyzed SN Ia light curves for 35 high-
redshift SNe with z < 0.8 discovered by the Supernova Cosmology Project (SCP) and
18 low-redshift SNe with z < 0.11. The data were aligned, normalized, and K-corrected to
establish a common rest-frame B-band curve. Comparing the light curves of individual SNe
with this reference curve confirmed the presence of cosmic time dilation, with a time-stretch
factor of 1 + z (see Figure 1).
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Figure 1. (a) Photometry points for 35 distant (filled red circles) and 18 close (blue squares)
SNe averaged over 1-day intervals and over each set of SNe. (b) Observed light curve width
versus redshift. Open red circles correspond to another set of 7 fully analyzed SNe (for details,
see Goldhaber et al. [13], their Figures 1b and 3a).

The time dilation in high-redshift SN Ia was also revealed by Blondin et al. [14] by
determining spectral ages in the supernova rest frame. The authors analyzed 959 spectra
of 79 low-redshift (z < 0.05) SN Ia and tested their data for a power-law dependence of
the aging rate on redshift. They found that the best-fit exponent for these models was
consistent with the expected 1/(1 + z) factor. Additionally, White et al. [15] reported a
measurement of cosmic time dilation using light curves from 1504 SN Ia with a redshift
range of 0.1 ≤ z ≤ 1.2 from the Dark Energy Survey. They found that the width of
light curves is proportional to (1 + z)b with b = 1.003 ± 0.015 (see Figure 2). Due to
the large sample size, this analysis represents the most precise measurement of cosmic
time dilation to date, effectively ruling out non-time-dilating cosmological models with
high significance. Hence, the systematic stretching of light curves at high redshift is well-
established, and corrections for time dilation are now routinely applied to SN Ia data [9,16].
These observations confirm that the rate of cosmic time varies with the scale factor a(t), see
Figures 1b and 2.

Evidence for cosmic time dilation is observed not only in Type Ia supernova light
curves but also in gamma-ray bursts (GRBs), which are among the most energetic explosions
in distant galaxies [17]. The durations of GRB light curves are highly energy-dependent,
making the detection of a time dilation–redshift relation more difficult than in SN Ia.
However, this challenge can be overcome by selecting a fixed energy range in the rest
frame and measuring the observed durations of GRBs [18,19]. Using this approach, Zhang
et al. [20] analyzed 139 Swift long GRBs with redshift z ≤ 8.2 in the energy band from
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140 keV to 350 keV and found a correlation between GRB duration and redshift. Similarly,
Littlejohns and Butler [21] studied 232 GRBs detected by the Swift/Burst Alert Telescope
(BAT) and found that the observed durations (T90, T50 and TR45) are consistent with cosmic
time dilation. Although GRB observations generally align with cosmic time dilation, this
evidence is not conclusive due to uncertainties in the emission mechanisms and limited
understanding of GRB physics [22–25].

Figure 2. Light curve width as a function of redshift for 1504 SN Ia from the Dark Energy Survey
spanning a redshift range of 0.1 ≤ z ≤ 1.2. The width value is averaged across four bands. Points
are color-coded according to how many bandpasses were used in averaging. The light curve width
increases with redshift as (1 + z)1.003±0.015. For details, see White et al. ([15], their Figure 8).

Cosmic time dilation has also been investigated in quasar observations, though the
variability of quasar timescales makes the effect more difficult to detect. Some stud-
ies have questioned whether time dilation is present in quasar data [26,27]. However,
Dai et al. [28] treated quasars as standard clocks, characterizing light curve segments using
slope analysis and finding a correlation between slope and redshift. Nevertheless, the sam-
ple of 13 quasars with redshifts of z ∼ 2 was rather small, and the results were statistically
inconclusive. A more recent sample from the Dark Energy Survey included 190 quasars
with redshifts z ∼ 0.2–4.0 [29]. Lewis and Brewer [30] analyzed this dataset and found that
quasar variability scales as (1 + z)n with n = 1.28+0.28

−0.29, consistent with time dilation. A
follow-up study by Brewer et al. [31] identified additional scatter in quasar time-scales,
refining the result to n = 1.14 ± 0.34, which is still consistent with cosmic time dilation
evolution.

Tests of the validity of the FLRW metric are also being conducted through gravitational
wave observations, particularly by using strongly lensed gravitational and electromagnetic
waves. These tests allow for constraints on the curvature parameter of the Universe and
provide an opportunity to verify the assumptions of homogeneity and isotropy of the
Universe underlying the FLRW model [32,33]. For example, Qi et al. [34] report a spatial
curvature measurement of Ωk = 0.15+0.04

−0.03.
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Together, these observations appear to support the validity of the FLRW metric in
Equation (1) describing an expanding Universe within the framework of general relativity
(GR). However, a closer inspection of Equation (1) and a comparison with other metrics
describing time dilation effects, such as the Doppler metric in special relativity [35] or the
Schwarzschild metric in GR [3,36,37], reveals a fundamental shortcoming of the FLRW
metric. While this metric accurately describes spatial expansion, it fails to account for
cosmic time dilation. Melia [38] and Vavryčuk [39] showed that observations of cosmic
time dilation are inherently tied to the varying time–time term of the metric tensor, gtt,
known as the lapse function, which evolves with cosmic time. In the standard FLRW metric,
gtt = 1, meaning the lapse function is constant and independent of cosmic time. As a result,
time dilation is not included in this metric [38–41]. Similarly, Lee [42,43] emphasizes that
cosmic time dilation is not predicted by the FLRW metric and must be introduced as an
additional assumption.

Importantly, setting gtt = 1 in the FLRW metric is merely a convention, not a require-
ment of GR. The theory allows for more general time behavior, and there is no compelling
reason to assume an invariant cosmic time throughout the evolution of the Universe. A
well-known counterexample is the Schwarzschild metric, where gtt is not constant but
varies, just as the spatial components of the metric tensor do [44]. Thus, the FLRW metric
with gtt = 1 is simply one admissible solution within GR for describing the evolution of a
homogeneous and isotropic Universe. While it is the simplest, it is not the most general;
other metrics exist in GR that accommodate both spatial expansion and time dilation during
cosmic evolution [45–51].

In this paper, we demonstrate that the cosmic time dilation observed in Type Ia
supernova light curves is successfully explained by the Conformal Cosmology (CC) metric.
Unlike the FLRW metric, the lapse function gtt in the CC metric is not 1, but it is proportional
to the scale factor a(t). This formulation predicts a time-varying rate of cosmic time, as
manifested by observations of cosmic time dilation, and the varying speed of light over
cosmic history. We emphasize the importance of distinguishing between comoving and
proper (physical) time when studying the evolution of the Universe. Finally, we discuss
the broader implications of applying the CC metric to fundamental cosmological problems
and highlight its potential to resolve key issues in the standard ΛCDM model, such as
the interpretation of the supernova dimming, flat galaxy rotation curves, the dynamics of
galaxies, and other gravitational systems in an expanding Universe.

2. Cosmological Metric with Time Dilation
If the rate of cosmic time varies with cosmic evolution, as indicated by the SN Ia

observations, a more general metric than the FLRW metric must be considered [48,51,52]

ds2 = −gttc2dt2 + glldl2 = −A2(t)c2dt2 + B2(t)dl2 , (2)

where ds is the spacetime element, gtt and gll are the time and space components of
the metric tensor, c is the comoving (contravariant) speed of light, t is the comoving
(contravariant) time, l is the comoving (contravariant) space distance, and A(t) and B(t)
are the lapse and expansion functions, which are arbitrary functions that describe time
dilation and space expansion, respectively.

The simplest way to define a metric that describes both cosmic expansion and time
dilation is to assume that A(t) = B(t) = a(t):

ds2 = −a2(t)c2dt2 + a2(t)dl2 = a2(t)
(
−c2dt2 + dl2

)
, (3)

where a(t) is the scale factor defining cosmic expansion.
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It is important to emphasize that the time t in Equation (3) refers to comoving cosmic
time, but not ‘conformal time’ τ. Conformal time τ is often used in cosmology as a
parameter that has no direct physical meaning. It is obtained by artificially rescaling proper
time T = t in the FLRW metric in Equation (1). Hence, the conformal time τ is a result of a
coordinate transformation in the FLRW metric with no physical consequences, keeping the
lapse function gtt equal to 1 [53]. In the metric described by Equation (3), the time t is the
true comoving time, and the lapse function gtt = a(t) varies with time.

The metric in Equation (3) is known as the Conformal Cosmology (CC) metric [45,46,49–51]
and has exceptional properties. Firstly, it evolves according to the conformal transformation,
a concept well-studied in general relativity [47,54,55]. Secondly, this metric is Lorentz
invariant and preserves the form of Maxwell’s equations in Minkowski spacetime [48,56,57].

2.1. Comoving and Proper Time

Based on physical arguments, we assert that the FLRW metric is inconsistent with
SN Ia observations of cosmic time dilation, as it does not predict a varying rate of cosmic
time. To support this claim, we mathematically derive the relation between comoving and
proper (physical) times in the FLRW and CC metrics within the framework of curvilinear
coordinate formalism [58–60].

The comoving coordinates t and l in Equation (3) are contravariant quantities, mean-
ing they are not coordinate-invariant and do not represent true physical cosmic time or
distance. The reason is straightforward: in curvilinear coordinate systems, the base vec-
tors are generally non-unit. True physical quantities are the proper time T (measured by
atomic clocks) and the proper distance L (measured by a rigid rod). These quantities are
coordinate-invariant, meaning they are independent of the choice of the coordinate system.
They are calculated either by taking the product of covariant and contravariant time and
distance coordinates or by employing an orthonormal coordinate basis, as explained by
Hartle [59] or Cook [60]. Therefore, the proper time T and proper distance L are given by
(see Appendix A, Equation (A8))

dT =
√

gtt dt , dL =
√

gll dl . (4)

It follows from Equation (4) that Equations (1) and (3) describe two physically different
models of the Universe. Although both the FLRW and CC metrics describe space expansion
in a similar manner:

dL = a(t)dl , (5)

they treat time differently. In the FLRW metric,

dT = dt , (6)

implying that proper time is independent of expansion (Figure 3a). In contrast, in the
CC metric:

dT = a(t)dt , (7)

implying that proper time depends on expansion (Figure 3b). Therefore, in the FLRW
metric, comoving and proper times are equivalent, whereas, in the CC metric, they are not.

The difference in the evolution of cosmic time between the two metrics provides
further evidence that the FLRW and CC models describe physically distinct Universes.
Importantly, the CC metric accounts for both space expansion and time dilation during the
evolution of the Universe, which is essential for satisfactorily explaining observations of
cosmic time dilation in the SN Ia light curves (see Figures 1 and 2).
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Figure 3. Schematic representation of photons (blue-filled circles) propagating from the emitter to the
receiver. (a) Metric with a fixed time rate (see Equation (1)). (b) Metric with a varying time rate (see
Equation (3)). The quantity a represents the scale factor, ∆t denotes the time rate, and c is the speed
of light. Subscripts ‘E’ and ‘R’ indicate values at the emitter and receiver, respectively.

2.2. Comoving and Proper Speed of Light

The fundamental difference between the FLRW and CC metrics is clearly demonstrated
through the properties of the comoving (contravariant) and physical (proper) speeds of
light in both models.

The propagation of light is described by the null geodesics equation, ds2 = 0. For the
FLRW metric, this equation takes the form:

c2dt2 = a2(t)dl2 . (8)

Consequently, the comoving light speed ĉ is given by:

ĉ =
dl
dt

=
c

a(t)
, (9)

where t is the affine parameter describing the null worldline.
Since the basis vectors defining the FLRW metric are not unit vectors, the comov-

ing (contravariant) and true physical speeds of light differ. The comoving speed of
light depends on the choice of the coordinate system because it is evaluated using a
non-orthonormal vector basis. To determine the physical (proper) speed of light C,
which is coordinate-invariant and measurable in physical experiments (e.g., using atomic
clocks and rigid rods), we must use an orthonormal coordinate basis (see Appendix A,
Equation (A8))

C =
√

gll ĉ = a(t)ĉ = c . (10)

Thus, we find that the physical speed of photons C remains constant, C = c, in the FLRW
metric independent of cosmic time.

The assumption of a constant speed of light has significant implications for photons
traveling across the expanding Universe: their mutual distance and time delay remain
unchanged over cosmic time (see Figure 4). Consequently, in this model, neither cosmic time
dilation nor cosmological redshift can be observed. This conclusion contradicts the common
belief that the distance between the two successive photons must increase over time in an
expanding Universe described by the FLRW metric, and that space expansion itself accounts
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for cosmological redshift. This idea was first introduced by Lemaître [1] and later reiterated
in many textbooks [3,36,37,53,59]. The fundamental issue with Lemaître’s derivation [1] lies
in the incorrect definition of wavelength as the distance between two different spacetime
events. Importantly, distance must be measured within a single coordinate system, rather
than as the distance between points in two different coordinate systems associated with
two photons observed at different times. When considering two photons traveling along
the same ray path with an initial proper distance d between them at the same coordinate
time, the effect of increasing distance between photons due to space expansion vanishes.
Since both photons follow the same path at the same speed, their mutual distance remains
constant over time. Thus, while the distance between massive objects at rest increases in
the expanding Universe, the separation between photons traveling along the same ray path
does not change (Vavryčuk [39], his Appendices B and C).

The conclusion is clearly illustrated in Figure 4, where the time-dependent expansion
is specifically chosen such that the Universe is not expanding at the moments when the
photons are emitted and received. Thus, it is evident that the length of the ray paths of
both photons, traversing the distance between the emitter and receiver, must be exactly the
same. Given the constant speed of light, their travel time must also be identical.

Time
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Figure 4. Photons traveling in an expanding Universe described by the FLRW metric. (a) Example of
the expansion function a(t), where expansion occurs between times t1 and t2. (b) Proper distance L
between the emitter and receiver as a function of time (blue line) and proper travel distance L of two
successive photons moving in the expanding space (red lines). The solid red line—the first photon;
the dashed red line—the second photon. Since both photons travel at the same velocity c, the time
delay ∆t between them remains constant along the entire common ray path.

It is important to note that the physical speed of light C cannot be calculated as the ratio
of the proper distance element dL to the proper cosmic time element dT, i.e., C ̸= dL/dT,
as is commonly assumed. Instead, it must be determined as the ratio of the proper distance
element dL to the physical travel time element of light dτ, such that C = dL/dτ. If we
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mistakenly calculate the speed of light as dL/dT and use Equations (5) and (6) for dL and
dT, we obtain an increasing proper speed of light over cosmic time in the FLRW metric:

dL
dT

= a(t)
dl
dt

= a(t)c , (11)

which is incorrect. The error in this intuitive approach arises from confusing the physical
travel time element dτ with the physical cosmic time element dT in Equation (11). Clearly,
if galaxies are receding and the speed of light is constant, the travel time τ of light between
galaxies increases. However, the rate of proper cosmic time remains constant. Therefore,
these two time elements should not be interchanged.

For the CC metric, the null geodesic equation, ds2 = 0, yields

a2(t)
(
−c2dt2 + dl2

)
= 0 . (12)

Hence, the comoving (contravariant) speed of light ĉ is

ĉ =
dl
dt

= c . (13)

Similarly to the FLRW metric, the physical speed of light C in the CC metric must be
calculated using the orthonormal coordinate basis (see Appendix A, Equation (A8))

C =
√

gll ĉ = a(t)ĉ = a(t)c . (14)

Consequently, the physical speed of light C increases during the cosmic expansion in the
CC metric. While this may seem counter-intuitive, it is physically reasonable. In the CC
metric, as the distances between galaxies increase, time dilation also increases. These effects
compensate for each other, ensuring that the total travel of light between galaxies remains
constant. As a result, the speed of light must increase over cosmic time to maintain the
same travel duration.

3. Physical Differences Between the FLRW and CC Metrics
Equations (10) and (14) demonstrate that the FLRW and CC metrics are physically

distinct: In the FLRW metric, the physical speed of light remains constant over cosmic
history, C = c, while in the CC metric, the physical speed of light varies with cosmic
time, C = a(t)c. Similarly, the CC metric and the Minkovski metric are physically distinct.
Although the CC metric is conformal to the Minkowski metric, their physical properties
differ: In the Minkowski metric, the time rate is constant, space is static, and the physical
speed of light remains constant, while in the CC metric, the time rate varies, space is
expanding, and the physical speed of light also varies.

Emphasizing a varying speed of light (VSL), as predicted by the CC metric, is not
excluded within GR. Since the gravitational field of the Universe evolves with cosmic
expansion, it is natural to expect that the speed of light also varies with cosmic time. As
stated by Einstein [61]: ‘The law of the constancy of the velocity of light in vacuo, which constitutes
one of the fundamental assumptions in the special theory of relativity and to which we have already
frequently referred, cannot claim any unlimited validity’ . . . ‘its results hold only so long as we are
able to disregards the influences of gravitational fields on the phenomena (e.g., of light)’.

To avoid confusion regarding the differences between the CC, FLRW, and Minkowski
metrics, it is important to emphasize the following key points:

• Physical meaning of metrics. All vector and tensor quantities in curvilinear coordinate
systems are coordinate-dependent. They cannot be directly interpreted in physical
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terms because their basis vectors are not orthonormal. In cosmology, the primary
purpose of evaluating the metric tensor is to express spacetime in coordinates that
can be simply translated into physically meaningful quantities. These quantities must
always be coordinate-invariant and should be expressed using the orthonormal tetrad
of basis vectors (see Appendix A).

• Misleading equivalence between rescaled metrics. A common belief is that the FLRW and
CC metrics are physically equivalent because one can be transformed into the other
through rescaling or time synchronization (Misner et al. [36], their Equation (27.14)).
This is misleading. Although Einstein’s field equations are coordinate-invariant, arbi-
trarily rescaling components of the metric tensor may have physical consequences. If
such a transformation alters physical units (i.e., changes coordinate-invariant quanti-
ties), the resulting metrics describe physically different cosmological models.

• Expanding vs. static Universe. The metric of an expanding Universe can be formally
transformed into the metric of a static Universe by introducing conformal distance.
Although this rescaling is mathematically valid, this transformation does not eliminate
the physical distinction between an expanding Universe and a static Universe. Simi-
larly, the transformation of a model with a varying time rate into one with a fixed time
rate can be performed by introducing conformal time. However, this transformation
does not remove the underlying physical differences between the two models.

• Appropriate cosmological model. Since astronomical observations support both the
expansion of space and cosmic time dilation, an appropriate cosmological model
should be described by a metric tensor in which both the lapse function gtt and the
spatial components gll vary with time. This model is referred to as the ‘Cosmolog-
ical Coordinate System (CCS)’, in which all major astronomical bodies remain at
rest [45,56,57]. The metric must also reflect that the clock rates associated with these
fundamental bodies vary over cosmic time.

4. Physical Origin of Cosmic Time Dilation
As discussed in the previous sections, the space expansion alone does not cause

cosmic time dilation and cosmological redshift. Expansion influences the distances between
galaxies at rest with respect to the cosmological reference frame. However, the distance
between two successive photons traveling along the same ray path remains unchanged
during the expansion. Therefore, the origin of cosmic time dilation must lie in a different
physical mechanism.

In general relativity, time distortion is attributed to the presence of a gravitational
field. The most well-known experimentally confirmed case is the gravitational redshift
of photons due to Earth’s gravity, as measured by Pound and Rebka [62] and Pound and
Snider [63]. These experiments demonstrated that the change in photon angular frequency
∆ω between two observation points (emitter and receiver) depends on the difference in the
Newtonian gravitational potential ∆Φ between them, expressed as [36]

∆ω

ω
=

gz
c2 =

∆Φ
c2 , (15)

where g is the gravitational acceleration, and z is the height difference between the
two points.

Since a change in photon frequency indicates a change in the rate of time, this variation
is characterized by the lapse function gtt of the metric tensor, such that

ω(E)
ω(R)

=

√
gtt(R)
gtt(E)

. (16)
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In weak gravitational fields, where ∆Φ/c2 ≪ 1, the lapse function gtt can be directly
approximated using (Vavryčuk [44], his Equation (4.6))

gtt = 1 + 2
∆Φ
c2 . (17)

Hence, the lapse function gtt varies as a function of the gravitational potential difference ∆Φ.
Clearly, a similar physical mechanism should also govern the lapse function gtt in the

cosmological metric tensor since the gravitational field cannot be avoided in cosmology,
being generated by the mass–energy content of the Universe itself. As the Universe expands,
its total gravitational potential must change over time.

Given that the Newtonian gravitational potential produced by a massive body depends
on the proper radial distance R from this body as 1/R, and that all distances increase with
the scale factor a(t), the total gravitational potential of the Universe Φ(t) at any point must
decrease over time as

Φ(t) =
1

a(t)
Φ0 , (18)

where Φ0 is the present-day total gravitational potential of the Universe.
By analogy with Equation (15), the time-dependent gravitational potential Φ(t) in

Equation (18) should lead to a varying angular frequency ω(t) of photons propagating in
the expanding Universe. Accordingly, Equation (16) implies that the cosmological lapse
function gtt(t) must also vary over time. Thus, both ω(t) and gtt(t) are functions of the
scale factor a(t).

We conclude that the gravitational redshift and the cosmological redshift share the
same physical origin: both result from the presence of a gravitational field. In earlier cosmic
epochs, the Universe was denser, and the gravitational field was stronger. Therefore, going
backward in time from low to high redshift is analogous to approaching a black hole, near
which time dilation becomes increasingly significant. Just as time runs differently near and
far from a black hole, a similar effect is expected when comparing clocks in the high-redshift
Universe and those in the present epoch. The only difference is that gravitational redshift
depends on a spatial coordinate, while cosmological redshift depends on cosmic time.

5. Discussion
The FLRW metric appears to be supported by a wide range of astrophysical and cos-

mological observations. However, this conventional view focuses primarily on confirming
the spatial expansion of the Universe as described by the scale factor a(t). In contrast, the
other key effect predicted by general relativity—time distortion—is neglected in the FLRW
metric, as it assumes a constant lapse function throughout cosmic evolution. Importantly, a
rigorous mathematical analysis of Einstein’s field equations suggests that this assumption
is not valid. Spatial expansion alone cannot cause a change in photon frequency or alter
the temporal properties of physical processes in the Universe. This leads to the conclusion
that observations of cosmological redshift and cosmic time dilation are inconsistent with
predictions of the FLRW metric [39].

Because the standard ΛCDM model is built on the FLRW metric, its well-known
tensions [64–69] may stem from the FLRW metric’s inability to account for all relativistic
aspects of an expanding Universe. These tensions include the following: (1) the need to
introduce dark energy to explain the dimming of Type Ia supernovae, (2) the need for
dark matter to account for observations of flat galaxy rotation curves, (3) inadequacies in
describing the expansion and morphology of galaxies, and (4) difficulties in modeling the
expansion of local gravitational systems.
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In contrast, the Conformal Cosmology metric appears to resolve many of these issues.
Most notably, it eliminates the need for dark energy in the Friedmann equations. The
speculative and unphysical concept of dark energy was originally introduced into the Fried-
mann equations to reconcile predictions of the ΛCDM model (based on the FLRW metric)
with the observed dimming of Type Ia supernova [6,7]. Some alternative approaches have
attempted to avoid invoking dark energy by modifying the relation between cosmological
redshift and a scale factor [70,71]. However, this issue is naturally resolved within the CC
framework. Since the Friedmann equations take a different form in the CC metric [39],
they align naturally with Type Ia supernovae luminosity data, without the need for dark
energy or modifying the redshift-scale factor relation (see Figure 5). Consequently, the
discovered supernova dimming [6,7] does not imply the existence of dark energy or a
complex redshift–scale factor relationship. Instead, it highlights a fundamental flaw in the
FLRW metric [39].

(a) (b)ΛCDM model CC model

FLRW model with dark energy

FLRW model with no dark energy

CC model with no dark energy

FLRW model with no dark energy

Figure 5. Hubble diagram with Type Ia supernovae observations. Blue dots show measurements
of the SNe Pantheon compilation [72,73]. The red line in (a) shows the ΛCDM model based on the
FLRW metric with dark energy. The red line in (b) shows the model based on the CC metric without
dark energy. The black line in (a,b) shows the standard cosmological model based on the FLRW
metric without dark energy. For details, see [39].

Additionally, the CC metric predicts a fundamentally different behavior of gravita-
tional orbits in an expanding Universe compared to predictions based on the FLRW metric.
Contrary to the common assumption that local systems resist cosmic expansion, the CC
metric predicts that such systems expand according to Hubble flow (see Figure 6). Accord-
ing to Vavryčuk [41], the proper velocity of massive particles remains constant, regardless
of cosmic expansion. This principle also applies to the rotational velocities of stars in
galaxies. As galaxies expand, stars gradually drift outward from the galaxy center to the
periphery while maintaining their rotational speeds. This dynamic naturally produces flat
rotation curves, as modeled by Vavryčuk [41], without requiring dark matter halos around
galaxies. This result challenges the standard interpretation of galaxy dynamics and offers a
compelling alternative explanation based on the CC metric. As a consequence, the sizes of
spiral galaxies increase over time, a trend that is consistent with observations [74–77], see
Figures 6 and 7a.
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Figure 6. Galaxy size evolution with redshift. (a) Median of the effective galaxy radius R as a function
of redshift. The red and cyan-filled circles indicate radius R for star-forming galaxies measured in
the optical (4500–8000 Å) and UV (1500–3000 Å) wavelength ranges, respectively. The blue-filled
circles indicate radius R for the Lyman break galaxies measured in the UV wavelength range. For
details, see Shibuya et al. ([74], their Figure 8). (b) Median Petrosian radius of galaxies as a function
of redshift for the mass-limited sample in the range of 109 M⊙ ≤ M∗ ≤ 1010.5 M⊙. For details, see
Whitney et al. ([75], their Figure 8). The dashed lines in (a,b) show the size evolution predicted by the
CC metric. Note that the FLRW metric predicts no size evolution.
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Figure 7. The proper radius of a galaxy as a function of redshift (a) and the spiral arms formed during
the galaxy evolution (b) in the CC model. The density of the material in the spiral arms in (b) is color
coded. The red bulge and bar inside the black circle in (b) schematically illustrate the orientation of
the bar. For details, see [41].

The CC metric also offers a natural explanation for the characteristic spiral structure
of galaxies [41]. The formation of spiral arms is conventionally attributed to instabilities in
the stellar disk due to self-gravity, being modeled by the density-wave theory [78–82]. This
theory is a primary tool for studying the gravitational stability of disk galaxies. However,
the density-wave theory suffers from several open questions and limitations. It is based on
Newtonian gravity, neglects space expansion, and does not account for the growth of spiral
galaxies over cosmic time. When space expansion and time dilation are incorporated into
galactic dynamics via the CC metric, the galaxy naturally increases in size (see Figure 7b),
and the spiral pattern emerges as a result [41]. Thanks to these general relativistic effects,
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the spiral structure is not destroyed by the well-known winding problem, a long-standing
challenge in galaxy formation models [83].

Obviously, despite the many advantages of the CC metric over the FLRW metric,
further observational evidence is essential to strengthen our results and ultimately to
consider replacing the ΛCDM model with the CC model in cosmological applications.
Future research should focus primarily on detecting the hypothetical variation in the speed
of light, as predicted by the CC metric and other alternative approaches [42,43,84–86]. This
contrasts with the FLRW metric, which assumes a constant speed of light independent
of cosmic evolution. In addition, more compelling evidence of cosmic time dilation in
GRBs and high-redshift quasars would further reinforce the legitimacy of the CC model.
Observations of the expansion of galaxies and other local gravitational systems would also
provide strong support for the CC metric framework. This includes a careful reanalysis of
the solar system’s dynamics, where the standard model faces persistent challenges such as
the Faint Young Sun paradox, the anomalies in the Moon’s and Titan’s orbital evolutions,
and the formation and structure of the Kuiper Belt [87–90].

6. Conclusions
We have shown that the assumption of invariant time, as embedded in the FLRW

metric, is inconsistent with observed cosmic time dilation in Type Ia supernova light curves.
While this conclusion may seem surprising, it is physically well justified. If clocks at rest
ticked at the same rate regardless of cosmic evolution, and the physical speed of light
remained constant, then SN Ia light curves would not exhibit temporal stretching at high
redshifts. Instead, their durations would appear unchanged, contradicting observations.

Cosmic time dilation is, in fact, a direct manifestation of a time-varying lapse function
gtt, similar to the time dilation observed near a Schwarzschild black hole, where it appears
as a gravitational redshift [44]. Therefore, accurate cosmological models must incorporate
the CC metric, in which gtt varies with time. Both cosmic time dilation and gravitational
redshift arise from the same physical mechanism: a changing rate of cosmic time and a
varying physical speed of light due to spacetime distortion caused by a gravitational field.

Just as clocks run at different rates depending on their distance from a black hole,
clocks also tick differently in the early Universe (high redshift) compared to the late
Universe (low redshift). At high redshifts, the Universe was more compact, resulting in a
stronger gravitational field and greater spacetime distortion compared to the low-redshift
Universe. As a consequence, the physical speed of light was lower in the early Universe
than it is today.

The CC metric also offers several additional advantages: (1) it is Lorentz invariant,
(2) it preserves the standard form of Maxwell’s equations consistent with their form in
Minkowski spacetime, (3) it eliminates the need for speculative concepts of dark matter
and dark energy in cosmological models, and (4) it is consistent with observations of galaxy
expansion and the behavior of local gravitational systems.
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Appendix A. Riemannian Manifold and Curvilinear Coordinate Systems
Let us assume that (x0, x1, x2, x3) is a specific choice of the coordinate system, which

covers the Riemannian manifold. These coordinates will be unique and differentiable
functions of the Cartesian coordinates (y0, y1, y2, y3), covering the Euclidean space R4.
Geometry of the Riemannian manifold is then defined by the covariant and contravariant
base vectors gµ and gµ (Hartle [59], his Equation (20.43))

gµ =
∂yβ

∂xµ iβ , gµ =
∂xβ

∂yµ iβ , (A1)

and by covariant and contravariant metric tensors gµν and gµν (Hartle [59], his Equation (20.44)):

gµν = gµ · gν =
∂yα

∂xµ

∂yβ

∂xν
ηαβ , gµν = gµ · gν =

∂xα

∂yµ

∂xβ

∂yν
ηαβ , (A2)

where iβ = iβ are the unit Cartesian base vectors in the Minkowski space, and ηαβ = ηαβ =

diag(−1, 1, 1, 1) is the Minkowski metric. In contrast to the base vectors iβ, which are unit
in length, the base vectors gµ and gµ are generally non-unit. Vector v and tensor T in
curvilinear coordinates xα are expressed as

v = vαgα = vαgα , (A3)

and
T = Tαβ gαgβ = Tαβ gαgβ , (A4)

where gα are the contravariant base vectors, and covariant and contravariant components
of vector v and tensor T are related as

vα = gαµvµ , Tαβ = gαµgβν Tµν . (A5)

Since base vectors gµ are generally non-unit, vector components vα or vα are not
coordinate invariant in curvilinear coordinates xα. Hence, they do not represent physical
quantities. To obtain physically meaningful components of vectors, we have to substitute
the base vectors gµ and gµ by normalized unit base vectors eµ and eµ [59,91]

eµ = gµ/
√

gµµ , eµ = gµ/
√

gµµ (no summation over µ) . (A6)

Consequently,
v = v(µ)eµ = v(µ)e

µ , (A7)

where
v(µ) = vµ √gµµ , v(µ) = vµ

√
gµµ (no summation over µ) , (A8)

are the physical (proper) components of vector v. For orthogonal curvilinear coordinates,
we obtain

v(µ) = v(µ) . (A9)

Another physically meaningful (proper) quantity is the infinitesimal distance in the
Riemannian manifold defined as (Misner et al. [36], their Equation (13.3))

ds2 = gµν dxµdxν , (A10)

being independent of the choice of the coordinate system xα.
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