BDDCML

solver library based on Multi-Level Balancing Domain Decomposition by Constraints
copyright (C) 2010-2011 Jakub Sistek

version 1.2

Jakub Sistek

Table of Contents

1 Introduction........... 1
2 Howtouse BDDCMLccuiiiiniiin... 2
3 Description of interface functions 3
3.1 bddeml _imit. ... 3
Cinterfaceo 3
Descriptiono 3
Parameters. ... 3
3.2 bddcml_upload_global_data..............coiiiiiiiiiiiinnnn. 4
Cianterface 4
Descriptiono 4
Parameters.o o 4
3.3 bddcml_upload_subdomain_data..............ccciiiiiiiiin... 6
Canterface 6
Description 6
Parameters. 6
3.4 bddcml_setup_preconditioner............ ..., 9
Canterface 9
Descriptiono 9
Parameters. 9
3.0 bAACmML_SOLVE .o v ot 10
Canterface. 10
Description 10
Parameters 10
3.6 bddcml_download_local_solution...................c.u.... 11
Canterface. 11
Description 11
Parameters 11
3.7 bddcml_download_global_solution.......................... 12
Cinterface. ... 12
Description 12
Parameters e 12
3.8 bddcml_dotprod_subdomain.................. .. ool 13
Cianterface. ... 13
Descriptiono 13
Parameters 13
3.9 bddcml_finalizZe........c.iiiiiiii e 14
Canterface. 14
Description 14

Parameters 14

Chapter 1: Introduction 1

1 Introduction

The BDDCML (Balancing Domain Decomposition by Constraints - Multi-Level) is a library
for solving large sparse linear systems resulting from computations by the finite element
method (FEM). Domain decomposition technique is employed which allows distribution of
the computations among processors.

The main goal of the package is to provide a scalable implementation of the (Adaptive)
Multilevel BDDC method. Codes are written in Fortran 95 with MPI library. A library
is provided, which is supposed to be called from users’ applications. It provides a simple
interface functions callable from Fortran and C.

Balancing Domain Decomposition by Constraints (BDDC) has quickly evolved into a very
popular method. However, for very large numbers of subdomain, the coarse problem be-
comes a large problem to be solved in its own right. In Multilevel BDDC, the coarse problem
is solved only approximately by recursive application of BDDC to higher levels.

The main web site of the BDDCML project is
http://www.math.cas.cz/ sistek/software/bddcml.html

In case of questions, reporting a bug, or just of interest, feel free to contact Jakub Sistek at
sistek@math.cas.cz.

http://www.math.cas.cz/~sistek/software/bddcml.html
mailto:sistek@math.cas.cz

Chapter 2: How to use BDDCML 2

2 How to use BDDCML

The library provides a simple interface callable from Fortran and C. Although main parts
of the solver are purely algebraic, the solver needs also to get some information of the
computational mesh. This requirement is mainly motivated by selection of corners within
the method, for which existing algorithms rely on geometry.

Two different modes are possible for input:
e user can either provide information about global mesh and a file with element matrices
(global loading),

e user can provide division into subdomains on the first level and pass subdomain matrices
for each subdomain to the routine (local loading).

The solution process is divided into the following sequence of called functions. Their pa-
rameters are described in separate sections.

1. bddcml_init — initialization of the solver

2.

e bddcml_upload_global_data — loading global data about computational mesh
and matrix (use for global loading)

e bddcml_upload_subdomain_data — loading data for one subdomain mesh and ma-
trix (use for local loading)

3. bddcml_setup_preconditioner — prepare preconditioner

4. bddcml_solve — solve loaded system by precodnitioned Krylov subspace iterative
method (PCG or BiCGstab)

e bddcml_download_local_solution — get the solution restricted to a subdomain
from the solver (use for local loading)

e bddcml_download_global_solution — get the global solution from the solver (use
for global loading)

6. bddcml_finalize — clear solver data and deallocate memory

Two examples are presented in the examples folder. Both are written in Fortran 90. The
‘bddcml_global.f90’ demonstrates the use of global input, while the ‘bddcml_local.f90’
demonstrates the use of localized subdomain input.

Chapter 3: Description of interface functions 3

3 Description of interface functions

In this chapter, detailed description of the solver interface functions with explanation of
individual arguments is given

3.1 bddcml_init

C interface

void bddcml_init(int *nl, int *nsublev, int *1lnsublev, int *nsub_loc_1, int
*comm_init, int *verbose_level, int *numbase)

Description

Prepares internal data structures for the solver.

Parameters

nl given number of levels
nsublev array with GLOBAL numbers of subdomains for each level
lnsublev length of array nsublev - should match nl
nsub_loc_1
LOCAL number of subdomains assigned to the process.
e >= (number of local subdomains - sum up across processes to nsublev|0]
e -1 let solver decide, the value is returned (determining linear partition)
comm_init
initial global communicator (possibly MPI_COMM_WORLD). This should be com-
municator in Fortran. When called from C, it should NOT be of type MPI_Comm.

Use MPI_Comm_c2f function before calling this routine to get the proper argu-
ment.

verbose_level
level of verbosity
e 0 - only errors printed
e 1 - some output

e 2 - detailed output

numbase first index of arrays (0 for C, 1 for Fortran)

Chapter 3: Description of interface functions 4

3.2 bddcml_upload_global_data

C interface

void bddcml_upload_global_data(int *nelem, int *nnod, int *ndof, int *ndim,
int *meshdim, int *inet, int *linet, int *nnet, int *1lnnet, int *nndf, int
*1nndf, double *xyz, int *1xyzl, int *1xyz2, int *ifix, int *1ifix, double
*fixv, int *1fixv, double *rhs, int *1lrhs, double *sol, int *1sol, int *idelm,
int *neighbouring, int *load_division_int)

Description

If no distribution of data exists in the user application, it may be left to the solver. This
routine loads global information on mesh connectivity and coordinates. Matrix is passed as
unassembled matrices of individual elements which will be read from opened file unit idelm
and assembled within the solver. If partitionining into subdomains on the basic level exists
in user’s application, routine bddcml_upload_subdomain_data should be used instead.

Parameters

nelem GLOBAL number of elements

nnod GLOBAL number of nodes

ndof GLOBAL number of degrees of freedom, i.e. size of matrix

ndim number of space dimensions

meshdim mesh dimension. For 3D elements = ndim, for 3D shells = 2, for 3D beams = 1

inet GLOBAL array with Indices of Nodes on ElemenTs - this defines connectivity
of the mesh.

linet length of array inet. It is given as a sum of entries in array nnet.

nnet GLOBAL array with Number of Nodes on ElemenTs. For each element, it gives
number of nodes it is connected to. This is important to locate element entries
In array inet

lnnet length of array nnet. It is equal to nelem.

nndf GLOBAL array with Number of Nodal Degrees of Freedom. For each node, it
gives number of attached degrees of freedom.

lnndf length of array nndf. It is equal to nnod.

Xyz GLOBAL Coordinates of nodes as one array (all X, all Y, all Z) or as two-

dimensional array in Fortran (X | Y | Z). Rows are defined by nodes, columns
are defined by dimension.

1xyz1,1xyz2

ifix

dimensions of array xyz. In C, lenght of xyz is defined as 1xyz1 * 1xyz2. In
Fortran, dimension of xyz is given used as xyz(lxyzl,1lxyz2). The 1xyz1 is
equal to nnod. The 1xyz2 is equal to ndim.

GLOBAL array of Indices of FIXed variables - all degrees of freedom with
Dirichlet BC are marked with its number, i.e. non-zero entries determine fixed
degrees of freedom.

Chapter 3:

Description of interface functions 5)

lifix length of array ifix, equal to ndof.

fixv GLOBAL array of FIXed Variables - where ifix is non-zero, fixv stores value
of Dirichlet boundary condition. Where ifix is zero, corresponding value in
fixv is meaningless.

1fixv length of array fixv, equal to ndof.

rhs GLOBAL array with Right-Hand Side

lrhs length of array rhs, equal to ndof.

sol GLOBAL array with initial SOLution guess. This is used as initial approxima-
tion for iterative method.

lsol length of array sol, equal to ndof.

idelm opened Fortran unit with unformatted file with element matrices

neighbouring

how many nodes should be shared by two elements to call them adjacent in
graph. This parameter is used for division of mesh on the basic level by
ParMETIS or METIS. Often, one gets better results if he specifies this num-
ber to define adjacency only if elements share a face in 3D or edge in 2D. E.g.
for linear tetrahedra, the recommended value is 3.

load_division_int

Should division from file ‘partition_11.ES’ be used? (0 - partition is created
in the solver, 1 - partition is read) If partition is read, the file contains for each
element, number of subdomain it belongs to. Begins from 1.

Chapter 3: Description of interface functions 6

3.3 bddcml_upload_subdomain_data

C interface

void bddcml_upload_subdomain_data(int *nelem, int *nnod, int *ndof, int
*ndim, int *meshdim, int *isub, int *nelems, int *nnods, int *ndofs, int *inet,
int *linet, int *nnet, int *lnnet, int *nndf, int *1nndf, int *isngn, int
*lisngn, int *isvgvn, int *lisvgvn, int *isegn, int *lisegn, double *xyz, int
*1xyzl, int *1xyz2, int *ifix, int *1ifix, double *fixv, int *1fixv, double
*rhs, int *1rhs, int *is_rhs_complete, double *sol, int *1sol, int *matrixtype,
int *i_sparse, int *j_sparse, double *a_sparse, int *la, int *is_assembled_int

)

Description

If distribution of data into subdomains exists already in the user application, data should be
loaded into the solver using this routine. It may be called repeatedly by each process if more
than one subdomain are assigned to that process. It loads the local mesh of the subdomain
and assembled subdomain matrix in the coordinate format. Most data are localized to
subdomain.

If partitionining into subdomains does not exist in user’s application, routine bddcml_
upload_global_data should be preferred.

Parameters

nelem GLOBAL number of elements

nnod GLOBAL number of nodes

ndof GLOBAL number of degrees of freedom, i.e. size of matrix
ndim number of space dimensions

meshdim mesh dimension. For 3D elements = ndim, for 3D shells = 2, for 3D beams = 1

isub GLOBAL index of subdomain which is loaded

nelems LOCAL number of elements in subdomain

nnods LOCAL number of nodes in subdomain mesh

ndofs LOCAL number of degrees of freedom in subdomain mesh

inet LOCAL array with Indices of Nodes on ElemenTs - this defines connectivity of
the subdomain mesh.

linet length of array inet. It is given as a sum of entries in array nnet.

nnet LOCAL array with Number of Nodes on ElemenTs. For each element, it gives

number of nodes it is connected to. This is important to locate element entries
in array inet

lnnet length of array nnet. It is equal to nelems.

nndf LOCAL array with Number of Nodal Degrees of Freedom. For each node, it
gives number of attached degrees of freedom.

Chapter 3:

Description of interface functions 7

lnndf length of array nndf. It is equal to nnods.

isngn array of Indices of Subdomain Nodes in Global Numbering (local to global map
of nodes). For each local node gives the global index in original mesh.

lisngn length of array isngn. It is equal to nnods.

isvgvn array of Indices of Subdomain Variables in Global Variable Numbering (local
to global map of variables). For each local degree of freedom gives the global
index in original matrix.

lisvgvn length of array isvgvn. It is equal to ndofs.

isegn array of Indices of Subdomain Elements in Global Numbering (local to global
map of elements). For each subdomain element gives global number in original
mesh.

lisegn length of array isegn. It is equal to nelems.

Xyz LOCAL array with coordinates of nodes as one array (all X, all Y, all Z) or
as two-dimensional array in Fortran (X | Y | Z). Rows are defined by nodes,
columns are defined by dimension.

1xyz1,1xyz2
dimensions of array xyz. In C, lenght of xyz is defined as 1xyz1l * 1xyz2. In
Fortran, dimension of xyz is used as xyz(lxyzl,1lxyz2). The 1lxyz1 is equal
to nnods. The 1xyz2 is equal to ndim.

ifix LOCAL array of Indices of FIXed variables - all dofs with Dirichlet boundary
condition are marked with its number, i.e. non-zero entries determine fixed
degrees of freedom.

lifix length of array ifix, equal to ndofs.

fixv LOCAL array of FIXed Variables - where ifix is non-zero, fixv stores value
of Dirichlet boundary condition. Where ifix is zero, corresponding value in
fixv is meaningless.

1fixv length of array fixv, equal to ndofs.

rhs LOCAL array with Right-Hand Side. Values at nodes repeated among subdo-
mains are copied and not weighted.

1rhs length of array rhs, equal to ndofs.

is_rhs_complete

sol

is the subdomain right-hand side complete?

e 0 - no, e.g. if only local subassembly of right-hand side was performed -
interface values are not fully assembled, solver does not apply weights

e 1 - yes, e.g. if local right-hand side is a restriction of the global array
to the subdomain - interface values are complete and repeated for more
subdomains, solver applies weights to handle multiplicity of these entries

LOCAL array with initial SOLution guess. This is used as initial approximation
for iterative method.

Chapter 3: Description of interface functions 8

1sol

matrixtype

i_sparse
j_sparse
a_sparse

la

length of array sol, equal to ndofs.

Type of the matrix. This parameter determines storage and underlying direct
method of the MUMPS solver for factorizations. Matrix is loaded in coordinate
format by three arrays described below. Options are

e (0 unsymmetric - whole matrix is loaded
e 1 symmetric positive definite - only upper triangle of the matrix is loaded

e 2 general symmetric - only upper triangle of the matrix is loaded
array of row indices of non-zero entries
array of column indices of non-zero entries
array of values of non-zero entries

length of previous arrays i_sparse, j_sparse, a_sparse (equal to number of
non-zeros if the matrix is loaded already assembled)

is_assembled_int

is the matrix assembled? The solver comes with fast assembly routine so the
users might want to pass just unassembled matrix for each subdomain (i.e. copy
of element matrices equipped with global indexing), and let the solver assemble
it.

e 0 - no, it can contain repeated entries, will be assembled by solver

e 1 - yes, it is sorted and does not contain repeated index pairs

Chapter 3: Description of interface functions 9

3.4 bddcml_setup_preconditioner

C interface

void bddcml_setup_preconditioner(int *matrixtype, int *use_defaults_int, int
xparallel_division_int, int *use_arithmetic_int, int *use_adaptive_int);

Description

Calling this function prepares internal data of the preconditioner. Local factorizations are
performed for each subdomain at each level and also the resulting coarse problem on the
final level is factored. This might be quite costly routine. Once the preconditioner is set-
up, it can be reused for new right hand sides (if the matrix is not changed) by calling
bddcml_upload_subdomain_data followed by bddcml_solve.

Parameters

matrixtype
Type of the matrix. This parameter determines storage and underlying direct
method of the MUMPS solver for factorizations. Should keep the value inserted
to bddcml_upload_subdomain_data. Options are

e (unsymmetric - whole matrix is loaded
e 1 symmetric positive definite - only upper triangle of the matrix is loaded

e 2 general symmetric - only upper triangle of the matrix is loaded

use_defaults_int
If > 0, other options are ignored and the solver uses default options.

parallel_division_int
If > 0, solver will use ParMETIS to create division on first level. This option is
only used for global input (bddeml_upload_global_data) and only applies to
the first level. Otherwise, METIS is used. Default is 1.

use_arithmetic_int
If > 0, solver will use continuity of arithmetic averages on faces in 2D and faces
and edges in 3D to form the coarse space. Default is 1.

use_adaptive_int
If > 0, solver will use adaptive averages on faces in 2D and faces in 3D. This
might be costly and should be used for very ill-conditioned problems. A gen-
eralized eigenvalue problem is solved at each face and weighted averages are
derived from eigenvectors. For solving individual eigenproblems, BLOPEX pack-
age is used. Default is 0.

Chapter 3: Description of interface functions 10

3.5 bddcml_solve

C interface

void bddcml_solve(int *comm_all, int *method, double *tol, int *maxit, int
xndecrmax, int *num_iter, int *converged_reason, double *condition_number) ;

Description

This function launches the solution procedure for prepared data. System is solved either
by preconditioned conjugate gradient (PCG) method or by preconditioned stabilized Bi-
Conjugate Gradient (BiCGstab) method.

Parameters

comm_all global communicator. Should be the same as comm_init for bddcml_init func-
tion.
method Krylov subspace iterative method

e -1 - use defaults - tol, maxit, and ndecrmax not accessed, BiCGstab
method used by default,

e 0 - use PCQG,
e 1 - use BiCGstab.

tol desired accuracy of relative residual (default 1.e-6).
maxit limit on number of iterations (default 1000).

ndecrmax limit on number of iterations with non-decreasing residual (default 30) - used
to stop a diverging process.

num_iter on output, resulting number of iterations.
converged_reason
on output, contains reason for convergence/divergence
e (0 - converged relative residual,
e -1 - reached limit on number of iterations,
e -2 - reached limit on number of iterations with non-decreasing residual.

condition_number
on output, estimated condition number (for PCG only).

Chapter 3: Description of interface functions 11

3.6 bddcml_download_local_solution

C interface

void bddcml_download_local_solution(int *isub, double *sols, int *1sols)

Description

Subroutine for getting local solution, i.e. restriction of solution vector to subdomain (no
weights are applied).

Parameters
isub GLOBAL index of subdomain
sols LOCAL array of solution restricted to subdomain

lsols length of array sols, equal to ndofs.

Chapter 3: Description of interface functions

3.7 bddcml_download_global_solution

C interface
void bddcml_download_global_solution(double *sol, int *1sol)

Description
This function downloads global solution of the system from the solver at root process.
Parameters

sol GLOBAL array of solution
1sol length of array sol, equal to ndof

12

Chapter 3: Description of interface functions 13

3.8 bddcml_dotprod_subdomain

C interface

void bddcml_dotprod_subdomain(int *isub, double *vecl, int *lvecl, double
xvec2, int *lvec2, double *dotprod)

Description

Auxiliary subroutine to compute scalar product of two vectors of lenght of subdomain
exploiting interface weights from the solver. This routine is useful if we want to compute
global norm or dot-product based on vectors restricted to subdomains. Since interface
values are contained in several vectors for several subdomains, this dot product or norm
cannot be determined without weights.

Parameters

isub GLOBAL index of subdomain

vecl LOCAL first vector for dot-product

lveci length of vecl

vec2 LOCAL second vector for dot-product, may be same array as vecl
lvec2 length of vec2, should be same as 1vecl

dotprod on exit, returns vecl’ * weights * vec2

Chapter 3: Description of interface functions

3.9 bddcml_finalize

C interface
void bddcml_finalize()

Description

Finalization of the solver. All internal data are deallocated.

Parameters

This routine currently does not take any arguments.

14

	Introduction
	How to use BDDCML
	Description of interface functions
	bddcml_init
	C interface
	Description
	Parameters

	bddcml_upload_global_data
	C interface
	Description
	Parameters

	bddcml_upload_subdomain_data
	C interface
	Description
	Parameters

	bddcml_setup_preconditioner
	C interface
	Description
	Parameters

	bddcml_solve
	C interface
	Description
	Parameters

	bddcml_download_local_solution
	C interface
	Description
	Parameters

	bddcml_download_global_solution
	C interface
	Description
	Parameters

	bddcml_dotprod_subdomain
	C interface
	Description
	Parameters

	bddcml_finalize
	C interface
	Description
	Parameters

