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Abstract: We deal with two completely different kinds of connected spaces – max-
imal connected spaces and metrizable continua. A topological space is maximal
connected if it is connected, but every strictly finer topology on the same base
set is disconnected. Here, the name “Families of connected spaces” refers to the
collection of all connected topologies on a given set, which is ordered by inclu-
sion, and maximal connected topologies are its maximal elements. We study the
construction of tree sums of topological spaces, and how this construction pre-
serves maximal connectedness. We also characterize finitely generated maximal
connected spaces as T 1

2
-compatible tree sums of copies of the Sierpiński space. On

the other hand, we are interested in a general question when for a given class of
continua there exists a metrizable compactum whose set of components is equiva-
lent to the given class. (Two classes are equivalent if they contain the same spaces
up to homeomorphic copies.) We introduce compactifiable, Polishable, strongly
compactifiable, and strongly Polishable classes of compacta, and we investigate
their properties. This is related to the descriptive complexity of equivalent real-
izations of the given class in the hyperspace of all compacta. We prove that in
the hyperspace every analytic family is equivalent to a Gδ family, every Fσ family
is equivalent to a closed family, and every open family is equivalent to one of
countably many saturated open families.
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I. Introduction
Connectedness is one of the most fundamental properties of topological spaces.
A topological space is connected if it contains no nontrivial clopen subset, or
equivalently, if it cannot be continuously mapped onto the two-point discrete
space. So connected spaces are “indecomposable” in the sense that they cannot
be represented as nontrivial topological sums.

In the present thesis we study two completely different kinds of connected
spaces – maximal connected spaces and metrizable continua. A topological space is
maximal connected if it is connected, but every strictly finer topology on the same
base set is disconnected. Here, the name “Families of connected spaces” refers to
the collection of all connected topologies on a given set, which is ordered by
inclusion, and maximal connected topologies are its maximal elements. These are
quite pathological, e.g. it is difficult to obtain even a Hausdorff maximal connected
space (see below). On the other hand, when we combine connectedness with
Hausdorff compactness and with existence of a countable base, we obtain the class
of metrizable continua – a very well studied class of well-behaving spaces. Here we
are interested in various “structural” properties of families of metrizable continua
like existence of universal elements or common models, and Borel complexity of
realizations of the families as subsets in a hyperspace.

The thesis is organized as follows. The rest of the introductory chapter gives
some context and motivation for studying maximal connected spaces and classes
of metrizable continua, and summarizes our results. The other chapters corre-
spond to individual papers on the topic(s), namely,

• Adam Bartoš, Tree sums of maximal connected spaces, Topology. Appl., 252
(2019), pp. 50–71.

• A. Bartoš, J. Bobok, J. van Mill, P. Pyrih, B. Vejnar, Compactifiable classes
of compacta, submitted to Topology Appl., arXiv:1801.01826.

• Adam Bartoš, Borel complexity up to the equivalence, submitted to Fund.
Math., arXiv:1812.00484.

1 The lattice of topologies and extremal prop-
erties

The categorical constructions in the category of topological spaces are quite sim-
ple – one first perform the corresponding construction in the category of sets
and then endows the resulting set with the initial or final topology. For example,
the coproduct of a family of topological spaces is just the disjoint union of their
underlying sets endowed with the finest topology such that the inclusions of the
summands are continuous – a subset of the sum is open if and only if all its
intersections with the summands are open in the the respective summands.

The reason for the possibility of splitting a topological construction into a set-
theoretical one followed by endowing the resulting set with a suitable topology
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lies in the fact that for every set X the family T (X) of all topologies on X is
a complete lattice. (We order T (X) by the inclusion, so coarser topologies are
smaller and finer topologies are larger. Also, topologies finer than τ ∈ T (X) are
called its expansions.) Since formally a topology is just a family of sets closed
under finite intersections and arbitrary unions, any intersection of topologies is a
topology, so we have arbitrary meets in T (X). This gives arbitrary joins as well –
the join is just the smallest topology containing the union of the given topologies.

It makes sense to study topological properties from the point of view of T (X).
Many fundamental topological properties like compactness (not necessarily Haus-
dorff) and connectedness are stable under taking coarser topologies – they form a
lower subset of T (X) for every set X. These are called contractive properties. It
is natural to ask about the maximal elements of this lower set – for a contractive
property P , a topology is called maximal P if it is a maximal element of all P
topologies in T (X) for some set X. A maximal P topology has P , but no strictly
finer topology has P . There are also topological properties stable under taking
finer topologies – expansive properties – e.g. point separating axioms: T0, T1, T2,
Urysohn, functionally Hausdorff, totally separated. So dually, for such properties
P , the notion of being minimal P is considered.

We say that a pair consisting of a contractive property P and an expansive
property Q is a pair of opposing properties if every topology that is P and Q is
both maximal P and minimal Q – this happens if there is no pair of topologies
τ < τ ∗ such that τ is Q and τ ∗ is P . The classical example is compactness
and T2 – every continuous map from a compact space to a Hausdorff space is
continuous, so a compact Hausdorff space is both maximal compact and minimal
Hausdorff. Sometimes the opposing pair P ,Q may be in a stronger opposition:
every maximal P space may already be Q and/or every minimal Q space may
already be P . (Larson [32] calls P and Q complementary if being maximal P
is equivalent to being minimal Q.) This is not the case for compactness and
T2 – there is even a maximal compact topology strictly coarser than a minimal
Hausdorff topology [48].

However, there is a better property opposing to compactness. A topological
space is a KC-space if every compact subset is closed. This is an expansive prop-
erty between T2 and T1. It is easy to see that every compact KC-space is both
maximal compact and minimal KC, and that every maximal compact space is
KC. This was observed long time ago [43]. On the other hand, the remaining im-
plication that every minimal KC-space is compact was proved quite recently [8].

There is a vast study of minimal and maximal properties, see [11], [14], [15].
The last paragraphs were just an illustration.

We are interested in maximal connected spaces, i.e., the contractive prop-
erty P considered is connectedness. These were introduced by Thomas [50], who
characterized finitely generated maximal connected spaces. We provide details on
finitely generated maximal connected spaces in Chapter II, Section 3.

One opposing property Q to connectedness is being a door space, i.e. a space
where every subset is open or closed. It is easy to see that no connected topol-
ogy can be strictly finer than a door topology, and so the properties are indeed
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opposing. This was observed by McCartan [34], who also classified door spaces
– a door space ⟨X, τ⟩ is either discrete, or has exactly one non-isolated point, or
τ is an expansion of an ultrafilter topology by a set of new isolated points (i.e.
there is an ultrafilter U ⊆ P(X) and a set A ⊆ X such that U ∈ τ if and only
if U ∈ U or U ⊆ A). It follows that every minimal door topology is connected –
every such topology is an ultrafilter topology (i.e. τ \ {∅} is an ultrafilter) or an
excluded point topology (i.e. there is a point x ∈ X such that U ∈ τ if and only if
x /∈ U or U = X). Of course, not every maximal connected space is door. There
are counterexamples even among finitely generated spaces.

Connected door spaces and finitely generated maximal connected spaces pro-
vide quite simple examples of maximal connected spaces. They are easy to de-
scribe, but they are not T2 and with the exception of free ultrafilter spaces not
even T1. It is much harder to construct a Hausdorff maximal connected space.
This was first done by Simon [47] and Guthrie–Stone–Wage [23] as an expansion
of the real line. For every infinite cardinal κ, El’kin [20] constructed a Hausdorff
maximal connected space each nonempty open subset of which has cardinality κ.

It is useful to view expansions of topologies from the point of view of their
regular open sets. For every topology τ ∈ T (X) let RO(τ) denote the family of
all regular open sets in τ . Recall that τ is called semiregular if RO(τ) is its open
base, and that the topology τs generated by RO(τ) is called the semiregularization
of τ . Since RO(τs) = RO(τ), we have that τs is the finest semiregular topology
coarser than τ . Let us call two topologies on the same set RO-equivalent if they
have the same regular open sets. It turns up [13, §8, Exercise 20 c)] that two
topologies τ ≤ τ ∗ are RO-equivalent if and only if τ ∗ is the expansion of τ by a
filterbase of τ -dense sets. Namely, the collection DO(τ ∗) of all τ ∗-open τ ∗-dense
sets works as the filterbase since every topology τ is generated by RO(τ)∪DO(τ).
Let A ⊆ T (X) be an RO-equivalence class. A has the coarsest element – the
semiregularization of any member of A. It follows that semiregular topologies
are exactly these coarsest elements of RO-equivalence classes. Every τ ∈ A is
below a (not necessarily unique) maximal element of A – it is enough to expand
τ by a maximal filter of τ -dense sets (which will necessarily contain DO(τ)). The
resulting expansion τ ∗ will have the property that every dense set is open. Such
topologies are called submaximal (see [4] for more characterizations), and we see
that they are exactly the maximal elements of RO-equivalence classes. A is also
convex in the sense that for every τ ≤ τ ′ ≤ τ ∗ such that τ, τ ∗ ∈ A we have
τ ′ ∈ A. This is because two topologies τ ≤ τ ∗ are RO-equivalent if and only if for
every two disjoint τ ∗-open sets U and V there are disjoint τ -open sets U ′ ⊇ U

and V ′ ⊇ V . Finally, a topological property P is called semiregular if for every
topology having P also every RO-equivalent topology has P . In other words,
whole RO-equivalence classes either have or do not have P . It is easy to see that
being Hausdorff or Urysohn are semiregular properties. Connectedness is also a
semiregular property since RO-equivalent topologies have the same clopen sets.
It follows that every maximal connected space is submaximal.

Clark and Schneider [19] proved that a topological space X is maximal con-
nected if and only if it is both submaximal and nearly maximal connected, which
means connected and having the following property: for every regular open set

5



V and x ∈ ∂V the space X can be decomposed as A ∪ {x} ∪ B for some open
sets A,B such that x ∈ A ∩ B (and so they are regular open) so that only one
of the regular open sets V ∩ A and V ∩ B has x in its closure – this holds if
and only if expanding the topology with V ∪ {x} would make it disconnected.
As we can see, near maximal connectedness depends only on regular open sets,
and so it is a semiregular property. Hence, construction of a Hausdorff maximal
connected expansion of a given topology τ may be decomposed into two steps –
the first and essential step is to find a nearly maximal connected expansion τ ∗,
so we end up in an RO-equivalence class of nearly maximal connected spaces; the
second step is to take any expansion of τ ∗ by a maximal filter of τ ∗-dense sets,
so we end up with a maximal element of the class. Near maximal connectedness
may be also characterized in the language of singular sets, and finding a nearly
maximal expansion is possible via singular expansions [30], [40].

Probably the main open problem on maximal connected spaces is whether
there exists a regular nondegenerate maximal connected space [41, Question 4].
Note that finding a regular maximal connected topology is much harder than
finding a Hausdorff one since regularity is not an expansive property. Also, split-
ting the problem into the two steps sketched above does not help since a reg-
ular maximal connected topology or even a semiregular submaximal topology
forms a singleton RO-equivalence class. Recently, it was shown by Kalapodi and
Tzannes [28] that there is no regular maximal connected expansion of the real
line, which settles [41, Question 5]. Under V = L, every submaximal space X is a
countable union of discrete subsets [1]. These are necessarily closed if X has no
isolated points. Consequently, X is zero-dimensional if it is T1 normal. Therefore,
consistently, there are no nondegenerate T1 normal maximal connected spaces.
Let us briefly mention some other related results. It is not known whether there
exists a nondegenerate Tychonoff maximal connected space. Such space has to
have π-weight > c, every subset of cardinality < c has to be closed (and discrete),
and the space cannot be locally connected, locally separable, or have a point of
countable character (see [4], [46], [36] where even stronger results are proved). On
the other hand, it is also not known whether there exists a nondegenerate regu-
lar submaximal connected space [41, Question 3]. In such space every countable
subset has to be closed (and discrete), and so the space cannot be separable [4].

Recall that a point in a connected space x ∈ X is a cut point if X \{x} is dis-
connected, and that it is a dispersion point if X \{x} is hereditarily disconnected.
In a nearly maximal connected space every regular open set has a cut point in its
boundary. Hence, in a regular maximal connected space the set of all cut points
is dense, and in a nondegenerate Hausdorff maximal connected space the set of
all cut points is infinite. On the other hand, a dispersion point is the unique
cut point, and hence no Hausdorff topology with a dispersion point has a maxi-
mal connected expansion. This was already observed by Guthrie and Stone [22].
Baggs [6] studied a particular example of a countable Hausdorff topology without
a maximal connected expansion. Examples of Hausdorff connected spaces with
a dispersion point include the Roy’s countable space and the Cantor’s leaky tent
(also called the Knaster–Kuratowski fan) [49]. Examples of Hausdorff maximal
connected spaces where the set of all cut points is not dense were constructed in
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[29] and [27].

We think a way to get more insight on maximal connected spaces is to study
general topological constructions preserving maximal connectedness. In Chap-
ter II we consider such a construction – so called tree sum. It is a quotient of an
ordinary sum of topological spaces such that the “gluing structure” corresponds
to a tree graph, so all the summands become retracts of the tree sum (Proposi-
tion 2.7). In Section 2 we first systematically study general properties of tree sums
(for example we reformulate the standard separation axioms in terms of existence
of continuous maps onto special topological spaces, so we may prove preservation
of these separation axioms under tree sums in a uniform way – Proposition 2.23).
Then we prove the main result concerning preservation of maximal connectedness
and related properties under tree sums (Theorem 2.44, Theorem 2.53). We also
give a simple proof of the fact that maximal connectedness and related prop-
erties are preserved by connected subspaces (Proposition 1.12). In Section 3 we
reformulate the characterization of finitely generated maximal connected spaces
given by Thomas [50] in the language of specialization preorder and graphs (they
correspond to tree graphs with fixed bipartition – Corollary 3.12), and in the
language of tree sums (they are exactly T 1

2
-compatible tree sums of copies of the

Sierpiński space – Corollary 3.14). We also suggest a natural way how to visualize
these spaces (Notation 3.15).

2 Families of continua and their complexity
A continuum is a compact connected space. Here we will be interested in metriz-
able or equivalently second countable continua, so let this be a part of the def-
inition in this section. As before, we are interested in the overall structure, but
instead of considering connected topologies on a fixed set, we shall consider the
structure of continuous maps on a fixed class of continua and the descriptive
complexity of the class.

To unify various problems we are interested in, let us introduce the following
framework, based on [17]. Let C be a class of continua and let F be a class of
continuous maps between continua from C. For X, Y ∈ C we may write X →F Y

if there is a map f : X → Y in F . Natural examples of the class F include the
class of all embeddings (in this case we write X ↪→ Y instead of X →F Y ) and
the class of all continuous surjections (in this case we write X ↠ Y instead of
X →F Y ). If F is closed under compositions and contains the identity maps on
all continua from C (in other words, if ⟨C,F⟩ forms a category – this is the case
for all classes F considered), the relation→F is a preorder. We however interpret
the “orientation” of the preorder in different ways. If F consists of embeddings,
we interpret X →F Y as X ≤F Y , while if F consists of quotients, we interpret
X →F Y as X ≥F Y . The terms “smaller”, “larger”, “minimal”, “maximal”, etc.
are interpreted according to ≤F rather than →F . Of course, the same definitions
may be considered for any topological spaces, but here we are interested only
in metrizable continua and sometimes in metrizable compacta. The point of this
framework is that many interesting problems and properties of classes of continua
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may be stated in the language of the preorder≤F . In [17], greatest, least, maximal,
and minimal elements, chains and antichains for the class of all dendrites and for
families of all monotone, open, confluent, weakly confluent, and retractive maps
are studied.

Let C be a class of continua and let F be a family of (some) embeddings or
quotients on C. An ≤F -greatest element U ∈ C is called a F-universal continuum
(in C). If F is the family of all embeddings (i.e. U ∈ C such that X ↪→ U for every
X ∈ C), U is called just a universal continuum. If F is the family of all quotients,
an ≤F -upper bound of C in the class of all continua (i.e. a continuum U such
that U ↠ X for every X ∈ C) is called a common model for C. If additionally
U ∈ C, we call it co-universal. Let us mention some classical examples of (co-)
universal continua. The Hilbert cube [0, 1]ω is universal for all continua (as well
as for all separable metrizable spaces). By the Hahn–Mazurkiewicz theorem [39,
8.14], the unit interval [0, 1] is co-universal for all Peano continua (and it follows
that every nondegenerate Peano continuum co-universal). The Menger universal
spaces Mm

n [21, p. 121], 1 ≤ n ≤ m, are universal for all n-dimensional continua
embeddable into Rm, and so for all n-dimensional continua if m ≥ 2n+ 1. M2

1 is
the Sierpiński universal curve or the Sierpiński carpet;M3

1 is the Menger universal
curve or the Menger sponge. Mm

0 for 0 < m is the Cantor space, which is universal
for all zero-dimensional spaces and also a common model for all compacta. The
Ważewski dendrite Dω [39, 10.37] is universal for all dendrites. The pseudo-arc is
co-universal in the class of all chainable continua (as well as all weakly chainable
continua). This classical result (together with more properties of the pseudo-arc)
was recently proved using projective Fraïssé theory [25], [31]. For more examples
see [16, §9].

There are also results on non-existence of F -universal continua, sometimes
related to the existence of a large F-incomparable family. A family of continua
P ⊆ C is F-incomparable if for every X ̸= Y ∈ C we have neither X →F Y

nor Y →F X. Again, we say just “incomparable” if F is the family of all quo-
tients. There is a classical result of Waraszkiewicz [53], [54] who constructed an
incomparable family of size c with no common model consisting of spirals over
the circle. (By a spiral over a continuum X we mean a compactification of the
ray [0,∞) with X as the remainder.) It follows that the class of all continua
has no co-universal element. A shorter proof of the incomparability is given in
[42]. Russo [45] constructed a c-sized family with no common model consisting
of spirals over the simple triod. Bellamy [9] constructed a c-sized incomparable
family of chainable continua. The chainable continua were sequences of attached
“double-spirals over double-spirals” and had infinitely many path-components.
Later, Awartani [5] found a c-sized incomparable family of spirals over the arc.
Note that spirals over the arc are chainable, and so have a common model. In
[7] we have generalized the construction from [42] and obtained a c-sized incom-
parable family of spirals over X for any fixed nondegenerate Peano continuum
other than the arc, so with the Awartani’s result all nondegenerate Peano con-
tinua are covered. As for arcwise connected continua, Minc [37] and Islas [26] have
constructed c-sized incomparable families of fans. The family of Minc consists of
retracts of a single fan, while the family of Islas consists of planar fans based on
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the Awartani’s construction.
Note that every incomparable family consists of pairwise non-homeomorphic

continua. A non-homeomorphic family is an F -incomparable family for F being
the family of all homeomorphisms (note that the preorder →F is an equivalence
in this case). Recall that the pseudo-arc is the unique hereditarily indecomposable
chainable continuum [12]. We have already mentioned that it is a co-universal
chainable continuum. By the result of Bellamy [10], every nondegenerate hered-
itarily indecomposable continuum maps onto the pseudo-arc (i.e. the pseudo-arc
is the ≤F -least nondegenerate hereditarily indecomposable continuum for the
family F of all quotients). Moreover, by [24] for every spiral over a hereditarily
indecomposable continuum X and every spiral over a chainable continuum Y ,
every continuous surjection X ↠ Y can be extended to a continuous surjection
between the spirals. Hence, an incomparable family of spirals over the pseudo-
arc is impossible. On the other hand, Martínez-de-la-Vega [51] constructed a
c-sized non-homeomorphic family of spirals over the pseudo-arc. This was gen-
eralized by Martínez-de-la-Vega and Minc [52], who obtained an uncountable
non-homeomorphic family of spirals over any fixed nondegenerate continuum X,
and later by Minc [38] who obtained such a family of size c.

Minc in fact constructed a (metrizable) compactum whose set of components
is the desired non-homeomorphic family of spirals, and the corresponding quo-
tient space is homeomorphic to the Cantor space. He also asked about the dual
situation – whether there is a compactum whose components are, up to homeo-
morphism and allowing multiple copies, all spirals over a fixed Peano continuum.
In Chapter III we are interested in the general form of this question. We say that
a class of continua C is compactifiable if there is a compactum whose set of compo-
nents is equivalent to C. (We call two classes of spaces equivalent if every member
of one class has a homeomorphic copy in the other class and vice versa.) It turns
out (Chapter III, Observation 2.12) that a class of continua C is compactifiable if
and only if there is a continuous map q : A→ B between some compacta A and
B such that the family of fibers {q−1(b) : b ∈ B} is equivalent to C. This condi-
tion may be easily generalized, so we define compactifiable classes of compacta
in the obvious way. We also define Polishable classes by a weaker condition – it is
enough if the witnessing spaces A and B are Polish. Moreover, we define strongly
compactifiable and strongly Polishable classes by the extra requirement that the
map q is closed and open. The motivation for these modified notions is their close
connection to hyperspaces.

For a metrizable space X, the hyperspace C(X) is the family of all subcon-
tinua of X endowed with the Hausdorff metric and the Vietoris topology. The
hyperspace K(X) of all compacta in X is defined analogously. More details on
the definition and some properties of hyperspaces are summarized in Chapter III,
Section 3. Since the Hilbert cube [0, 1]ω is universal for metrizable compacta, ev-
ery class of compacta may be realized by an equivalent family F ⊆ K([0, 1]ω).
Having such a realization, we may talk about its topological properties and about
its complexity with respect to the Borel hierarchy. We prove (see Theorem 3.13
and Theorem 3.14) that a class of compacta C is strongly compactifiable if and
only if it can be realized by a closed family, and that C is strongly Polishable if
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and only if it can be realized by a Gδ family or equivalently by an analytic family.
Note that a fixed class C may be realized by families of different complexities. In
the results above, we are interested how low may the complexity be. It is not hard
to show that compactifiability, strong Polishability, and Polishability is preserved
by countable unions (Observation 2.14, Proposition 4.1). On the other hand, the
corresponding result for strongly compactifiable classes, i.e. the fact that every
Fσ subset of K([0, 1]ω) is equivalent to a closed set, led to a separate paper –
Chapter IV.

Note that hyperspaces fit to the framework from the beginning of this section
by considering C(X) as the class of continua C and the family of all inclusions as
the family F . Furthermore, the resulting structure is endowed with the Vietoris
topology. The structure ⟨C,F⟩ for a class of continuous surjections F may be
endowed with yet another topology. A continuous surjection f : X → Y is called
an ε-map for some ε > 0 if all the fibers f−1(y) for y ∈ Y have diameter < ε. The
closure operator clF is defined by X ∈ clF(P) for X ∈ C and P ⊆ C if for every
ε > 0 there is an ε-map f : X → Y for some Y ∈ P and f ∈ F , i.e. clF(P) consists
of all P-like spaces (with respect to F). Note that being an ε-map depends on
the choice of metric on the domain space X, but the closure clF does not since all
metrics on a compact space are uniformly equivalent. The operator clF is indeed a
topological closure, and if C is a set containing exactly one homeomorphic copy of
each continuum, the resulting topological space is called the representation space
for F . Representation spaces were introduced in [2], and the families of all, all
confluent, and all monotone continuous surjections were considered. Clearly, with
more maps in the family F , the topology of the corresponding representation
space becomes coarser. Even for the coarsest topology (the one corresponding to
the family of all continuous surjections) the degenerate spaces are clopen points.
That is why the representation space N consisting of all nondegenerate continua
is often considered. It is proved in [18] that with respect to all continuous sur-
jections, N is connected and contains a dense point. The representation space
for confluent maps is further studied in [3]. Let us mention some more results
regarding the representation spaces. The representation space (for any F) has
countable character but weight c. Every incomparable family is discrete, and so
the Waraszkiewicz spirals form a discrete set of size c. The representation space
is not T0 even for monotone maps. For all surjections, the family of all chainable
continua correspond to a closed nowhere dense subset, and the arc is its dense
point. On the other hand, for confluent maps, the arc is an isolated point, and
its closure is the family of all Knaster type continua. For monotone maps, the arc
is a clopen point. The Peano continua form an open dense set for all surjections;
the closure for confluent maps is strictly bellow the family of all Kelley continua.

The property that a continuum X is P-like (with respect to F) is closely
related to the condition that there is an inverse sequence of spaces from P with
bonding maps from F such that X is its limit – let us call this other condition “se-
quentially P-like”. If for every inverse sequence of maps from F the corresponding
limit maps are also from F (which happens for all families considered here), every
sequentially P-like space is P-like. The two conditions are equivalent if P is a
class of polyhedra and F is the class of all continuous surjections [33]. Sometimes
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the term “P-like” is even defined as sequentially P-like. A continuum is called
arc-like if it is {arc}-like, and this is equivalent to being chainable; circle-like con-
tinua are defined analogously, and the condition is equivalent to being circularly
chainable. We have already mentioned that the pseudo-arc is a co-universal arc-
like continuum. There is also a co-universal circle-like continuum [44], sometimes
called the pseudo-solenoid, and since the pseudo-arc is a continuous image of a
circle-like continuum, the pseudo-solenoid is also co-universal for {arc, circle}-
like continua. Russo [45] proved that for any other family P of nondegenerate
connected polyhedra, the family of all P-like continua has no common model.
Besides the co-universal arc-like continuum, there is also a universal arc-like con-
tinuum [39, Theorem 12.22]. We adapt its construction and show that for every
countable class of compacta P , the class of all sequentially P-like compacta is
compactifiable. In particular, the class of all circle-like continua is compactifiable,
even though there is no universal circle-like continuum (Chapter III, Remark 5.9).
With a grain of salt, we may say that the closure of a countable class in the rep-
resentation space is a compactifiable class.

To summarize our results, in Chapter III we define the main notions – (strong-
ly) compactifiable and (strongly) Polishable classes and their witnessing objects,
called compositions – and we systematically study their properties. We estab-
lish several characterizations of the properties – in the language of rectangular
compositions (Theorem 2.10, Theorem 2.11, Theorem 3.18), and in terms of ex-
istence of a suitable family in a hyperspace (Theorem 3.13, Theorem 3.14, The-
orem 3.22). We also prove that every compactifiable class is strongly Polishable
(Corollary 3.17), and that sometimes a strongly Polishable class is compactifiable
(Corollary 3.21). In Section 4 we study preservation of the properties under vari-
ous constructions, and we demonstrate the obtained results on several examples.
Among other results, we prove the following. All four properties are preserved
under countable unions (Proposition 4.1). Every hereditary class of compacta
with a universal element is strongly compactifiable (Corollary 4.10). Every class
of continua closed under continuous images with a co-universal element is com-
pactifiable (Corollary 4.25). For every strongly Polishable class of compacta, the
family of all homeomorphic copies of its members in K(X) is analytic for any
Polish space X (Theorem 4.26) – this gives a necessary condition. In Section 5
we see how compactifiability is related to inverse limits and prove the already
mentioned result that the class of all sequentially P-like spaces for a countable
family P of compacta is compactifiable (Theorem 5.7).

Chapter IV is devoted to the Borel complexity in the universal hyperspace
K([0, 1]ω) up to the equivalence of families. We have observed that every analytic
family F ⊆ K([0, 1]ω) is equivalent to a Gδ family. In Section 2, we show that there
are only countably many open saturated families in K([0, 1]ω) and that every open
family is equivalent to (exactly) one of them (Theorem 2.18). To every compactum
X we associate a its type t(X) depending on the number of components and the
number of nondegenerate components. The set of types T ∪ {∞} is naturally
ordered, and we use the theory of Z-sets [35, §5.1] to prove that for X, Y ∈
K([0, 1]ω) a homeomorphic copy of Y is in every neighborhood of X if and only
if t(Y ) ≥ t(X) (Proposition 2.16). In Section 3 we extend our analysis of the
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hyperspace neighborhoods from single spaces to compact families, and we prove
our main result of the chapter – every Fσ family in K([0, 1]ω) is equivalent to a
closed family (Theorem 3.6). We end in Section 4 with several observations on
saturated and type-saturated families. For example, the saturation (i.e. the closure
under homeomorphic copies) of a clopen, open, or analytic family remains clopen,
open, or analytic, respectively, but the saturation of a closed family is almost
never closed, and sometimes is not even Borel (Corollary 4.4). The equivalence
of complexity classes is summarized in Figure 1.
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II. Tree sums of maximal
connected spaces

Adam Bartoš*,1

Dedicated to the memory of Petr Simon,
who introduced me to the beautiful realm of general topology.

Abstract
A topology τ on a set X is called maximal connected if it is connected,

but no strictly finer topology τ∗ > τ is connected. We consider a construc-
tion of so-called tree sums of topological spaces, and we show how this
construction preserves maximal connectedness and also related properties
of strong connectedness and essential connectedness.

We also recall the characterization of finitely generated maximal con-
nected spaces and reformulate it in the language of specialization preorder
and graphs, from which it is clear that finitely generated maximal con-
nected spaces are precisely T 1

2
-compatible tree sums of copies of the Sier-

piński space.

Classification: 54A10, 54D05, 54B17, 54D10, 54G15.
Keywords: maximal connected, strongly connected, essentially connected,

tree sum, I-subset, submaximal, nodec, specialization preorder.

1 Introduction
For every fixed set X we may consider the collection of all topologies on X. These
form a complete lattice T (X) when ordered by inclusion. For every topological
property P we may consider the subcollection of T (X) consisting of all topologies
having the property P . Then we may consider maximal and minimal elements of
this collection. A topology τ ∈ T (X) is called maximal P if it satisfies P but no
strictly finer topology in T (X) satisfies P . The property of being minimal P is
defined dually. Often, the maximality is considered when P is stable under coarser
topologies, and minimality is considered when P is stable under finer topologies.

Probably the most classical result in this context is the fact that Hausdorff
compact spaces are both minimal Hausdorff and maximal compact (but not every
minimal Hausdorff space is compact and not every maximal compact space is
Hausdorff). References, many other properties, and a general treatment can be
found in a paper by Cameron [3]. There are also maximal spaces where the implicit
property P is “having no isolated points”. Let us mention van Douwen’s example
of countable regular maximal space that can be found in [4].

We are interested in the situation where P means connectedness, i.e. in max-
imal connected spaces. These were first considered by Thomas in [14], where he

*e-mail: drekin@gmail.com
1Charles University, Faculty of Mathematics and Physics, Department of Mathematical

Analysis
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proved among other results that every open connected subspace of a maximal
connected space is maximal connected, and also characterized finitely generated
maximal connected spaces. There are also related notions of strongly connected
and essentially connected spaces. Following Cameron, for a topological property
P when we consider being maximal P , we say that a topological space is strongly
P if it admits finer maximal P topology. Essentially connected are those con-
nected spaces whose every connected expansion has the same connected subsets
– these spaces were considered by Guthrie and Stone in [7].

In this paper we first recall the facts about maximal, strongly, and essentially
connected spaces that we use later. Clearly the construction of topological sum
does not preserve the properties since it does not preserve connectedness. In
the second section we consider another sum-like construction – a tree sum. It is a
certain quotient of a topological sum – such quotient that it preserves the original
spaces as subspaces, glues them only at individual points, and the overall structure
of gluing corresponds to a tree graph. First, we systematically treat the properties
of tree sums of topological spaces, so we may next show how this construction
preserves maximal, strong, and essential connectedness (Theorem 2.44 and 2.53).

In the third section we revise Thomas’ characterization of finitely generated
maximal connected spaces. We describe them in the language of specialization
preorder and graphs. With this description their structure is crystal clear, they
can be easily visualized, and it is evident that they are exactly T 1

2
-compatible

tree sums of copies of the Sierpiński space (Corollary 3.14).

Definition 1.1. LetX be a set or a topological space. We say thatX is degenerate
if |X| ≤ 1. Otherwise, we say that X is nondegenerate.

By a decomposition of X we mean an indexed family ⟨Ai : i ∈ I⟩ of subsets of
X such that

⋃︁
i∈I Ai = X and Ai∩Aj = ∅ for every i ̸= j ∈ I. If additionally every

set Ai is nonempty, we say that the decomposition is proper. Hence, a topological
space is connected if and only if it admits no clopen proper decomposition ⟨U, V ⟩.

Notation 1.2. Let X be a set. The order of the lattice T (X) of all topologies
on X is denoted simply by ≤. So τ ≤ τ ∗ means that τ is coarser and τ ∗ is finer.
Also, τ < τ ∗ means that τ ∗ is strictly finer than τ . Additionally, when τ ≤ τ ∗ (or
τ < τ ∗), we say that the topology τ ∗ is an expansion of τ (or a strict expansion
of τ). In that case we also say that the space ⟨X, τ ∗⟩ is an expansion of ⟨X, τ⟩.

The join operation on T (X) is denoted by ∨ and is extended to all subsystems
of P(X), so A∨B denotes the topology generated by A∪B for any A,B ⊆ P(X).
Hence, for τ a topology on X and A ⊆ P(X) the expansion of τ by A is denoted
by τ ∨ A. For A ⊆ X the expansion τ ∨ {A} is called a simple expansion of τ .

For a topology τ ∈ T (X) and a set Y ⊆ X the induced subspace topology on
Y is denoted by τ↾Y .

Definition 1.3. Recall that a topological space ⟨X, τ⟩ or its topology τ is called

• maximal connected if it is connected and has no connected strict expansion;

• strongly connected if it has a maximal connected expansion;
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• essentially connected if it is connected and every connected expansion has
the same connected subsets.

Observation 1.4. When testing maximal or essential connectedness, it is enough
to consider only expansions by finite families. Let ⟨X, τ⟩ be a connected topolog-
ical space and let τ ∗ be a connected expansion of τ .

(i) If A ∈ τ ∗ \ τ , then τ ′ := τ ∨ {A} is also a connected expansion of τ . Hence,
τ is maximal connected if and only if it has no connected strict simple
expansion. Also note that every τ ′-open set is of the form U ∪ (A∩ V ) and
also of the form (U ′ ∪ A) ∩ V ′ where U , V , U ′, V ′ are τ -open.

(ii) If C ⊆ X is not τ ∗-connected, then there are τ ∗-open sets U, V ⊆ X such
that ⟨C ∩ U,C ∩ V ⟩ is a proper decomposition of C. Hence, for τ ′ := τ ∨
{U, V } we have that C is τ ′-disconnected while τ ′ is connected. Therefore,
it is enough to test essential connectedness on expansions by two of sets.

The following lemmata provide conditions to test whether a set open in an
expansion is open in the original topology as well, and whether a subspace of an
expansion is a subspace of the original space as well.

Lemma 1.5. Let ⟨X, τ⟩ be a topological space, let τ ∗ = τ ∨ A be an expansion
of τ for some A ⊆ P(X). If a set U is τ ∗-open, then the following conditions are
equivalent.

(i) U is τ -open.
(ii) For every A ∈ A there is a τ -open set VA such that U ∩ A ⊆ VA ⊆ U ∪ A.

Proof. For “=⇒” it is enough to put VA := U . For “⇐=” note that the set
U is of the form

⋃︁
i∈I(Wi ∩

⋂︁
j∈Ji Ai,j) where the sets Wi are τ -open, the sets

Ai,j are members of A, and the index sets Ji are finite. Consider the function
f that maps every indexed family ⟨Xi,j : i ∈ I, j ∈ Ji⟩ of subsets of X to the
set

⋃︁
i∈I(Wi ∩

⋂︁
j∈Ji Xi,j). Clearly, f is monotone in the sense that for every two

families ⟨Xi,j⟩, ⟨Yi,j⟩ such that Xi,j ⊆ Yi,j for every i, j we have f(⟨Xi,j⟩) ⊆
f(⟨Yi,j⟩). Note that f(⟨U ∩Ai,j⟩) = f(⟨U ∪Ai,j⟩) = U . Therefore, the τ -open set
f(⟨VAi,j⟩) is also equal to U .

Corollary 1.6. Let ⟨X, τ⟩ be a topological space, let τ ∗ = τ ∨A be an expansion
of τ for some A ⊆ P(X). A τ ∗-open set U is τ -open if for every A ∈ A any of
the following conditions holds.

(i) U ∩ A is τ -open, in particular U ∩ A = ∅.
(ii) U ∪ A is τ -open, in particular U ∪ A = X.
(iii) There is a τ -open set V such that U ⊇ V ⊇ A.
(iv) There is a τ -open set V such that U ⊆ V ⊆ A.

Lemma 1.7. Let ⟨X, τ⟩ be a topological space, let τ ∗ = τ ∨ A be an expansion
of τ for some A ⊆ P(X). If Y ⊆ X, then τ ∗↾Y = τ↾Y if and only if Y ∩ A is
τ -open in Y for every A ∈ A, in particular if for every A ∈ A we have Y ∩A = ∅
or Y ⊆ A.
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Proof. “=⇒” is obvious since Y ∩ A is τ ∗-open in Y for every A. For “⇐=” let
U ⊆ Y be (τ ∗↾Y )-open, and for every A ∈ A let VA ⊆ X be a τ -open set such that
VA ∩ Y = A ∩ Y . There are τ -open sets Wi, finite sets Ji, and sets Ai,j ∈ A for
i ∈ I, j ∈ Ij such that U =

⋃︁
i∈I(Y ∩Wi∩

⋂︁
j∈Ji Ai,j) =

⋃︁
i∈I(Y ∩Wi∩

⋂︁
j∈Ji VAi,j),

which is (τ↾Y )-open.

Definition 1.8. Recall that a topological space X is called

• submaximal if every dense subset is open, equivalently if every co-dense
subset is closed (and so discrete), equivalently if A \ A is closed for every
A ⊆ X;

• nodec if every nowhere dense subset is closed, equivalently if every nowhere
dense subset is discrete, equivalently if U \ U is discrete for every open
U ⊆ X;

• T 1
2

if the singleton {x} is open or closed for every x ∈ X.

Note that co-dense sets are exactly sets of the form A \ A for A ⊆ X, and that
closed nowhere dense sets are exactly sets of the form U \ U for open U ⊆ X.

Submaximal spaces without isolated points were introduced by Hewitt, who
called them MI-spaces. The name submaximal is due to Bourbaki. Many refer-
ences and an excellent overview can be found in [2]. Nodec spaces were considered
by van Douwen in [4, 1.14]. T 1

2
spaces were introduced by McSherry in [12] under

name TES. The name T 1
2

comes from Levine, who earlier introduced a different
but equivalent condition in [11].

Proposition 1.9. All implications in Figure 1 hold.

maximal
connected

submaximal

nodec T 1
2

essentially
connected

strongly
connected

connected

Figure 1: Implications between the properties considered.

Proof. Every maximal connected space is submaximal since making any dense
subset open (or even a filter of dense subsets [1, Lemma 1]) preserves connect-
edness. Every submaximal space is T 1

2
since every singleton is either open or

co-dense and hence closed. The other implications are clear from definitions.

1.1 Preservation under subspaces
Observation 1.10. The properties of being submaximal, nodec, or T 1

2
are hered-

itary to all subspaces.
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Proof. This was proved before, see for example [2, Proposition 2.1]. It is enough
to observe that every co-dense, nowhere dense, or one-point subset of a subspace
is co-dense, nowhere dense, or one-point in the original space as well, respectively.

Clearly, the properties of maximal connectedness, strong connectedness, and
essential connectedness can be preserved only by connected subspaces. Thomas
proved in [14, Theorem 3] that maximal connectedness is hereditary with respect
to open connected subspaces. Later, Guthrie, Reynolds, and Stone proved the
same first for closed connected subspaces in [6, Lemma 2], and then using sub-
maximality they observed that every connected subspace of a maximal connected
space is open in its closure, and so is itself maximal connected [6, Theorem 7]. In
[7, Theorem 1] Guthrie and Stone proved that essential connectedness is heredi-
tary with respect to connected subspaces as well. The core argument of the proofs
can be stated as follows.

Lemma 1.11. Let ⟨Y, σ⟩ be a subspace of a connected space ⟨X, τ⟩. For every
connected expansion σ∗ ≥ σ there exists a connected expansion τ ∗ ≥ τ such that
τ ∗↾Y = σ∗.

Proof. We put τ ∗ := τ ∨A where A := {S ∪ (X \ Y ) : S ∈ σ∗}. Clearly, τ ∗ is an
expansion of τ such that τ ∗↾Y = σ∗. We need to show that it is connected. Y is
τ ∗-connected since Y is τ ∗-connected and Y = clτ (Y ) = clτ∗(Y ). Let ⟨U, V ⟩ be a
τ ∗-clopen decomposition of X. Without loss of generality Y ⊆ U . U is τ -open by
Corollary 1.6 since U ∪A = X for every A ∈ A. Let W be the τ -open set X \ Y .
V is τ -open by Corollary 1.6 since V ⊆ W ⊆ A for every A ∈ A. Hence, ⟨U, V ⟩
is a τ -clopen decomposition of X, so U = ∅ or V = ∅ since τ is connected.

Now, the above-mentioned results on preservation under connected subspaces
can be re-proved easily.

Proposition 1.12.

(i) Every connected subspace of a maximal connected space is maximal con-
nected.

(ii) Every connected subspace of an essentially connected space is essentially
connected.

(iii) Every connected subspace of a strongly connected and essentially connected
space is both strongly connected and essentially connected.

Proof. Let ⟨X, τ⟩ be a topological space and let ⟨Y, σ⟩ be its connected subspace.

(i) Let σ∗ be a connected expansion of σ. By Lemma 1.11 there is a connected
expansion τ ∗ ≥ τ such that τ ∗↾Y = σ∗. Since τ is maximal connected, we
have that τ ∗ = τ and so σ∗ = σ.

(ii) Let C ⊆ Y be connected and let σ∗ be a connected expansion of σ. By
Lemma 1.11 there is τ ∗ a connected expansion of τ such that τ ∗↾Y = σ∗. C is
τ ∗-connected since τ is essentially connected, and hence C is σ∗-connected.
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(iii) Let τ ∗ be a maximal connected expansion of τ . Since τ is essentially con-
nected, Y is τ ∗-connected, and hence τ ∗↾Y is a maximal connected expan-
sion of σ by (i).

Example 1.13. Not every connected subspace of a strongly connected space is
strongly connected. By [7, Theorem 15] no Hausdorff connected space with a
dispersion point is strongly connected. Cantor’s leaky tent is such a space. Yet,
it is a subspace of R2, which is strongly connected by [8, Corollary 5A] and also
by Corollary 2.45.

Observation 1.14. The interval [0, 1] is both strongly connected and essentially
connected. Hence, the same holds for the real line R and the interval [0, 1).

Proof. The fact that [0, 1] is essentially connected was first proved in [9, Theorem
4.2] and also follows from [7, Theorem 10]. A maximal connected expansion of
[0, 1] was constructed independently in [13] and [8]. The equivalence of R, [0, 1],
and [0, 1) with respect to having the properties follows from Proposition 1.12 and
from the fact that R ↪→ [0, 1) ↪→ [0, 1] ↪→ R.

2 Tree sums of topological spaces
Definition 2.1. By a gluing structure G we mean an indexed family of topological
spaces ⟨Xi : i ∈ I⟩ together with an equivalence ∼ on

∑︁
i∈I Xi. These are exactly

the data needed to form a glued sum XG :=
∑︁

i∈I Xi/∼, which is a quotient of
the topological sum. We denote the associated canonical maps Xi → XG by eG,i
and the canonical quotient map

∑︁
i∈I Xi → XG by qG.

We define the set of gluing points by SG := {x ∈ XG : |q−1
G (x)| > 1}, and we

define the gluing graph GG as the quiver (a directed graph allowing multiple edges
between a pair of vertices) such that the set of vertices is I ⊔ SG, and ⟨s, i, x⟩ is
a directed edge from s to i if and only if eG,i(x) = s. Even though the edges are
directed in order to stress the bipartite nature of the graph, we consider graph
notions like connectedness or paths in the corresponding undirected version of
the graph if not stated otherwise.

We say that G induces a tree sum if the corresponding gluing graph GG is
a tree, i.e. for every pair of distinct vertices there is a unique path connecting
them. In that case, XG is called the tree sum of G and the spaces Xi are called
summands.

Often, when the gluing structure is implied, we just write “X is a glued/tree
sum of ⟨Xi : i ∈ I⟩”, or “X :=

∑︁
i∈I Xi/∼ is a glued/tree sum” when we want to

name the equivalence. In that case, we write eX,i, qX , SX , GX or even ei, q, S, G
(with a short reminder) instead of eG,i, qG, SG, GG, respectively.

Remark 2.2. Despite the lengthy definition above, the notion of tree sum is quite
natural. We just glue topological spaces in a way that the spaces are preserved,
two spaces may be glued only at one point, and the global structure of connections
forms a tree.
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Remark 2.3. Because of the connectedness of the gluing graph, all the summands
of a tree sum have to be nonempty unless the whole space is empty.

Example 2.4. A wedge sum, that is a space
∑︁

i∈I Xi/∼ such that one point is
chosen in each space Xi and ∼ glues these points together, is an example of a
tree sum.

Example 2.5. The Arens’ space, which is the canonical example of a sequential
space that is not Fréchet–Urysohn (see [5, Example 1.6.19]), is a certain tree sum
of convergent sequences.

Observation 2.6. Let X :=
∑︁

i∈I Xi/∼ be a glued sum. All the maps ei : Xi →
X are injective if and only if there is at most one edge between any two vertices
in GX .

Proof. For i ∈ I the map ei is injective if and only if there are no points x ̸= y ∈ Xi

such that ei(x) = ei(y) ∈ SX , that is if and only if there are no points x ̸= y ∈ Xi

and s ∈ SX such that ⟨s, i, x⟩ and ⟨s, i, y⟩ are edges in GX .

Proposition 2.7. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩. There exist unique
maps qi : X → Xi for i ∈ I such that qi ◦ej = idXi=j if i = j and qi ◦ej is constant
if i ̸= j. Hence, all the maps ei are embeddings, all the maps qi are quotients
(even retractions), and all the spaces Xi are retracts of X.

Proof. By Observation 2.6 all the maps ei are injective, and hence we may assume
Xi ⊆ X (as sets) for every i ∈ I.

Let i ∈ I. The map qi has to be the identity on Xi, and for j ̸= i it has to be
constant on Xj. There exists a unique path between i and j in GX , which goes
through vertices i, s0, i0, s1, . . . , in−1, sn, j. Since sn ∈ Xj, the constant value of
qi on Xj has to be qi(sn), but since sn ∈ Xin−1 ∋ sn−1, the constant value of qi
on Xin−1 has to be the same and also equal to qi(sn−1), and so on. Hence, the
constant value on Xj is qi(s0) = s0. This is a consistent definition of qi, and it is
the only possible.

Since the topology on X is inductively generated by the maps ei, and qi ◦ ej
is continuous for every i, j ∈ I, all the maps qi are continuous. And since qi ◦ ei =
idXi , we have that qi is a quotient map and ei is an embedding.

2.1 Internal characterization
We dedicate a few following paragraphs to an internal characterization of tree
sums. Similarly to other sum-like constructions it makes sense to ask if a given
topological space is an “inner” tree sum of some of its subspaces.

Definition 2.8. Let f : X → Y be a continuous map between topological spaces
X, Y . Recall, that there is an induced equivalence relation ∼f on X: x ∼f y if
and only if f(x) = f(y). There is an induced quotient map fq : X → X/∼f and
an induced map f i : X/∼f → Y such that f i ◦ fq = f . We call fq and f i the
quotient part of f and the injective part of f , respectively.
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Let ⟨fi : Xi → Y ⟩i∈I be a family of continuous maps. Recall, that there is
a canonical map

∇
i∈I fi :

∑︁
i∈I Xi → Y called the codiagonal sum and defined

by the equalities (
∇
i∈I fi) ◦ ej = fj for j ∈ I where ej : Xj →

∑︁
i∈I Xi are the

canonical embeddings.

Definition 2.9. Let X be a topological space and F := ⟨Xi : i ∈ I⟩ a family
of its subspaces. The gluing structure induced by F is G := ⟨F ,∼f⟩ where f :=∇
i∈I ei :

∑︁
i∈I Xi → X and ei : Xi → X are the embeddings for i ∈ I. The gluing

structure G induces the glued sum XG =
∑︁

i∈I Xi/∼f by Definition 2.1. We say
that ⟨X,F⟩ is an inner tree sum, or that X is an inner tree sum of F , if G induces
a tree sum and f i : XG → X is a homeomorphism.

The family F also induces a set SF := {x ∈ X : |{i ∈ I : x ∈ Xi}| ≥ 2}
and a graph GF on I ⊔ SF where ⟨s, i⟩ is an edge from s ∈ SF to i ∈ I if and
only if s ∈ Xi. Note that SF and GF are canonically isomorphic to SG and GG,
respectively. We often identify F with G, and we write SX and GX instead of SF
and GF when the family F is implied.

Remark 2.10. We need the outer tree sum to construct bigger spaces from
summands, but when a bigger space is already constructed, we usually assume
that the summands are subspaces of the sum, and we switch to the inner view.

Even though we define the inner tree sum so that the connection with the
outer tree sum is clear, the following characterization is easier to work with.

Proposition 2.11. Let X be a topological space and F := ⟨Xi : i ∈ I⟩ a family
of its subspaces. X is an inner tree sum of F if and only if the following conditions
hold.

(i)
⋃︁
i∈I Xi = X.

(ii) X is inductively generated by the family F .
(iii) The undirected version of GF is a tree.

Proof. Let ei : Xi → X and e′i : Xi →
∑︁

j∈I Xj be the canonical embeddings for
every i ∈ I. Let us consider the map f :=

∇
i∈I ei :

∑︁
i∈I Xi → X. Clearly, f i is

bijective iff f is surjective iff
⋃︁
i∈I Xi = X. Note that

∑︁
i∈I Xi/∼f is inductively

generated by the family ⟨fq ◦ e′i : i ∈ I⟩. By the universal property of inductive
generation, a bijective f i is a homeomorphism if and only if X is inductively
generated by the family ⟨f i ◦ fq ◦ e′i = f ◦ e′i = ei : i ∈ I⟩. Finally,

∑︁
i∈I Xi/∼f is

a tree sum if and only if GF is a tree since GF is canonically isomorphic to the
gluing graph of

∑︁
i∈I Xi/∼f .

Observation 2.12. Let X be a topological space and F := ⟨Xi : i ∈ I⟩ a
family of its subspaces. If ⟨xj : j ∈ J⟩ is a family of points in

⋃︁
i∈I Xi and

F ′ := F ⊔⟨{xj} : j ∈ J⟩, then X is a tree sum of F if and only if X is a tree sum
of F ′ (i.e. one-point spaces in gluing structures are essentially irrelevant).

Proof. Clearly,
⋃︁

rng(F) =
⋃︁

rng(F ′). Also, X is inductively generated by F if
and only if it is inductively generated by F ′ since every member of F ′ is contained
in a member of F . Finally, GF is a tree if and only if GF ′ is a tree. We have
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SF ′ = SF ∪ {xj : j ∈ J}, and the vertices of GF ′ are I ⊔ SF ′ ⊔ J . Also, GF is the
subgraph of GF ′ induced by I ⊔ SF . For every s ∈ SF ′ \ SF there is exactly one
i ∈ I such that s ∈ Xi, and the graph GF ′ adds s as a new gluing vertex and
⟨s, i⟩ as a new edge. The graph GF ′ also adds every j ∈ J as a new vertex and
⟨xj, j⟩ as a new edge. These changes clearly do not affect, whether the graph is a
tree.

2.2 Tree subsums and branches
Definition 2.13. Let X be a tree sum of a family of its subspaces ⟨Xi : i ∈ I⟩
and let Y ⊆ X. We often use the following notation.

• IY := {i ∈ I : Y ∩Xi ̸= ∅} and Ix := I{x} for x ∈ X.
• SY := SX ∩ Y .
• GY denotes the subgraph of GX induced by IY ⊔ SY .
• FY := ⟨Y ∩Xi : i ∈ IY ⟩.

We say that Y is a tree subsum of X if it is an inner tree sum of the family
FY . Note that SY = SFY and GY = GFY , so the notation is consistent with
Definition 2.9.

Proposition 2.14. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩ and Y ⊆ X. The
following conditions are equivalent.

(i) Y is a tree subsum of X.
(ii) GY is connected, i.e. it is a subtree of GX .
(iii) qi[Y ] = Y ∩Xi for every i ∈ IY .

Proof. Let Yi denote Y ∩Xi for every i ∈ I.

(i) =⇒ (ii) is trivial.
(ii) =⇒ (i). By Proposition 2.11 it remains to show that Y is inductively gen-

erated by the subspaces ⟨Yi : i ∈ IY ⟩. Let U ⊆ Y be such that for every
i ∈ IY the set U ∩ Yi is open in Yi, i.e. there is Ui ⊆ Xi open in Xi such
that Ui ∩ Yi = U ∩ Yi.
Let us put W :=

⋃︁
i∈IY Ui. We have W ∩Y =

⋃︁
i∈IY Ui∩Y =

⋃︁
i∈IY Ui∩Yi =⋃︁

i∈IY U ∩ Yi = U . But W does not have to be open in X. For every i ∈ IU
we consider the set Vi :=

⋃︁
{q−1

i (s) : s ∈ SUi \ Yi}. These are all points in
the summands of X attached to Xi via some gluing point in Ui \ Y . For
every x ∈ Vi there is j ∈ I \ {i} such that x ∈ Xj and a unique path from j

to i in GX . This path goes through some s ∈ SUi \Yi. Since GY is connected
and i ∈ GY and s /∈ GY , we have j /∈ GY and x /∈ Y . Therefore, Vi∩Y = ∅.
Let us put W ′ := W ∪

⋃︁
i∈IU Vi. We have W ′ ∩ Y = W ∩ Y = U . To show

that W ′ is open in X it is enough to observe that W ′ ∩Xi is open in Xi for
every i ∈ I. Let i ∈ IU ; from the definition of Vi, we have Vi ∩Xj ∈ {∅, Xj}
for every j ̸= i, and Vi ∩Xi = SUi \ Yi ⊆ Ui. Therefore, W ′ ∩Xi ∈ {∅, Xi}
for every i ∈ I \ IU , and W ′ ∩Xi = Ui for every i ∈ IU .
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(ii) =⇒ (iii). Let i ∈ IY . We have qi[Y ] = Yi ∪ {s ∈ SXi : Y ∩ q−1
i (s) \ {s} ≠ ∅}.

Let s ∈ SXi and x ∈ q−1
i (s) \ {s}. There is j ∈ I such that x ∈ Xj and the

path from i to j in GX goes through s. We have i ∈ GY , so if x ∈ Y , then
j ∈ GY and s ∈ GY by the connectedness of GY , and hence s ∈ Yi.

(iii) =⇒ (ii). Let i ∈ GY , s ∈ SXi , and j ∈ GY such that the path from i to
j in GX goes through s. It is enough to show that s ∈ Y . We have that
{s} = qi[Yj] ⊆ qi[Y ] = Yi ⊆ Y .

Proposition 2.15. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩. Let F := ⟨Yi : i ∈
IF⟩ be a family such that IF ⊆ I and Yi ⊆ Xi for every i ∈ IF . Let Y :=

⋃︁
i∈IF Yi.

(i) If GF is connected, then Y ∩Xi = Yi for every i ∈ IF .
(ii) If GF is connected, then |Y ∩Xi| ≤ 1 for every i ∈ I \ IF .
(iii) If Y is a tree sum of F , then Y is a tree subsum of X.

Proof.

(i) Let i ∈ IF . Clearly, Y ∩ Xi = Yi ∪ (SY ∩ Xi). For every s ∈ SY ∩ Xi \ Yi
there is j ∈ IF \ {i} such that s ∈ Yj. Since GF is connected and it is an
induced subgraph of GX , which is a tree, the path ⟨i, s, j⟩ in GX is a path
in GF as well. Hence, s ∈ SF and s ∈ Yi.

(ii) Let i ∈ I \ IF . Suppose that s ̸= s′ ∈ Y ∩ Xi. Let j, j′ ∈ IF be such that
s ∈ Yj ∩Xi and s′ ∈ Yj′ ∩Xi. We have that j ̸= j′ since otherwise ⟨i, s, j⟩
and ⟨i, s′, j⟩ would be two different paths in GX . Hence, we have a path
⟨j, s, i, s′, j′⟩ in GX . But since GF is a connected subgraph of GX , there is
another path from j to j′. That is a contradiction since GX is a tree.

(iii) We are comparing the families F and FY = ⟨Y ∩ Xi : i ∈ IY ⟩. We may
assume that every Yi ̸= ∅, otherwise we would have F = ⟨∅⟩, Y = ∅,
FY = ⟨⟩, and the claim would hold. By that assumption, IF ⊆ IY . Since
GF is a tree, we have F = FY ↾IF by (i) and |Y ∩ Xi| = 1 for i ∈ IY \ IF
by (ii). Therefore, we may use Observation 2.12, and Y is a tree sum of FY
since it is a tree sum of F .

Lemma 2.16. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩. Let F := ⟨Yj : j ∈ J⟩
be a family of subspaces of X. If for every i ∈ I there is j ∈ J such that Xi ⊆ Yj,
then

⋃︁
j∈J Yj = X and X is inductively generated by F . Therefore, X is a tree

sum of F if and only if GF is a tree.

Proof. We use Proposition 2.11. Clearly, we have
⋃︁
j∈J Yj ⊇

⋃︁
i∈I Xi = X. Also,

if a set U ⊆ X is such that U ∩ Yj is open in Yj for every j ∈ J , then U ∩Xi is
open in Xi for every i ∈ I, and hence U is open in X, and hence X is inductively
generated by F . The conclusion follows again from Proposition 2.11.

Definition 2.17. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩. For every x ∈ X
we define its branches ⟨Bx,i : i ∈ Ix⟩ by the formula Bx,i := {x} ∪ q−1

i [Xi \ {x}].
That is, for x ∈ SX we have Bx,i =

⋃︁
{Xj : j ∈ Jx,i} where Jx,i is the set of all

indices j ∈ I such that in the path from x to j in GX the edge from x goes to i.
Note that if x ∈ SX we have |Ix| ≥ 2 and Bx,i∩Bx,j = {x} for every i ̸= j ∈ Ix,

whereas if x ∈ X \ SX there is only one i in Ix and Bx,i = X.
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Observation 2.18. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩, let x ∈ X, and
let Bx := ⟨Bx,i : i ∈ Ix⟩ be the enumeration of branches at x. We have that every
Bx,i is a tree subsum of X and that X is a tree sum of Bx.

Proof. For x ∈ X \ SX this is clear, so let x ∈ SX . For every j ∈ I such that
Bx,i ∩ Xj ̸= ∅ there is a path ⟨x, i0, s0, . . . , jn = j⟩ in GX . Either i0 = i and
Xjk ⊆ Bx,i for every k ≤ n, or i0 = j. In both cases the path lies in GBx,i , and
hence the graph is connected and Bx,i is a tree subsum of X by Proposition 2.14.
For every i ̸= j ∈ Ix we have Bx,i ∩ Bx,j = {x}, and hence GBx is a tree. Since
every summand Xj lies in some Bx,i, we have that X is a tree sum of Bx by
Lemma 2.16.

2.3 Separation of tree sums
Now we will introduce an alternative description of standard separation axioms
that is based on existence of continuous maps into special topological spaces. We
do this in order to prove preservation of separation axioms for tree sums in a
uniform and concise way.

Definition 2.19. We say that S is a monotone separation scheme if S = ⟨YS ,≤S⟩
where YS is a topological space containing the points 0 and 1, and ≤S is a linear
order on YS such that 0 is the minimum, 1 is the maximum, and for every y ∈ YS
we have YS/(←, y] ∼= [y,→) via the obvious canonical map (this last condition is
motivated by Observation 2.20).

Let X be a topological space. We say that a pair A,B ⊆ X is S-separated if
there is a continuous function f : X → YS such that f [A] ⊆ {0} and f [B] ⊆ {1}.
We also say that

• X is SP-separated if for every x ̸= y ∈ X either {x}, {y} or {y}, {x} is
S-separated,

• X is SPP-separated if every pair of distinct points of X is S-separated,
• X is SPC-separated if every point and every closed set not containing that

point are S-separated.

We consider the following monotone separation schemes:

• S1 is the Sierpiński space on {0 < 1} with isolated point 1.
• S2 is the space {0 < 1

2
< 1} with the topology generated by the two

singletons {0}, {1}.
• S2 1

2
is the space {0 < 0̄ < 1

2
< 1̄ < 1} with the topology generated by the

sets {0}, {0, 0̄, 1
2
}, {1

2
, 1̄, 1}, {1}.

• Sf is [0, 1] where the order is inherited from R.
• Sc is the discrete space {0 < 1}.

Observation 2.20. Let S be a monotone separation scheme, X a topological
space. If A,B ⊆ X are S-separated, then for every y ∈ YS there is a continuous
map f : X → YS such that f [A] ⊆ {y}, f [B] ⊆ {1}.
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Proof. Let y ∈ YS , let q : YS → [y,→) be the quotient map induced by the
canonical homeomorphism YS/(←, y] ∼= [y,→). If f0 : X → YS S-separates A,B,
then for f := q ◦ f0 : X → [y,→) ⊆ YS we have f [A] ⊆ {q(0)} = {y}, f [B] ⊆
{q(1)} = {1}.

Observation 2.21. Let X be a topological space.

• X is T0 if and only if it is SP
1 -separated.

• X is symmetric (i.e. for every x ̸= y ∈ X, if there is open Ux such that
x ∈ Ux /∋ y, then there is open Uy such that x /∈ Uy ∋ y) if and only if for
every point x disjoint from a closed set F there is an open set U such that
x /∈ U ⊇ F , that is if and only if X is SPC

1 -separated.
• X is T1 if and only if it is SPP

1 -separated.
• X is T2 or Hausdorff if and only if it is SPP

2 -separated.
• X is T2 1

2
or Urysohn (i.e. for every x ̸= y ∈ X there are open sets Ux ∋ x

and Uy ∋ y such that Ux ∩ Uy = ∅) if and only if it is SPP
2 1
2

-separated.

• X is functionally T2 (i.e. for every x ̸= y ∈ X there is a continuous function
f : X → [0, 1] such that f(x) = 0 and f(y) = 1) if and only if it is SPP

f -
separated.

• X is totally separated (i.e. for every x ̸= y ∈ X there is a clopen set U ⊆ X

such that x ∈ U /∋ y) if and only if it is SPP
c -separated.

• X is regular if and only if it is SPC
2 -separated.

• X is completely regular if and only if it is SPC
f -separated.

• X is zero-dimensional if and only if it is SPC
c -separated.

Observation 2.22. For every monotone separation scheme S the properties of
being SP-separated, SPP-separated, and SPC-separated are hereditary.

Proof. Let X ⊆ Y be topological spaces. If x, y are distinct points of X, then they
are distinct points of Y . If x is a point not in a closed set F in X, then x /∈ clY (F ).
Hence, we can move the situation to Y . If f S-separates the corresponding sets
in Y , then f↾X S-separates the corresponding sets in X.

Proposition 2.23. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩ and let S be a
monotone separation scheme. The space X is SP-, SPP-, or SPC-separated if and
only if all the spaces Xi are SP-, SPP-, or SPC-separated, respectively.

Proof. “=⇒” follows from Observation 2.22. “⇐=” for SP and SPP follows from
the fact that for every two points x ̸= y ∈ X there is i ∈ I such that qi(x) ̸=
qi(y) since if a continuous map f : Xi → YS S-separates {qi(x)}, {qi(y)}, then
f ◦ qi : X → YS S-separates {x}, {y}.

So let x ̸= y ∈ X. If x /∈ SX , let i ∈ I be the index such that x ∈ Xi. If y ∈ Xi,
then qi(y) = y ̸= x = qi(x); if y /∈ Xi, then qi(y) ∈ SX /∋ x = qi(x). If y /∈ SX , we
proceed symmetrically. If x, y ∈ SX , consider the only path in GX from x to y,
going through vertices x, i0, s0, . . . , in, y. Then we have qi0(x) = x ̸= s0 = qi0(y).
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To prove “⇐=” for SPC let x ∈ X, x /∈ F ⊆ X closed. If x ∈ SX , we put
S ′ := SX and G′ := GX ; if x /∈ SX , we put S ′ := SX ∪ {x} and define G′ as the
graph on I ⊔ S ′ extending GX with the edge ⟨x, i0, x⟩ where i0 ∈ I is the index
such that x ∈ Xi0 . We also define a strict partial order < on G′: a < b if and only
if the path from x to a is a strict initial segment of the path from x to b. Basically,
we are just rooting the tree at x in order to perform an inductive construction.

We will define continuous maps fi : Xi → YS for i ∈ I and values ys ∈ YS
for s ∈ S ′. We define yx := 0. If s ∈ S ′ is a <-successor of i ∈ I, we define
ys := fi(s). If i ∈ I is a <-successor of s ∈ S ′, we define fi as a continuous map
such that fi(s) = ys and fi[F ∩ Xi] ⊆ {1}, which exists by Observation 2.20.
By the construction, f :=

⋃︁
i∈I fi : X → YS is continuous and S-separates {x},

F .

Corollary 2.24. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩. The space X is
separated if and only if all the spaces Xi are separated with “separated” meaning
T0, symmetric, T1, T2, T2 1

2
, functionally T2, totally separated, regular, completely

regular, or zero-dimensional.

Definition 2.25. Let X be a topological space. We say that A ⊆ X is a T 1
2
-

subset of X if every point of A is closed or isolated in X. Equivalently, X is T 1
2

at every point of A.

In order to take care of the T 1
2

separation axiom we need to introduce the
following condition.

Definition 2.26. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩. We say that the
corresponding gluing is T 1

2
-compatible if we never glue a non-isolated closed point

to a non-closed isolated point, i.e. there are no s ∈ SX , i, j ∈ Is such that s is non-
isolated and closed in Xi and non-closed isolated in Xj. Note that if the spaces
Xi are T 1

2
, this is equivalent to never gluing a non-closed point to a non-isolated

point.

Proposition 2.27. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩.

(i) SX is a T 1
2
-subset of X if and only if every SX ∩ Xi is a T 1

2
-subset of Xi

and the gluing is T 1
2
-compatible.

(ii) The space X is T 1
2

if and only if all spaces Xi are T 1
2

and the gluing is
T 1

2
-compatible.

Proof.

(i) Clearly, if SX is a T 1
2
-subset of X, then SX ∩ Xi is a T 1

2
-subset of Xi for

every i ∈ I. Also, under this condition the gluing is T 1
2
-compatible if and

only if every s ∈ SX is closed in every Xi or isolated in every Xi for i ∈ Is.
In other words, if and only if SX is a T 1

2
-subset of SX .

(ii) The space X is T 1
2

if and only if both SX and X \ SX are T 1
2
-subsets of X.

The same holds for spaces Xi. It is enough to use (i) and observe that a
point in X \SX is closed or isolated in X if and only if it is so in the space
Xi that contains it.
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2.4 Neighborhood-related properties and I-subsets
Let us start with two lemmata for building neighborhoods in tree sums.

Lemma 2.28. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩, let Ui ⊆ Xi for every
i ∈ I, and let U :=

⋃︁
i∈I Ui. If every Ui is open in the corresponding Xi and every

s ∈ SU is either isolated or s ∈
⋂︁
i∈Is Ui, then U is open in X.

Proof. It is enough to show that every U ∩Xi is open in the corresponding Xi.
Clearly, U ∩Xi = Ui ∪ SU∩Xi . By our assumptions, every gluing point in U ∩Xi

is either isolated or already contained in Ui, and hence U ∩Xi is open in Xi.

Lemma 2.29. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩ and x ∈ X. Let S ′

denote the set of all non-isolated gluing points. If ⟨Ui : i ∈ Ix⟩ is a family such
that for every i ∈ Ix we have x ∈ Ui ⊆ Xi and Ui is open in Xi, and V ⊆ X

is open such that x ∈ V and V ∩ S ′ ⊆ {x}, then W := V ∩
⋃︁
i∈Ix Ui is an open

neighborhood of x in X.

Proof. The claim follows from Lemma 2.28 applied to the family ⟨V ∩Ui : i ∈ I⟩
where we additionally put Ui := ∅ for i ∈ I \ Ix.

Let us define the notion of I-subset that naturally occurs in several following
propositions.

Definition 2.30. Let X be a topological space. We say that A ⊆ X is an I-subset
of X if it is a union of an open discrete subset and a closed discrete subset of X.
Equivalently, the points of A that are not isolated in X form a closed discrete
subset of X. The name is derived from the related concept of I-space introduced
in [2, Definition 1.4].

Definition 2.31. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩. We say that the
corresponding gluing is I-compatible if we never glue a non-isolated closed point
to an isolated point, i.e. there are no s ∈ SX , i, j ∈ Is such that s is non-isolated
and closed in Xi and isolated in Xj. Note that if the spaces Xi are T 1

2
, this is

equivalent to never gluing an isolated point to a non-isolated point.

Note that the “I” in the notions of I-subset, I-space, and I-compatibility is a
constant symbol referring to “isolated” rather than a mathematical variable I. In
particular, it is not related to the index set I that is sometimes present.

Observation 2.32. In a topological space every I-subset is a T 1
2
-subset.

Observation 2.33. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩. If the gluing
is I-compatible, then it is T 1

2
-compatible. If, additionally, no space Xi contains a

clopen point, then the other implication holds as well.

Proof. The claim follows from the definition. If there are no clopen points in
spaces Xi, then every isolated point is non-closed.

Observation 2.34. Let X be a topological space inductively generated by a
family of its subspaces ⟨Xi : i ∈ I⟩. Let A ⊆ X and let Ai := A ∩ Xi for every
i ∈ I.

30



(i) A is closed discrete if and only if every Ai is closed discrete in the corre-
sponding Xi.

(ii) A is open discrete if and only if every Ai is open discrete in the correspond-
ing Xi.

Proof. Clearly, if A is closed discrete in X, then so is every Ai in Xi. For the other
implication let every Ai be closed discrete in Xi. For every B ⊆ A and i ∈ I we
have that B ∩ Xi is closed in Xi since B ∩ Xi ⊆ Ai and Ai is closed discrete.
Therefore, every B ⊆ A is closed in X, and hence A is closed discrete in X. The
proof of (ii) is analogous.

Proposition 2.35. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩.

(i) The set SX is discrete if and only if SX ∩Xi is discrete for every i ∈ I.
(ii) If SX is an I-subset of X, then SX ∩Xi is an I-subset of Xi for every i ∈ I

and the gluing is T 1
2
-compatible.

(iii) If SX∩Xi is an I-subset of Xi for every i ∈ I and the gluing is I-compatible,
then SX is an I-subset of X.

Proof.

(i) Clearly, if SX is discrete, then SX ∩Xi is discrete for every i ∈ I. For the
other implication let s ∈ SX . Since SX ∩Xi is discrete for every i ∈ I, then
for every i ∈ Is there is Ui open in Xi such that Ui ∩ SX = {s}. Consider
U :=

⋃︁
i∈Is Ui. Then U ∩ SX = {s} and U is open since U ∩ Xi = Ui if

i ∈ Is, ∅ otherwise.
(ii) Clearly, SX ∩Xi is an I-subset of Xi for every i ∈ I. The rest follows from

Observation 2.32 and Proposition 2.27 (i).
(iii) Let S ′ be the set of all points of SX not isolated in X and let S ′

i be the set
of all points of SX ∩Xi not isolated in Xi for every i ∈ I. For every s ∈ S ′

there is is ∈ Is such that s is not isolated in Xis . The point s is also closed
in Xis since S ′

is is closed discrete. Since the gluing is I-compatible, s is not
isolated in any Xi for i ∈ I. Therefore, S ′ ∩ Xi ⊆ S ′

i for every i ∈ I, and
since every S ′

i is closed discrete in Xi, the set S ′ is closed discrete in X by
Observation 2.34.

The following examples show that the claims in Proposition 2.35 are sharp.

Example 2.36. Let X be a wedge sum of spaces ⟨Xi : i ∈ I⟩, i.e. SX = {x} for
some x ∈ X. If x is a closed point in every Xi, then SX is clearly an I-subset of
X. On the other hand, if additionally x is clopen in some but not all spaces Xi,
then we glued an isolated point to a closed non-isolated point, so the gluing is
not I-compatible.

Example 2.37. Let us consider a tree sum X =
∑︁

n≤ωXn/∼ where Xn for
n < ω is the Sierpiński space on {0, 1} with isolated point 1, the space Xω is
the convergent sequence ω + 1, and we glue ⟨ω, n⟩ ∼ ⟨n, 0⟩ for every n < ω,
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i.e. we glue the n-th member of the sequence with the non-isolated point of the
corresponding Sierpiński space.

We have that the gluing is T 1
2
-compatible, and so X is T 1

2
by Proposition 2.27.

We also have that SX ∩Xn is an I-subset of Xn for every n ≤ ω, but SX is not
an I-subset of X – it contains no isolated point of X and it is discrete but not
closed.

Now we use the condition of SX being an I-subset of X as an assumption.

Proposition 2.38. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩. If SX is an
I-subset of X, then X is hereditarily inductively generated by the inclusions of
the spaces Xi.

Proof. Let U ⊆ A ⊆ X. Put Ai := A ∩ Xi for i ∈ I. We want to show that if
U ∩ Ai is open in Ai for every i ∈ I, then U is open in A. Let x ∈ U . For every
i ∈ Ix there is Ui open in Xi such that Ui ∩ Ai = U ∩ Ai. Let S ′ be the set of all
non-isolated gluing points. Since S ′ is closed discrete, there is an open set V ⊆ X

containing x such that V ∩S ′ ⊆ {x}. By Lemma 2.29 W := V ∩
⋃︁
i∈Ix Ui is open in

X, and we have x ∈ W∩A ⊆
⋃︁
i∈Ix Ui∩A =

⋃︁
i∈Ix Ui∩Ai =

⋃︁
i∈Ix U∩Ai ⊆ U .

Proposition 2.39. Let ⟨X, τ⟩ :=
∑︁

i∈I⟨Xi, τi⟩/∼ be a tree sum, let A ⊆ P(X).
We put τ ∗ := τ ∨ A, τ ∗i := τi ∨ {A ∩Xi : A ∈ A}. If we have that

(i) SX is an I-subset of ⟨X, τ⟩,

(ii) for every x ∈ SX there is a τ -open set Gx such that {A ∈ A : x ∈ A ⊉ Gx}
is finite;

then ⟨X, τ ∗⟩ =
∑︁

i∈I⟨Xi, τ
∗
i ⟩/∼, i.e. such expansion of a tree sum is a tree sum of

the corresponding expansions.

Proof. Clearly, all the maps ei : ⟨Xi, τ
∗
i ⟩ → ⟨X, τ ∗⟩ are continuous, and hence

we have that idX :
∑︁

i∈I⟨Xi, τ
∗
i ⟩/∼ → ⟨X, τ ∗⟩ is continuous by the inductive

generation. To prove the equality it is enough to show that τ ∗ is inductively
generated by maps ei : ⟨Xi, τ

∗
i ⟩ → X. So let U ⊆ X be such that U ∩ Xi is

τ ∗i -open for every i ∈ I. We will show that U is τ ∗-open.
Let x ∈ U \ S ′ where S ′ denotes the set of all non-isolated gluing points. If

x is an isolated gluing point, then we are done, otherwise let i be the only i ∈ I
such that x ∈ Xi. Let Ui be a τi-open set and B ⊆ A a finite family such that
x ∈ Ui ∩

⋂︁
B ⊆ U . We have that Ui \ S ′ is τ -open since it is τi-open and for

every j ̸= i it holds that (Ui \S ′)∩Xj is either empty or an isolated gluing point
connecting Xi with Xj. Therefore, Wx := Ui ∩

⋂︁
B \S ′ is a τ ∗-neighborhood of x

in U .
Let x ∈ U ∩ S ′. We put B :=

⋂︁
{A ∈ A : x ∈ A ⊉ Gx}, which is τ ∗-open

since the set is finite. For every i ∈ Ix there is an τi-open set Ui ⊆ Gx such that
x ∈ Ui ∩ B ⊆ U . There is also a τ -open set V such that V ∩ S ′ = {x}. By
Lemma 2.29

⋃︁
i∈Ix Ui ∩ V is a τ -neighborhood of x, so Wx :=

⋃︁
i∈Ix Ui ∩ V ∩B is

a τ ∗-neighborhood of x in U .
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2.5 Connectedness-related properties
Now we focus on connectedness-related properties of tree sums.

Proposition 2.40. A tree sum X of spaces ⟨Xi : i ∈ I⟩ is connected if and only
if all the spaces Xi are connected.

Proof. “=⇒”. By Proposition 2.7 all the spaces Xi are quotients of the connected
space X. “⇐=”. Every component of connectedness contains all spaces Xi that
it intersects. Hence, it contains whole X because every two spaces Xi, Xj are
connected via a path in GX .

Observation 2.41. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩. Let x ∈ X

and let ⟨Bi : i ∈ Ix⟩ be the branches at x. If x is closed or isolated in X, then
⟨Bi \ {x} : i ∈ Ix⟩ is a clopen decomposition of X \ {x}.

Proof. If x is closed, then every Bi\{x} is open in X since the only space Xj such
that (Bi\{x})∩Xj /∈ {∅, Xj} isXi where the intersection isXi\{x}, which is open.
Similarly, if x is isolated, then every Bi is open in X since Bi ∩Xj ∈ {∅, {x}, Xj}
for every j ∈ I. In both cases, Bi \ {x} is clopen in X \ {x}.

Observation 2.42. Let X be a topological space, let x ∈ X, and let ⟨Xi : i ∈ I⟩
be a clopen decomposition of X \ {x}. One of the following situations happens.

(i) The point x is closed in X and every Xi is open in X.
(ii) The point x is isolated in X and every Xi is closed in X.
(iii) There is i ∈ I such that x is neither closed nor isolated in Xi ∪ {x} while

Xj is clopen for every j ∈ I \ {i}.

Proof. Since ⟨Xi : i ∈ I⟩ is a clopen decomposition of X \ {x}, there are sets
⟨Ui : i ∈ I⟩ open in X such that for every i ∈ I we have Ui \ {x} = Xi. If we may
choose Ui = Xi for every i ∈ I, we are in situation (i). Otherwise, there is i ∈ I
such that Ui = Xi ∪{x} and Xi is not open in X. If there is j ∈ I \ {i} such that
we may choose Uj = Xj ∪ {x}, we are in situation (ii) since {x} = Ui ∩ Uj and
X \Xk =

⋃︁
{Ul : l ∈ I \ {k}} for every k ∈ I. If there is no such j, then Uj = Xj

for every j ∈ I \ {i}, the point x is not isolated in X, and ⟨Ui, Uj : j ∈ I \ {i}⟩
is a clopen decomposition of X. Hence, we are in situation (iii).

Proposition 2.43. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩ such that every
gluing point is closed or isolated, i.e. SX is a T 1

2
-subset of X. Let C ⊆ X and

Ci := C ∩Xi for every i ∈ IC . The set C is connected if and only if every Ci is
connected and GC is connected. That is, connected subspaces of X are exactly
tree subsums of connected subspaces.

Proof. Suppose that C is connected. Let s ∈ SX \ C and let ⟨Bi : i ∈ Is⟩ be the
branches of X at s. Since s is closed or isolated, it follows from Observation 2.41
that every Bi \ {s} is clopen in X \ {s}, and hence C ⊆ Bi \ {s} for some i ∈ Is.
Therefore, GC is a connected graph.

If GC is connected, then C is a tree sum of ⟨Ci : i ∈ IC⟩ by Proposition 2.14,
and the claim follows from Proposition 2.40 applied to C and ⟨Ci : i ∈ IC⟩.
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2.6 Maximal connectedness of tree sums
Now we finally use the machinery built in the previous sections to prove the
theorems about maximal connectedness in tree sums of topological spaces.

Theorem 2.44. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩ such that the set of
all non-isolated gluing points is closed discrete, i.e. SX is an I-subset of X.

(i) If the spaces Xi are maximal connected, then X is maximal connected.
(ii) If the spaces Xi are strongly connected, then X is strongly connected.
(iii) If the spaces Xi are essentially connected, then X is essentially connected.

Proof. Let τ be the topology on X, τi the topology on Xi for every i ∈ I.

(i) By Proposition 2.40 X is connected. Let A ⊆ X be non-τ -open. Consider
τ ∗ := τ ∨ {A} and τ ∗i := τi ∨ {A ∩ Xi} for i ∈ I. Since A is not τ -open,
there is i ∈ I such that A∩Xi is not τi-open, and hence τ ∗i is disconnected
since τi is maximal connected. By Proposition 2.39 ⟨X, τ ∗⟩ is a tree sum of
the spaces ⟨Xi, τ

∗
i ⟩. Therefore, it is disconnected by Proposition 2.40.

(ii) Let τ ∗i be a maximal connected expansion of τi for every i ∈ I, let ⟨X, τ ∗⟩
be the corresponding tree sum. Clearly, τ ∗ is an expansion of τ . Since SX
is an I-subset of ⟨X, τ⟩, it is an I-subset of ⟨X, τ ∗⟩ as well, and hence by (i)
τ ∗ is maximal connected.

(iii) Again, X is connected by Proposition 2.40. By Observation 1.4 it is enough
to test essential connectedness only on expansions by finite families. Let C
be a connected subset of ⟨X, τ⟩, let τ ∗ be a connected expansion of τ by a
finite family, and let τ ∗i := τ ∗↾Xi for i ∈ I. ⟨X, τ ∗⟩ is a tree sum of spaces
⟨Xi, τ

∗
i ⟩ by Proposition 2.39. By Proposition 2.43 every τ ∗i is connected and

every Ci := C ∩ Xi is τi-connected. By the essential connectedness every
Ci is τ ∗i -connected and hence τ ∗-connected. Therefore, C is τ ∗-connected
again by Proposition 2.43.

Corollary 2.45. The following spaces are strongly connected: Rκ (or generally
any real topological vector space), [0, 1]κ, [0, 1)κ for κ ≥ 1, spheres, and many
others for which the technique described in the proof can be adapted.

Proof. Let us consider the space Rκ. Let {Li : i ∈ I} be the family of all lines
through the origin in Rκ, and let τ be the topology on Rκ inductively generated
by the lines (this idea is due to [8, Corollary 5A]). Clearly, τ refines the standard
topology on Rκ. By Proposition 2.11 ⟨Rκ, τ⟩ is a tree sum of the lines Li. By
Theorem 1.14 the lines are strongly connected, and hence ⟨Rκ, τ⟩ is strongly
connected by Theorem 2.44.

The situation with the other spaces is analogous. The general idea is to cut
a space so one gets a tree sum of real intervals that refines the original topology.
For example a sphere is cut into meridians glued together at one pole with the
other pole attached to one of the meridians.

Question 2.46. Is every CW complex strongly connected?
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Observation 2.47. Let ⟨X, τ⟩ be a topological space, τ ∗ a connected expansion
of τ , x ∈ X. We denote the family of all τ -connected components of X \ {x} by
Cx and the family of all τ ∗-connected components of X \ {x} by C∗x. If ⟨X, τ⟩ is
essentially connected, then Cx = C∗x. Hence, if ⟨X, τ⟩ is a topological realization
of a tree graph, then any maximal connected expansion τ ∗ still possesses the
structure of the graph: the vertices of degree ̸= 2 can be easily identified and the
edges remain connected by essential connectedness.

Let us focus on the question, whether the assumption of SX being an I-subset
of X is necessary in Theorem 2.44.

Example 2.48. Not every tree sum of copies of the Sierpiński space is maximal
connected. Let X1 be the Sierpiński space on {0, 1} with isolated point 1 and X2

the Sierpiński space on {1, 2} with isolated point 2. Consider X := (X1⊕X2)/∼
where ∼ glues the points 1 together. The specialization order (Definition 3.6) on
X is 0 < 1 < 2 and the gluing is not T 1

2
-compatible, and hence X is not maximal

connected since it is even not T 1
2
.

Also, the set C := {0, 2} ⊆ X is connected, but the graph GC is not con-
nected. This shows that the assumption about closed or isolated gluing points in
Proposition 2.43 is necessary.

Example 2.49. Not every tree sum of maximal connected spaces is maximal
connected or even essentially connected. Let ⟨[0, 1]x : x ∈ [0, 1]⟩ be copies of the
real interval [0, 1] with a maximal connected expansion of the standard topology.
Consider a comb-like space ⟨X, τ⟩ :=

∑︁
x∈[0,1][0, 1]x/∼ where ∼ glues together

points ⟨0, x⟩ ∼ ⟨x, 1⟩ for x > 0. ⟨X, τ⟩ is a tree sum of the maximal connected
intervals, but it is not maximal connected itself.

Let A := {⟨0, 0⟩} ∪
⋃︁
x>0[0, 1)x, and τ ∗ := τ ∨ {A}. Clearly, τ ∗ is a strict

expansion of τ since A ∩ [0, 1]0 = {⟨0, 0⟩}, which is not τ -open in [0, 1]0. By
Lemma 1.7, the set X \ {⟨0, 0⟩} is τ ∗-connected since it is τ -connected and (X \
{⟨0, 0⟩}) ∩ A =

⋃︁
x>0[0, 1)x, which is τ -open. We also have that ⟨0, 0⟩ is in τ ∗-

closure of
⋃︁
x>0[0, 1)x. Together, τ ∗ is still connected. But since [0, 1]0 becomes

disconnected in τ ∗, τ is not even essentially connected.

Question 2.50. Is the space X form the previous example strongly connected?
Is every tree sum of maximal connected spaces strongly connected?

The fact that the space from the previous example is not even essentially
connected is not a coincidence as the following observation shows.

Observation 2.51. Let X be a topological space whose topology is inductively
generated by a family of maximal connected subspaces ⟨Xi : i ∈ I⟩. If X is
essentially connected, then it is maximal connected.

Proof. Let τ be the topology on X. If X is not maximal connected, then there is
a non-open set A ⊆ X such that τ ∗ := τ ∨{A} is still connected. By the inductive
generation there is i ∈ I such that A ∩ Xi is not open in Xi, and hence Xi is
τ -connected but not τ ∗-connected, so ⟨X, τ⟩ is not essentially connected.
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Proposition 2.52. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩ and let S be the
set of all points s ∈ SX such that there are i ̸= j ∈ I such that {s} is nowhere
dense in both Xi and Xj, i.e. S is the set of all points that are nowhere dense in
at least two summands. If X is nodec, then S is closed discrete.

Proof. By Observation 2.34 it is enough to show that S ∩Xi is closed discrete in
Xi for every i ∈ I. Let i ∈ I and for every s ∈ S ∩ Xi let ⟨Bs,j : j ∈ Is⟩ be the
enumeration of branches of X at s. By the definition of S there is j ∈ Is \ {i}
such that {s} is nowhere dense in Xj. Let Us := Bs,j \ {s}.

Us is open in X. Since {s} is nowhere dense in Xj and hence in Bs,j, it is
closed in Bs,j, which is nodec as a subspace of X (Proposition 1.10). Hence, Us
is open in Bs,j. Since we also have Us ∩ Bs,k = ∅ for every k ∈ Is \ {j} and X is
a tree sum of ⟨Bs,j : j ∈ Is⟩ by Observation 2.18, we have proved the claim.

We also have that s ∈ Us since s is not isolated in Bs,j. Finally, let U :=⋃︁
{Us : s ∈ S ∩Xi}. We have S ∩Xi ⊆ U \ U , and the latter is a closed discrete

subset of X by an equivalent condition in Definition 1.8.

Theorem 2.53. Let X be a tree sum of nondegenerate spaces ⟨Xi : i ∈ I⟩. The
following conditions are equivalent.

(i) The space X is maximal connected.
(ii) The spaces Xi are maximal connected and SX is an I-subset of X.
(iii) The spaces Xi are maximal connected, SXi is an I-subset of Xi for every

i ∈ I, and the gluing is T 1
2
-compatible or, equivalently, I-compatible.

(iv) The spaces Xi are maximal connected and X is essentially connected.

Proof.

(i) =⇒ (ii). Every Xi is a connected subspace of X by Proposition 2.40, and
hence is maximal connected by Proposition 1.12 (i). Let S denote the set of
all non-isolated gluing points of X. For every s ∈ S and i ∈ Is we have that
s is closed in X since X is T 1

2
. Hence, s is non-isolated in Xi since otherwise

it would be clopen in connected nondegenerate space Xi. Therefore, {x} is
nowhere dense in Xi, and we may use Proposition 2.52 to show that S is
closed discrete in X, and hence SX is an I-subset of X.

(ii) =⇒ (i) is Theorem 2.44 (i).
(ii) ⇐⇒ (iii). The equivalence of T 1

2
-compatibility and I-compatibility follows

from Observation 2.33. Therefore, the claim follows from Proposition 2.35.
(i) ⇐⇒ (iv). One implication is trivial, the other follows from Observation 2.51.

Corollary 2.54. Let X be a tree sum of nondegenerate spaces ⟨Xi : i ∈ I⟩. The
space X is T1 maximal connected if and only if the spaces Xi are T1 maximal
connected and the gluing set SX is closed discrete.

Proof. Follows immediately from Proposition 2.24, Theorem 2.53, and the fact
that in a nondegenerate connected T1 space there are no isolated points, so every
I-subset is closed discrete.
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3 Finitely generated spaces
Maximal connected spaces in the class of finitely generated spaces were first char-
acterized by Thomas in [14, Theorem 5]. He also proposed a way to visualize them.
Later, Kennedy and McCartan in [10] characterized finitely generated maximal
connected topologies in the lattice T (X) as joins of two topologies of special form
based on the notion of a final A-degenerate cover where A ⊆ X.

In this section we reformulate the characterization in the language of spe-
cialization preorder and graphs – finitely generated maximal connected spaces
correspond to tree graphs having a fixed bipartition where the correspondence is
derived from the graphs of their specialization preorders (Proposition 3.11 and
Corollary 3.12). We also reformulate the characterization in the language of tree
sums – they are exactly T 1

2
-compatible tree sums of copies of the Sierpiński space

(Corollary 3.14), and we propose another method for their visualization.

Notation 3.1. Let X be a topological space and x ∈ X. We put

x◦ :=
⋂︁
{U ⊆ X : U open neighborhood of x}.

Observation 3.2. Let X be a topological space.

• Let x ∈ X. The set x◦ is the only candidate for a minimal neighborhood of
x. Hence, x has a minimal neighborhood if and only if x◦ is open.

• For every, x, y ∈ X we have {x} ⊆ {y} ⇐⇒ x ∈ {y} ⇐⇒ x◦ ∋ y ⇐⇒
x◦ ⊇ y◦.

• X is T1 if and only if {x} = {x} for every x ∈ X if and only if x◦ = {x} for
every x ∈ X.

• X is symmetric if and only if {x} = x◦ for every x ∈ X.

• For every x ∈ X the sets {x} and x◦ are connected.

Definition 3.3. Recall that a topological space X is called finitely generated (or
Alexandrov discrete) if for every x ∈ A in X there exists a finite set F ⊆ A such
that x ∈ F , equivalently if every intersection of open sets is open, equivalently
if every point x has a minimal neighborhood (which is x◦), equivalently if X is
inductively generated by the family of all finite subspaces.

Observation 3.4. Every finitely generated T 1
2

space is submaximal. Hence, a
finitely generated space is T 1

2
if and only if it is submaximal.

Proof. Let X be a finitely generated T 1
2

space. If D ⊆ X dense, then it contains
all isolated points, so {x} is closed for each x ∈ X \ D because X is T 1

2
, and

X \ D is closed because X is finitely generated. The last claim follows from
Proposition 1.9.

Observation 3.5. Every finitely generated space X is locally connected. In par-
ticular, components of connectedness are exactly nonempty clopen connected
subsets.
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Proof. If x ∈ U ⊆ X for some U open, we have x ∈ x◦ ⊆ U and x◦ is open
connected.

Definition 3.6. Recall that for every topological space X the specialization pre-
order is defined on its points by the formula

x ≤ y :⇐⇒ {x} ⊆ {y} ⇐⇒ x◦ ⊇ y◦.

The following proposition lists some well-known properties of the specializa-
tion preorder. We include a proof for the sake of completeness.

Proposition 3.7. Let X be a topological space, ≤ the specialization preorder
on X.

(i) Every open set is an upper set. Every closed set is a lower set.
(ii) The converse of (i) holds precisely for finitely generated spaces.
(iii) The construction of the specialization preorder provides a 1 : 1 correspon-

dence between finitely generated spaces and preorders.
(iv) The specialization preorder is an order if and only if X is T0.
(v) Every isolated point is a maximal element. Every closed point is a minimal

element. If X is T0 the converse also holds.
(vi) X is T 1

2
if and only if ≤ is an order with at most two levels.

Proof.

(i) If F ⊆ X is closed and x ≤ y ∈ F , then x ∈ {y} ⊆ F . Dually for an open
set.

(ii) An intersection of open sets is an upper set as an intersection of upper sets,
and hence it is open if upper sets are open. If X is finitely generated and
U ⊆ X is an upper set, then we have x ∈ x◦ ⊆ U for every x ∈ U , and
hence U is open. Dually for closed sets.

(iii) By (ii) we know that the construction is injective. We need to show that it
is surjective, i.e. for every preordered set ⟨X,≤⟩ there is a finitely generated
topology on X such that ≤ is its specialization preorder. It is enough to
consider the set of all ≤-upper sets as the desired topology. Then y ∈ x◦ if
and only if y is in the principal upper set generated by x, i.e. y ≥ x.

(iv) ≤ is an order if and only if x ∈ {y} and y ∈ {x} implies x = y for every
x, y ∈ X.

(v) If x is a closed point, then y ≤ x ⇐⇒ y ∈ {x} = {x} =⇒ y = x, and
hence it is minimal. If X is T0, then ≤ is an order, and if x is minimal, then
y ∈ {x} ⇐⇒ y ≤ x =⇒ y = x, and hence {x} is closed. Dually for an
isolated point and a maximal element.

(vi) If X is T 1
2
, then ≤ is an order by (iv) and it has at most two levels by (v).

If ≤ is an order with at most two levels, then X is T0 by (iv), and every
point is isolated or closed by (v).
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Definition 3.8. Let X be a finitely generated T 1
2

space and ≤ its specialization
preorder. We define its specialization graph G<

X as follows. Vertices are the points
of X, and there is a directed edge ⟨x, y⟩ in the graph if and only if x < y.

Proposition 3.9. The map X ↦→ G<
X provides a 1 : 1 correspondence between

finitely generated T 1
2

spaces and directed graphs with oriented paths of length
at most one. On a fixed base set, finer topologies correspond to graphs with less
edges.

Proof. Clearly, the map X ↦→ G<
X factorizes through the construction of special-

ization preorder, and we have the correspondence between finitely generated T 1
2

spaces and orders with at most two levels by Proposition 3.7 (iii), (vi). Hence, it
is enough to establish the correspondence between orders with at most two levels
and directed graphs with directed paths of length at most one.

A directed edge ⟨x, y⟩ is in G<
X if and only if x is a closed point, y is an isolated

point, and x ∈ {y}. In that case, x is ≤-minimal and y is ≤-maximal, and clearly
there cannot be oriented paths of length > 1 in G<

X .
On the other hand, we may start with an arbitrary directed graph G with

oriented paths of length at most one and interpret it as a strict part of an order
with at most two levels.

Lemma 3.10. Every simple expansion of a finitely generated space is finitely gen-
erated. Hence, every simple expansion of a finitely generated T 1

2
space is finitely

generated and T 1
2
.

Proof. Let ⟨X, τ⟩ be a finitely generated topological space, let A ⊆ X, and τ ∗ :=
τ ∨ {A}. Every family U of τ ∗-open sets is of form {(Ui ∪ A) ∩ Vi : i ∈ I} where
all the sets Ui, Vi are τ -open. Hence,

⋂︁
U =

⋂︁
i∈I(Ui∪A)∩Vi = ((

⋂︁
i∈I Ui)∪A)∩

(
⋂︁
i∈I Vi) is τ -open.

Proposition 3.11. Let X be a finitely generated T 1
2

space.

(i) Connected components of X are exactly undirected connected components
of G<

X . Hence, X is connected if and only if G<
X is connected (as undirected

graph).

(ii) X is maximal connected if and only if G<
X is a tree (as undirected graph).

Proof.

(i) Let x ∈ X. The connected component of X containing x is the lower upper
set generated by {x} because that is the smallest clopen set containing
x (we use Proposition 3.5). That is exactly the component of undirected
connectedness of G<

X .

(ii) We use the correspondence from Proposition 3.9. Connected topologies cor-
respond to connected graphs, and trees are exactly the minimal connected
graphs. We also need Lemma 3.10 and the fact that maximal connectedness
can be tested on simple expansions (Observation 1.4).
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Corollary 3.12. Finitely generated maximal connected spaces correspond to tree
graphs with a fixed bipartition.

Proof. We can use Proposition 3.11 (ii) because every maximal connected space is
T 1

2
by Proposition 1.9, and because we can equivalently describe directed graphs

with directed paths of length at most one as undirected graphs with a fixed
bipartition.

Proposition 3.13. Let X be a tree sum of spaces ⟨Xi : i ∈ I⟩. The space X is
finitely generated if and only if all spaces Xi are finitely generated.

Proof. One implication is clear since every subspace of a finitely generated space
is itself finitely generated. On the other hand, if every Xi is finitely generated, it is
inductively generated by its finite subspaces, and since X is inductively generated
by the spaces Xi, it is, by transitivity, inductively generated by some of its finite
subspaces and hence by all of its finite subspaces.

Corollary 3.14. Besides the one-point space, finitely generated maximal con-
nected spaces are exactly T 1

2
-compatible tree sums of copies of the Sierpiński

space.

Proof. Clearly, the Sierpiński space is maximal connected. Hence, every T 1
2
-com-

patible tree sum of copies of the Sierpiński space is maximal connected by The-
orem 2.53, and it is finitely generated by Proposition 3.13.

On the other hand, let X be a finitely generated maximal connected space.
Clearly, every edge of G<

X corresponds to a subspace of X homeomorphic to the
Sierpiński space. By Proposition 3.11 the corresponding gluing graph is a tree, and
the subspaces cover whole X unless X is a one-point space. Also, the Sierpiński
subspaces inductively generate the topology. If x ∈ A \ A for some A ⊆ X,
then there is y ∈ A such that x ∈ {y}, so x < y and {x, y} is the witnessing
Sierpiński subspace. Altogether, X a tree sum of the Sierpiński subspaces by
Proposition 2.11, and the gluing is T 1

2
-compatible again by Theorem 2.53.

Notation 3.15. We propose to visualize finitely generated maximal connected
spaces as follows. We just draw the specialization graph, and instead of orient-
ing the edges we distinguish two kinds of vertices: the vertices corresponding to
isolated points shall be drawn as open dots while the vertices corresponding to
closed points as solid dots. Whenever it is suitable, we draw the isolated vertices
above the closed vertices in order to stress the specialization order.

In the original paper [14] Thomas used a similar but different visualization.
Instead of drawing an edge from a closed point to every isolated point in its
smallest neighborhood, Thomas represents the smallest neighborhood by a line
segment containing all the points.

We think our visualization is less restrictive, and it deals with the duality on
finitely generated spaces well – it is enough to switch the colors of isolated and
closed vertices.

Example 3.16. We give some examples of maximal connected finitely generated
spaces. Visualizations of these spaces are given in Figure 2.
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• Clearly, the empty space, the one-point space, and the Sierpiński space are
maximal connected.

• If X is a set, x ∈ X and A ⊆ X is open if and only if x ∈ A, we obtain a
space with so-called included point topology, also called principal ultrafilter
space.

• If X is a set, x ∈ X and A ⊆ X is open if and only if x /∈ A, we obtain a
space with so-called excluded point topology, also called principal ultraideal
space.

• Let us consider the set of all integers Z with the topology generated by open
sets {{2k− 1, 2k, 2k+1} : k ∈ Z}. We obtain a finitely generated maximal
connected space called Khalimsky line or digital line.

· · ·
A principal ultrafilter space.

· · ·

A principal ultraideal space.

The Sierpiński space.

· · · · · ·

The Khalimsky line.

Figure 2: Examples of finitely generated maximal connected spaces.

Let us conclude with Figure 3, which shows all nondegenerate finitely gener-
ated maximal connected spaces with at most five points, using our visualization.
This may be compared with the corresponding picture in [14]. In our picture,
the duality of finitely generated spaces (by considering the dual specialization
preorder, in our case just by swapping isolated and closed points) is apparent.

Figure 3: All nondegenerate maximal connected spaces with at most five elements.
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Abstract
We introduce the notion of compactifiable classes – these are classes of

metrizable compact spaces that can be up to homeomorphic copies “dis-
jointly combined” into one metrizable compact space. This is witnessed by
so-called compact composition of the class. Analogously, we consider Pol-
ishable classes and Polish compositions. The question of compactifiability
or Polishability of a class is related to hyperspaces. Strongly compactifiable
and strongly Polishable classes may be characterized by the existence of
a corresponding family in the hyperspace of all metrizable compacta. We
systematically study the introduced notions – we give several characteriza-
tions, consider preservation under various constructions, and raise several
questions.

Classification: 54D80, 54H05, 54B20, 54E45, 54F15.
Keywords: Compactifiable class, Polishable class, homeomorphism equiv-

alence, metrizable compactum, Polish space, hyperspace, complexity,
universal element, common model, inverse limit.

1 Introduction
Let us consider two classes C and D of topological spaces (not necessarily closed
under homeomorphic copies). We say that these classes are equivalent (and we
write C ∼= D) if every space in C is homeomorphic to a space in D and vice versa.

Given a class C of metrizable compacta, we are interested whether C (up to
the equivalence) can be disjointly composed into one metrizable compactum such
that the corresponding quotient space is also a metrizable compactum. In our
terminology introduced below, we ask whether the class C is compactifiable. If C
is a class of continua, this is equivalent to finding a metrizable compactum whose
set of connected components is equivalent to C (see Observation 2.12).

Original motivation comes from our interest in spirals [2] and from the con-
struction of Minc [13], who for each nondegenerate metric continuum X con-
structed a metrizable compactum K whose components form a pairwise non-
homeomorphic family of spirals over X with the decomposition space being 2ω,
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1Charles University, Faculty of Mathematics and Physics, Department of Mathematical

Analysis
2Czech Academy of Sciences, Institute of Mathematics, Department of Abstract Analysis
3Czech Technical University in Prague, Faculty of Civil Engineering, Department of Math-
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4University of Amsterdam, Faculty of Science, Korteweg–de Vries Institute for Mathematics
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and asked [13, Question 1] whether there is a metrizable compactum K whose
set of components is equivalent to the class of all spirals over X, i.e. whether
the class of all spirals over X is compactifiable. So compactifiability of a class
may be viewed as a dual condition to the existence of a metrizable compactum
whose components from a pairwise non-homeomorphic subfamily of the class.
Minc [13, Question 2] also asked whether both conditions may be realized at the
same time and/or whether the resulting decomposition may be continuous. This
latter property corresponds to our notion of strongly compactifiable classes.

In Section 2 of our paper we define compactifiable and Polishable classes and
their witnessing compositions. We consider several basic constructions of com-
positions, and we obtain several conditions equivalent to compactifiability and
Polishability (Theorem 2.10 and 2.11).

In Section 3 we study connections between compactifiable or Polishable classes
and hyperspaces. The Hilbert cube [0, 1]ω is universal for metrizable compacta,
so a class of metrizable compacta may be realized as a subset of the hyperspace
K([0, 1]ω). We define strongly compactifiable and strongly Polishable classes, and
characterize them by the existence of an equivalent family F ⊆ K([0, 1]ω) of a
suitable complexity – closed or equivalently Fσ for strong compactifiability and Gδ

or equivalently analytic for strong Polishability (Theorem 3.13 and 3.14). Note
that if a class C closed under homeomorphic copies is strongly compactifiable,
C ∩K([0, 1]ω) is not necessarily closed – there is only an equivalent closed family
F ⊆ K([0, 1]ω). This leads to considering descriptive complexity of subsets of
K([0, 1]ω) up to the equivalence. The first author further develops this topic in
[1].

In Section 4 we study preservation of the properties under various construc-
tions, and consequently we obtain several examples. Among other results we prove
the following. The four introduced properties are stable under countable unions.
Every hereditary class of metrizable compacta or continua with a universal el-
ement is strongly compactifiable, and every class of metrizable compacta (resp.
continua) closed under continuous images with a common model (i.e. a member
of the class that continuously maps onto every other member of the class) is
strongly Polishable (resp. compactifiable). For every strongly Polishable class C
closed under homeomorphic copies and every Polish space X, the set C ∩ K(X)

is analytic – this gives a necessary condition.
We may view the properties of being strongly compactifiable, compactifiable,

strongly Polishable, and Polishable as degrees of complexity – classes of metrizable
compacta that are compactifiable are “more comprehensible” than classes that are
not compactifiable. A different measure of complexity of a class C of metrizable
compacta is the complexity of the corresponding classification problem, i.e. the
Borel reducibility [7, Chapter 5] of the homeomorphism relation ∼=C. However, we
first need to realize C as a standard Borel space in a natural way, e.g. as a subset of
the hyperspace K([0, 1]ω). That means this notion formally depends on the choice
of such natural coding, even though it is a common belief that the particular
natural coding does not matter in fact. See for example [7, Theorem 14.1.3].

Another inspiration for our study was the construction of a universal arc-like
continuum [14, Theorem 12.22]. In Section 5 we modify this construction and
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prove that for every countable family P of metrizable compacta, the class of all
P-like spaces is compactifiable. We also argue that a compact composition may
be viewed as a weaker form of a universal element for the class.

Several questions remain open. We do not have any particular example dis-
tinguishing between the four properties (Question 3.24), we have just some can-
didates. Also, the compactifiability of spirals remains open.

2 Compositions
In this section we formally define compactifiable and Polishable classes and the
witnessing compositions. We describe several constructions of compositions and
give some characterizations of compactifiability and Polishability. We also observe
that compactifiable and Polishable classes are stable under countable unions. In
particular, every countable class of metrizable compacta is compactifiable.

The idea of disjointly composing topological spaces is captured by the follow-
ing notion.

Definition 2.1. A composition A consists of a continuous map q : A → B be-
tween topological spaces. In this context, A is called the composition space, B is
called the indexing space, and q is called the composition map. The idea is that the
composition map q captures how its fibers are composed in the composition space
A. The notation A(q : A→ B) means that A is a composition with composition
space A, indexing space B, and composition map q.

The following language gives us some flexibility when working with composi-
tions.

• A is a composition of an indexed family of topological spaces ⟨Ab⟩b∈B if
q−1(b) = Ab for every b ∈ B. Of course the family ⟨Ab⟩b∈B is a decomposition
of A (i.e. Ab ∩ Ab′ = ∅ for every b ̸= b′ ∈ B and

⋃︁
b∈B Ab = A) and is

determined by A. On the other hand, every decomposition ⟨Ab⟩b∈B of a
topological space A induces the unique map q : A→ B with fibers ⟨Ab⟩b∈B
and the composition A(q : A→ B) if the map q is continuous.

• A is a composition of an indexed family of embeddings ⟨eb : Ab ↪→ A⟩b∈B
if q−1(b) = rng(eb) for every b ∈ B. Again, ⟨rng(eb)⟩b∈B is necessarily a
decomposition of A.

• A is a composition of a class of topological spaces C if the family {q−1(b) :

b ∈ B} is equivalent to C.

We are interested in the following special types of compositions.

• A is a compact composition if both A and B are metrizable compacta.
• A is a Polish composition if both A and B are Polish spaces.

Remark 2.2. In [13] P. Minc constructed a compact composition of a 2ω-indexed
family of pairwise non-homeomorphic compactifications of a ray with remainders
being copies of an arbitrary fixed nondegenerate metrizable continuum.
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Remark 2.3. Given a composition A(q : A→ B) of a family ⟨Ab⟩b∈B, the spaces
Ab are all nonempty if and only if the composition map q is surjective.

Definition 2.4. A class C of topological spaces is called compactifiable (resp.
Polishable) if there is a compact (resp. Polish) composition of C, i.e. if there is
a continuous map q : A → B between metrizable compacta (resp. Polish spaces)
such that {q−1(b) : b ∈ B} ∼= C. Note that the spaces q−1(b) are necessarily
metrizable compacta (resp. Polish spaces).

Construction 2.5 (rectangular composition). Let A, B be topological spaces
and let F ⊆ A × B. By F b we denote the subset of A corresponding to the
section of F through b, i.e. F b = {a ∈ A : ⟨a, b⟩ ∈ F}. For every b ∈ B let eb
denote the canonical embedding F b → F b × {b} ⊆ F . The set F induces the
composition AF (πB↾F : F → B) of the family ⟨eb⟩b∈B. If the spaces A, B are
metrizable compacta (resp. Polish spaces) and the set F is closed (resp. Gδ) in
A×B, then the composition AF is compact (resp. Polish).

Moreover, every composition can essentially be obtained this way. For a com-
position A(q : A → B) we consider the graph of q, G = {⟨a, q(a)⟩ : a ∈ A} ⊆
A × B, which is closed if B is Hausdorff. Since A is homeomorphic to G and
Gb = q−1(b) for every b ∈ B, the compositions A and AG are essentially the
same.

Construction 2.6 (pullback composition). Let A(q : A→ B) be a composition
and let f : B′ → B be a continuous map. The pullback of A along f is the
composition A′(q′ : A′ → B′) where A′ := {⟨a, b′⟩ ∈ A × B′ : q(a) = f(b′)} and
q′ := πB′↾A′ , so A′ is the rectangular composition induced by A′ ⊆ A×B′.

If A is a composition of spaces ⟨Ab⟩b∈B, then A′ is essentially a composition of
⟨Af(b′)⟩b′∈B′ since for every b′ ∈ B′ we have the canonical embedding eb′ : Af(b′) →
Af(b′) × {b′} ⊆ A′ and so A′ is formally a composition of ⟨eb′⟩b′∈B′ . This way we
change the indexing space so that each space Ab has f−1(b)-many copies in A′.

Moreover, A′ is a closed subset A × B′ if B is Hausdorff. Hence, if A is a
compact (resp. Polish) composition and B′ is a metrizable compactum (resp. a
Polish space), then A′ is a compact (resp. Polish) composition as well.

Corollary 2.7 (subcomposition). If A(q : A → B) is a compact (resp. Polish)
composition of spaces ⟨Ab⟩b∈B and C ⊆ B is Fσ (resp. analytic), then the class
{Ac : c ∈ C} is compactifiable (resp. Polishable).

Proof. In the compact case with closed C ⊆ B, it is enough to consider the
induced subcomposition AC(q : q−1[C] → C), which may be viewed as a special
case of the pullback construction. If C =

⋃︁
n∈ω Cn for some closed sets Cn ⊆

B, then {Ac : c ∈ C} is a countable union of compactifiable classes, which is
compactifiable as we will show later (Observation 2.14). In the Polish case, there
is a Polish space B′ and a continuous surjection f : B′ ↠ C, so the pullback of A
along f is a Polish composition of {Af(b′) : b′ ∈ B′} = {Ac : c ∈ C}.

Remark 2.8. We always consider an analytic set as a subset of a Polish space.
By analytic space we mean any topological space that arises from an analytic
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set endowed with the corresponding subspace topology, i.e. a metrizable contin-
uous image of a Polish space. However, in the following constructions (like in
Lemma 2.9) we in fact do not need the metrizability, so the propositions would
remain valid even for non-metrizable continuous images of Polish spaces.

Lemma 2.9. Let A be a Polish space, let B be an analytic space, let F ⊆ A×B
be a Gδ subset, and let AF (q : F → B) be the corresponding rectangular com-
position. Moreover, let B′ be a Polish space and let f : B′ → B be a continuous
map. The pullback A′(q′ : F ′ → B′) of AF along f is a Polish composition.

Proof. We need to show that the composition space F ′ is Polish. We have F ′ =

{⟨⟨a, b⟩, b′⟩ ∈ (A × B) × B′ : ⟨a, b⟩ ∈ F and b = f(b′)}, which is canonically
homeomorphic to G := {⟨a, b′⟩ ∈ A × B′ : ⟨a, f(b′)⟩ ∈ F} = g−1[F ] where
g := idA×f : A × B′ → A × B. Since F is Gδ in A × B, G is Gδ in the Polish
space A×B′.

By combining the previous observations we obtain the following characteriza-
tions.

Theorem 2.10. The following conditions are equivalent for a class C of topolog-
ical spaces.

(i) C is compactifiable.

(ii) There is a metrizable compactum A and a closed equivalence relation E ⊆
A× A such that {Ea : a ∈ A} ∼= C \ {∅}.

(iii) There is a metrizable compactum A, a metrizable σ-compact space B, and
a closed set F ⊆ A×B such that {F b : b ∈ B} ∼= C.

(iv) There is a closed set F ⊆ [0, 1]ω×2ω such that {F b : b ∈ 2ω} ∼= C, or C = ∅.

Theorem 2.11. The following conditions are equivalent for a class C of topolog-
ical spaces.

(i) C is Polishable.

(ii) There is a Polish space A and a closed equivalence relation E ⊆ A×A such
that {Ea : a ∈ A} ∼= C \ {∅}.

(iii) There is a Polish space A, an analytic space B, and a Gδ set F ⊆ A × B
such that {F b : b ∈ B} ∼= C.

(iv) There is a Gδ set F ⊆ [0, 1]ω × ωω such that {F b : b ∈ ωω} ∼= C, or C = ∅.

(v) There is a closed set F ⊆ (0, 1)ω × ωω such that {F b : b ∈ ωω} ∼= C, or
C = ∅.

Proof of Theorem 2.10 and 2.11.
(i) =⇒ (ii). For a composition A(q : A→ B) of C it is enough to consider the

equivalence E := {⟨a, a′⟩ ∈ A× A : q(a) = q(a′)} induced by q.
(ii) =⇒ (iii) is trivial if ∅ /∈ C. Otherwise we consider a single-point extension

B ⊇ A such that A is clopen in B and use the same E. Also see Remark 2.13.
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(iii) =⇒ (i). We consider the induced rectangular composition AF (q : F → B)

(see Construction 2.5). In the compact case with B compact the proof is finished.
If B =

⋃︁
n∈ω Bn for some compacta Bn, then each F ∩ (A × Bn) induces a

compact composition of {F b : b ∈ Bn}, and C is equivalent to a countable union
of compactifiable classes, which is compactifiable by Observation 2.14. In the
Polish case, there is a Polish space B′ and a continuous surjection f : B′ ↠ B.
Let A′ be the pullback of AF along f (Construction 2.6). As in Corollary 2.7, A′

is a composition of {F b : b ∈ B} ∼= C, and it is Polish by Lemma 2.9.
(i) =⇒ (iv), (v). Let A(q : A → B) be a compact (resp. Polish) composition

of C. We may suppose that B is nonempty. Otherwise, C is empty as well. Recall
that every nonempty metrizable compactum is a continuous image of the Cantor
space 2ω and that every nonempty Polish space is a continuous image of the Baire
space ωω, so we may suppose that B = 2ω (resp. ωω) by Construction 2.6. Recall
that every separable metrizable space may be embedded into the Hilbert cube
[0, 1]ω, so we may suppose that A ⊆ [0, 1]ω. Let F be the graph of q. By the
second part of Construction 2.5, {F b : b ∈ B} ∼= C and F is closed in A × B.
Since A is compact (resp. Polish), A×B and so F is closed (resp. Gδ) in [0, 1]ω.
This proves (iv). The proof of (v) is analogous and uses the fact that every Polish
space may be embedded into (0, 1)ω as a closed subspace [8, 4.17].

The implications (iv), (v) =⇒ (iii) are trivial.

Observation 2.12. A class C of nonempty metrizable continua is compactifiable
if and only if there exists a metrizable compactum A whose set of components is
equivalent to C.

Proof. Let A(q : A → B) be a compact composition of C. By Theorem 2.10 the
indexing space B may be taken zero-dimensional (e.g. the Cantor space), and
hence the spaces q−1(b) are precisely the components of A.

On the other hand, let A be a metrizable compactum whose set of compo-
nents is equivalent to C. Let q : A → B be the quotient map induced by the
decomposition of A into its components. Since A is a metrizable compactum, the
components are equal to the quasi-components, and hence B is totally separated
(i.e. points can be separated by clopen sets), in particular Hausdorff. Therefore, B
is a metrizable compactum and q induces the desired compact composition.

Let us conclude this section with basic observations about (non)existence of
compactifiable or Polishable classes.

Remark 2.13. If a class C is compactifiable (resp. Polishable), then so are the
classes C \ {∅} and C ∪ {∅}. This is because if a map q : A → B induces a
compact composition, then the maps q : A→ q[A] and q : A→ B ⊕{∞} induces
compact compositions as well. For Polishable C the case “C ∪ {∅}” is the same,
but the case “C \ {∅}” needs a comment. The map q : A→ q[A] may not directly
induce a Polish composition since q[A] may not be Gδ in B. Nevertheless, it is
analytic, so we use Corollary 2.7. In fact, this gives us the composition AE for
E = {⟨a, a′⟩ ∈ A× A : q(a) = q(a′)}.

Observation 2.14. Every countable union of compactifiable (resp. Polishable)
classes is compactifiable (resp. Polishable).
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Proof. Let I be a set and for every i ∈ I let Ai(qi : Ai → Bi) be a composition of
a class Ci. We consider the sum composition A(q : A→ B) :=

∑︁
i∈I Ai, i.e. A :=∑︁

i∈I Ai, B :=
∑︁

i∈I Bi, and q :=
∑︁

i∈I qi : A→ B. Clearly, A is a composition of⋃︁
i∈I C. If I is finite (resp. countable) and the compositions Ai are compact (resp.

Polish), then A is also compact (resp. Polish).
It remains to consider a countable sum of compact compositions that is not

compact. Without loss of generality, ∅ /∈ Ci ̸= ∅ for every i ∈ I (Remark 2.13),
and so A and B are separable metrizable locally compact non-compact spaces.
We consider their one-point compactifications A+ and B+, which are metrizable,
and the corresponding extension q+ : A+ → B+ of the map q. The map q+ is
continuous since q is perfect (i.e. closed with compact fibers), and it induces a
composition of

⋃︁
i∈I Ci∪{{∞}}, so if the given classes contain a one-point space,

we are done. Otherwise, we take any space C ∈
⋃︁
i∈I Ci, attach it to the point

∞ ∈ A+, and modify the definition of q+ accordingly.

Corollary 2.15. Every countable family of metrizable compacta is compactifi-
able. Every countable family of Polish spaces is Polishable.

Remark 2.16. We require metrizability (or equivalently existence of a count-
able base) in the definition of compact composition not only to obtain a notion
stronger than Polish composition, but because otherwise the corresponding com-
pactifiability would be trivial. Using the one-point compactification as in the
previous proof, we may easily construct a composition with compact composition
space and compact indexing space for any family of compacta.

Observation 2.17. By Theorem 2.11 there are at most c-many nonequivalent
Polishable classes since there are only c-many Gδ subsets of [0, 1]ω × ωω. On
the other hand, there are c-many non-homeomorphic metrizable compact spaces
– even in the real line. Hence, there are exactly 2c-many nonequivalent classes
of metrizable compacta and also exactly 2c-many nonequivalent classes of Polish
spaces. This cardinal argument gives us that many classes of metrizable compacta
are not Polishable.

3 Compactifiability and hyperspaces
A class of topological spaces is often equivalent to a family of subspaces of some
fixed ambient space. Therefore, it is natural to consider how compactifiability of
such family is related to its properties when viewed as a subset of a hyperspace.

For a topological space X we shall consider the hyperspaces of all subsets
P(X), of all closed subsets Cl(X), of all compact subsets K(X), and of all sub-
continua C(X) endowed with the Vietoris topology. We include the empty set in
the families. Recall that the lower Vietoris topology τ−V is generated by the sets
U− = {A : A ∩ U ̸= ∅} for U ⊆ X open, and the upper Vietoris topology τ+V is
generated by the sets U+ = {A : A ⊆ U} for U ⊆ X open. The Vietoris topology
τV is their join.

Also recall that if X is metrizable by a metric d, the corresponding Haus-
dorff metric dH on Cl(X) is defined by dH(A,B) = max(δ(A,B), δ(B,A)) where
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δ(A,B) = supx∈A d(x,B) = supx∈A infy∈B d(x, y) = inf{ε : A ⊆ Nε(B)}. We have
δ(∅, B) = 0 for every B, and δ(A, ∅) =∞ for every A ̸= ∅, and also δ(A,B) =∞
for every A unbounded and B bounded. Hence, strictly speaking, dH is an ex-
tended metric, but we may always cap it at 1 or suppose that d ≤ 1 and interpret
the infima in [0, 1], so inf ∅ = 1. In any case, the singleton {∅} is clopen in Cl(X)

with both Vietoris topology and Hausdorff metric topology.
The Vietoris topology and the topology induced by the Hausdorff metric are

not comparable on Cl(X) in general, but they coincide on K(X). If X is compact
or Polish, so is K(X). Also, C(X) is a closed subspace of K(X) if X is Hausdorff.
For reference on the mentioned properties see [8, 4.F].

Construction 3.1 (from hyperspace to composition). Let X be a topological
space and let F ⊆ P(X). We consider the set AF := {⟨x, F ⟩ : x ∈ F ∈ F} ⊆
X ×F . Let us denote the corresponding composition (Construction 2.5) by AF .
Since (AF)

F = F for every F ∈ F , we have that AF is a composition of the
family F with composition space AF and indexing space F . The composition
map is just the projection πF↾AF

. Also, AF = R∈ ∩ (X × F) where R∈ :=

{⟨x, F ⟩ ∈ X × P(X) : x ∈ F} is the membership relation.

Observation 3.2. If X is a regular space, then the membership relation of closed
sets is closed, i.e. R∈ ∩ (X ×Cl(X)) is closed in X ×Cl(X) (even with respect to
τ+V ).

Proof. If F ∈ Cl(X) and x ∈ X \ F , then there are disjoint open sets U, V ⊆ X

such that x ∈ U and F ⊆ V . We have that U × V + is a neighborhood of ⟨x, F ⟩
disjoint with R∈.

Proposition 3.3.

(i) If X is a metrizable compactum and F is an Fσ subset of K(X) (resp.
C(X)), then F is a compactifiable class of compacta (resp. continua).

(ii) If X is a Polish space and F is an analytic subset of K(X) (resp. C(X)),
then F is a Polishable class of compacta (resp. continua).

Proof. It is enough to use the set AF ⊆ X × F from Construction 3.1 and
Theorem 2.10 and 2.11.

Next, we shall introduce a construction in the opposite direction, i.e. turning
a composition into a subset of a hyperspace. But first, let us recall some further
properties of hyperspaces and their induced maps.

Observation 3.4. If a space X is identified with the family of its singletons [X]1,
then it becomes a subspace of P(X) with respect to all τ−V , τ+V , and τV since for
every open U ⊆ X we have U− ∩ [X]1 = U+ ∩ [X]1 = [U ]1.

Notation 3.5. Let f : X → Y be a map between sets. We shall use the notation
for induced maps from [11, 5.9]:

• f ∗ : P(X)→ P(Y ) is the image map defined by f ∗(A) = f [A],
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• f−1∗ : Y → P(X) is the fiber map defined by f−1∗(y) = f−1(y),
• f−1∗∗ : P(Y )→ P(X) is the preimage map defined by f−1∗∗(B) = f−1[B].

The following proposition summarizes properties of the induced maps defined
above. Some of the equivalences were proved by Michael [11, 5.10]. Note that our
map f does not have to be onto, we include the empty set in the hyperspace, and
we also formulate the equivalences separately for τ−V and τ+V .

Proposition 3.6. Let f : X → Y be a map between topological spaces.

(i) f is continuous ⇐⇒ f ∗ is τ−V -continuous ⇐⇒ f ∗ is τ+V -continuous ⇐⇒
f ∗ is τV -continuous.

(ii) f is an embedding ⇐⇒ f ∗ is a τ−V -embedding ⇐⇒ f ∗ is a τ+V -embedding
⇐⇒ f ∗ is a τV -embedding.

(iii) f is an open embedding ⇐⇒ f ∗ is a τ+V -open embedding ⇐⇒ f ∗ is a
τV -open embedding.

(iv) f is a closed embedding ⇐⇒ f ∗ is a τ−V -closed embedding ⇐⇒ f ∗ is a
τV -closed embedding.

(v) f is open ⇐⇒ f−1∗ is τ−V -continuous ⇐⇒ f−1∗∗ is τ−V -continuous.
(vi) f is closed ⇐⇒ f−1∗ is τ+V -continuous ⇐⇒ f−1∗∗ is τ+V -continuous.
(vii) f is closed and open ⇐⇒ f−1∗ is τV -continuous ⇐⇒ f−1∗∗ is τV -contin-

uous.
(viii) f is continuous =⇒ f−1∗ is τV -(closed and open) onto its image.

Proof sketch. We use the following equalities.

(f ∗)−1[B−] = f−1[B]− (f ∗)−1[B+] = f−1[B]+

(f ∗)[A−] = f [A]− ∩ rng(f ∗) (f ∗)[A+] = f [A]+ ⊆ rng(f ∗) f injective
(f−1∗)−1[A−] = f [A] (f−1∗)−1[A+] = f∀[A] := Y \ f [X \ A]
(f−1∗∗)−1[A−] = f [A]− (f−1∗∗)−1[A+] = f∀[A]+

(f−1∗)[B] =

{︄
f−1[B]− ∩ rng(f−1∗) if B ⊆ rng(f)

f−1[B]+ ∩ rng(f−1∗) if B ⊈ rng(f) or f is onto

Regarding the embeddings, if f is an embedding and U ⊆ X is open, then f [U ] =
V ∩ rng(f) for some open V ⊆ Y . Therefore, we have

f ∗[U−] = f [U ]− ∩ rng(f) = (V ∩ rng(f))− ∩ rng(f ∗) = V − ∩ rng(f ∗),

f ∗[U+] = f [U ]+ = (V ∩ rng(f))+ = V + ∩ rng(f ∗),

and so f ∗ is a τ−V -, τ+V - and hence a τV -embedding. Regarding the closedness and
openness, observe that rng(f ∗) = rng(f)+, so if rng(f) is open, then rng(f ∗) is
τ+V -open, and if rng(f) is closed, then rng(f ∗) is τ−V -closed. For the backward
implications we may use Observation 3.4 since f may be viewed as a restriction
[X]1 → [Y ]1 of f ∗, and rng(f) is essentially rng(f ∗) ∩ [Y ]1.
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Definition 3.7. A composition A(q : A → B) is called a strong composition if
the composition map q is closed and open and |B \ rng(q)| ≤ 1. A class C of
topological spaces is called strongly compactifiable (resp. strongly Polishable) if
there is a strong compact (resp. strong Polish) composition of C.

The strongness of a composition means that the corresponding decomposition
of A is continuous (closedness correspond to upper semi-continuity and openness
to lower semi-continuity). Note that the rather technical condition |B\rng(q)| ≤ 1

and also clopenness of rng(q) can be obtained for every composition by removing
B \ rng(q) and then eventually adding a clopen point (Remark 2.13). Also, the
closedness of q is trivial for compact compositions.

Construction 3.8 (from composition to hyperspace). To every composition
A(q : A→ B) we assign the disjoint family FA := {q−1(b) : b ∈ B} ⊆ P(A).

We have q−1∗ : B ↠ FA ⊆ P(A), so we have two natural topologies on FA –
the quotient topology induced by q−1∗ from B, and the subspace topology induced
from the hyperspace P(A). By Proposition 3.6 the Vietoris topology is finer than
the quotient topology. The converse holds if and only if q is both closed and open.
The map q−1∗ is a homeomorphism with respect to the quotient topology if and
only if it is a bijection, which happens if and only if |B \ rng(q)| ≤ 1. Therefore,
FA is homeomorphic to B via q−1∗ if and only if the composition A is strong.

In this case, if A is a compact (resp. Polish) composition of compacta, then
FA is compact (resp. Polish), and so it is a closed (resp. Gδ) subset of the compact
(resp. Polish) hyperspace K(A).

Observation 3.9. If A(q : A→ B) is a strong composition, then the family FA
is closed in every Hausdorff space H ⊆ P(A) containing it.

Proof. Let us consider the family F
⋃︁

:= {F ∈ H : q−1[q[F ]] = F}, which is
closed since q−1∗∗ ◦ q∗ is continuous and H is Hausdorff, and the family F↓ :=

(q∗)−1[[B]≤1] (where [B]≤1 denotes the family of all subsets of B with at most one
element), which is also closed since B ∼= FA is Hausdorff, and so [B]≤1 is closed in
P(B). To conclude, it is enough to observe that FA ⊆ F

⋃︁
∩F↓ ⊆ FA ∪ {∅}.

Lemma 3.10. Let X, Y be topological spaces, and let R ⊆ X × Y . Let us
consider the map ρ : Y → P(X) defined by ρ(y) := Ry.

(i) The map πY ↾R : R→ Y is open if and only if the map ρ is τ−V -continuous.
(ii) The map πY ↾R : R→ Y is closed if and only if the map ρ is τ+V -continuous

and every set Ry × {y} has a rectangular neighborhood basis (r.n.b.), i.e.
every its neighborhood in R contains a neighborhood of form R∩(U×V ) for
some open sets U and V . The r.n.b. condition is satisfied if rng(ρ) ⊆ K(X).

Proof. The necessity of τ+/−V -continuity follows from equality ρ = π∗
X ◦ (πY ↾R)−1∗

and from Proposition 3.6. The open case follows from equality πY [R∩ (U ×V )] =

{y ∈ V : Ry ∩ U ̸= ∅} = ρ−1[U−] ∩ V . The map πY ↾R is closed if and only if for
every closed F ⊆ R and every y ∈ Y \πY [F ] there is an open neighborhood W of
y disjoint with πY [F ]. Considering R ∩ (X ×W ) gives us necessity of the r.n.b.
condition. On the other hand, if U × V is an open neighborhood of Ry ×{y} ≠ ∅
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disjoint with F , then we put W := ρ−1[U+] ∩ V . Note that z ∈ ρ−1[U+] if and
only if Rz ⊆ U . Hence, if ⟨x, z⟩ ∈ R and z ∈ W , then ⟨x, z⟩ ∈ U × V and
so it cannot be in F . If Ry = ∅, then we put W := Y \ πY [R], which is open
since πY [R] = ρ−1[X−] and X− is τ+V -closed. The r.n.b. condition holds if every
Ry × {y} is compact by the tube lemma [6, 3.1.15].

Corollary 3.11. Let AF(q : AF → F) be the composition obtained by Con-
struction 3.1 from a family F ⊆ P(X). We have that the map q is open and
|F \ rng(q)| ≤ 1. If F ⊆ K(X), then q is also closed, and hence the composition
is strong.

Proof. The map q is the projectionR∈∩(X×F)→ F , so we may use Lemma 3.10.
The corresponding map ρ is id : F → P(X), which is both τ−V - and τ+V -continuous.
The fact that |F \ rng(q)| ≤ 1 is clear since there is only one empty set.

Corollary 3.12. Let A(q : A → B) be a composition of spaces ⟨Ab⟩b∈B, let
f : B′ → B be a continuous map, and let A′(q′ : A′ → B′) be the pullback of A
along f (Construction 2.6). If q is open, so is q′. If q is closed and every space Ab
is compact, then q′ is also closed. It follows that strong compositions of compact
spaces are preserved by pullbacks (such that |f−1[B \ rng(f)]| ≤ 1).

Proof. We apply Lemma 3.10 to A′ ⊆ A×B′. The corresponding map ρ is q−1∗◦f ,
which is τ−V - (resp. τ+V -)continuous if q is open (resp. closed) by Proposition 3.6.

By putting all the previous claims and propositions together, we obtain the
following characterizations – compare with Theorem 2.10 and 2.11.

Theorem 3.13. The following conditions are equivalent for a class C of topolog-
ical spaces.

(i) C is strongly compactifiable.

(ii) There is a metrizable compactum X and a closed family F ⊆ K(X) such
that F ∼= C.

(iii) There is a closed zero-dimensional disjoint family F ⊆ K([0, 1]ω) such that
F ∼= C.

Theorem 3.14. The following conditions are equivalent for a class C of topolog-
ical spaces.

(i) C is a strongly Polishable class of compacta.

(ii) There is a Polish space X and an analytic family F ⊆ K(X) such that
F ∼= C.

(iii) There is a Gδ zero-dimensional disjoint family F ⊆ K([0, 1]ω) such that
F ∼= C.

(iv) There is a closed zero-dimensional disjoint family F ⊆ K((0, 1)ω) such that
F ∼= C.
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Proof. Let F ⊆ K(X). Construction 3.1 gives us the corresponding composition
AF , which is strong by Corollary 3.11. If X is a metrizable compactum and F
is closed, then the composition AF is compact. If X is Polish and F is analytic,
then there is a continuous surjection f : Y ↠ F from a Polish space Y such that
|f−1(∅)| ≤ 1. The pullback of AF along f (Construction 2.6) is a composition of
F that is Polish by Lemma 2.9 and strong by Corollary 3.12.

On the other hand, let A(q : A→ B) be a strong compact (resp. strong Polish)
composition of C. Without loss of generality, B is zero-dimensional (we use Con-
struction 2.6 as in Theorem 2.10 and 2.11 together with Corollary 3.12). Construc-
tion 3.8 gives us the corresponding zero-dimensional disjoint family FA ⊆ K(A),
which is closed by Observation 3.9. There is an embedding e : A ↪→ [0, 1]ω, and so
e∗ : K(A) ↪→ K([0, 1]ω) is an embedding by Proposition 3.6. In the compact case,
e∗[FA] is compact and so closed in K([0, 1]ω). In the Polish case, e∗[FA] is Polish
and so Gδ in K([0, 1]ω). Moreover, there is a closed embedding i : A ↪→ (0, 1)ω by
[8, 4.17], and so i∗ : K(A) ↪→ K((0, 1)ω) is a closed embedding by Proposition 3.6.
Hence, i∗[FA] is a closed subset of K((0, 1)ω).

The remaining implications are trivial.

Lemma 3.15. Let X be a metric space and let R denote the family {⟨A,B⟩ ∈
K(X)2 : A ⊆ B} viewed as a subspace of ⟨K(X), τV ⟩×⟨K(X), τ+V ⟩. The Hausdorff
metric dH : R → [0,∞) is upper semi-continuous.

Proof. Let ⟨A,B⟩ ∈ R and r > dH(A,B). We want to find U a τV -neighborhood
of A and V a τ+V -neighborhood of B such that dH(A′, B′) < r for every A′ ∈ U
and B′ ∈ V .

For every ⟨A′, B′⟩ ∈ R we have dH(A
′, B′) = δ(B′, A′) = inf{ε > 0 :

B′ ⊆ Nε(A
′)}. Hence, dH(A′, B′) = δ(B′, A′) ≤ δ(B′, B) + δ(B,A) + δ(A,A′) ≤

δ(B′, B) + dH(A,B) + dH(A,A
′).

Let ε > 0 such that dH(A,B)+2ε < r. We put U := {A′ : dH(A,A
′) < ε} and

V := Nε(B)+. The set U is τV -open since the Hausdorff metric topology coincides
with the Vietoris topology on K(X), and V is clearly τ+V -open. Moreover, for
every B′ ∈ V we have δ(B′, B) ≤ ε. Therefore, for every ⟨A′, B′⟩ ∈ U ×V we have
dH(A

′, B′) < dH(A,B) + 2ε < r.

Proposition 3.16. Let A(q : A → B) be a Polish composition of compacta
such that the composition map q is closed. The family FA ⊆ K(A) obtained via
Construction 3.8 is Gδ.

Proof. As in the proof of Observation 3.9 we have FA ⊆ F
⋃︁
∩F↓ ⊆ FA∪{∅}, and

the family F↓ is closed. But the family F
⋃︁
= {F ∈ K(A) : ˆ︁F := q−1[q[F ]] = F}

is now not necessarily closed since the map q−1∗∗◦q∗ is not necessarily continuous.
It is only τ+V -continuous since q is closed.

Let d be a compatible metric on A and let Gn := {F ∈ K(A) : dH(F, ˆ︁F ) < 1
n
}.

Clearly, F
⋃︁
=

⋂︁
n∈N Gn, so it is enough to show that each Gn is open. LetR be the

space from Lemma 3.15 for the base space A. The map idFA △(q−1∗∗ ◦ q∗) : FA →
R that maps F ↦→ ⟨F, ˆ︁F ⟩ is continuous since q−1∗∗ ◦ q∗ is τ+V -continuous. By
Lemma 3.15 the map dH : R → [0,∞) is upper semi-continuous. Together, the
map F ↦→ dH(F, ˆ︁F ) is upper semi-continuous, and the families Gn are open.
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Corollary 3.17. Every compactifiable class is strongly Polishable. Also, in the
definition of strong Polishability it is enough that the witnessing composition
map is closed.

We have shown that every compactifiable class is strongly Polishable. On the
other hand, strongly Polishable classes of compacta are sometimes close to being
compactifiable. Compare the following characterization with Theorem 2.10 and
2.11.

Theorem 3.18. The following conditions are equivalent for a class C of topolog-
ical spaces.

(i) C is a strongly Polishable class of compacta.

(ii) There is a metrizable compactum A, an analytic space B, and a closed set
F ⊆ A×B such that {F b : b ∈ B} ∼= C.

(iii) There is a closed set F ⊆ [0, 1]ω × ωω such that {F b : b ∈ ωω} ∼= C, or
C = ∅.

(iv) There is a closed set F ⊆ [0, 1]ω × 2ω and a Gδ set G ⊆ 2ω such that
{F b : b ∈ G} ∼= C and {F b : b ∈ 2ω} = {F b : b ∈ G} in K([0, 1]ω), or C = ∅.

Proof. (ii) =⇒ (i): Let f : B′ ↠ B be a continuous surjection from a Polish space
B′. Let F ′ denote the set {⟨a, b′⟩ ∈ A× B′ : ⟨a, f(b′)⟩ ∈ F}, which is closed as a
continuous preimage of F . The induced rectangular composition AF ′(q : F ′ → B′)

is a Polish composition of C (cf. Lemma 2.9). The map q = πB′↾F ′ is closed by
the Kuratowski theorem [6, Theorem 3.1.16] since A is compact. Therefore, C is
strongly Polishable by Proposition 3.16.

(i) =⇒ (iii) and (i) =⇒ (iv): By Theorem 3.14 there is a Gδ family F ⊆
K([0, 1]ω) equivalent to C. We may suppose that F is nonempty. For (iii) we con-
sider the composition AF (Construction 3.1) and its pullback (Construction 2.6)
along a continuous surjection f : ωω ↠ F , i.e. F := {⟨x, y⟩ ∈ [0, 1]ω × ωω :

x ∈ f(y)}. For (iv) we do the same, but with F and a continuous surjection
f : 2ω ↠ F , i.e. F := {⟨x, y⟩ ∈ [0, 1]ω × 2ω : x ∈ f(y)}, and we put G := f−1[F ].
Clearly, we have {F b : b ∈ G} = F and {F b : b ∈ 2ω} = F .

The remaining implications are trivial.

The last condition condition of the previous theorem is quite close to com-
pactifiability. It is enough to modify the fibers F b for b ∈ 2ω \G, so they become
spaces from the given class C, while keeping the modified set F ′ ⊆ [0, 1]ω × 2ω

closed.

Theorem 3.19. Let ⟨X, d⟩ be a metric compactum and for every n ∈ ω let An
be a finite covering of X by closed sets of diameter < 2−n. For every F ∈ K(X)

let An(F ) denote the space
⋃︁
{A ∈ An : A∩F ̸= ∅}. Every Gδ family F ⊆ K(X)

containing a copy of every space from {An(F ) : F ∈ F , n ∈ ω} is compactifiable.

Proof. If F = ∅, the theorem holds. Otherwise, there is a continuous surjection
f : 2ω ↠ F . The setG := f−1[F ] isGδ in 2ω, and so its complement can be written
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as a disjoint union
⋃︁
n∈ωKn of compact sets. As before, we consider the pullback of

the induced composition of F , i.e. the closed set F := {⟨x, b⟩ ∈ X×2ω : x ∈ f(b)}.
For every n ∈ ω let Hn :=

⋃︁
{An(F b) × {b} : b ∈ Kn} ⊆ X × Kn, and let

F ′ := F ∪
⋃︁
n∈ωHn.

We need to prove that F ′ is closed. Then it is clear that F ′ induces a compact
composition of F since {(F ′)b : b ∈ G} = F and (F ′)b = An(F b) for b ∈ Kn.
Every set Hn is closed since it is equal to

⋃︁
A∈An A×(f

−1[A−∩F ]∩Kn). Moreover,
we have Hn ⊆ N2−n(F ) for a suitable metric on X × 2ω. Altogether, F ′ = F ∪⋃︁
n∈ωHn ∪

⋂︁
k∈ω

⋃︁
n≥kHn , and the last term is below

⋂︁
k∈ωN2−k(F ) = F .

Lemma 3.20. Let X be a Polish space such that X ×ωω embeds into X. Every
analytic family F ⊆ K(X) is equivalent to a Gδ family G ⊆ K(X).

Proof. There is a Polish space Y ∈ {∅, ωω, ωω ⊕ 1} and a continuous surjection
f : Y ↠ F such that |f−1(∅)| ≤ 1. As in the proof of Theorem 3.14, the pullback
A′(q : A′ → Y ) of the compositionAF along f is a strong Polish composition of F .
Hence, the corresponding family of fibers FA′ ⊆ K(A′) is Gδ (Construction 3.8).
Since the composition space A′ is a subspace of X×Y , it embeds into X×ωω, and
so into X. For an embedding e : A′ ↪→ X, the induced map e∗ : K(A′) ↪→ K(X)

is also an embedding by Proposition 3.6. Since A′ and K(A′) are Polish spaces,
e∗[FA′ ] ⊆ K(X) is the desired Gδ family equivalent to F .

Corollary 3.21. We have the following applications of the previous theorem.

(i) Every analytic subset of C([0, 1]ω) containing a copy of every Peano con-
tinuum is compactifiable. In particular, the class of all Peano continua is
compactifiable.

(ii) Every analytic subset of K(2ω) containing a copy of 2ω is compactifiable.
(iii) Every Gδ subset of C(Dω) containing a copy of Dω is compactifiable (Dω

denotes the Ważewski’s universal dendrite [14, 10.37]).

Proof. Let X denote [0, 1]ω or 2ω or Dω, respectively. By Lemma 3.20 there is
a Gδ family F ⊆ K(X) equivalent to the original family. By Theorem 3.19 it
is enough to find suitable coverings An of X such that every space from G :=

{An(F ) : F ∈ F , n ∈ ω} is homeomorphic to a space from F . We cover X by
its copies of sufficiently small diameters. In (i) every space from G is a connected
finite union Hilbert cubes, and so a Peano continuum. In (ii) every space from
G is a finite union of Cantor spaces, and so a Cantor space. In (iii) every space
from G is a connected finite union of copies of Dω in Dω, and so a copy of Dω

if we choose the coverings so that for every A ∈
⋃︁
n∈ωAn all branching points of

Dω in A are in the interior of A.

In Theorem 3.18 we have characterized strong Polishability in the language
of rectangular compositions to make a connection with compactifiability. Now we
characterize compactifiability using families in hyperspaces to make a connection
with strong compactifiability.

Theorem 3.22. The following conditions are equivalent for a class C of topolog-
ical spaces.
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(i) C is compactifiable.
(ii) There is a metrizable compactum X and a family F ⊆ K(X) such that
F ∼= C and ⟨F , τ⟩ is a metrizable compactum for a topology τ ⊇ τ+V .

(iii) There is a Gδ disjoint family F ⊆ K([0, 1]ω) such that F ∼= C and ⟨F , τ+V ⟩
is a zero-dimensional metrizable compactum.

Proof. For (ii) =⇒ (i) we use Construction 3.1 on ⟨F , τ⟩. We obtain a composition
of C that is compact by Observation 3.2.

(i) =⇒ (iii). Let A(q : A→ B) be a compact composition of C. We may sup-
pose that B is zero-dimensional by Theorem 2.10, that |B \ rng(q)| ≤ 1 by Obser-
vation 2.13, and that A ⊆ [0, 1]ω. The family FA obtained by Construction 3.8 is
disjoint and by Proposition 3.16 Gδ in K(A) ⊆ K([0, 1]ω). Since |B \ rng(q)| ≤ 1

and the map q is closed, q−1∗ : B → ⟨F , τ+V ⟩ is a homeomorphism.
(iii) =⇒ (ii) is trivial.

Question 3.23. Is there a similar characterization for Polishable classes?

Figure 1 summarizes the implications between composition-related proper-
ties and descriptive complexity of the corresponding subsets of the space of all
metrizable compacta K([0, 1]ω). The left part and the right part follow from the
characterization theorems: 2.10, 2.11, 3.13, 3.14. The implication “compactifiable
=⇒ Gδ” follows from Proposition 3.16. As a byproduct, we obtain the dashed
implications.

strongly
compactifiable compactifiable strongly

Polishable Polishable

closed Fσ Gδ analytic

classes of compacta

existence of equivalent subsets of K([0, 1]ω)

Figure 1: Implications between the considered classes.

Question 3.24. We do not know which implications can be reversed. Namely,
we have the following questions.

(i) Is there a compactifiable class that is not strongly compactifiable?
(ii) Is there a strongly Polishable class that is not compactifiable?
(iii) Is there a Polishable class that is not strongly Polishable?

To summarize, this chapter relates (strong) compactifiability or Polishability
of a class of metrizable compacta to the lowest complexity of its realizations in
the hyperspace K([0, 1]ω). This complexity in K([0, 1]ω) up to the equivalence is
studied in [1] by the first author.
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3.1 The Wijsman hypertopologies
So far we have considered mostly the hyperspace of all compact subsets K(X)

endowed with the Vietoris topology (or equivalently Hausdorff metric topology
for metrizable X). There we have the one-to-one correspondence between subsets
of the hyperspace and strong compositions (Construction 3.1 and 3.8). On the
other hand, we are limited to Polishable classes of compact rather than Polish
spaces.

For a Polish space X we would like Cl(X) to be Polish as well, but the Vi-
etoris topology on Cl(X) is not metrizable unless X is compact, and the Hausdorff
metric topology is not separable unless X is compact. That is why we will also
consider so-called Wijsman topology. The Wijsman topology induced by the met-
ric d is the one projectively generated by the family {d(x, ·) : Cl(X)→ R}x∈X . It
was shown in [3] that Cl(X) with the Wijsman topology induced by a complete
metric is a Polish space for a Polish space X. Usually the Wijsman topology is
defined only on Cl(X) \ {∅}, and is then extended to Cl(X) in a way related
to the one-point compactification. For our purposes we may use the projectively
generating definition directly to Cl(X), which results in {∅} being clopen.

The Wijsman topology is coarser than both Vietoris and Hausdorff metric
topology, and in general they are not equal even on K(X). In general, K(X) is
an Fσδ-subspace of Cl(X) with respect to the Wijsman topology, but it is not
necessarily Gδ [3]. Given a metric d on X we may identify a set A ∈ Cl(X)

with the function d(·, A) : X → R. Therefore, the Wijsman topology is inherited
from the space of all continuous functions C(X,R) with the topology of pointwise
convergence. On the other hand, dH(A,B) = supx∈X |d(x,A) − d(x,B)|, so the
Hausdorff metric topology is inherited from C(X,R) with the topology of uniform
convergence.

The Observation 3.2 holds also for the Wijsman topologies.

Observation 3.25. If X is a metrizable space and Cl(X) is endowed with a
Wijsman topology, then R∈ ∩ (X × Cl(X)) is closed in X × Cl(X).

Proof. If F ∈ Cl(X) and x ∈ X \F , then r := d(x, F ) > 0. We put U = {y ∈ X :

d(x, y) < r
2
} and V = {H ∈ Cl(X) : d(x,H) > r

2
}, so U × V is a neighborhood of

⟨x, F ⟩ disjoint with R∈.

It follows that we may use Construction 3.1 also for Wijsman hyperspaces to
obtain Polish compositions. The following proposition extends Proposition 3.3.

Proposition 3.26. IfX is a Polish space and Cl(X) is endowed with the Wijsman
topology induced by a complete metric, then every analytic subset of Cl(X) is a
Polishable class of Polish spaces.

Remark 3.27. Since every Polish space can be embedded as a closed subspace to
(0, 1)ω, the hyperspace Cl((0, 1)ω) endowed with the Wijsman topology induced
by a complete metric may be viewed as a Polish space of all Polish spaces.

Question 3.28. Let C be a Polishable class and let Cl((0, 1)ω) be endowed with
a Wijsman topology induced by a complete metric. Does there exist an analytic
(or even Gδ or closed) family F ⊆ Cl((0, 1)ω) such that F ∼= C?
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4 Induced classes
In this section we shall analyze how the properties of being compactifiable and
Polishable are preserved under various modifications and constructions of induced
classes.

Proposition 4.1. Strongly compactifiable, compactifiable, strongly Polishable,
and Polishable classes are stable under countable unions.

Proof. For compactifiable and Polishable classes this is Observation 2.14. Let Cn,
n ∈ ω, be strongly Polishable classes. By Theorem 3.14 each of them is equivalent
to an analytic family Fn ⊆ K([0, 1]ω). We have

⋃︁
n∈ω Cn ∼=

⋃︁
n∈ω Fn, which is also

analytic and hence strongly Polishable. In the strongly compactifiable case we
proceed analogously, but end up with an Fσ family

⋃︁
n∈ω Fn. The conclusion

follows from the non-trivial fact, that every Fσ family in K([0, 1]ω) is equivalent
to a closed family, and hence is strongly compactifiable [1, Theorem 3.6].

Remark 4.2. In the previous proof we have used the fact that
⋃︁
i∈I Ci ∼=

⋃︁
i∈I Di

for every collection of equivalent classes Ci ∼= Di, i ∈ I. However, it is not neces-
sary that even Ci∩Cj ∼= Di∩Dj, so we cannot use the same argument for proving
preservation under intersections – compare with Proposition 4.32.

Observation 4.3. Let X be a metric space. The map diam: P(X) → [0,∞) is
both ⟨τ+V , τU⟩- and ⟨τ−V , τL⟩-continuous, where τU and τL are the upper and lower
semi-continuous topologies on [0,∞). It follows that diam is continuous.

Proof. If diam(A) < r, then there is ε > 0 such that diam(Nε(A)) < r. Hence,
diam(A′) < r for every A′ ∈ Nε(A)

+. If diam(A) > r, then there are points
x, y ∈ A and ε > 0 such that d(x, y) ≥ r + 2ε. Hence, diam(A′) > r for every
A′ ∈ B(x, ε)− ∩B(y, ε)−.

Corollary 4.4. Let A(q : A→ B) be a compact composition of a family ⟨Ab⟩b∈B.
For every ε > 0 the set Bε := {b ∈ B : diam(Ab) ≥ ε} is closed, and the set
B0 := {b ∈ B : diam(Ab) > 0} is Fσ. It follows that the corresponding families of
spaces are also compactifiable.

Proof. The map (diam ◦ q−1∗) : B → [0,∞) is upper semi-continuous since q−1∗

is τ+V -continuous and diam is ⟨τ+V , τU⟩-continuous by Observation 4.3. Note that
the intervals [ε,∞) are τU -closed, and so the interval (0,∞) is τU -Fσ.

In definitions of many natural classes of compacta, degenerate spaces are
occasionally included, resp. excluded. The following proposition shows that with
respect to compactifiability, it does not matter.

Proposition 4.5. If a class C of metrizable compacta is strongly compactifiable,
compactifiable, strongly Polishable, or Polishable, then so are the classes C ∪{∅},
C \ {∅}, C ∪ {1}, and C>1, where 1 denotes a one-point space and C>1 denotes the
class of all nondegenerate members of C.
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Proof. The additive cases C∪{∅} and C∪{1} follow directly from Proposition 4.1.
The case C \ {∅} for compactifiable and Polishable classes is covered by Obser-
vation 2.13. For strongly compactifiable and Polishable classes, it is easy since
{∅} is clopen in K([0, 1]ω), and so removing it from a realization of C does not
change its complexity. Similarly, we obtain the C>1 case since the degenerate sets
form a closed subset of the hyperspace. Hence, removing degenerate spaces from
a realization of C preserves the Gδ complexity and turns a closed family to an
Fσ family (since the hyperspace is metrizable), which is enough for C>1 to be
strongly compactifiable by Proposition 4.1.

It remains to cover the C>1 case for compactifiable and Polishable C. Let
A(q : A → B) be a composition of C and let C := {b ∈ B : |q−1(b)| > 1}. On
one hand, if A is a metric space, then C is the preimage (q−1∗)−1[G] of the family
G := {K ∈ K(A) : diam(K) > 0}, which is τ+V -open by Observation 4.3. Hence,
if A is a compact composition, then q is closed, q−1∗ is τ+V -continuous, and C is
open and, in particular, Fσ, and so C>1 is compactifiable. On the other hand, C
is the projection of the set {⟨a, a′, b⟩ ∈ A × A × B : q(a) = b = q(a′), a ̸= a′},
which is the intersection of a closed set and an open set. Hence, if A is a Polish
composition, then C is analytic, and so C>1 is Polishable.

Notation 4.6. Let C be a class of topological spaces.

• C↓ denotes the class of all subspaces of members of C.

• C↑ denotes the class of all superspaces of members of C.

• C∼= denotes the class of all homeomorphic copies of members of C.

• C↠ denotes the class of all continuous images of members of C.

• C↞ denotes the class of all continuous preimages of members of C, i.e. the
class of all spaces than can be continuously mapped onto a member of C.

We also denote the classes of all metrizable compacta and all continua by K and
C, respectively, so we can denote e.g. the class of all subcontinua of members of
C by C↓ ∩ C. For a topological space X and a family F ⊆ P(X), the notation
F↑ ∩ P(X) means “all supersets of members of F that are subsets of X, all
endowed with the subspace topology”. This is consistent with the definition of C↑
above when P(X) is viewed as a set of topological spaces.

Observation 4.7. If C is a strongly compactifiable or strongly Polishable class
of compacta, then so is the class C ∩C of all continua from C and the class C \C
of all disconnected compacta from C. If C is a strongly Polishable class of Polish
spaces, then so is the class C ∩K of all compacta from C.

Proof. In the first case, there is a closed (resp. Gδ) family F ⊆ K([0, 1]ω) such
that F ∼= C. We have C∩C ∼= F∩C([0, 1]ω), which is closed (resp. Gδ) not only in
C([0, 1]ω), but also in K([0, 1]ω) since C(X) is closed in K(X) for every Hausdorff
space X. Similarly, C \C ∼= F \ C([0, 1]ω), which is Fσ (resp. Gδ) in K([0, 1]ω).

If C is a strongly Polishable class of Polish spaces, then by Construction 3.8
there is a Polish space X and a Polish family F ⊆ Cl(X) equivalent to C which
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is closed by Observation 3.9 since the hyperspace Cl(X) is Hausdorff. It follows
that C ∩K is equivalent to the family F ∩ K(X), which is closed in the Polish
space K(X).

Question 4.8. Is the previous observation true also for compactifiable and Pol-
ishable classes?

Proposition 4.9. If C is a compactifiable (resp. Polishable) class, then C↓ ∩K

is a strongly compactifiable (resp. strongly Polishable) class.

Proof. Let A(q : A → B) be a witnessing composition. It is enough to observe
that C↓ ∩K ∼= (q∗)−1[[B]≤1] ∩ K(A), which is a closed subset of K(A) since the
family of all degenerate subspaces of B, [B]≤1, is τ−V -closed in P(B).

Corollary 4.10. Every hereditary class of metrizable compacta or continua with
a universal element (i.e. C ∼= {X}↓ ∩K or C ∼= {X}↓ ∩C) is strongly compacti-
fiable. This includes the classes of all compacta, totally disconnected compacta,
continua, continua with dimension at most n, chainable continua, tree-like con-
tinua, and dendrites (in the realm of metrizable compacta).

In order to obtain a similar result for the induced class C↑ ∩ K, we shall
analyze the set F↑ ∩ K(X) for a family F ⊆ K(X). First, we shall need the
following refinement of Observation 3.2.

Observation 4.11. If X is a Hausdorff space, then the inclusion relation of
compacts sets is closed, i.e.R⊆∩K(X)2 is closed inK(X)2 whereR⊆ := {⟨A,B⟩ ∈
P(X)2 : A ⊆ B}.

Proof. If x ∈ A\B for some A,B ∈ K(X), then there are disjoint open sets U, V ⊆
X such that x ∈ U and B ⊆ V , and hence U− × V + is an open neighborhood of
⟨A,B⟩ disjoint with R⊆.

Lemma 4.12. Let X be a topological space.

(i) The map K : K(X)→ K(K(X)) that maps every compact set A ⊆ X to its
compact hyperspace K(A) is continuous.

(ii) The projection π2 : R⊆ ∩ K(X)2 → K(X) is closed and open.

Proof. Let R denote the relation R⊆ ∩ K(X)2. Observe that for every A ∈
K(X) we have RA = A+ ∩ K(X) = K(A), which is compact. Hence, (i) ⇐⇒
(ii) by Lemma 3.10 since K is the map ρ for R. We shall prove (i). In fact,
K is both ⟨τ−V , τ−V (τV )⟩-continuous and ⟨τ+V , τ+V (τV )⟩-continuous. (The notation
τ
+/−
V (τV ) means τ+/−V on K(Y ) where Y = K(X) is endowed with τV .)

Let A ∈ K(X) and let V ⊆ K(X) be open such that K(A) ∈ V− (resp. V+).
To prove that K is τ−V -continuous (resp. τ+V -continuous) it is enough to find U a
τ−V -open (resp. τ+V -open) neighborhood of A in K(X) such that K[U ] ⊆ V− (resp.
V+). The set V is of the from

⋃︁
i∈I

⋂︁
j∈Ji Vi,j where Ji are finite sets and every

Vi,j is V − or V + for some open set V ⊆ X.
Let us start with the τ−V -continuity. By (

⋃︁
i∈I

⋂︁
j∈Ji Vi,j)

− =
⋃︁
i∈I(

⋂︁
j∈Ji Vi,j)

−,
we may suppose without loss of generality that V =

⋂︁
j<m U

+
j ∩

⋂︁
i<n V

−
i for
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some open sets Uj, Vi ⊆ X. Also,
⋂︁
j<m U

+
j = (

⋂︁
j<m Uj)

+ =: U+. We put U :=⋂︁
i<n(U ∩ Vi)−. Since K(A) ∈ V−, there is B ∈ K(A) ∩ U+ ∩

⋂︁
i<n V

−
i , so B ∩

(U ∩ Vi) ̸= ∅ for every i < n, and since A ⊇ B, we have A ∈ U . On the other
hand, for every B ∈ U we may choose points xi ∈ B∩U ∩Vi for i < n, and hence
{xi : i < n} ∈ K(B) ∩ V , so K(B) ∈ V−.

Now let us prove the τ+V -continuity. We have

K(A) ⊆ V =
⋃︁
i∈I

⋂︁
j∈Ji Vi,j =

⋂︁
f∈

∏︁
i∈I Ji

⋃︁
i∈I Vi,f(i) =

⋂︁
f∈F Vf

where F :=
∏︁

i∈I Ji and Vf :=
⋃︁
i∈I Vi,f(i) for f ∈ F . Since K(A) is compact,

we may suppose the sets I and F are finite. Since (
⋂︁
f∈F Vf )+ =

⋂︁
f∈F V

+
f , it is

enough to find for every f ∈ F an open neighborhood Uf of A such that K[Uf ] ⊆
V+
f . Therefore, we may suppose without loss of generality that V =

⋃︁
i<n U

+
i ∪⋃︁

j<m V
−
j for some open sets Ui, Vj ⊆ X. Also,

⋃︁
j<m V

−
j = (

⋃︁
j<m Vj)

− =: V −.
We have A\V ∈ K(A) ⊆ V =

⋃︁
i<n U

+
i ∪V −, and n > 0 since ∅ ∈ K(A)\V −.

Hence, there is some i < n such that A \ V ⊆ Ui. We put U := (Ui ∪ V )+. We
have A = (A \V )∪ (A∩V ) ⊆ Ui ∪V , so A ∈ U . Let B ∈ U . For every C ∈ K(B)

we have C ⊆ B ⊆ Ui ∪ V . Therefore, K(B) ⊆ (Ui ∪ V )+ ⊆ U+
i ∪ V − ⊆ V , and so

K(B) ∈ V+.

Corollary 4.13. Let X be a topological space and F ⊆ K(X).

(i) If F is closed, then F↑ ∩ K(X) is closed.

(ii) If X is Polish and F is analytic, then F↑ ∩ K(X) is analytic.

Proof. Observe that F↑∩K(X) is the π2-image of the set H := R⊆∩(F×K(X)).
If F is closed, then H is closed in R⊆ ∩ K(X)2, and the claim follows since the
map π2↾R⊆∩K(X)2 is closed by Lemma 4.12. If F is analytic, then H is analytic
since K(X) is Polish and R⊆ is closed in K(X)2 by Observation 4.11. The claim
follows since the map π2 is continuous.

Proposition 4.14. If C is a strongly compactifiable or a strongly Polishable
class of compacta, then so is the corresponding class of all metrizable compact
superspaces C↑ ∩K.

Proof. Let us denote the Hilbert cube by Q and let Z be a Z-set in Q that is
homeomorphic to Q (it exists by [12, Lemma 5.1.3]). Our class C is equivalent to
a closed or an analytic family F ⊆ K(Z). We show that C↑ ∩K is equivalent to
F↑ ∩K(Q), which is closed or analytic by Corollary 4.13. Clearly, every member
of F↑ ∩ K(Q) is homeomorphic to a member of C↑ ∩K. On the other hand, let
K ∈ C↑ ∩K. We may suppose that K ∈ K(Z). Since K has a subspace C ∈ C,
there is a homeomorphism h : C → F ∈ F . By [12, Theorem 5.3.7] h can be
extended to a homeomorphism h̄ : Q→ Q. We have K ∼= h̄[K] ∈ F↑ ∩K(Q).

Example 4.15. The class of all uncountable metrizable compacta is strongly
compactifiable. Since every uncountable metrizable compactum contains a copy
of the Cantor space, the class is equivalent to {2ω}↑ ∩K.
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Proposition 4.16. If C is a strongly compactifiable or a strongly Polishable
class of compacta, then so is the corresponding class of all metrizable compact
continuous preimages C↞ ∩K.

Proof. Let Q denote the Hilbert cube [0, 1]ω and let F ⊆ K(Q) be equivalent to
C. We will show that C↞ ∩K ∼= H := {K ∈ K(Q × Q) : π2[K] ∈ F}. Clearly,
H ⊆ F↞ ∩ K. On the other hand, let K ∈ F↞ ∩ K. There is an embedding
e : K ↪→ Q, and there is a continuous map f : K ↠ Y ⊆ Q for some Y ∈ F .
The map (e △ f) : K → Q × Q defined by x ↦→ ⟨e(x), f(x)⟩ is an embedding
because of the embedding e, so K ∼= rng(e △ f) ⊆ Q × Q. At the same time
π2[rng(e △ f)] = rng(f) = Y , and so rng(e △ f) ∈ H. Altogether, we have
C↞ ∩K ∼= F↞ ∩K ∼= H. Since H = (π∗

2)
−1[F ], if F is closed or analytic, so is

H.

Example 4.17. We have another way to see that the class of all disconnected
metrizable compacta K \C is strongly compactifiable (besides Observation 4.7)
since it is exactly {2}↞ ∩K, where 2 denotes the two-point discrete space.

Example 4.18. The class of all metrizable compact spaces with infinitely many
components is strongly compactifiable since it is exactly {ω + 1}↞ ∩ K, where
ω + 1 denotes the convergent sequence.

Proof. For every metrizable compactum X we consider the equivalence ∼ induced
by its components. X/∼ may be viewed as a subspace of the Cantor space 2ω.
If X has infinitely many components, then X/∼ contains a nontrivial converging
sequence. The conclusion follows from the fact that every closed subspace of 2ω
is its retract.

Example 4.19. Let N denote the class of all topological spaces that are not
locally connected. The class of all non-Peano metrizable continuaN∩C is strongly
compactifiable since it is exactly {H}↞ ∩C, where H denotes the harmonic fan.
The class of all non-locally connected metrizable compacta N ∩ K is strongly
compactifiable since it is exactly {ω + 1, H}↞ ∩K.

Proof. Since Peano continua are exactly continuous images of the unit interval,
every continuum that maps continuously onto H (which is clearly not locally
connected) is not Peano, so {H}↞ ∩C ⊆ N ∩C. On the other hand, it is known
that each member of N ∩C maps continuously onto H [4].

Let K ∈ K. By Example 4.18, K has infinitely many components if and only if
K continuously maps onto ω+1, and in this case K is not locally connected. This
is because K contains a convergent sequence such that each its member and the
limit are in different components. So we may suppose that K has finitely many
components. If K ∈ N , then one of the components is a non-Peano continuum,
and so K ∈ {H}↞ as before. On the other hand if K ∈ {H}↞, then one of its
components maps onto a subfan H ′ ⊆ H that contains infinitely many endpoints
of H. It follows that H ′ ∈ N , and so K ∈ N .

Question 4.20. Is the class of all Peano continua strongly compactifiable? We
will show in Corollary 4.25 that it is compactifiable.
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Example 4.21. Let D denote the class of all dendrites, N the class of all non-
locally connected spaces, and S1 the unit circle. Both D and C \ D are strongly
compactifiable classes – D by Corollary 4.10, and C\D since dendrites are exactly
Peano continua not containing a simple closed curve, so C\D ∼= ({S1}↑∪N )∩C,
which is strongly compactifiable by Proposition 4.14 and Example 4.19.

In the following paragraphs we shall prove a preservation theorem for C↠∩K
and a necessary condition for being a strongly Polishable class.

Lemma 4.22. Let X, Y be metrizable. The following sets are Gδ.

• G∼= := {G ∈ K(X × Y ) : G is a graph of a partial homeomorphism},
• G↠ := {G ∈ K(X × Y ) : G is a graph of a partial continuous surjection}.

Proof. A set G ∈ K(X × Y ) is a member of G∼= if and only if the maps πX↾G and
πY ↾G are injective. The necessity is clear. On the other hand, if they are injective,
then they are homeomorphisms onto their images since G is compact. It follows
that G is the graph of the homeomorphism πY ↾G ◦ (πX↾G)−1 : πX [G] → πY [G].
Analogously, G ∈ G↠ if and only if πX↾G is injective.

For every n ∈ N let Fn := {F ∈ K(X × Y ) : |πY [F ]| = 1 and diam(F ) ≥
1
n
}, which is a closed set since π∗

Y is continuous, [Y ]1 is closed in K(Y ), and
diam: K(X × Y ) → [0,∞) is continuous. The map πY ↾G is not injective if and
only if there are x1 ̸= x2 ∈ X and y ∈ Y such that {⟨x1, y⟩, ⟨x2, y⟩} ⊆ G if and
only if there is n ∈ N and a set F ∈ Fn such that F ⊆ G, i.e. if and only if
G ∈

⋃︁
n∈NF↑

n ∩K(X × Y ), which is an Fσ set by Corollary 4.13. Analogously for
πX↾G.

It is known that the homeomorphic classification for compact metric spaces
is analytic [7, Proposition 14.4.3]. We shall use the following formulation of the
result.

Corollary 4.23. Let X, Y be Polish spaces. The following relations are analytic.

• R∼= := {⟨A,B⟩ ∈ K(X)×K(Y ) : B is homeomorphic to A},
• R↠ := {⟨A,B⟩ ∈ K(X)×K(Y ) : B is a continuous image of A}.

Proof. We have R∼= = {⟨πX [G], πY [G]⟩ : G ∈ G∼=} = (π∗
X △ π∗

Y )[G∼=], which is a
continuous image of a Gδ set by Lemma 4.22. Analogously for R↠.

Proposition 4.24. If C is a strongly Polishable class of compacta, then the
corresponding class of all metrizable compact continuous images C↠ ∩K is also
strongly Polishable. Moreover, the class C↠ ∩C is compactifiable.

Proof. There is an analytic family F ⊆ K([0, 1]ω) such that C ∼= F . We have
C↠ ∩K ∼= F↠ ∩ K([0, 1]ω) = R↠[F ] = π2[H] where H = R↠ ∩ (F × K([0, 1]ω)),
which is an analytic set by Corollary 4.23. Moreover, either C↠∩C contains [0, 1]
and so every Peano continuum, and hence F↠ ∩ C([0, 1]ω) is compactifiable by
Corollary 3.21, or it consists only of degenerate spaces. In both cases, C↠ ∩C is
compactifiable.
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We obtain a corollary dual to Corollary 4.10.

Corollary 4.25. Every class of metrizable compacta (resp. continua) closed un-
der continuous images with a common model in the class is strongly Polishable
(resp. compactifiable). This includes the class of all Peano continua (images of
[0, 1]) and the class of all weakly chainable continua (images of the pseudoarc).

We finally give the necessary condition.

Theorem 4.26. If C is a strongly Polishable class of compacta, then C∼= ∩K(X)

is analytic for every Polish space X.

Proof. There is an analytic set F ⊆ K([0, 1]ω) such that F ∼= C. We have C∼= ∩
K(X) = R∼=[F ] = π2[H] where R∼= is the relation of being homeomorphic on
K([0, 1]ω) × K(X) and H = R∼= ∩ (F × K(X)), which is an analytic set by
Corollary 4.23.

Corollary 4.27. If C is a class of metrizable compacta embeddable into a Polish
space X, then it is equivalent to C∼= ∩ K(X). Hence, C is strongly Polishable if
and only if C∼= ∩ K(X) is analytic.

Example 4.28. Every strongly Polishable class of zero-dimensional compacta is
equivalent to an analytic family in K(2ω) by Corollary 4.27, and if it contains a
copy of 2ω, then it is compactifable by Corollary 3.21.

Remark 4.29. For a strongly compactifiable class C, the family C∼=∩K([0, 1]ω) is
almost never closed. In fact, this happens if and only if C∼= is one of the countably
many classes listed in [1, Observation 4.3].

Example 4.30. By [8, Theorem 27.5] the class of all uncountable compacta in
K([0, 1]ω) is analytically complete. Together with Example 4.15 this shows that
there is a strongly compactifiable class C such that C∼=∩K([0, 1]ω) is not Borel. It
also follows that the class of all countable metrizable compacta is coanalytically
complete, and hence is not strongly Polishable. Note that by a classical result
of Mazurkiewicz and Sierpiński [10], countable metrizable compacta are exactly
countable successor ordinals and zero.

Example 4.31. By [9] the following classes are also coanalytically complete, and
hence not strongly Polishable: hereditarily decomposable continua, dendroids,
λ-dendroids, arcwise connected continua, uniquely arcwise connected continua,
hereditarily locally connected continua.

Let us conclude with a result on preservation under intersections.

Proposition 4.32. Let {Cn : n ∈ ω}, C, D be classes of metrizable compacta.

(i) If the classes Cn are strongly Polishable (resp. Polishable), then so is the
class

⋂︁
n∈ω C

∼=
n .

(ii) If the classes C and D are strongly Polishable (resp. Polishable), then so is
the class C ∩ D∼=.
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Proof. In the strongly Polishable case we have
⋂︁
n∈ω C

∼=
n
∼=

⋂︁
n∈ω C

∼=
n ∩ K([0, 1]ω),

which is an analytic set by Theorem 4.26.
In the Polishable case, by Theorem 2.11 for every n ∈ ω there is a Gδ subset

Fn ⊆ [0, 1]ω × ωω such that {F x
n : x ∈ ωω} ∼= Cn. By [8, Theorem 28.8] the

maps ρn : ωω → K([0, 1]ω) defined by x ↦→ F x
n are Borel. Let i, j ∈ ω. We put

Ai,j := {⟨x, y⟩ ∈ ωω × ωω : F x
i
∼= F y

j } = (ρi × ρj)−1[R∼=]. Since the relation R∼=
is analytic and the map ρi × ρj is Borel, the set Ai,j is analytic. Hence, also the
set A := {⟨xn⟩n∈ω ∈ (ωω)ω : ⟨xi, xj⟩ ∈ Ai,j for every i, j ∈ ω} and its projection
π0[A] ⊆ ωω are analytic. Observe that

⋂︁
n∈ω C

∼=
n
∼= {F x

0 : x ∈ π0[A]}, and so the
intersection is Polishable by Corollary 2.7.

Unlike C ∩ D, the class C ∩ D∼= is equivalent to C∼= ∩ D∼=, which is (strongly)
Polishable by the previous claim.

Remark 4.33. A similar argument would give us that if C is strongly compact-
ifiable and D∼= ∩ K([0, 1]ω) is closed, then C ∩ D∼= is strongly compactifiable, but
by Remark 4.29, D∼= would have to be one of countably many special classes. One
of these classes is the class of all metrizable continua C, so Observation 4.7 is a
special case.

Example 4.34. We shall extend Example 4.21. Let P be the class of all Peano
continua. The class P \ D is strongly Polishable by Corollary 4.25 and Proposi-
tion 4.32 since it is equivalent to P ∩ {S1}↑.

5 Compactifiability and inverse limits
In the last section we give a construction of compact or Polish compositions of
classes of spaces expressible as inverse limits of sequences of spaces and bonding
maps from suitable families.

First, we shall recall some standard notions and the related notation. An
inverse sequence is a pair ⟨X∗, f∗⟩ whereX∗ = ⟨Xn⟩n∈ω is a sequence of topological
spaces and f∗ = ⟨fn : Xn ← Xn+1⟩n∈ω is a sequence of continuous maps. For every
n ≤ m ∈ ω we denote by fn,m the composition (fn ◦fn+1 ◦ · · · ◦fm−1) : Xn ← Xm.
In particular, fn,n = idXn and fn,n+1 = fn for every n.

The limit of ⟨X∗, f∗⟩ is the pair ⟨X∞, ⟨fn,∞⟩n∈ω⟩ where the limit space X∞
is the subspace of

∏︁
n∈ωXn consisting of all sequences x∗ = ⟨xn⟩n∈ω such that

xn = fn(xn+1) for every n, and the limit maps fn,∞ : Xn ← X∞ are just the
coordinate projections restricted to X∞. Abstractly, the limit is defined by its
universal property: the limit maps satisfy fn,∞ = fn ◦ fn+1,∞ for every n, and for
every other family of continuous maps gn : Xn ← Y satisfying gn = fn ◦ gn+1 for
every n, there is a unique continuous map g∞ : X∞ ← Y such that gn = fn,∞ ◦g∞
for every n.

Recall that a tree is a partially ordered set T with the smallest element such
that for every node t ∈ T the set {s ∈ T : s < t} is well-ordered. A lower subset
of T is a subset S ⊆ T such that for every t ≤ s ∈ T with s ∈ S we have also
t ∈ S. A subtree of a tree T is a lower subset S ⊆ T endowed with the induced
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ordering. We will be interested in trees of countable height. These can be always
represented as subtrees of A<ω =

⋃︁
n∈ω A

n for a sufficiently large set A. The
members of A<ω are A-valued tuples t of finite length |t|, and they are ordered
by extension, i.e. t ≤ s if and only if s↾|t| = t. For T a subtree of A<ω and n ∈ ω,
the level n of T , denoted by Tn, is the set {t ∈ T : |t| = n} = T ∩ An.

Let T be a tree. A node s ∈ T is a successor of a node t ∈ T if s > t and
there is no other node s > s′ > t. We denote this by s ≻ t. A tree is countably
(resp. finitely) splitting if every node has only countably (resp. finitely) many
successors. Every countably splitting tree of countable height may be realized as
a subtree of ω<ω.

Let t, s ∈ A<ω for some A. We denote the concatenation of the tuples t and s by
t⌒s. That means, t⌒s ∈ A<ω, (t⌒s)(n) = t(n) for n < |t| and (t⌒s)(|t|+n) = s(n)

for n < |s|. For a ∈ A, the notation t⌒a is a shortcut for t⌒⟨a⟩. Note that for a
subtree T ⊆ A<ω, every successor of a node t ∈ T is of the form t⌒a for some
a ∈ A.

Let T be a tree. Recall that a branch of T is any maximal chain α ⊆ T ,
i.e. a subset of T whose elements are pairwise comparable and which is maximal
with respect to inclusion. Suppose that T is a subtree of some A<ω. In that case,
for every infinite branch of T there is a unique sequence α ∈ Aω such that the
infinite branch as a set is {α↾n : n ∈ ω}. For this reason it is common to identify
infinite branches of A<ω with Aω. By T∞ we denote the body of T , i.e. the set of
all infinite branches of T ⊆ A<ω viewed as a subspace of Aω with the product
topology with A being discrete. The standard basic open subsets of T∞ are of the
form Nt := {α ∈ T∞ : α↾|t| = t} for t ∈ T . It is easy to see that T∞ is always
a closed subspace of the space Aω, and so is Polish if A is countable. For more
details on trees see for example [8, Section I.2].

Definition 5.1. Let T be a subtree of A<ω for some A. By a T -inverse system
we mean a pair ⟨X∗, f∗⟩ where X∗ = ⟨Xt⟩t∈T is a family of topological spaces and
f∗ = ⟨ft,s : Xt ← Xs⟩t≤s∈T is a family of continuous maps such that ft,t = idXt
for every t and ft,s ◦ fs,r = ft,r for every t ≤ s ≤ r. Of course, the system is
determined by the successor maps ft,t⌒⟨a⟩ where t⌒⟨a⟩ ∈ T . Note that an inverse
sequence may be viewed as a 1<ω-inverse system.

Construction 5.2. Let T be a subtree of ω<ω and let ⟨X∗, f∗⟩ be a T -inverse
system. The following construction produces a composition of the limit spaces
along the infinite branches of T .

We consider the inverse sequence ⟨X⊕
∗ , f

⊕
∗ ⟩ obtained by summing ⟨X∗, f∗⟩

along each level of T , i.e. for each n ∈ ω we put X⊕
n :=

∑︁
t∈Tn Xt and f⊕

n :=

(
∑︁

t∈Tn f
⊕
t ) : X

⊕
n ← X⊕

n+1 where the maps f⊕
t := (

∇
s≻t ft,s) : Xt ←

∑︁
s≻tXs are

preliminary codiagonal sums of all maps going to Xt. (We denote codiagonal
sums by

∇
and diagonal products by

∆
. The notation is inspired by [6, 2.1.11

and 2.3.20].)
Moreover, for each branch α ∈ T∞ we consider the inverse sequence ⟨Xα

∗ , f
α
∗ ⟩

defined as the restriction of ⟨X∗, f∗⟩ to α, i.e. Xα
n = Xα↾n and fαn = fα↾n,α↾n+1

: Xα
n

← Xα
n+1. For every n ∈ ω we denote the embedding Xα

n ↪→ X⊕
n by eαn. This yields
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a natural transformation eα∗ : ⟨Xα
∗ , f

α
∗ ⟩ ↪→ ⟨X⊕

∗ , f
⊕
∗ ⟩ and the limit embedding

eα∞ : Xα
∞ ↪→ X⊕

∞.

Claim. The family of subspaces ⟨rng(eα∞)⟩α∈T∞ is a decomposition of X⊕
∞, and the

induced map q : X⊕
∞ → T∞ (where q−1(α) = rng(eα∞)) is continuous. Hence, we

have a composition A(q : X⊕
∞ → T∞) of the family of embeddings ⟨eα∞⟩α∈T∞ . If all

spaces Xt for t ∈ T are Polish, then the composition is Polish. If all spaces Xt for
t ∈ T are metrizable compacta and T is finitely splitting, then the composition
is compact.

Proof. Without loss of generality, we may suppose that Xt ⊆ X⊕
n for every n ∈ ω

and t ∈ Tn, and that Xα
∞ ⊆ X⊕

∞ for every α ∈ T∞.
First, ⟨Xα

∞⟩α∈T∞ is a decomposition of X⊕
∞. Clearly, for every x∗ ∈ X⊕

∞ ⊆∏︁
n∈ωX

⊕
n and every n ∈ ω there is a unique node tn ∈ Tn such that xn ∈ Xtn , and

since xn = f⊕
n (xn+1), we have that tn+1 is a successor of tn and xn = ftn,tn+1(xn+1).

Hence, α := {tn : n ∈ ω} is the unique infinite branch such that xn = fαn (xn+1)

for every n ∈ ω, i.e. such that x∗ ∈ Xα
∞.

Let n ∈ ω and t ∈ Tn. For every x∗ ∈ Xα
∞ ⊆ X⊕

∞ we have α(n) = t if and only
if xn ∈ Xt. Hence, we have q−1[Nt] = {x∗ ∈ X⊕

∞ : xn ∈ Xt} = (f⊕
n,∞)−1[Xt], and

Xt is clopen in X⊕
n . Therefore, q : X⊕

∞ → T∞ is continuous.
If T is countably (resp. finitely) splitting, then every level Tn is countable

(resp. finite), and so every space X⊕
n is Polish (resp. metrizable compact) if all

spaces Xt are. So is their limit X⊕
∞ as a closed subspace of their product. The

indexing space T∞ is a closed subset of ωω, and therefore is Polish. Moreover, if T
is finitely splitting, T∞ is a closed subset of

∏︁
n∈ω Fn for some finite sets Fn ⊆ ω

since every level Tn is finite, and so it is a metrizable compactum.
Remark 5.3. Construction 5.2 gives a way of proving that some class of spaces
is compactifiable or Polishable. On the other hand, note that every compact
composition A(q : A → 2ω) gives us a 2<ω-inverse system of inclusions. Namely,
for every t ∈ T := 2<ω we put Xt := q−1[Nt], and for very s ≥ t we define
ft,s by the inclusion Xs ⊆ Xt. We obtain a T -inverse system ⟨X∗, f∗⟩ and for
every α ∈ T∞ = 2ω we have Xα

∞ =
⋂︁
n∈ω q

−1[Nα↾n ] = q−1[
⋂︁
n∈ωNα↾n ] = q−1(α).

Moreover, X⊕
n = A for every n, so by applying Construction 5.2 to ⟨X∗, f∗⟩, we

obtain the composition A we started with.
Definition 5.4. For a class F of continuous maps, we call a topological space
F-like if it is the limit of an inverse sequence with bonding maps in F . By Obj(F)
we denote the class of all domains and codomains of the maps from F .

For a class P of topological spaces, we call a topological space P-like if it is
F -like for F being the class of all continuous surjections between spaces from P .
Classically, {[0, 1]}-like spaces are called arc-like, and {S1}-like spaces are called
circle-like.
Proposition 5.5. Let F be a countable family of continuous maps. There is a
subtree T ⊆ ω<ω and a T -inverse system ⟨X∗, f∗⟩ such that {Xα

∞ : α ∈ T∞}
is equivalent to the class of all F -like spaces. Moreover, we may have T ⊆ 2<ω

if every space X that is the codomain of infinitely maps from F is F -like (in
particular, if idX ∈ F).
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Proof. If every F -like space is empty, then the empty tree or a single-branch
tree with empty maps works. Otherwise, let us fix a nonempty F -like space X∅
formally distinct from each member of Obj(F). Moreover, for every X ∈ Obj(F),
let us fix a constant map cX : X → X∅. We put F ′ := F ∪ {cX : X ∈ Obj(F)}.
A space is F ′-like if and only if it is F -like since every inverse sequence with
bonding maps from F ′ either has all bonding maps in F or starts with some
cX and continues with maps from F . We have extended F to F ′ just to have a
common codomain to serve as the root of our tree.

Let A := |F ′| ≤ ω and let ⟨fn⟩n∈A be an enumeration of F ′. We associate every
t ∈ A<ω with the composition ft(0)◦ft(1)◦· · ·◦ft(|t|−1) if the composition is possible
and if the codomain is X∅. Namely, let T be the subtree of A<ω ⊆ ω<ω consisting
of all tuples t such that dom(ft(n)) = cod(ft(n+1)) for every n + 1 < |t| and
cod(ft(0)) = X∅ or t = ∅. We put Xt := dom(ft(|t|−1)) for t ∈ T \{∅}. Note that X∅
is already defined. For every t⌒n ∈ T we put ft,t⌒n := fn. This defines the desired
T -inverse system ⟨X∗, f∗⟩. The first level consists exactly of the added maps cX ,
i.e. {f∅,⟨n⟩ : ⟨n⟩ ∈ T} = {cX : X ∈ Obj(F)}. Moreover, the restrictions ⟨Xα

∗ , f
α
∗ ⟩

along infinite branches α ∈ T∞ are exactly inverse sequences with bonding maps
in F ′ and starting at X∅, which are exactly all inverse sequences with bonding
maps from F prepended with the corresponding map cX .

Now let us turn the tree T ⊆ ω<ω into a tree S ⊆ 2<ω, and define the
corresponding S-inverse system ⟨Y∗, g∗⟩. First, we define canonical transforma-
tions between ω<ω and 2<ω. For every n ∈ ω let [n] be the sequence of n
ones followed by zero, and for every t ∈ ω<ω let ϕ(t) be the concatenation
[t(0)]⌒[t(1)]⌒ · · ·⌒[t(|t|−1)]. This defines an injective map ϕ : ω<ω → 2<ω. Essen-
tially, each branching t⌒0, t⌒1, t⌒2, . . . is replaced by t⌒0, t⌒⟨1, 0⟩, t⌒⟨1, 1, 0⟩, . . .
The image ϕ[ω<ω] consists of all sequences ending with 0 and the empty sequence.
Let ψ : 2<ω → ω<ω be the extension of ϕ−1 by ψ(s⌒1) := ψ(s) for s ∈ 2<ω.

Let S := ψ−1[T ], which is the tree generated by ϕ[T ]. For each s ∈ S let
Ys := Xψ(s), gs,s⌒1 := idXψ(s)

, and gs,s⌒0 := fψ(s),ψ(s⌒0). This defines the desired
S-inverse system ⟨Y∗, g∗⟩. Infinite branches α ∈ T∞ are in a one-to-one corre-
spondence with infinite branches β ∈ S∞ with infinitely many zeroes, and the
limits of the corresponding inverse sequences ⟨Xα

∗ , f
α
∗ ⟩ and ⟨Y β

∗ , g
β
∗ ⟩ are the same

– the maps gβn with β(n) = 0 are exactly the maps fαn , while the maps gβn with
β(n) = 1 are identities. Note that S∞ may contain also branches with only finitely
many zeroes, but the corresponding inverse sequence is eventually constant idX
for some X ∈ Obj(F ′), and so its limit is X. By the construction, X = Xt for
some t ∈ T with infinitely many successors. Hence, X is the codomain of infinitely
many maps from F ′, so it is either the codomain of infinitely many maps from
F , or X = X∅. In both cases, X is F -like.

Proposition 5.6. Let F be a family of continuous maps such that Obj(F) is
a countable family of metrizable compacta. There is a countable family G ⊆ F
such that a space is F -like if and only if it is G-like.

Proof. For every X, Y ∈ Obj(F) let F(X, Y ) denote the family of all maps f ∈ F
such that f : X → Y . Every F(X, Y ) is a subspace of the space of all continuous
maps X → Y with the topology of uniform convergence, which is separable and
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metrizable since X and Y are metrizable compacta, and hence F(X, Y ) is also
separable. Let G(X, Y ) ⊆ F(X, Y ) be a countable dense subset and let G be the
countable family

⋃︁
X,Y ∈Obj(F) G(X, Y ).

Clearly, every G-like space is F -like. On the other hand, by Brown’s approxi-
mation theorem [5, Theorem 3], for every inverse sequence ⟨X∗, f∗⟩ with bonding
maps from F and fixed metrics on the spaces Xn, there is a sequence of numbers
εn > 0 and a sequence of maps gn ∈ G(Xn+1, Xn) such that d(fn, gn) < εn for
every n and such that the limit space of ⟨X∗, g∗⟩ is homeomorphic to the limit
space of ⟨X∗, f∗⟩. Therefore, every F -like space is G-like.

Now we combine the previous propositions into the following theorem.

Theorem 5.7. Let F be a family of continuous maps.

(i) If F is countable and Obj(F) is a class of Polish spaces, then the class of
all F -like spaces is Polishable.

(ii) If Obj(F) is a countable family of metrizable compacta such that every
X ∈ Obj(F) is F -like (in particular if idX ∈ F), then the class of all F -like
spaces is compactifiable.

Proof. By Proposition 5.6 we may suppose that F is countable also in the com-
pact case. Using Proposition 5.5 we build a tree T ⊆ ω<ω and a T -inverse system
such that F -like spaces are exactly the limit spaces along the branches. More-
over, in the compact space our tree can be made finitely splitting. Finally, we
build a Polish (resp. compact) composition of the class of all F -like spaces using
Construction 5.2.

Corollary 5.8. For a countable family P of metrizable compacta, the class of
all P-like spaces is compactifiable.

Remark 5.9. The class of all arc-like continua is strongly compactifiable by
Corollary 4.10 since there is a universal arc-like continuum. Theorem 5.7 gives
another way to prove that the class of all arc-like continua is compactifiable. In
fact, Construction 5.2 is based on [14, Theorem 12.22], where a universal arc-like
continuum is constructed. The difference is that in [14, Theorem 12.22] all spaces
Xt are copies of the unit interval, the spaces X⊕

n are extended to bigger arcs An,
and the surjections f⊕

n : X⊕
n ← X⊕

n+1 are continuously extended to surjections
g : An ← An+1, so we get an arc-like continuum A∞ ⊇ X⊕

∞ as limit. However,
such extension cannot be done with circles. In fact, there is no universal circle-
like continuum (Observation 5.10). Yet, by Theorem 5.7 the class of all circle-
like continua is compactifiable. Because of this and Corollary 4.10, a compact
composition may be viewed as a weaker form of a universal element.

Observation 5.10. There is no universal circle-like continuum.

Proof. Let ⟨X∗, f∗⟩ be an inverse sequence of circles and continuous surjections.
We will show that if S1 ⊆ X∞, then already S1 = X∞, so X∞ cannot be universal.

Let us divide S1 into four quarter-arcs Ak := {eix : x ∈ [k π
2
, (k + 1)π

2
]},

k ∈ {0, 1, 2, 3}. There is n such that fn,∞[A0]∩fn,∞[A2] = ∅ = fn,∞[A1]∩fn,∞[A3].
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Necessarily, the same condition holds for every fm,∞ where m ≥ n. We have that
fn,∞↾S1 is onto. Otherwise, A := fn,∞[S1] is an arc, fn,∞[A0] and fn,∞[A2] are its
disjoint subcontinua, and no two subarcs of A meeting both fn,∞[A0] and fn,∞[A2]

are disjoint, which is a contradiction with disjointness of fn,∞[A1] and fn,∞[A3].
We have shown that fm,∞↾S1 is onto for every m ≥ n. But for x ∈ X∞ \ S1

there is m ≥ n such that fm,∞(x) /∈ fm,∞[S1] = Xm, which is a contradiction.

We wonder if the constructions from this chapter may be modified to obtain
strong compact or strong Polish compositions. In particular, we have the following
question.

Question 5.11. Is the class of all circle-like continua strongly compactifiable?
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IV. Borel complexity up to the
equivalence

Adam Bartoš*,1

Abstract

We say that two classes of topological spaces are equivalent if each
member of one class has a homeomorphic copy in the other class and vice
versa. Usually when the Borel complexity of a class of metrizable compacta
is considered, the class is realized as the subset of the hyperspace K([0, 1]ω)
containing all homeomorphic copies of members of the given class. We are
rather interested in the lowest possible complexity among all equivalent
realizations of the given class in the hyperspace.

We recall that to every analytic subset of K([0, 1]ω) there exist an equiv-
alent Gδ subset. Then we show that up to the equivalence open subsets of
the hyperspace K([0, 1]ω) correspond to countably many classes of metriz-
able compacta. Finally we use the structure of open subsets up to equiva-
lence to prove that to every Fσ subset ofK([0, 1]ω) there exists an equivalent
closed subset.

Classification: 54H05, 54B20, 54E45, 54F15.
Keywords: Borel hierarchy, complexity, homeomorphism equivalence, met-

rizable compactum, Polish space, hyperspace, Z-set, saturated family,
compactifiable class, Polishable class.

1 Introduction
We denote that topological spaces X, Y are homeomorphic by X ∼= Y . This
equivalence of topological spaces may be lifted to an equivalence of classes of
topological spaces. We say that two classes C and D are equivalent (and we also
write C ∼= D) if every space in C is homeomorphic to a space in D and vice versa.
This is the equivalence from the title. Given a class C we denote by C∼= the class
of all homeomorphic copies of members of C. Clearly, this is the largest class
equivalent to C. We say that the class C is saturated if C ∼= C∼=.

We denote the classes of all metrizable compacta and all metrizable con-
tinua by K and C, respectively. We are interested in the complexity of classes of
metrizable compacta and continua, i.e. of subclasses of K and C. To express the
complexity of a given class C using the Borel hierarchy, we first have to view the
class as a subset of a Polish space. For this we use hyperspaces.

Let us recall the notation and basic properties of standard hyperspaces. For
a topological space X we denote the families of all compacta and continua (i.e.
connected compacta) in X including the empty set by K(X) and C(X), respec-
tively, and we endow the families with the Vietoris topology. This is the topology

*e-mail: drekin@gmail.com
1Charles University, Faculty of Mathematics and Physics, Department of Mathematical

Analysis
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generated by the sets of form U+ := {A : A ⊆ U} and U− := {A : A ∩ U ̸= ∅}
for U open in X. Clearly, C(X) is a subspace of K(X). It is a closed subspace if
X is Hausdorff.

If the space X is metrizable with a metric d, the hyperspaces are metrizable
with the induced Hausdorff metric dH . The distance dH(A,B) is the infimum of
all values ε > 0 such that A ⊆ Nε(B) and B ⊆ Nε(A). Here, Nε(A) denotes the
set {x ∈ X : d(x,A) < ε} =

⋃︁
x∈AB(x, ε) where B(x, ε) is the open ball of radius

ε. To incorporate the empty set it makes sense to consider a bounded metric d
and to define dH(A, ∅) as the bound.

Every continuous map f : X → Y between topological spaces induces the
map f ∗ : K(X) → K(Y ) defined by f ∗(A) := f [A]. This map is also continuous.
Moreover, if f is an embedding or a homeomorphism, so is the map f ∗. These
properties are well known, and we summarize them in [1, Proposition 3.6].

The Hilbert cube [0, 1]ω is a universal space for all separable metrizable spaces,
in particular, every metrizable compactum has a homeomorphic copy inK([0, 1]ω),
which is itself a metrizable compactum. It is standard to view this space as the
hyperspace of all metrizable compacta. For a class C ⊆ K we consider the collec-
tion of all families F ⊆ K([0, 1]ω) equivalent to C, and we denote this collection
by [C]. Note that this is the equivalence class of ∼= restricted to P(K([0, 1]ω)).
Analogously to the saturated class we say that F ⊆ K([0, 1]ω) is a saturated fam-
ily if F = F∼= ∩ K([0, 1]ω). The collection [C] has the largest element, namely
the saturated family C∼= ∩ K([0, 1]ω). Also, if F ∈ [C], then H ∈ [C] whenever
F ⊆ H ⊆ max([C]). In particular, [C] is stable under arbitrary unions. The
minimal elements of [C] are those families F ∈ [C] whose members are pairwise
non-homeomorphic.

Usually, when considering the complexity of a class C ⊆ K, the class is identi-
fied with max([C]) and its complexity in K([0, 1]ω) is considered. There are many
results on complexity of max([C]), see for example the survey [4]. We are rather
interested in the lowest complexity among families in [C]. This is rarely the com-
plexity of the saturated family. For example, every singleton {K} ⊆ K([0, 1]ω) is
closed, but the corresponding saturated family is not unless K is degenerate (see
Observation 4.5).

The reason we are interested in the lowest complexity among the members
of [C] for a class of metrizable compacta are the following notions introduced in
[1]. A class of topological spaces C is compactifiable (or Polishable) if there is a
continuous map q : A→ B between metrizable compacta (or Polish spaces) A, B
such that the family of fibers {q−1(b) : b ∈ B} is equivalent to the given class C.
The map q encodes how some representants of the members of C are disjointly
composed together in one metrizable compactum (or Polish space) A. We call
the resulting structure A(q : A → B) a composition. Clearly, if the class C is
compactifiable (or Polishable), then it necessarily consists of metrizable compacta
(or Polish spaces).

We also define strongly compactifiable and strongly Polishable classes where
the composition map q additionally has to be closed and open. By [1, Corol-
lary 3.17] every compactifiable class is strongly Polishable. Therefore, we have
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the implications:

strongly
compactifiable =⇒ compactifiable =⇒ strongly

Polishable =⇒ Polishable.

The following theorems show that the strong notions are directly connected to
hyperspaces, and since the definition of (strongly) compactifiable and Polishable
classes is inherently up to the equivalence ∼=, we face the question of Borel com-
plexity up to the equivalence.

Theorem 1.1 ([1, Theorem 3.13]). The following conditions are equivalent for a
class of topological spaces C.

(i) C is strongly compactifiable.
(ii) There is a metrizable compactum X and a closed family F ⊆ K(X) such

that F ∼= C.
(iii) There is a closed zero-dimensional disjoint family F ⊆ K([0, 1]ω) such that

F ∼= C.

Theorem 1.2 ([1, Theorem 3.14]). The following conditions are equivalent for a
class of topological spaces C.

(i) C is a strongly Polishable class of compacta.
(ii) There is a Polish space X and an analytic family F ⊆ K(X) such that
F ∼= C.

(iii) There is a Gδ zero-dimensional disjoint family F ⊆ K([0, 1]ω) such that
F ∼= C.

(iv) There is a closed zero-dimensional disjoint family F ⊆ K((0, 1)ω) such that
F ∼= C.

So strong compactifiability correspond to existence of a closed equivalent sub-
family ofK([0, 1]ω), and strong Polishability correspond to existence of an analytic
or equivalently Gδ equivalent subfamily of K([0, 1]ω). The theorems are proved by
translating back and forth between families in hyperspaces and compositions. As
a byproduct, we obtain the following theorem. We include a sketch of a standalone
proof that gathers all the translations needed together.

Theorem 1.3. To every analytic family F ⊆ K([0, 1]ω) there exists an equivalent
Gδ family G ⊆ K([0, 1]ω).

Proof. Let R := {⟨x, F ⟩ ∈ [0, 1]ω × F : x ∈ F} and let π : R → F be the
projection. Since the family F is analytic, there is a Polish space B and a con-
tinuous surjection f : B → F . Let A := {⟨x, b⟩ ∈ [0, 1]ω × B : x ∈ f(b)} and let
q : A → B be the projection. The space A is separable metrizable, and so there
is an embedding e : A ↪→ [0, 1]ω. We put G := {e[q−1(b)] : b ∈ B}.

For every b ∈ B we have e[q−1(b)] ∼= q−1(b) = f(b) × {b} ∼= f(b) ∈ F , so
G is equivalent to F . The map π is closed and open, and q may be regarded
as a pullback of q along f . It follows that q is also closed and open. We may
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suppose that f also satisfies |f−1(∅)| ≤ 1. We obtain that B is homeomorphic to
{q−1(b) : b ∈ B} ⊆ K(A), which is homeomorphic to G via e∗. Hence, G is Polish
and so Gδ in K([0, 1]ω). For details see [1].

Let us note that for σ-ideals the previous theorem holds in a much stronger
way.

Theorem 1.4 ([3, Theorem 11]). Let X be a metrizable compactum. Every
analytic σ-ideal F ⊆ K(X) is in fact Gδ.

In this paper we analyze the remaining complexities, namely clopen, open,
and Fσ subsets of K([0, 1]ω). The situation with clopen subsets is quite simple. It
is well-known that the hyperspaces K(X) \ {∅} and C(X) \ {∅} are connected for
any connected space X (see for example [6, Exercises 4.32 and 5.25]). Hence, we
obtain the following proposition.

Proposition 1.5. There are exactly four clopen subsets of K([0, 1]ω): ∅, {∅},
K([0, 1]ω) \ {∅}, K([0, 1]ω). Hence, there are only four corresponding classes: ∅,
{∅}, K \ {∅}, K. Similarly, there are exactly four clopen subsets of C([0, 1]ω): ∅,
{∅}, C([0, 1]ω)\{∅}, C([0, 1]ω), and four corresponding classes of continua: ∅, {∅},
C \ {∅}, C.

The situation with open and Fσ families is more involved and is the subject
of the next sections. In the second section we prove that every open subset of
K([0, 1]ω) is equivalent to one of countably many saturated open subfamilies of
the hyperspace (Theorem 2.18). In the third section we show that every Fσ subset
of K([0, 1]ω) is equivalent to a closed subset (Theorem 3.6). In the fourth section
we gather some observations on saturated and so-called type-saturated classes
and families.

2 Open classes
Now let us look at open subsets of K([0, 1]ω) up to the equivalence. First, we shall
consider the following rough classification of metrizable compacta.

Definition 2.1. Let X be a metrizable compactum.

• By m(X) we denote the number of all connected components. By n(X) we
denote the number of all nondegenerate connected components.

• Let T denote the set of all finite types {⟨m,n⟩ : m ≥ n ∈ ω}, and let T+
denote the set of all positive finite types {⟨m,n⟩ ∈ T : m > 0}.

• We define the type function t : K → T ∪ {∞} by t(X) := ⟨m(X), n(X)⟩ if
m(X) < ω, ∞ otherwise. Clearly, the type function is onto.

• We define a partial order ≤ on T ∪ {∞}: ⟨0, 0⟩ is not comparable with
anything; T+ is ordered by the product order, i.e. ⟨m1, n1⟩ ≤ ⟨m2, n2⟩ if and
only if m1 ≤ m2 and n1 ≤ n2; and ∞ ≥ t for every t ∈ T+.
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• We define the principal upper class Ut := {X ∈ K : t(X) ≥ t} for every
t ∈ T ∪ {∞}. Since the type function is onto, we have t = min{t(X) :

X ∈ Ut} for every t ∈ T ∪ {∞}, and so t1 ≤ t2 ⇐⇒ Ut1 ⊇ Ut2 for every
t1, t2 ∈ T ∪ {∞}.

Example 2.2. We have the following examples of principal upper classes.

• Um,0 is the class of all metrizable compacta with at least m components.
• Um,0 ∪ U1,1 is the class of all metrizable compacta with at least m points.
• U2,0 ∪ U1,1 is the class of all nondegenerate metrizable compacta.
• U1,1 is the class of all infinite metrizable compacta.
• U1,0 is the class of all nonempty metrizable compacta, i.e. K \ {∅}.
• U0,0 = {∅} and U0,0 ∪ U1,0 = K.

We will show that open subsets of K([0, 1]ω) are equivalent to some unions of
principal upper classes. Since the finite spaces are dense in K([0, 1]ω), not every
principal upper class is open. However, this is essentially the only obstacle. That
is why we define nice sets of types.

Definition 2.3. Let R ⊆ T ∪ {∞}.

• We say that R is nice if ⟨m, 0⟩ ∈ R for some m > 0 whenever R ∩ (T+ ∪
{∞}) ̸= ∅. This holds if and only if

⋃︁
t∈R Ut contains a nonempty finite

space whenever it contains a nonempty space.
• We say that R is an antichain if it is pairwise ≤-incomparable. Note that

every antichain is finite, and that no nice antichain contains ∞.
• By A(R) we denote the set of all ≤-minimal elements of R. Note that this

is the only antichain A such that
⋃︁
t∈A Ut =

⋃︁
t∈R Ut. It follows that A(R)

is nice if and only if R is nice.

Eventually, we will show that open subsets of K([0, 1]ω) correspond to nice
antichains in T (Theorem 2.18), but first we determine which unions of principal
upper classes are open.

Definition 2.4. For every finite function s : I → N+, where N+ denotes the
set of all positive integers, we define the special open class Os of all metrizable
compacta K having a clopen decomposition {Ki : i ∈ I} such that |Ki| ≥ s(i)

for every i ∈ I.
Moreover, let X be a metrizable space, and let U ⊆ K(X) be open. We

say that U is of the shape s if there are disjoint open sets Ui ⊆ X, i ∈ I,
and for every i ∈ I there are disjoint open sets Vi,j ⊆ Ui, j < s(i), such that
U = (

⋃︁
i∈I Ui)

+∩
⋂︁
i∈I,j<s(i) V

−
i,j . We say that U is exactly of the shape s if moreover

the set U+
i ∩

⋂︁
j<s(i) V

−
i,j contains a connected space for every i ∈ I.

By n(s) we denote |{i ∈ I : s(i) > 1}|. To every type t ∈ T ∪{∞} we associate
a set of finite functions St. If t = ⟨m,n⟩, we put St := {s : m→ N+ : n(s) ≤ n},
if t =∞, we put St := {s : m→ N+ : m > 0}.
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Observation 2.5. Let s : I → N+ be a finite function, let X be a metrizable
space, and let K ∈ K(X). K has a neighborhood of the shape s in K(X) if and
only if K ∈ Os. It follows that Os ∩ K(X) is open.

Observation 2.6. Let s : I → N+ be a nonempty finite function and let be K
a metrizable compactum. If there are pairwise disjoint sets Ai ⊆ K, i ∈ I, such
that for every i ∈ I either Ai is a nondegenerate component of K or Ai is the
union of s(i)-many components, then K ∈ Os.

This is because the components and the quasi-components are the same and
we have used only finitely many components when building the sets Ai, and hence
there is a clopen decomposition {Ki : i ∈ I} of K such that Ai ⊆ Ki for every
i ∈ I. Also, every nondegenerate component is infinite, so |Ki| ≥ |Ai| ≥ s(i) for
every i ∈ I.

Note that each antichain in T+ is of the form {⟨m+
∑︁

i<j ∆mi, n−
∑︁

i<j ∆ni⟩ :
j ≤ k} for some {∆mi,∆ni : i < k} ⊆ N+, and it is nice if and only if

∑︁
i<k∆ni =

n, so the last member is ⟨m+
∑︁

i<k∆mi, 0⟩. The next proposition says that each
special open class Os corresponds to such nice antichain additionally satisfying
that each ∆ni is 1 and that the sequence ⟨∆mi : i < k⟩ is increasing.

Proposition 2.7. Let s : I → N+ be a finite function. We have Os =
⋃︁
t∈Rs Ut

where Rs is a nice antichain in T defined as follows.
Let ⟨ik : k < |I|⟩ be an enumeration of I such that the map k ↦→ s(ik) is in-

creasing. For every n ≤ n(s) let us consider the type ts,n := ⟨n+
∑︁

k<|I|−n s(ik), n⟩.
In particular, ts,0 = ⟨

∑︁
i∈I s(i), 0⟩ and ts,n(s) = ⟨|I|, n(s)⟩. We put Rs := {ts,n :

n ≤ n(s)}.

Proof. First, if s = ∅, we have Os = {∅} = U0,0 = Uts,0 , so we may suppose that
s ̸= ∅.

If K ∈ Os, then it has a clopen decomposition {Ki : i ∈ I} such that for
every i ∈ I we have |Ki| ≥ s(i). Let J := {i ∈ I : s(i) > 1 and Ki con-
tains a nondegenerate component} and n := |J |. Clearly, n ≤ n(s). We have∑︁

k<|I|−n s(ik) ≤
∑︁

i∈I\J s(i) since the map k ↦→ s(ik) is increasing. Therefore,
t(K) ≥ ⟨|J | +

∑︁
i∈I\J s(i), |J |⟩ ≥ ⟨n +

∑︁
k<|I|−n s(ik), n⟩ = ts,n. It follows that

Os ⊆
⋃︁
t∈Rs Ut.

On the other hand, if K ∈ Uts,n for some n ≤ n(s), then K has at least
n+

∑︁
k<|I|−n s(ik) components at least n of which are nondegenerate. Hence, we

may find disjoint sets Ai ⊆ K, i ∈ I, such that Aik is a nondegenerate component
if k ≥ |I| − n and Aik is the union of s(ik) components if k < |I| − n. From
Observation 2.6 it follows that K ∈ Os, and so

⋃︁
t∈Rs Ut ⊆ Os.

Example 2.8. We have the following examples of special open classes.

• O∅ = U0,0 = {∅} is the empty space class.
• O⟨1⟩ = U1,0 = K \ {∅} is the class of all nonempty metrizable compacta.
• O⟨2⟩ = U1,1 ∪ U2,0 is the class of all nondegenerate metrizable compacta.
• O⟨m⟩ = U1,1 ∪ Um,0 is the class of all metrizable compacta with at least m

points.
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• O⟨1:i<m⟩ = Um,0 is the class of all metrizable compacta with at least m
components.

• O⟨1,1,1,2,3,4⟩ = U6,3 ∪ U7,2 ∪ U9,1 ∪ U12,0.

Corollary 2.9. For every t ∈ T ∪{∞} and every m ∈ N+ there is st,m ∈ St such
that Ut ⊆ Ost,m ⊆ Ut ∪ Um,0.

Proof. For t = ∞ we simply put st,m := ⟨1 : i < m⟩ so Ost,m = Um,0. For
t = ⟨m′, n′⟩ ∈ T we define st,m = s as a function with domain m′ taking the
value m n′ times and the value 1 m′ − n′ times. By Proposition 2.7 we have
Ost,m =

⋃︁
n≤n′ Uts,n and ts,n = ⟨n + (m′ − n′) + (n′ − n) · m, n⟩. Hence, for

n = n′ we obtain Uts,n = Ut and for n′ − n > 0 the first item is at least m, so
Uts,n ⊆ Um,0.

Proposition 2.10. For every t ∈ T ∪{∞} we have Ut =
⋂︁
s∈St Os. In particular,

Ut ∩ K(X) is Gδ for every metrizable space X, so every principal upper class is
strongly Polishable. It also follows that Ut′ ⊆ Os for every t′ ≥ t and s ∈ St.

Proof. First let us show that Ut ⊆
⋂︁
s∈St Os, so let K ∈ Ut and s ∈ St. If t =

⟨m,n⟩ ∈ T , then K has a clopen decomposition {Ki : i < m} into components.
Since n(s) ≤ n, we may choose the enumeration such that Ki is nondegenerate
whenever s(i) > 1. Since nondegenerate components are infinite, we have |Ki| ≥
s(i) for every i < m. If t = ∞, then K has infinitely many components, so we
may find suitable sets Ai and use Observation 2.6. In both cases we have K ∈ Os.

Now, Ut ⊇
⋂︁
s∈St Os. If t ≤ ∞, then for every m > 0 we take st,m ∈ St from

Corollary 2.9, and we have Ut ⊆
⋂︁
m∈N+

Ost,m ⊆ Ut∪
⋂︁
m∈N+

Um,0 = Ut∪U∞ = Ut.
Otherwise, t = ⟨0, 0⟩ and Ut = {∅} = O∅.

Proposition 2.11. Let R ⊆ T ∪{∞}. The set
⋃︁
t∈R Ut∩K([0, 1]ω) is open if and

only if R is nice.

Proof. First, suppose that R is nice. Let t ∈ R. If t = ⟨0, 0⟩ we put st := ∅
and we have Ut = Ost . Otherwise, there is m > 0 such that ⟨m, 0⟩ ∈ R, and
we put st := st,m from Corollary 2.9, so Ut ⊆ Ost ⊆ Ut ∪ Um,0. Altogether,
we have

⋃︁
t∈R Ut =

⋃︁
t∈ROst , which has open intersection with K([0, 1]ω) by

Observation 2.5.
On the other hand, if U :=

⋃︁
t∈R Ut∩K([0, 1]ω) is open and R meets T+∪{∞},

we have U \ {∅} ̸= ∅. Since finite sets are dense, there is a finite set F ∈ U \ {∅},
and there is some t ∈ R such that F ∈ Ut. Since F is finite and nonempty, we
have t = ⟨m, 0⟩ for some m > 0, so R is nice.

The previous propositions regarding the properties of principal upper classes
and special open classes would hold as well in the realm of Hausdorff compacta
instead of metrizable compacta. Hausdorffness is needed so that components and
quasi-components are the same in compacta and that nondegenerate connected
spaces are infinite.

We have shown that open unions of principal upper classes are exactly unions
over nice antichains. Now we show that every open subset of K([0, 1]ω) is equiv-
alent to such union.
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Lemma 2.12. The set of all homeomorphic copies of [0, 1]ω is dense in C([0, 1]ω)\
{∅}.

Proof. Let U+∩
⋂︁
i<n V

−
i be a basic neighborhood of a nonempty continuum C ⊆

[0, 1]ω. Since C is connected and [0, 1]ω is locally path-connected, we may suppose
that the set U is path-connected. For i < n let yi ∈ U ∩Vi, and let Y be the union
of finitely many paths in U connecting the points yi. There is some ε > 0 such
that Nε(Y ) ⊆ U . Let f : [0, 1]ω → Y be a continuous surjection, for every i < n

let xi ∈ [0, 1]ω be such that f(xi) = yi, and let A := {xi : i < n}. By the Mapping
Replacement Theorem [5, 5.3.11] there is a Z-embedding g : [0, 1]ω → [0, 1]ω such
that g↾A = f↾A and d(g, f) < ε. Therefore, [0, 1]ω ∼= rng(g) ∈ U+ ∩

⋂︁
i<n V

−
i .

Lemma 2.13. Let F ⊆ [0, 1]ω be a finite set. For every separable metrizable
space X such that |X| ≥ |F | there exists an embedding f : X ↪→ [0, 1]ω such that
F ⊆ f [X].

Proof. Since X is separable metrizable, we may suppose that X ⊆ [0, 1]ω. Since
|X| ≥ |F |, there is a bijection h : H → F for some H ⊆ X. The map h is a
homeomorphism of Z-sets in [0, 1]ω, so by [5, Theorem 5.3.7] it can be extended
to a homeomorphism h̄ : [0, 1]ω → [0, 1]ω. The restriction h̄↾X is the desired em-
bedding.

Proposition 2.14. Let s : I → N+ be a finite function. For every compactum
X ∈ Os and every open set U ⊆ K([0, 1]ω) exactly of the shape s there is a
compactum Y ∈ U homeomorphic to X.

Proof. Let {Ui, Vi,j : i ∈ I, j < s(i)} be the open subsets of [0, 1]ω witnessing that
U is exactly of the shape s, and let {Xi : i ∈ I} be a clopen decomposition of X
such that |Xi| ≥ s(i) for every i ∈ I. Let i ∈ I. Since U+

i ∩
⋂︁
j<s(i) V

−
i,j contains a

connected space, it also contains a space Qi
∼= [0, 1]ω by Lemma 2.12. Let Fi ⊆ Qi

be such that |Fi| = s(i) and Fi ∩ Vi,j ̸= ∅ for every j < s(i). By Lemma 2.13
there is a copy Yi ∼= Xi such that Fi ⊆ Yi ⊆ Qi. Hence, Yi ∈ U+

i ∩
⋂︁
j<s(i) V

−
i,j .

Altogether we have X ∼= Y :=
⋃︁
i∈I Yi ∈ U .

Lemma 2.15. Let t ∈ T ∪ {∞}. Every K ∈ Ut ∩K(X) for any metrizable space
X has a neighborhood basis such that for every basic set U there is s ∈ St such
that U is exactly of the shape s.

Proof. Let V ⊆ K(X) be any neighborhood of K. Without loss of generality V is
of the form V + ∩

⋂︁
{W− : W ∈ W} for some open set V ⊆ X and a finite family

of open sets W .
If t = ∞, let {Ci : i ∈ I} be a finite collection of distinct components of

K such that every W ∈ W meets some of them, and let {Ki : i ∈ I} be a
clopen decomposition of K such that Ci ⊆ Ki for every i ∈ I. Such sets Ki

exist since components of K are the quasi-components. If t = ⟨m,n⟩ ∈ T , let
{Ci = Ki : i ∈ I = m} be the enumeration of all components of K.

For every i ∈ I let Fi := {xi,j : j < s(i)} ⊆ Ci be a nonempty finite set of
minimal size such that Fi∩W ̸= ∅ for every W ∈ W∩C−

i . This defines a function
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s : I → N+. For every i ∈ I we have s(i) ≤ |Ci|, and so n(s) ≤ n if t = ⟨m,n⟩.
Hence, s ∈ St.

Since the set I is finite, there are disjoint open sets Ui ⊆ V , i ∈ I, such that
Ki ⊆ Ui, and for every i ∈ I there are disjoint open sets Ui,j ⊆ Ui, j < s(i), such
that xi,j ∈ Ui,j ⊆

⋂︁
{W ∈ W : xi,j ∈ W}. We put U := (

⋃︁
i∈I Ui)

+∩
⋂︁
i∈I,j<s(i) U

−
i,j

and Ui := U+
i ∩

⋂︁
j<s(i) U

−
i,j for every i ∈ I. Since

⋃︁
i∈I Ui ⊆ V and for everyW ∈ W

there is i ∈ I and j < s(i) such that Ui,j ⊆ W , we have U ⊆ V . Since Ci, Ki ∈ Ui
for every i ∈ I, we have that U is exactly of the shape s and K ∈ U .

Proposition 2.16. Let X, Y ∈ K([0, 1]ω). A homeomorphic copy of Y is con-
tained in every neighborhood of X if and only if t(Y ) ≥ t(X).

Proof. “⇐=”: Suppose that t(Y ) ≥ t(X) and let U be a neighborhood of X. By
Lemma 2.15 we may suppose that U is exactly of the shape s for some s ∈ St(X).
By Proposition 2.10 we have Y ∈ Ut(Y ) ⊆ Ut(X) ⊆ Os. Finally, by Proposition 2.14,
there is a space Y ′ ∈ U homeomorphic to Y .

“=⇒”: Suppose that t(Y ) ≱ t(X). We have Y /∈ Ut(X) =
⋂︁
s∈St(X)

Os by
Proposition 2.10. Hence, there is some s ∈ St(X) such that Y /∈ Os ∩ K([0, 1]ω) ∋
X. Since Os is closed under homeomorphic copies, we are done.

Definition 2.17. By R we denote the countable set of all nice antichains of
T∪{∞}. For every R ∈ R we define the open class OR :=

⋃︁
t∈R Ut. Proposition 2.7

says that every special open class is an open class, namely Os = ORs for every
finite s : I → N+.

Theorem 2.18. For every open U ⊆ K([0, 1]ω) there exists exactly one R ∈ R
such that U ∼= OR. On the other hand, for every R ∈ R we have OR ∼= OR ∩
K([0, 1]ω), which is open.

Proof. By Proposition 2.16 and by universality of K([0, 1]ω) we have the equiv-
alence U ∼=

⋃︁
X∈U Ut(X). We put R := A({t(X) : X ∈ U}). Since U is open, it

contains a nonempty finite space whenever it contains a nonempty space. There-
fore, R is nice and U ∼= OR.

Clearly, if R ̸= R′ ∈ R, there is a type t ∈ T that is above some member of R
and above no member of R′ or the other way around. Any metrizable compactum
X of type t satisfies X ∈ (OR \ OR′) ∪ (OR′ \ OR), and hence OR ≇ OR′ .

On the other hand, let R ∈ R. OR∩K([0, 1]ω) is open by Proposition 2.11, and
OR ∼= OR ∩ K([0, 1]ω) since K([0, 1]ω) is universal for metrizable compacta.

Corollary 2.19. There are exactly six nonequivalent classes corresponding to
open subsets of C([0, 1]ω). Besides the four clopen classes ∅, {∅}, C \ {∅}, and
C, there is the class of all nondegenerate continua U1,1 ∩C and the class (U1,1 ∪
U0,0) ∩C = (U1,1 ∩C) ∪ {∅}.

Proof. Every open subset V of C([0, 1]ω) is of form U ∩ C where U is open in
K([0, 1]ω). By Theorem 2.18 we have U ∼= OR for some nice antichain R, and
hence V ∼= OR ∩C. Since U2,0 ∩C = ∅, open subsets of C([0, 1]ω) are equivalent
to classes

⋃︁
t∈R Ut∩C where R is any antichain in {⟨0, 0⟩, ⟨1, 0⟩, ⟨1, 1⟩}. These are

the six declared classes.
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3 Countable unions of strongly compactifiable
classes

In this section we show that every Fσ subset of K([0, 1]ω) is equivalent to a
closed subset, or equivalently, that strongly compactifiable classes are stable under
countable unions. But first we have to improve several results from the previous
section.

Lemma 3.1. Let X be a metrizable space and let F ⊆ K(X) be a compact
family. For every open set U ⊆ X such that F ⊆ U− there exists a closed set
A ⊆ X such that A ⊆ U and F ⊆ A−.

Proof. Let d be a compatible metric on X. For every F ∈ F there is xF ∈ F and
δF > 0 such that B(xF , δF ) ⊆ U . Since F is compact, there is a finite collection
H ⊆ F such that F ⊆

⋃︁
H∈HB(xH , δH/2)

−. Hence, for every F ∈ F there is
HF ∈ H and yF ∈ F ∩ B(xHF , δHF /2). We put Y := {yF : F ∈ F} and δ :=

min{δH/2 : H ∈ H}. For every F ∈ F we have that B(yF , δ) ⊆ B(xHF , δHF ) ⊆ U .
Therefore, d(Y,X \ U) ≥ δ and A := Y ⊆ U .

Lemma 3.2. Let X be a separable metrizable space, let J be finite, and let
Fj ⊆ X, j ∈ J , be disjoint compact sets. Let Vj ⊆ [0, 1]ω, j ∈ J , be disjoint
nonempty open sets. There is an embedding f : X ↪→ [0, 1]ω such that f [Fj] ⊆ Vj
for every j ∈ J .

Proof. There exists a Z-set Q ∈
⋂︁
j∈J V

−
j such that Q ∼= [0, 1]ω. This follows from

[5, Lemma 5.1.3] since there is n ∈ ω such that every set Vj contains a point xj
such that πn(xj) = 1. Also, by Lemma 2.12 there are sets Qj ⊆ Q ∩ Vj, j ∈ J ,
such that Qj

∼= [0, 1]ω for every j ∈ J .
Since X is separable metrizable, we may suppose that X ⊆ Q. There are

homeomorphisms hj : Fj → Hj ⊆ Qj for j ∈ J . The map h :=
⋃︁
j∈J hj is a home-

omorphism of Z-sets in [0, 1]ω since
⋃︁
j∈J Fj and

⋃︁
j∈J Hj are closed subsets of the

Z-set Q. By [5, Theorem 5.3.7] the map h can be extended to a homeomorphism
h̄ : [0, 1]ω → [0, 1]ω. The restriction h̄↾X is the desired embedding.

Proposition 3.3. Let s : I → N+ be a finite function, let U ⊆ K([0, 1]ω) be an
open set exactly of the shape s, and let V ⊆ K(X) be an open set of the shape s
for some metrizable space X. For every compact family H ⊆ V there is a compact
family F ⊆ U and a homeomorphism Φ: H → F such that Φ(H) ∼= H for every
H ∈ H.

Proof. Let {Ui, Ui,j : i ∈ I, j < s(i)} be open subsets of [0, 1]ω witnessing that
U is exactly of the shape s, let {Vi, Vi,j : i ∈ I, j < s(i)} be open subsets of X
witnessing that V is of the shape s, and let H ⊆ V be a compact family. We fix
i ∈ I and put Ui := U+

i ∩
⋂︁
j<s(i) U

−
i,j. Since Ui contains a connected space, it

also contains a space Qi
∼= [0, 1]ω by Lemma 2.12. For every j < s(i) there is a

compact set Ai,j ⊆ Vi,j such that H ⊆ A−
i,j (Lemma 3.1). By Lemma 3.2 there is

an embedding ei : [0, 1]ω → Qi such that ei[Ai,j] ⊆ Ui,j for every j < s(i).
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For every i ∈ I we have the homeomorphism hi := ei↾Vi : Vi → rng(ei) ⊆ Qi.
Since the families {Vi : i ∈ I} and {rng(ei) : i ∈ I} are separated, the map
h :=

⋃︁
i∈I hi :

⋃︁
i∈I Vi →

⋃︁
i∈I rng(ei) is also a homeomorphism. We put Φ := h∗↾H

and F := rng(Φ). Clearly, Φ: H → F is a homeomorphism and Φ(H) ∼= H for
every H ∈ H.

For every H ∈ H and i ∈ I we have ei[H∩Vi] ∈ Ui. This is because ei[H∩Vi] ⊆
Qi ⊆ Ui and H ∩ Vi ∈

⋂︁
j<s(i)A

−
i,j so ei[H ∩ Vi] ∈

⋂︁
j<s(i) U

−
i,j. It follows that

Φ(H) =
⋃︁
i∈I ei[H ∩ Vi] ∈ U , and so F ⊆ U .

Now we are ready to improve Proposition 2.14 from spaces to compact families
of spaces.

Proposition 3.4. Let s : I → N+ be a finite function. For every strongly com-
pactifiable class C ⊆ Os and every open set U ⊆ K([0, 1]ω) exactly of the shape s
there is a compact zero-dimensional family F ⊆ U equivalent to C.

Proof. By Theorem 1.1 there is a closed zero-dimensional family H ⊆ K([0, 1]ω)
equivalent to C. For every H ∈ H let VH ⊆ K([0, 1]ω) be a neighborhood of F of
the shape s (Observation 2.5). The collection {VH : H ∈ H} is an open cover ofH.
Since H is compact and zero-dimensional, there is a finite clopen decomposition
{Hk : k < n} of H and a finite subcover {Vk : k < n} ⊆ {VH : H ∈ H} such that
Hk ⊆ Vk for every k < n.

By Proposition 3.3 for every k < n there is homeomorphism Φk : Hk → Fk ⊆
U such that Hk is equivalent to Fk. Clearly, F :=

⋃︁
k<nFk ⊆ U is a compact

zero-dimensional family equivalent to C.

Corollary 3.5. For every strongly compactifiable class of infinite compacta C
and ε > 0 there is a closed zero-dimensional family F ⊆ K([0, 1]ω) equivalent to
C such that every space F ∈ F is ε-dense in [0, 1]ω.

Proof. Let A ⊆ [0, 1]ω be a finite 2ε/3-dense 2ε/3-separated set and let U :=⋂︁
x∈AB(x, ε/3)−. The balls B(x, ε/3) are pairwise disjoint, and so the open set
U is exactly of the shape s := ⟨|A|⟩. We have C ⊆ Os since all members of C are
infinite and Os is the class of all metrizable compacta with at least |A| points.
By Proposition 3.4 there is a closed zero-dimensional family F ⊆ U equivalent
to C. For every F ∈ F and x ∈ A we have F ∩ B(x, ε/3) ̸= ∅, and hence F is
ε-dense.

Theorem 3.6. Every countable union of strongly compactifiable classes is strong-
ly compactifiable, i.e. every Fσ subset of K([0, 1]ω) is strongly compactifiable and
equivalent to a closed subset of K([0, 1]ω).

Proof. Let Cn, n ∈ ω, be strongly compactifiable classes and let C =
⋃︁
n∈ω Cn. For

every n ∈ ω there is a compact zero-dimensional familyHn ⊆ K([0, 1]ω) equivalent
to Cn (Theorem 1.1). The set of minimal types R := A({t(X) : X ∈ C}) is finite
as any antichain in T ∪ {∞}. For every t ∈ R let us fix a space Ft,∞ ∈ K([0, 1]ω)
such that Ft,∞ ∈ C∼= and t(Ft,∞) = t. Every space Ft,∞ has a countable decreasing
neighborhood base {Bt,n : n ∈ ω} such that every Bt,n is exactly of the shape st,n
for some st,n ∈ St (Lemma 2.15).
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For every n ∈ ω the family {Ost,n : t ∈ R} covers the compact zero-dimen-
sional family Hn by Proposition 2.10, and so there is a clopen decomposition
{Ht,n : t ∈ R} of Hn such that Ht,n ⊆ Ost,n for every t ∈ R. By Proposition 3.4
there is a compact family Ft,n ⊆ Bt,n equivalent to Ht,n for every t ∈ R. We put
Ft :=

⋃︁
n∈ω Ft,n ∪ {Ft,∞} and F :=

⋃︁
t∈RFt. Every family Ft is closed since the

families Ft,n are closed and
⋂︁
n∈ω

⋃︁
m≥nFt,m ⊆

⋂︁
n∈ω Bt,n = {Ft,∞}. The theorem

follows since C =
⋃︁
n∈ω Cn ∼=

⋃︁
n∈ωHn =

⋃︁
t∈R,n∈ωHt,n

∼=
⋃︁
t∈RFt = F .

Corollary 3.7. Every Fσ subset of C([0, 1]ω) is strongly compactifiable and equiv-
alent to a closed subset of C([0, 1]ω).

Theorem 3.6 together with Theorem 1.3 and 2.18 completes the picture of
Borel complexity up to the equivalence – see Figure 1. The complexities reduce
to four nontrivial groups of classes – clopen classes, open classes, strongly com-
pactifiable classes, and strongly Polishable classes.

Π1
1 (co-analytic)

· · ·∆0
1 (clopen)

∅, {∅},K \ {∅},K

Σ0
1 (open)

OR : R ∈ R

Π0
1 (closed)

∆0
2

Σ0
2 (Fσ)

strongly compactifiable

Π0
2 (Gδ)

· · · ∆1
1 (Borel)

Σ1
1 (analytic)

strongly Polishable

Figure 1: Complexities and corresponding classes. “ ” denotes implication,
“ ” denotes implication up to the equivalence.

It is easy to see that there are open classes which are not clopen and that there
are strongly compactifiable classes that are nor open. Also, there are classes which
are not strongly Polishable. Nevertheless, the following remains open.

Question 3.8. Is there an analytic subset of K([0, 1]ω) that is not equivalent to
a closed subset? In other words, is there a class of metrizable compacta that is
strongly Polishable, but not strongly compactifiable? One candidate is the class
of all Peano continua [1, Question 4.25].

4 Saturated and type-saturated classes
We have defined saturated classes and saturated families. In general, on any set
or class X endowed with an equivalence we may consider its saturated subsets or
subclasses – A ⊆ X is saturated if it is the union of some equivalence classes, i.e. if
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it is closed under equivalent elements. So our saturated classes are saturated with
respect to the equivalence of topological spaces where two spaces are equivalent
if they are homeomorphic, and our saturated families are saturated with respect
to the same equivalence but restricted to K([0, 1]ω).

Definition 4.1. We say that a class of metrizable compacta C is type-saturated
if is it saturated with respect to the equivalence induced by the type function
t : K→ T ∪ {∞}, i.e. X, Y ∈ K are equivalent if t(X) = t(Y ). That means type-
saturated classes are the unions

⋃︁
t∈R Tt for R ⊆ T∪{∞} where Tt for t ∈ T∪{∞}

denotes the principal type-saturated class {K ∈ K : t(K) = t}. For a set of types
R ⊆ T ∪{∞} we denote the type-saturated class {K ∈ K : t(K) ∈ R} =

⋃︁
t∈R Tt

by TR.
Clearly, every type-saturated class is saturated.

Remark 4.2. For every saturated class C of metrizable compacta we have (C ∩
K([0, 1]ω))∼= = C, and for every saturated family F ⊆ K([0, 1]ω) we have F∼= ∩
K([0, 1]ω) = F . This gives us a canonical identification between saturated classes
and saturated families of metrizable compacta. Therefore, we may lift topolog-
ical properties of saturated families to the corresponding saturated classes, e.g.
we may say “closed class” or “open class” in the sense that the corresponding
saturated family is closed or open. Note that this usage of “open class” is con-
sistent with Definition 2.17. This also includes the type-saturated classes, so for
example “T∞ is Gδ” means that the corresponding family T∞∩K([0, 1]ω) is Gδ in
K([0, 1]ω). On the other hand, we have defined only type-saturated classes, but
this correspondence allows us to talk about type-saturated families without an
explicit definition.

Observation 4.3. By Theorem 2.18 every open family U ⊆ K([0, 1]ω) is equiva-
lent to some open class OR, which is by definition type-saturated. Hence, U∼= =

OR. It follows that the saturation of an open family is still an open family, and
that every saturated open or closed family is type-saturated. In particular, for a
class C of metrizable compacta, C∼=∩K([0, 1]ω) is closed if and only if C∼= = K\OR
for some R ∈ R.

By Proposition 1.5 the situation with clopen families is even simpler – they
just are type-saturated.

The following corollary summarizes which complexities are preserved by sat-
uration.

Corollary 4.4. If a family F ⊆ K([0, 1]ω) is clopen, open, or analytic, then so is
the corresponding saturated family F∼= ∩ K([0, 1]ω). On the other hand, there is
a closed family F such that the corresponding saturated family is not Borel.

Proof. For clopen and open families, this follows Observation 4.3. The saturation
of an analytic family is analytic by [1, Theorem 4.26] and Theorem 1.2.

The class of all uncountable metrizable compacta is analytically complete
[2, Theorem 27.5], but yet strongly compactifiable [1, Example 4.15], and so
equivalent to a closed family F .
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Let us make some remarks on the complexity of the saturation of a singleton
family. So let X be a metrizable compactum and let F be the corresponding
saturated family {X}∼=∩K([0, 1]ω). F is always Borel [7, Theorem 2], but besides
that it can be arbitrarily complex [4, Fact 3.12]. Section 3.5 of [4] also gives us
some examples:

• If X is a graph or a dendrite with finitely many branching points, then F
is Fσδ-complete.

• If X is the pseudo-arc, then F is Gδ-complete.
• If X is the Sierpiński universal curve or the Menger universal curve, then
F is Fσδ-complete.

Observation 4.5. It follows from Proposition 2.16 that F = {K ∈ K([0, 1]ω) :
t(K) ≤ t(X)}. Therefore, F is closed if and only if X is degenerate. F is dense
in nonempty compacta if and only if t(X) = ∞, i.e. if X has infinitely many
components. F is dense in nonempty continua if and only if X is a nondegenerate
continuum.

In the last part we shall look at the type-saturated classes in more detail.
We say that a type-saturated class TR is lower or upper if the corresponding
set R is lower or upper in the ordered set T ∪ {∞}. Observe that every open
type-saturated class is upper, and every closed type-saturated class is lower.

Also recall that a subset of a topological space is called locally closed if it is
the intersection of an open set and a closed set.

Observation 4.6. The class T0,0 is clopen, T1,0 is closed, T∞ is Gδ, and Tt is
locally closed for every other t ∈ T ∪ {∞}. No principal type-saturated class has
a lower complexity than stated.

Proof. We already know that T0,0 = U0,0 = {∅} is (with its complement) the only
nontrivial clopen class (Proposition 1.5). We have T1,0 = K \ (O∅ ∪ O⟨2⟩), so it
is closed. We already know that T∞ = U∞ is Gδ (Proposition 2.10) and dense
(Observation 4.5), and so it is comeager. Since finite spaces are dense, T∞ has
empty interior. So if it was Fσ, it would be also meager. For t = ⟨m,n⟩ ∈ T+ we
put t′ := ⟨m,n + 1⟩ if m > n and ⟨m + 1, 0⟩ otherwise. Let V := Ut ∪ U⟨m+1,0⟩
and V ′ := Ut′ ∪ U⟨m+1,0⟩. Both classes V and V ′ are open and Tt = V \ V ′, so Tt
is locally closed. Tt for t /∈ {⟨0, 0⟩, ⟨1, 0⟩,∞} is neither open nor closed since it is
neither upper nor lower.

Corollary 4.7. Let R ⊆ T ∪{∞}. If∞ /∈ R, then TR is Fσ. Otherwise, TR is Gδ.

Proof. We have TR =
⋃︁
t∈R Tt, and if ∞ /∈ R, then each such Tt is Fσ. If ∞ ∈ R,

then the complementing type-saturated class is Fσ by the previous claim.

Remark 4.8. Even though the class U∞ = T∞ of all metrizable compacta with
infinitely many components is not Fσ, it is strongly compactifiable [1, Exam-
ple 4.18]. It follows that every type-saturated class TR, R ⊆ T ∪ {∞}, is strongly
compactifiable since it is either TR\{∞} or TR\{∞} ∪ T∞, and TR\{∞} is Fσ by the
previous corollary.
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Remark 4.9. In the previous corollary we used the fact that every open saturated
family is Fσ. But that does not mean it is the countable union of saturated
closed families. Saturated closed families are type-saturated (Observation 4.3),
so every union of them is also type-saturated. On the other hand, there are Fσ
or Gδ saturated families that are not type-saturated (see the examples before
Observation 4.5).

Observation 4.10. Let us consider the quotient q∼= : K([0, 1]ω) → K([0, 1]ω)/∼=,
so open subsets of K([0, 1]ω)/∼= correspond to saturated open families. In gen-
eral, subsets of K([0, 1]ω)/∼= correspond to saturated families, and for example
Fσ subsets of K([0, 1]ω)/∼= correspond to countable unions of saturated closed
families. Since by the proof of Observation 4.6 every principal type-saturated
class is obtained as a Borel combination of open type-saturated classes, we have
that type-saturated classes correspond exactly to Borel subsets of K([0, 1]ω)/∼=.

It is not true that open subsets of K([0, 1]ω)/∼= are Fσ. This space is not
metrizable. In fact, it is not even T0. Two points of K([0, 1]ω)/∼= represented by
spaces X, Y ∈ K([0, 1]ω) are indistinguishable if and only if t(X) = t(Y ), so we
may consider the Kolmogorov quotient qT0 : K([0, 1]ω)/∼= → T ∪ {∞}. In fact,
the composition quotient map qT0 ◦ q∼= is just the type function t : K([0, 1]ω) →
T ∪ {∞}. This endows the set of all types T ∪ {∞} with the topology where
R ⊆ T ∪ {∞} is open if and only if it is upper and nice.

It is also easy to directly see that these sets form a topology. Upper sets are
stable under arbitrary unions and intersections, and nice sets are stable under
arbitrary unions. Moreover, nice upper sets are stable under finite intersections:
if R1 ∩ R2 ∩ T+ ̸= ∅, then since R1 and R2 are nice, there are some m1,m2 > 0

such that ⟨m1, 0⟩ ∈ R1 and ⟨m2, 0⟩ ∈ R1. Since R1 and R2 are upper, we have
max{⟨m1, 0⟩, ⟨m2, 0⟩} ∈ R1 ∩R2.

Observation 4.11. The proof of Observation 4.6 in fact works in T ∪ {∞}, i.e.
{⟨0, 0⟩} is clopen, {⟨1, 0⟩} is closed, {∞} is Gδ, and {t} is locally closed for every
other t ∈ T ∪ {∞}. Also, no singleton has a lower complexity than stated.

Here we have to be more careful since open sets are not necessarily Fσ. Instead
of Fσ we should consider the complexity Σ0

2 – the countable unions of members
of Π0

1. Instead of starting just with open sets and closed sets, we let Π0
1 = Σ0

1 be
the algebra generated by open sets and closed sets. Members of the algebra are
called constructible sets, and they are finite unions of locally closed sets.

So let us show that {∞} is not Σ0
2. Since our set is a singleton, it would

mean {∞} is locally closed. If {∞} was locally closed in T ∪{∞}, we would have
{∞} = {∞} ∩ U = (T+ ∪ {∞}) ∩ U = U for some open set U ⊆ T+ ∪ {∞}. So
{∞} would be open, which it is not since it is not nice.

Also, for t ̸= ⟨0, 0⟩, ⟨1, 0⟩,∞ the singleton {t} is neither in any class Fσ, Fσδ,
Fσδσ, . . . since they consist only of lower sets, nor in any class Gδ, Gδσ, Gδσδ, . . .
since they consist only of upper sets.
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