CONSTRUCTING COMPACTA FROM RELATIONS BETWEEN FINITE GRAPHS

Adam Bartoš

bartos@math.cas.cz Institute of Mathematics, Czech Academy of Sciences joint work in progress with Tristan Bice and Alessandro Vignati

Every second-countable T_1 compactum admits a nice combinatorial basis

ω -Posets, levels, caps

- An ω -poset is a poset \mathbb{P} such that
- every element $p \in \mathbb{P}$ has finite *rank*, i.e. $r(p) < \omega$ where $\mathsf{r}(p) = \sup\{\mathsf{r}(q) + 1 : q > p\},\$
- every set $\mathbb{P}^n = \{p \in \mathbb{P} : \mathsf{r}(p) \le n\}$ is finite.
- We define the following special subsets.
- The n^{th} level \mathbb{P}_n consists of minimal elements of \mathbb{P}^n .
- $C \subseteq \mathbb{P}$ is a *cap* ("abstract cover") if it is refined by some level: $\exists n \mathbb{P}_n \leq C$, meaning $\forall p \in \mathbb{P}_n \ \exists c \in C \ p \leq c$.

An ω -poset \mathbb{P} is *graded* if for every p < q and $n \in [r(p), r(q)]$ there is $r \in [p,q]$ with r(r) = n.

ω -Cap-bases

An ω -cap-basis of a T_1 compactum X is a basis \mathbb{P} such that

- (\mathbb{P}, \subseteq) is an ω -poset,
- \mathbb{P} -covers of X are exactly \mathbb{P} -caps, or equivalently, every \mathbb{P} -cover is refined by a level \mathbb{P}_n .

Existence of ω -cap-bases:

- A countable basis $\{p_n : n \in \omega\}$ of non-empty sets of a metric space X is an ω -cap-basis if and only if diam $(p_n) \to 0$.
- Every second-countable T_1 compactum X has an ω -cap-basis \mathbb{P} . Moreover, we can arrange any of the following (but not any two simultaneously).
- 1. \mathbb{P} is *weakly graded* and the levels \mathbb{P}_n are members of a given co-initial family of minimal open covers.
- 2. \mathbb{P} is *predetermined* and its elements are members of a given countable basis.
- 3. \mathbb{P} is predetermined and graded.

Reconstruction of spaces

For every ω -cap-basis \mathbb{P} of a T_1 compactum X the map

 $x \in X \mapsto x^{\in} = \{ p \in \mathbb{P} : x \in p \} \in S\mathbb{P}$

is a homeomorphism inducing an order isomorphism $\mathbb{P} \to (p^{\in})_{p \in \mathbb{P}}$.

Every ω -poset encodes a basis and basic covers of a second-countable T_1 compactum

The spectrum $S\mathbb{P}$

Given an ω -poset \mathbb{P} , we define its *spectrum* S \mathbb{P} .

- A selector is a subset $S \subseteq \mathbb{P}$ intersecting every cap.
- filters intersecting every level.
- Basic open sets are $p^{\in} = \{S \in S\mathbb{P} : p \in S\}$, $p \in \mathbb{P}$.

We obtain a second-countable T_1 compactum. Moreover,

- The map $p \mapsto p^{\in}$ is a monotone surjection of \mathbb{P} onto a basis of SP such that $\{p^{\in} : p \in \mathbb{P}\} \setminus \{\emptyset\}$ is an ω -cap-basis.
- For $C \subseteq \mathbb{P}$, the set $\{p^{\in} : p \in C\}$ is a cover of SP if and only if C is a cap.

Regularity and metrizability

Given an ω -poset \mathbb{P} we define

- the *compatibility* relation $p \land q \Leftrightarrow \exists r \leq p, q$,
- the star $Cp = \{q \in C : q \land p\}$ for a cap C,
- An ω -poset \mathbb{P} is
- such that $C \setminus \{p\}$ is not a cap; then we have
- *regular* if every cap/level is ⊲-refined by a cap/level. For a prime ω -poset \mathbb{P}

Refiners and functoriality

A refiner $\mathbb{P} \to \mathbb{Q}$ between two ω -posets is a relation $\Box \subseteq \mathbb{Q} \times \mathbb{P}$ such that every \mathbb{Q} -level/cap is \Box -refined by a \mathbb{P} -level/cap.

- If $\Box \subseteq \mathbb{Q} \times \mathbb{P}$ and $\Box' \subseteq \mathbb{P} \times \mathbb{Q}$ are refiners such that $\exists ' \circ \exists \subseteq \geq_{\mathbb{P}} \text{ and } \exists \circ \exists ' \subseteq \geq_{\mathbb{Q}}, \text{ then } S\mathbb{P} \cong S\mathbb{Q}.$
- Hence, if $\mathbb{Q} \subseteq \mathbb{P}$ consists of cofinally many levels, $S\mathbb{P} \cong S\mathbb{Q}$.

Let P denote the category of prime regular ω -posets and \wedge -preserving refiners; let ${f K}$ denote the category of metrizable compacta and continuous maps.

• By putting $S(\Box): S \in S\mathbb{P} \mapsto S^{\Box \triangleleft} \in S\mathbb{Q}$ we obtain a full essentially surjective functor $S \colon \mathbf{P} \to \mathbf{K}$.

• Points of SP are minimal selectors, or equivalently minimal

• the *star-below* relation $p \triangleleft q \Leftrightarrow Cp \leq q$ for some cap/level C.

• prime if for every $p \in \mathbb{P}$, $p^{\in} \neq \emptyset$, equivalently there is a cap C

 $p \wedge q \quad \Leftrightarrow \quad p^{\in} \cap q^{\in} \neq \emptyset, \qquad p \triangleleft q \quad \Leftrightarrow \quad \operatorname{cl}(p^{\in}) \subseteq q^{\in};$

 \mathbb{P} is regular \Leftrightarrow S \mathbb{P} is Hausdorff/metrizable.

Graded ω -posets are sequences of graphs and relational morphisms

Graph categories

A graph is a nonempty finite set G endowed with a symmetric reflexive edge-relation \sqcap . We consider a category G of graphs and relational morphisms. A G-morphism $G \rightarrow H$ is a relation $\Box \subseteq H \times G \text{ that is}$

- edge-preserving: $\forall g \sqsubset h \ \forall g' \sqsubset h' \ g \sqcap g' \Rightarrow h \sqcap h'$,
- edge-surjective: $\forall h \sqcap h' \exists g \sqsubset h \exists g' \sqsubset h' g \sqcap g'$,
- co-surjective: $\forall g \in G \exists h \in H \ g \sqsubset h$,
- co-injective: $\forall h \in H \exists g \in G \ g^{\square} = \{h\}.$

We often consider following properties forming ideals:

- anti-injective: $\forall h \in H |h^{\square}| \geq 2$,
- edge-witnessing: $\forall h \sqcap h' \in H \exists g \in G \ g \sqsubset h, h'$,
- star-refining: $\forall g \in G \exists h \in H \ g \sqcap \sqsubset h$.

Sequences of graphs

A sequence (G_n, \Box_n) in the category **G** is

$$G_0 \xleftarrow{\Box_0} G_1 \xleftarrow{\Box_1} G_2 \xleftarrow{\Box_2} G_3 \xleftarrow{\cdots} \cdots$$

 (G_n, \Box_n) yields an atomless predetermined graded ω -poset

$$\mathbb{P} = \bigcup_n G_n, \qquad \leq = \bigcup_{m \leq n} \sqsubset_n^m.$$

Every such
$$\omega$$
-poset \mathbb{P} yields a **G**-sequence

$$(G_n, \sqcap) = (\mathbb{P}_n, \wedge \restriction_{\mathbb{P}_n}), \qquad \exists_n = \geq \restriction_{\mathbb{P}_n \times \mathbb{P}_{n+1}}.$$

- (G_n, \square_n) has an edge-witnessing subsequence $\Leftrightarrow \square = \land$ on G_n s.
- Then every G_n faithfully represents a basic minimal cover of SP.
- (G_n, \Box_n) has a star-refining subsequence $\Leftrightarrow \mathbb{P}$ is regular.

convergent sequence

Cantor space 2^{ω}

unit interval [0,1]

Relational categories of graphs admit Fraïssé sequences

Fraïssé theory

Every essentially countable directed category with the amalgamation property has a Fraïssé sequence:

 $G_0 \longleftarrow G_n \xleftarrow{} G_m \longleftarrow \cdots$

Its limit in a free completion is cofinal and homogeneous. different approaches small category setup Fraïssé limit

Irwin–Solecki B.–Kubiś our goal

discrete continuous discrete

the pre-space the space the space

Applications

We represent spaces of interest as spectra of Fraïssé sequences in corresponding graphs categories.

graphs	relational morphisms	SP
discrete	all (\Leftrightarrow surjective functions)	Cantor space
paths	monotone	arc
paths	all	pseudo-arc
fans	root-monotone end-preserving	Cantor fan (?)
fans	root-monotone	Lelek fan (?)
connected	monotone	Menger curve (??)
N.A. I		

More goals:

- Represent more spaces, find new ones.
- Characterize the corresponding Fraïssé sequences.
- Use the combinatorial description to investigate automorphism groups (point homogeneity, generic homeomorphisms, ...)

cofinite topology on ω

discrete space $\{0, 1\}$