DEF. Kategoriaz narywamy strubturę postaci C= (O, A, dom, cod, o), garie:

(1) O jest blasa dielitor, A jest blasa storatele (morfizmour),

(2) dom: $A \rightarrow O$, cod: $A \rightarrow O$, pny czym dom(f) nazywa się dziedziną strotki f, a cod(f) jest procivodziedziną f.

(3) o jest crescionym driotainem so A, zwonym <u>sktadaviem</u>. Doltadiej, $f \circ g$ jost zdefiniowane \iff dom(f) = cod(g). Foradto $dom(f \circ g) = dom(g)$, $cod(f \circ g) = cod(g)$.

(4) Skiladaire jest Tozzne, tzn. (fog) o h = fo(goh), pod varudisem, že fog, goh soz zdefiniowane

(5) Dla londeze objektu $A \in \mathcal{C}$ isturje $id_A \in \mathcal{A}$ taka, ic $dom(id_A) = cod(id_A) = A$ orong $foid_A = f$, $id_A \circ g = g$

dla landych stratel f,g spetniojozeych dom(f) = A = cod(g). Stratea ide nazyva się identycznością.

Hie zahladamy, že $O \cap A = \emptyset$.

PRZYKŁAD I Ykotegoria abiorów Set. Klasa obielitoś, to klasa wszystkich zbiorów.

Strathi to odurorowana, a stadane o to stadane odurorowani.

The observation $f: X \longrightarrow Y$ many dom(f) = X, eod(f) = Y.

Identycmos id_X to oderorousine toisono sinose, tru, $id_X(x) = x$ da $x \in X$,

Formuluse, advisorance to totalla postaci (f, \times, Y) , glice $f \subseteq \times \times Y$ get funligage.

Pojscie kategorii zostato reprovadbrone prier Eilenberga i Machane'a de 1945 volu.

TAKT 1 M Kardej kategori identyernosé obiditu jest vogenaczona jednoznacznie.

Double. Mytaling skielet A à prypuriony, re la PA spetinique definique idanty criotici.

Monucian $l_A = l_A \circ p_A = p_A \cdot p_A$

TRZYKŁAD 2 Kardy monord jest kategorio, z jedynym obiektem Dolladniej, jeski $\langle M, o, 1 \rangle$ jest monordem, to $M = \langle \{M\}, M, dom, cod, o \rangle$ jest kategorio, gline dom(x) = M = col(x) dla $x \in M$. I drugićy strony, jeski A jest obiektem kategorii C, to

 $\langle \text{End}_{\mathcal{C}}(A), \sigma, \text{id}_{A} \rangle$, glue $\text{End}_{\mathcal{C}}(A) = \{ f \in \mathcal{A} : \text{dom}(f) = A = \text{col}(f) \}$

joit monorden.

Tak wife (pomijojose dom, cod) monordy to kategorie z jedynym obielitem.

DEF. Nich C bedie lostegorisz. Jej blase obieliter beglienny oznacrać prez Ob(C). Dha $A,B \in Ob(C)$ zmijunjemy oznacreće

 $\mathcal{C}(A,B) = \{ f \in \mathcal{A} : dom(f) = A, cod(f) = B \}.$

Fradto kategorie C bedüeny utorsaniaé z jej klaso stratela. Jehli $f \in C(A,B)$, to bedüeny pisac $f:A \longrightarrow B$ lub $A \xrightarrow{f} B$.

Many $End_{\mathcal{C}}(A) = \mathcal{C}(A,A).$

DEF. Nich C bedie leitegorioz, nich $f:A \to B$. Stratlee f suzyrvany odwracalnaz, jebli istnije $g:B \to A$ talie, że $f\circ g=id_B$ oraz $g\circ f=id_A$. Stratlee odwracalnaz naryvany izomosfizmem. Izomosfizm postaci $f:A \to A$ suzyrvany automorfizmem obiebtu A. Zbiór wszysthich automorfizmów obiebtu A ozwaczany Aut(A) bub $Aut_{\mathcal{C}}(A)$.

FAKT 2 (Aut (A), 0) jest grupoz

 $\frac{t_{AKF}}{3}$ Nieh $f:A \rightarrow B$ betwee strutter. Jéhli $g_{17}g_2:B \rightarrow A$ so talienze $g_{10}f=id_A$ oran $f_0g_2=id_B$, to $g_1=g_2$.

DONOD. Many $g_1 = g_1 \circ id_B = g_1 \circ (f \circ g_2) = (g_1 \circ f) \circ g_2 = id_A \circ g_2 = g_2$.

DEF. Stratle $g: B \rightarrow A$ spetriojeco, $f \circ g = id_B$ oran $g \circ f = id_A$ bedienny oznacrać f^{-1} i narywać odwotnością, stratli f.

TAKT 4 Jesti f_0, f_1 Soz izomorfizmani oraz $dom(f_0) = cod(f_1)$, to $f_0 \circ f_1$ jost izomorfizmen ovar $(f_0 \circ f_1)^{-1} = f_1^{-1} \circ f_0^{-1}$.

 $\frac{\text{PrzykkAD 3}}{(\forall x \in X)} \text{ Nieh } \langle X , \leqslant \rangle \text{ before zbiorem quasi-uponox dloranym, ten} \\ \left(\forall x \in X\right) x \leqslant x \qquad \text{over} \quad \left(\forall x, y, z \in X\right) x \leqslant y \text{ i } y \leqslant z \Rightarrow x \leqslant z.$

Monerary $\mathcal{H} = \langle X, \leqslant, dom, cod, o \rangle$ jest lateroria, galvie

 $dom(\langle x,y\rangle) = x$, $cod(\langle x,y\rangle) = y$ over $\langle y,z\rangle \circ \langle x,y\rangle = \langle x,z\rangle$.

 $\mathcal Z$ predodniviti relacji \leq wywita, že shtadanje \circ jet popravne zdefiniovane. Kavotność doje strathi identycznościowe: $id_X = \langle z, z \rangle$.

Jeomosfizm to stratha (x1y) talia, že x < y ovar y < x.

PRZYKKAD 4 Nieh F będie klarz struttur matematycznych wtalonego typu. Wowcan F tvory lestegorie, w której strutlami soz homomorfizmy.

Nieh & bedie kategoriz. Krategoriz D nazyrvany zodlategoriaz kategorii L, jelli $(1) \quad Ob(D) \subseteq Ob(C), \quad D\subseteq C, \quad dom_{\mathcal{D}} = dom_{\mathcal{E}}|_{\mathcal{D}}, \quad col_{\mathcal{D}} = dom_{\mathcal{E}}|_{\mathcal{D}}.$ Stradone so D jost tym soungem co shtadonie so C. (3) Glentyernobh av D sog identyornobianin no C. Follotegorie, D narrywany petraz w C, jelli D(X,Y) = C(X,Y) dla kardych $X,Y \in Ob(b)$. Podlategorie A naryvany szerola v C, joli Ob(D) = Ob(C). \overline{R} 24KLAD \overline{S} Kategoria Eierzele. Nich $G=\langle V,E,p,k
angle$ będic großem slierowonym. To survey V jest skronen vierzchothón, E jost skronen lenovedir (slierossangch), q.k; E->V. Dh CEE everchotele q(e) narywany pochathicm, a wierchotele k(e) nazywany końcem kvangdi e. Scierlos vo G narywany ciog levavogli (lo,..., en-1) tali, re $k(e_i) = \rho(e_{i+1})$ da i < n-1. e₃ e₁ Dla scienti $f = \langle e_{0,-}, e_{n-1} \rangle$ defocujemy $dom(f):=q(e_0), \quad cod(f):=k(e_{n-1}).$ Majorc dans sairli $f = \langle e_0, ..., e_{n-1} \rangle$ $g = \langle d_0, ..., d_{m-1} \rangle$ talie, èc cod(f) = dom(g) definiquem ich ztoreic go $f = \langle e_{01}, e_{n-1}, d_{01}, d_{nn-1} \rangle$. Stradamiz Science jost Tagerne. Dla hardego avierrehother v "dodajmy" pustoz scierlez irdny tokoz , že idvo f=f , g o idv=g dla kardych scierle f, g tohich, (ize cod(f)=v=dom(g)). Mowerous & staje siz latezonia. Bordrág formalise, strattaz od u do v jest trojba postaci $f = \langle u, s, v \rangle$ glue S jest successor od u do V, ten. dom(S)=u, col(S)=V. M szcrególnofá, idv = $\langle v, \phi, v \rangle$. Powyżej skonstruowano kategorie narywany kategoria Sierek mad grafem G. Nieformalnie diagram to graf shievoveny, co którym kaidej knawędni psypisaus stratką ustalonij z góry kategorii, psy czym Scierki odpawiadoją złożewom.

DEF. When $S = \langle V, E, \varphi, k \rangle$ bedie grafen shierovanym, C hategoria. Diagramanem 10 C o lesatutaire & narywany gare advisorowan I= (4, 4) talia, isc $\varphi_{V}:V\longrightarrow Ob(E)_{1}$ $\varphi_{E}:E\longrightarrow C$ ome der læilig knowedir $e\in E$ zachodir $\varphi_{E}(e): \varphi_{V}(p(e)) \longrightarrow \varphi_{V}(k(e)).$ e Diagram Φ navy vary π remiennym, jehr dla kardych $\alpha, b \in V$, dla kardych dwóch Science s, t talich dom(s)=a=dom(t), cod(3) = b = cod(t) odprisedise itoisin ich deraroù popuez GE So vouvre. Konluntinie, major dans scientes $S = \langle e_0, ..., e_{n-1} \rangle$ w \mathcal{L} , jej obraz $\varphi_{E}(s) = \langle \varphi_{E}(e_{0}), ..., \varphi_{E}(e_{n-1}) \rangle$ jet sierbog vo C (korda kategorin jest vo szczegolnoka grafem skierowanym), xoten many Florence $\Phi(s) := \varphi_{E}(e_{n-1}) \circ \cdots \circ \varphi_{E}(e_{o}).$ 4(e₀) 7 (b) - 4(e₁)

4(l) - 7(e)

(4(l) - 7(e)

(4(l) - 7(e) lo 7 b c ez d Premiemosé pourrissago diagram oznacra De prolitique, romanique diagrams no lategorie C, ich lestatt jet occupisty, a nie možemy ignorowaé D. (1) $\varphi(k) = \varphi(e_0) \varphi(e_0)$, (2) $\varphi(l) = \varphi(e_z) \circ \varphi(e_y)$. JE Mowiny, ze kategoria C ma własność amalgamacji, jebli dla kańdych stratek f: Z -> X, g: Z -> Y (3) $\varphi(e_z)\circ\varphi(e_\eta)\circ\varphi(e_0)=\varphi(k)\circ\varphi(e_0)=\varphi(e_z)\circ\varphi(k)$ Lauraving, ie (1) & (2) => (3). istuige WE Ob(E) one strathi f': X -> W, g': Y -> W spaniojosce $f' \circ f = g' \circ g$. Innymi slowy, laidy diagram postaci $Z \xrightarrow{f} X$ f' $Y \xrightarrow{g'} W$ $Z \xrightarrow{f} X$ morna rozszeryć (dopetnić) do diagramu premiennego

DEF. Nich C bedie kategoria. Ciagiem w C narywany dowolny diagram postaci

$$X_0 \xrightarrow{x_0^4} X_1 \xrightarrow{x_1^2} X_2 \xrightarrow{x_2^3} ...$$

Kestatt porsgissego diversiony prosty, literego zbiorem wienchottos jet $N={co_1 1,...3}$, a lensvydiam so pary $\langle n, n+1 \rangle$, $n \in \mathbb{N}$.

Cirg jale powyżej będnemy oznacrabi \vec{z} . Obidit X_n to n-ty wyrar cizga \vec{z} . Oba n < m pnjjunjemy

$$\mathcal{X}_{n}^{m} = \mathcal{X}_{m-1}^{m} \circ \cdots \circ \mathcal{X}_{n}^{n+1}$$
 oran $\mathcal{X}_{n}^{n} = id_{\mathcal{X}_{n}}$

Strathi x^m masyrane są stratkanie wiojsycymie ciozen ze. Letna induluja doje

$$(\forall k \leq l \leq m)$$
 $\chi_k^m = \chi_l^m \circ \chi_k^l$

DEF. Obrolit G kategorii \mathcal{C} maryerany koncowym, jesh $\forall X \in \mathcal{O}(\mathcal{E})$ $|\mathcal{C}(X,G)| = 1$.

FART 5 Obielt koncovy, o île îstuije, jest wyznacrony jednornacriie z doldednosiia, do izonorfizmi.

Dovoto Latiny, is G, H so honcove w C. Woweras

 $C(G,H) = \{g\}, \quad C(H,G) = \{h\}, \quad C(G,G) = \{id_G\}, \quad C(H,H) = \{id_H\}.$

 $2 \text{ kolei}, \quad \text{goh} \in \mathcal{C}(H, H), \quad \text{hog} \in \mathcal{C}(G, G). \quad \text{Stol goh} = \text{id}_H, \quad \text{hog} = \text{id}_G.$

Tale view g jest izomosfizuem orar $h=g^{-1}$.

PRZYKŁAD 6 Obieliten końcowym w kategorii zbiorów jest zbior jednoelementowy. Izomorfizmy w lategorii zbiorów to bijeluje.

DEF. Nieh C bedie lestegorioz. Kategorioz odworona do C nazyvamy lestegorie C^{op} , leterej obielity i stratli są talie jak w C (natomast domeor = cole, cod gor = dom oraz $f \circ g$ w C^{op} jest zdefiniowane jako $g \circ f$ as C.

Objetit koncony w Cor mongra sie dielsten porathorym w C.

TRZYKŁAD 7 Objektem goesątkorym kategorii zbiorów jest zbior pusty ϕ .

Istotice, dla dovolnego zbiore X, odvzorowane $\phi:\phi \longrightarrow X$ jest jedynym odwzorowane $z \not \phi$ bo X.

GRANICA CIAGU

DEF Nich Je będaz ciagiem ao kategorii C. Kostorlinen nad I narywany pane $\langle Y, \{f_n\}_{n\in\mathbb{N}} \rangle$, glie $Y \in Ob(\mathcal{E})$, $f_n: X_n \longrightarrow Y$ lla $n\in\mathbb{N}$; oran

 $(\forall n \in \mathbb{N})$ $f_n = f_{n+1} \times_n^{n+1}$.

Kostożli nad ze tworz kategorię. Miawowicie,

stratter od (Y, (Sin3nen) do (Z, (gn3) jost

trojha postrui

(Y, Sfuznery), h, (Z, gn)),

glice h: Y -> Z spetina ('YneN) hofn=gn-

Obielit poerozhovy kategorii kostorhos maryvany (ko-) granicor ciage X.

Jesti eigg \mathbb{Z} ma granice w C, to omacrom ja $\lim \mathbb{Z} = \langle X_{\infty}, \{x_n^{\infty}\}_{n \in \mathbb{N}} \rangle$.

Tale sing, lim 2 speties varauli;

(GO) ($\forall_{n \in \mathbb{N}}$) $x_n^{\infty} = x_{n+1}^{\infty} \circ x_n^{n+4}$.

(G1) Yok $\{f_n: X_n \to Y\}_{n \in \mathbb{N}}$ speline $\{\forall n \in \mathbb{N}\}$ $f_n = \{f_{n+1} \circ x_n^{n+1}\}$, to isticje doktadnie jedna stratka $h: X_{\infty} \longrightarrow Y$ talanie ($\forall n \in \mathbb{N}$) $ho x_n^{\infty} = f_n$.

PRZYKŁAD 8 Rozwarmy leategorię zbiorów. Nich $X_0 \subseteq X_1 \subseteq \dots$ bękie Tańcudem zbiorów. Workras many cieg \tilde{x} ro \tilde{S} et, glie $x_n^{n+1} = \subseteq_{X_n}^{X_{n+1}} (4zn. x_n^{n+1}(p) = p$ the $p \in X_n$ $x_n^{n+1}(y) = y \text{ th } y \in X_n$

Jego granico jest (Xxx, Exx Jnen), gdie

 $X_{\infty} = \bigcup_{N \in \mathbb{N}} X_{N}$ oran $x_{N}^{\infty} = \subseteq_{X_{N}}^{X_{\infty}} da \in \mathbb{N}$.

Istotise, jeli offi: Xn -> Y Inen spetimo fin = fint 1 | Xn dlaneN, to for John jest jedynyn odwrorowaien spetriojacym (G1).

Dla Shoron ASB, odurorosail 1:A-B, $\mathbf{1}(a) = a, a \in A$ oznacrany \subseteq_A^B .

Lamainy, ze jobli f: B->X, ASB, to $f \circ \subseteq_A^B = f | A.$

Polecam cielawa ksiożke o zastosowaniach teorii kotegoni:

Brendan Fong, David I Spivak, Seven Sketches in Compositionality: An Invitation to Applied Category Theory

https://arxiv.org/abs/1803.05316