Compactifiable classes: a question

Adam Bartoš drekin@gmail.com

October 26, 2019

Two classes of topological spaces \mathcal{C} and \mathcal{D} are called *equivalent* if every member of \mathcal{C} has a homeomorphic copy in \mathcal{D} and vice versa, i.e. the classes are essentially the same – up to different homeomorphic copies and their multiplicities. We write $\mathcal{C} \cong \mathcal{D}$. In [1] we have introduced the notion of a *compactifiable class*. A class \mathcal{C} of metrizable compacta is *compactifiable* if there exists a continuous map $q: A \to B$ between metrizable compacta such that $\{q^{-1}(b): b \in B\} \cong \mathcal{C}$. For continua, this is equivalent to the existence of a metrizable compactum whose set of components is equivalent to \mathcal{C} – the idea is to disjointly pack the given class of spaces in a small (second countable) compact space.

We have found several related notions. The theorem below we summarizes various characterizations of these notions. We use the following notation. $\mathcal{K}(X)$ and $\mathcal{C}(X)$ denote the hyperspaces of all compacta and continua in X, endowed with the Vietoris topology τ_V . The upper and lower Vietoris topologies are denoted by τ_V^+ and τ_V^- . For a class of spaces \mathcal{C} , the class of all homeomorphic copies of members of \mathcal{C} is denoted by \mathcal{C}^{\cong} . For a subset of a product of topological spaces $F \subseteq A \times B$ and $b \in B$, F^b denotes the section $\{a \in A : (a, b) \in F\}$.

Theorem 1. Let \mathcal{C} be a nonempty class of nonempty metrizable compacta. We have the following lists of equivalent conditions (explanation for the abbreviations: [M]ap, [R]ectangle, [H]yperspace; [D]efinition, [S]trong, [W]eak, [N]ecessary, [C]ompact or [C]losed).

Strongly compactifiable

- (SC_M) There are metrizable compacta A and B, and an open (and necessarily closed) continuous map $q: A \to B$ such that $\{q^{-1}(b): b \in B\} \cong \mathcal{C}$.
- (SC_{MS}) There is a metrizable compactum A and an open and closed continuous map $q: A \to 2^{\omega}$ such that $\{q^{-1}(b): b \in 2^{\omega}\} \cong \mathcal{C}$.
- (SC_{HS}) There is a closed zero-dimensional disjoint family $\mathcal{F} \subseteq \mathcal{K}([0,1]^{\omega})$ such that $\mathcal{F} \cong \mathcal{C}$.
- (SC_{HW}) There is a metrizable compactum X and an F_{σ} family $\mathcal{F} \subseteq \mathcal{K}(X)$ such that $\mathcal{F} \cong \mathcal{C}$.

Compactifiable

- (C_M) There are metrizable compacta A and B, and a continuous (and necessarily closed) map $q: A \to B$ such that $\{q^{-1}(b): b \in B\} \cong \mathcal{C}$.
- (C_{MS}) There is a metrizable compactum A and a closed continuous map $q: A \to 2^{\omega}$ such that $\{q^{-1}(b): b \in 2^{\omega}\} \cong \mathcal{C}$.
- (C_{RW}) There is a metrizable compactum A, a metrizable σ -compact space B, and a closed set $F \subseteq A \times B$ such that $\{F^b : b \in B\} \cong \mathcal{C}$.

- (C_{RS}) There is a closed set $F \subseteq [0,1]^{\omega} \times 2^{\omega}$ such that $\{F^b : b \in 2^{\omega}\} \cong \mathcal{C}$.
- (C_{HS}) There is a G_{δ} disjoint family $\mathcal{F} \subseteq \mathcal{K}([0,1]^{\omega})$ such that $\mathcal{F} \cong \mathcal{C}$ and (\mathcal{F}, τ_V^+) is a zero-dimensional metrizable compactum.
- (C_{HW}) There is a metrizable compactum X and a family $\mathcal{F} \subseteq \mathcal{K}(X)$ such that $\mathcal{F} \cong \mathcal{C}$ and (\mathcal{F}, τ) is a metrizable compactum for a topology $\tau \supseteq \tau_V^+$.

Strongly Polishable

- (SP_M) There are Polish spaces A and B, and an open and closed continuous map $q: A \to B$ such that such that $\{q^{-1}(b): b \in B\} \cong \mathcal{C}$.
- (SP_{MS}) There is a Polish space A and an open and closed continuous map $q: A \to \omega^{\omega}$ such that such that $\{q^{-1}(b): b \in \omega^{\omega}\} \cong \mathcal{C}$.
- (SP_{MW}) There is a Polish space A, a (necessarily analytic) space B, and a closed continuous map $q: A \to B$ such that such that $\{q^{-1}(b): b \in B\} \cong \mathcal{C}$.
- (SP_{RW}) There is a metrizable compactum A, an analytic space B, and a closed set $F \subseteq A \times B$ such that $\{F^b : b \in B\} \cong \mathcal{C}$.
- (SP_{RS}) There is a closed set $F \subseteq [0,1]^{\omega} \times \omega^{\omega}$ such that $\{F^b : b \in B\} \cong \mathcal{C}$.
- (SP_{RC}) There is a closed set $F \subseteq [0,1]^{\omega} \times 2^{\omega}$ and a G_{δ} set $G \subseteq 2^{\omega}$ such that $\{F^b : b \in G\} \cong \mathcal{C}$ and $\{F^b : b \in 2^{\omega}\} = \overline{\{F^b : b \in G\}}$ in $\mathcal{K}([0,1]^{\omega})$.
- (SP_{HS}) There is a G_{δ} zero-dimensional disjoint family $\mathcal{F} \subseteq \mathcal{K}([0,1]^{\omega})$ such that $\mathcal{F} \cong \mathcal{C}$.
- (SP_{HC}) There is a closed zero-dimensional disjoint family $\mathcal{F} \subseteq \mathcal{K}((0,1)^{\omega})$ such that $\mathcal{F} \cong \mathcal{C}$.
- (SP_{HW}) There is a Polish space X and an analytic family $\mathcal{F} \subseteq \mathcal{K}(X)$ such that $\mathcal{F} \cong \mathcal{C}$.
- (SP_{HN}) For every Polish space X we have that $\mathcal{C}^{\cong} \cap \mathcal{K}(X)$ is analytic.

Polishable

- (P_M) There are Polish spaces A and B, and a continuous map $q: A \to B$ such that $\{q^{-1}(b): b \in B\} \cong \mathcal{C}$.
- (P_{MS}) There is a Polish space A and a continuous map $q: A \to \omega^{\omega}$ such that such that $\{q^{-1}(b): b \in \omega^{\omega}\} \cong \mathcal{C}$.
- (P_{MW}) There is a Polish space A, an analytic space B, and a continuous map $q: A \to B$ such that such that $\{q^{-1}(b): b \in B\} \cong \mathcal{C}$.
- (P_{RW}) There is a Polish space A, an analytic space B, and a G_{δ} set $F \subseteq A \times B$ such that $\{F^b : b \in B\} \cong \mathcal{C}$.
- (P_{RS}) There is a G_{δ} set $F \subseteq [0,1]^{\omega} \times \omega^{\omega}$ such that $\{F^b : b \in \omega^{\omega}\} \cong \mathcal{C}$.
- (P_{RC}) There is a closed set $F \subseteq (0,1)^{\omega} \times \omega^{\omega}$ such that $\{F^b : b \in \omega^{\omega}\} \cong \mathcal{C}$.

Clearly, we have the implications

$$\begin{array}{c} \text{strongly} \\ \text{compactifiable} \implies \text{compactifiable} \implies \begin{array}{c} \text{strongly} \\ \text{Polishable} \end{array} \implies \text{Polishable}, \end{array}$$

but the following question remains open.

Question 2. Are the four classes indeed different, or do some of them collapse?

The problem is the lack tools for showing that a class is not (strongly) compactifiable/Polishable. Only the condition (SP_{HN}) tells us that the saturated family $\mathcal{C}^{\cong} \cap \mathcal{K}([0,1]^{\omega})$ has to be analytic for a strongly Polishable class \mathcal{C} of compacta. So the class of all countable compacta, which is known to be coanalytically complete [4, Theorem 27.5], is not strongly Polishable. This does not happen for other complexities. The class of all uncountable compacta \mathcal{C} is strongly compactifiable even though $\mathcal{C}^{\cong} \cap \mathcal{K}([0,1]^{\omega})$ is not Borel. In fact, in [2] we have proved that for every open family $\mathcal{U} \subseteq \mathcal{K}([0,1]^{\omega})$ the class \mathcal{U}^{\cong} is one of countably many explicitly described classes, so it is almost never the case that $\mathcal{C}^{\cong} \cap \mathcal{K}([0,1]^{\omega})$ is closed.

This is connected to the topic of the complexity in hyperspaces up to the equivalence. It follows from the characterizations above that every analytic family in $\mathcal{K}([0,1]^{\omega})$ is equivalent to a G_{δ} family. There are four clopen families in $\mathcal{K}([0,1]^{\omega})$, and as we mentioned, countably many open families up to the equivalence. In [2] we prove that every F_{σ} family in $\mathcal{K}([0,1]^{\omega})$ is equivalent to a closed family. What remains open is the question whether there exits a G_{δ} (or equivalently analytic) family that is not equivalent to a closed (or equivalently F_{σ}) family, i.e. whether there exists a strongly Polishable class that is not strongly compactifiable, so this is a part of Question 2.

Sometimes it is possible to show that a strongly Polishable class is in fact compactifiable. The condition (SP_{RC}) says that we are quite close to being compactifiable. The problem are the extra fibers $\{F^b:b\in 2^\omega\setminus G\}$, which do not have to be in our class. If we were able to alter these fiber so they belong to our class while keeping the set F closed, we would prove the compactifiability.

Theorem 3. Let (X, d) be a metric compactum and for every $n \in \omega$ let \mathcal{A}_n be a finite covering of X by closed sets of diameter $< 2^{-n}$. For every $F \in \mathcal{K}(X)$ let $\mathcal{A}_n(F)$ denote the space $\bigcup \{A \in \mathcal{A}_n : A \cap F \neq \emptyset\}$. Every G_δ family $\mathcal{F} \subseteq \mathcal{K}(X)$ containing a copy of every space from $\{\mathcal{A}_n(F) : F \in \overline{\mathcal{F}}, n \in \omega\}$ is compactifiable.

Hence, if we have a metrizable compactum X that is universal in the sense that $\mathcal{A}_n(F) \cong X$ for suitable coverings \mathcal{A}_n and for every space $F \in \mathcal{K}(X)$ (or $\mathcal{C}(X)$), then every G_{δ} family $\mathcal{F} \subseteq \mathcal{K}(X)$ (or $\mathcal{C}(X)$) containing a copy of X is compactifiable. Moreover, as we said, every analytic family in $\mathcal{K}([0,1]^{\omega})$ is equivalent to a G_{δ} family. This is true in $\mathcal{K}(X)$ for every Polish space X such that $X \times \omega^{\omega}$ embeds into X. So if our universal space satisfies also this condition, than we have can extend the compactifiability result from G_{δ} families to analytic families.

This is the case with $X = 2^{\omega}$, so every analytic family in $\mathcal{K}(2^{\omega})$ containing a copy of 2^{ω} is compactifiable, but not with $X = D_{\omega}$ (the Ważewski's universal dendrite), so only every G_{δ} family in $\mathcal{C}(D_{\omega})$ containing a copy of D_{ω} is compactifiable. The Hilbert cube $[0,1]^{\omega}$ satisfies $X \times \omega^{\omega} \hookrightarrow X$, but not the universality condition. But we may replace a universal space with a universal family of spaces, so we obtain the result that every analytic family in $\mathcal{C}([0,1]^{\omega})$ containing a copy of every Peano continuum is compactifiable. In particular, the class of all Peano continua is compactifiable.

Note that the universality condition is a very strong self-similarity property. If for a continuum X there exist finite closed coverings \mathcal{A}_n by sets of diameter $< 2^{-n}$ such that every $\mathcal{A}_n(F)$ is homeomorphic to X for every $F \in \mathcal{C}(X)$, then for every open set $U \subseteq X$ and every continuum $F \subseteq U$ there is a continuum $F \subseteq X' \subseteq U$ homeomorphic to X. This latter property could be called "strongly continuumwise self-homeomorphic" and it is a strengthening of the property of being strongly pointwise self-homeomorphic [3].

References

- [1] A. Bartoš, J. Bobok, J. van Mill, P. Pyrih, B. Vejnar, *Compactifiable classes of compacta*, Topology Appl. 266 (2019), 106836.
- [2] Adam Bartoš, Borel complexity up to the equivalence, submitted to Fund. Math., 2018, arXiv:1812.00484.
- [3] Włodzimierz J. Charatonik, Anne Dilks, On self-homeomorphic spaces, Topology Appl. 55 (1994), no. 3, 215–238.
- [4] Alexander S. Kechris, *Classical descriptive set theory*, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995.