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(Ultra)homogeneity and injectivity

Recall that a countable relational structure U is ultrahomogeneous
if every isomorphism f : A→ B between finite substructures
A,B ⊆ U can be extended to an automorphism h : U → U.

Recall that a countable relational structure U is injective or has the
extension property if for every structures A ⊆ B ∈ Age(U) every
embedding f : A→ U can be extended to an embedding
g : B → U.



Classical Fraïssé theory

Theorem (Fraïssé)

Let L be a relational language.
1 For every countable homogeneous L-structure U, Age(U) is a

hereditary, essentially countable class of finite L-structures
satisfying JEP and AP – a Fraïssé class.

2 For every Fraïssé class F there is a unique (up to iso)
countable homogeneous L-structure U with Age(U) = F
– the Fraïssé limit.

• Intuition: amalgamating the finite building blocks to obtain a
chain A0 ⊆ A1 ⊆ A1 ⊆ · · · and its colimit U =

⋃
n∈ω An.

• Examples: the linear order of rationals, the random graph, and
the rational Urysohn metric space.



Abstract Fraïssé theory

• We shall formulate the core theory in the language of category
theory.
• This gives a clear presentation of the phenomena involved,

and makes the theory suitable in many situations:
• uniform treatment of classical and projective Fraïssé theory,

embedding-projection pairs, comma categories, . . .
• History:

• Droste and Göbel (1993) – a semialgebroidal category L of
“large objects”;

• Kubiś (2014) – a Fraïssé sequence in a category K of “small
objects”, category of sequences as the completion;

• Caramello (2014) – translating the category of sequences to a
category of large objects.

• My contribution: polishing the presentation a bit; stressing the
role of the free completion.
• The countable core theory can be extended in various ways:

• uncountable sequences, weakening AP, metric-enriched setting.



Abstract Fraïssé theory

Definition
For a pair of categories K ⊆ L we say that an L-object U is
• homogeneous in ⟨K,L⟩ if for every K-object x

and every L-maps f , g : x → U there is an
L-automorphism h : U → U such that
h ◦ g = f .
• injective / has the extension property in ⟨K,L⟩

if for every L-map f : x → U and K-map
g : x → y there is an L-map h : y → U such
that h ◦ g = f .

Definition
A category K has the amalgamation property if for
every K-maps f : z → x and g : z → y there are
K-maps f ′ : x → w and g ′ : y → w such that
f ′ ◦ f = g ′ ◦ g .



Abstract Fraïssé theory

Definition
A K-sequence u⃗ is Fraïssé if it is
• cofinal, i.e. for every K-object x there is a K-map f : x → un

for some n ∈ ω,
• injective, i.e. for every K-maps f : x → un and g : x → y there

is a K-map h : y → um for some m ≥ n such that
h ◦ g = um

n ◦ f .

If K is directed and has AP, the above reduces to being
• absorbing: for every K-map g : un → x there is a K-map

h : x → um for some m ≥ n such that h ◦ g = um
n .



Abstract Fraïssé theory

Theorem (characterization of the Fraïssé limit)

Let ⟨K,L⟩ be a free completion and let U be an L-object. Then
the following are equivalent.

1 U is cofinal and homogeneous in ⟨K,L⟩,
2 U is cofinal and injective in ⟨K,L⟩,
3 U is the L-colimit of a Fraïssé sequence in K.

Moreover, such U is unique and cofinal in L, and every K-sequence
with L-colimit U is Fraïssé in K.

Theorem (existence of a Fraïssé sequence)

Let K ̸= ∅ be a category. K has a Fraïssé sequence if and only if
1 K is directed,
2 K has the amalgamation property,
3 K has a countable dominating subcategory.



A simple example
Let L be the category of countable graphs and embeddings and let
K ⊆ L be the full subcategory of finite graphs.
• ⟨K,L⟩ is a free completion – easy to see; mostly follows from

a general result.
• K is locally finite and has countably many isomorphism types.
• K is directed – take the disjoint union; also follows from AP

and initial object.
• K has the free amalgamation property.
• R is injective iff it is injective for one-point extensions iff

(∗) for every disjoint finite A,B ⊆ U there is x ∈ U \ (A ∪ B)
connected by an edge to every a ∈ A and no b ∈ B.

• Every injective R is cofinal since K is directed.
• Hence, there is a unique countable graph R satisfying (∗), and

it is cofinal and homogeneous – the random graph.



Free completion: K-sequences ↔ L-objects
Definition
⟨K,L⟩ is a free completion if

(L1) every K-sequence has an L-colimit,
(L2) every L-object is an L-colimit of a K-sequence,
for every K-sequence x⃗ and its L-colimit ⟨X∞, x⃗∞⟩ we have that

(F1) for every L-map from a K-object f : z → X∞ there is a
K-map g : z → xn for some n such that f = x∞

n ◦ g ,

(F2) for every K-maps f , g : z → xn such that x∞
n ◦ f = x∞

n ◦ g
there is m ≥ n such that xm

n ◦ f = xm
n ◦ g .

• (F2) is trivial if L consists of monomorphisms.
• Given K, L always exists and is essentially unique.
• Such L has colimits of all L-sequences and has K as a full

subcategory consisting of a rich family of finitely presentable
objects.



How to get a free completion?

• Let L be a first-order language and let K and L be the
categories of all finitely and countably generated L-structures,
respectively, with all embeddings as morphisms. Then ⟨K,L⟩
is a free completion.
• Similarly, let K be the category of all finite L-structures with

all quotient homomorphisms, and let L be the category of all
topological L-structures that are inverse limits of K-sequences,
with continuous quotient homomorphisms. Then ⟨Kop,Lop⟩ is
a free completion.

• For F ⊆ K we define its σ-closure σF ⊆ L as the smallest
subcategory that agrees with L on colimits of F-sequences.
• Let ⟨K,L⟩ be a free completion. If F ⊆ K is a full

subcategory, then σF ⊆ L is the full subcategory of all
L-colimits of F-sequences, and ⟨F , σF⟩ is a free-completion.



Examples

K L U

em
be

dd
in

gs

finite linear orders countable linear orders the rationals

finite graphs countable graphs Rado/random graph

finite groups locally finite
countable groups Hall’s universal group

finite rational
metric spaces

countable rational
metric spaces rational Urysohn space

qu
ot

ien
ts

finite discrete
spaces

zero-dimensional
metrizable compacta Cantor space

finite discrete
linear graphs

zero-dimensional
metrizable compacta
with a special closed
symmetric relation

pseudo-arc prespace



How to get a free completion?

• More generally, we say that F ⊆ K is iso-consistent if every
isomorphism between L-colimits of F-sequences is witnessed
by a back and forth sequence in F , equivalently, every colimit
cone map factorizes through any other colimit cone with the
same apex.

• If ⟨K,L⟩ is a free completion and F ⊆ K is iso-consistent,
then ⟨F , σF⟩ is a free completion.
• If F ⊆ K is full, then F is iso-consistent and σF ⊆ K is full.
• Let ⟨K,L⟩ be a free completion, let W ⊆ L be an iso-full

wide subcategory, and let F ⊆ K ∩W be full. If
1 g ◦ f ∈ W and g ∈ W implies f ∈ W,
2 every L-colimit cone f ∞

∗ of an F-sequence lie in W,
3 every g ◦ f ∞

∗ ∈ W implies g ∈ W,
then F is iso-consistent and σF ⊆ W is full.



Projective examples with special morphisms

F-objects F-maps Fraïssé limit quotient

discrete all the Cantor space
linear all the pseudo-arc

ordered trees all the Lelek fan
trees of degree ≤ 3 monotone the Ważewski dendrite D3

connected monotone the Menger curve
connected confluent a new continuum



Approximate Fraïssé theory

• Joint work with Wiesław Kubiś.
• We have extended the theory from ordinary (discrete)

categories to MU-categories – a generalized version of
metric-enriched categories, abstracting from the category of
metric spaces and uniformly continuous maps.

Definition
An MU-category is a category K endowed with distance maps
d : K(X ,Y )2 → [0,∞] such that for every K-map f : X → Y we
have

1 d(g ◦ f , h ◦ f ) ≤ d(g , h) for every K-maps g , h : Y → Z ,
2 for every ε > 0 there is δ > 0 such that f is ⟨ε, δ⟩-continuous,

i.e. for every K-maps g , h : W → X such that g ≈δ h we have
f ◦ g ≈ε f ◦ h.



Approximate Fraïssé theory

• The notions like free completion, amalgamation, and
homogeneity have their corresponding generalizations.
• AP now means (in projective the convention): for every
K-maps f : Z ← X , g : Z ← Y and every ε > 0 there are
K-maps f ′ : X ←W and g ′ : Y ←W such that
f ◦ f ′ ≈ε g ◦ g ′.

• U is homogeneous in ⟨K,L⟩ if for every K-object X , L-maps
f , g : X ← U, and ε > 0 there is an automorphism h : U ← U
such that f ≈ε g ◦ h.

• This forms a conservative extension of the original theory in
the sense that for a discrete MU-category, the definitions
reduce to the basic ones.
• Our motivation: Irwin and Solecki (2006) characterized the

pseudo-arc by a condition that becomes the actual
homogeneity in our setup.



Pseudo-arc and pseudo-solenoids

• Let I / S be the MU-category of all continuous surjections of
the unit interval / unit circle.
• Then σI / σS is the MU-category of all arc-like / circle-like

continua and all continuous surjections.
• For a set of primes P let SP ⊆ S be the MU-subcategory of

all maps whose degree uses only primes from P.

Theorem (B., Kubiś)

1 ⟨I, σI⟩ is a free MU-completion, I is a Fraïssé MU-category,
and the pseudo-arc is the Fraïssé limit.

2 ⟨SP , σSP⟩ is a free MU-completion, SP is a Fraïssé
MU-category, and the P-adic pseudo-solenoid is the Fraïssé
limit.
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