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An ω-poset is a poset P such that
• every element p ∈ P has finite rank, i.e. r(p) < ω where

r(p) = sup{r(q) + 1 : q > p},

• every set Pn = {p ∈ P : r(p) ≤ n} is finite.
We define the following special subsets.
• The nth level Pn consists of minimal elements of Pn.
• C ⊆ P is a cap (“abstract cover”) if it is refined by some level:

∃n Pn ≤ C, meaning ∀p ∈ Pn ∃c ∈ C p ≤ c.

An ω-poset P is graded if for every
p < q and n ∈ [r(p), r(q)] there is
r ∈ [p, q] with r(r) = n.

ω-Posets, levels, caps

An ω-cap-basis of a T1 compactum X is a basis P such that
• (P,⊆) is an ω-poset,
• P-covers of X are exactly P-caps,

or equivalently, every P-cover is refined by a level Pn.
Existence of ω-cap-bases:
• A countable basis {pn : n ∈ ω} of non-empty sets of a metric

space X is an ω-cap-basis if and only if diam(pn) → 0.
• Every second-countable T1 compactum X has an ω-cap-basis P.

Moreover, we can arrange any of the following (but not any
two simultaneously).
1. P is weakly graded and the levels Pn are members of a

given co-initial family of minimal open covers.
2. P is predetermined and its elements are members of a given

countable basis.
3. P is predetermined and graded.

ω-Cap-bases

For every ω-cap-basis P of a T1 compactum X the map

x ∈ X 7→ x∈ = {p ∈ P : x ∈ p} ∈ SP

is a homeomorphism inducing an order isomorphism P → (p∈)p∈P.

Reconstruction of spaces

Given an ω-poset P, we define its spectrum SP.
• A selector is a subset S ⊆ P intersecting every cap.
• Points of SP are minimal selectors, or equivalently minimal

filters intersecting every level.
• Basic open sets are p∈ = {S ∈ SP : p ∈ S}, p ∈ P.

We obtain a second-countable T1 compactum. Moreover,
• The map p 7→ p∈ is a monotone surjection of P onto a basis of

SP such that {p∈ : p ∈ P} \ {∅} is an ω-cap-basis.
• For C ⊆ P, the set {p∈ : p ∈ C} is a cover of SP if and only if

C is a cap.

The spectrum SP

Given an ω-poset P we define
• the compatibility relation p ∧ q ⇔ ∃r ≤ p, q,
• the star Cp = {q ∈ C : q ∧ p} for a cap C,
• the star-below relation p ◁ q ⇔ Cp ≤ q for some cap/level C.

An ω-poset P is
• prime if for every p ∈ P, p∈ ̸= ∅, equivalently there is a cap C

such that C \ {p} is not a cap; then we have
p ∧ q ⇔ p∈ ∩ q∈ ̸= ∅, p ◁ q ⇔ cl(p∈) ⊆ q∈;

• regular if every cap/level is ◁-refined by a cap/level.
For a prime ω-poset P

P is regular ⇔ SP is Hausdorff/metrizable.

Regularity and metrizability

A refiner P → Q between two ω-posets is a relation ⊐ ⊆ Q× P
such that every Q-level/cap is ⊏-refined by a P-level/cap.

• If ⊐ ⊆ Q× P and ⊐′ ⊆ P× Q are refiners such that
⊐′ ◦ ⊐ ⊆ ≥P and ⊐ ◦ ⊐′ ⊆ ≥Q, then SP ∼= SQ.

• Hence, if Q ⊆ P consists of cofinally many levels, SP ∼= SQ.

Let P denote the category of prime regular ω-posets and
∧-preserving refiners; let K denote the category of metrizable
compacta and continuous maps.
• By putting S(⊐) : S ∈ SP 7→ S⊏◁ ∈ SQ we obtain a full

essentially surjective functor S : P → K.

Refiners and functoriality

A graph is a nonempty finite set G endowed with a symmetric
reflexive edge-relation ⊓. We consider a category G of graphs and
relational morphisms. A G-morphism G → H is a relation
⊐ ⊆ H ×G that is
• edge-preserving : ∀g ⊏ h ∀g′ ⊏ h′ g ⊓ g′ ⇒ h ⊓ h′,
• edge-surjective: ∀h ⊓ h′ ∃g ⊏ h ∃g′ ⊏ h′ g ⊓ g′,
• co-surjective: ∀g ∈ G ∃h ∈ H g ⊏ h,
• co-injective: ∀h ∈ H ∃g ∈ G g⊏ = {h}.

We often consider following properties forming ideals:
• anti-injective: ∀h ∈ H |h⊐| ≥ 2,
• edge-witnessing : ∀h ⊓ h′ ∈ H ∃g ∈ G g ⊏ h, h′,
• star-refining : ∀g ∈ G ∃h ∈ H g⊓ ⊏ h.

Graph categories

A sequence (Gn,⊐n) in the category G is

G0 G1 G2 G3 · · ·
⊐0 ⊐1 ⊐2

(Gn,⊐n) yields an atomless predetermined graded ω-poset
P =

⋃
n Gn, ≤ =

⋃
m≤n ⊏m

n .

Every such ω-poset P yields a G-sequence
(Gn,⊓) = (Pn,∧↾Pn ), ⊐n = ≥↾Pn×Pn+1

.

• (Gn,⊐n) has an edge-witnessing subsequence ⇔ ⊓ = ∧ on Gns.
• Then every Gn faithfully represents a basic minimal cover of SP.
• (Gn,⊐n) has a star-refining subsequence ⇔ P is regular.

Sequences of graphs

Every essentially countable directed category with the
amalgamation property has a Fraïssé sequence:
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G0 Gn Gm · · ·
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Its limit in a free completion is cofinal and homogeneous.
different approaches small category setup Fraïssé limit

Irwin–Solecki discrete the pre-space
B.–Kubiś continuous the space
our goal discrete the space

Fraïssé theory

We represent spaces of interest as spectra of Fraïssé sequences in
corresponding graphs categories.

graphs relational morphisms SP

discrete all (⇔ surjective functions) Cantor space
paths monotone arc
paths all pseudo-arc
fans root-monotone end-preserving Cantor fan (?)
fans root-monotone Lelek fan (?)

connected monotone Menger curve (??)

More goals:
• Represent more spaces, find new ones.
• Characterize the corresponding Fraïssé sequences.
• Use the combinatorial description to investigate automorphism

groups (point homogeneity, generic homeomorphisms, . . . ).

Applications
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cofinite topology on ωCantor space 2ω unit interval [0, 1] discrete space {0, 1}convergent sequence


