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Set Theory
In this talk, “Set Theory” means ZFC.
Objects are sets. Language is 〈=,∈〉.
Other relations and operations are derived; ⊂,∩,∪,P(·), ∅, . . .

Axioms:

1. Extensionality
∀x∀y (∀z (z ∈ x ⇔ z ∈ y) ⇔ x = y)

2. . . .

Infinitely many axioms, recursive system.

Things provable in ZFC:

I If 2ℵn < ℵω for all n ∈ ω, then 2ℵω < ℵω4 (Shelah 94),
I There exists an L-space (Moore 05),
I t = p (Malliaris–Shelah 13),
I . . .

Gödel’s incompleteness implies there are undecidable sentences.
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Continuum Hypothesis – CH

(|R| = ) |2ω| = ℵ1

Defined by Cantor in 1878.
Cantor believed it is true.
One of Hilbert’s 23 problems (1900).
Gödel (1940) shows it cannot be disproved (if ZFC consistent).
Cohen (1963) shows it is independent of ZFC, invented forcing.
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Independence

How to show given sentence ϕ is independent of ZFC?

Assume ZFC is consistent, demonstrate that
ZFC + ϕ is also consistent.

Given a model (universe of sets) V of ZFC,
modify V so that it satisfies ZFC + ϕ.

I Idea 1: Remove some sets from V .
Inner models, e.g. Gödel’s constructible universe L.

I Idea 2: Add some new sets.
The method of forcing.
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Forcing

Given a universe of sets V , choose a set P ∈ V ,
pick a ‘suitable’ new G ⊂ P .

Try to build V [G], an extension of V containing G, satisfying ZFC.
V [G] is the collection of all sets definable from G over V .

Issues:
I How to choose G so that V [G] satisfies ZFC?
I Control that a given sentence ϕ holds in V [G].

Theorem (Cohen)
If P is a poset and G is a V-generic filter, then V [G] |= ZFC.

Theorem (Balcar–Vopěnka)
If V [G] |= ZFC, then (essentially) P is a poset and G a V-generic filter.
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Posets and Filters

I (P,≤) is a poset if ≤ is a transitive, reflexive relation on P .
a ≤ b ∧ b ≤ c ⇒ a ≤ c and a ≤ a.

I p, q ∈ P are compatible (p ‖ q) if there exists r ∈ P such that
r ≤ p, q.

I If p, q not compatible, then p, q orthogonal (p⊥q).
I a ∈ P is an atom if a is minimal.
I F ⊂ P is upwards closed if p ∈ F ∧ p ≤ q implies q ∈ F .
I D ⊂ P is downwards closed if . . . (also called open)
I D ⊂ P is dense if ∀p ∈ P ∃q ≤ p, q ∈ D.
I F ⊂ P is a filter if F is upwards closed and
∀p, q ∈ F ∃r ∈ F such that r ≤ p, q.

I A ⊂ P is an antichain if a, b ∈ A, a 6= b implies a⊥b.
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Generic Filters
Suppose (P,≤) ∈ V is a poset.
A filter G ⊂ P is V -generic if G ∩D 6= ∅ for each dense D ⊂ P , D ∈ V .

If a ∈ P is an atom, then the associated principal filter
Fa = { p ∈ P : p ≥ a } is V -generic.

Claim
If P atomless, then there is no V-generic filter F ∈ V.

Fact
We can assume that for every poset P ∈ V and p ∈ P
there exists (not in V) a V-generic filter G such that p ∈ G.

Theorem (Cohen)
If P is a poset and G is a V-generic filter, then V [G] |= ZFC.
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Choosing poset for ϕ

Given sentence ϕ, we want to find G such that V [G] |= ϕ.

Cases:

1. ϕ is ∃x ∀y . . .
2. ϕ is ∀x ∃y . . .

Focus on case 1.

I CH⇔ there exists a surjective function f : ω1 → R.
I ¬CH⇔ there exists C ⊂ R ( = 2ω), |C| = ℵ2.

We want G to be the object witnessing ∃x . . . in ϕ.
Choose P to be a poset of approximations of the desired G.
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CH

There exists a surjective function f : ω1 → R.

P = { f : A→ R : A ⊂ ω1, |A| ≤ ℵ0 }

f ≤ g i� g ⊆ f

If F ⊂ P is a filter, then
⋃

F is a (partial) function ω1 → R.

For r ∈ R let Dr = { f ∈ P : r ∈ Rng(f ) }. Dr is dense.

If F ∩ Dr 6= ∅, then r ∈ Rng(
⋃

F ).

If G is a V -generic filter, then r ∈ Rng(
⋃

G) for each r ∈ R ∩ V .

Put f =
⋃

G.



CH

There exists a surjective function f : ω1 → R.

P = { f : A→ R : A ⊂ ω1, |A| ≤ ℵ0 }

f ≤ g i� g ⊆ f

If F ⊂ P is a filter, then
⋃

F is a (partial) function ω1 → R.

For r ∈ R let Dr = { f ∈ P : r ∈ Rng(f ) }. Dr is dense.

If F ∩ Dr 6= ∅, then r ∈ Rng(
⋃

F ).

If G is a V -generic filter, then r ∈ Rng(
⋃

G) for each r ∈ R ∩ V .

Put f =
⋃

G.



CH

There exists a surjective function f : ω1 → R.

P = { f : A→ R : A ⊂ ω1, |A| ≤ ℵ0 }

f ≤ g i� g ⊆ f

If F ⊂ P is a filter, then
⋃

F is a (partial) function ω1 → R.

For r ∈ R let Dr = { f ∈ P : r ∈ Rng(f ) }. Dr is dense.

If F ∩ Dr 6= ∅, then r ∈ Rng(
⋃

F ).

If G is a V -generic filter, then r ∈ Rng(
⋃

G) for each r ∈ R ∩ V .

Put f =
⋃

G.



CH

There exists a surjective function f : ω1 → R.

P = { f : A→ R : A ⊂ ω1, |A| ≤ ℵ0 }

f ≤ g i� g ⊆ f

If F ⊂ P is a filter, then
⋃

F is a (partial) function ω1 → R.

For r ∈ R let Dr = { f ∈ P : r ∈ Rng(f ) }. Dr is dense.

If F ∩ Dr 6= ∅, then r ∈ Rng(
⋃

F ).

If G is a V -generic filter, then r ∈ Rng(
⋃

G) for each r ∈ R ∩ V .

Put f =
⋃

G.



CH

There exists a surjective function f : ω1 → R.

P = { f : A→ R : A ⊂ ω1, |A| ≤ ℵ0 }

f ≤ g i� g ⊆ f

If F ⊂ P is a filter, then
⋃

F is a (partial) function ω1 → R.

For r ∈ R let Dr = { f ∈ P : r ∈ Rng(f ) }. Dr is dense.

If F ∩ Dr 6= ∅, then r ∈ Rng(
⋃

F ).

If G is a V -generic filter, then r ∈ Rng(
⋃

G) for each r ∈ R ∩ V .

Put f =
⋃

G.



CH

There exists a surjective function f : ω1 → R.

P = { f : A→ R : A ⊂ ω1, |A| ≤ ℵ0 }

f ≤ g i� g ⊆ f

If F ⊂ P is a filter, then
⋃

F is a (partial) function ω1 → R.

For r ∈ R let Dr = { f ∈ P : r ∈ Rng(f ) }. Dr is dense.

If F ∩ Dr 6= ∅, then r ∈ Rng(
⋃

F ).

If G is a V -generic filter, then r ∈ Rng(
⋃

G) for each r ∈ R ∩ V .

Put f =
⋃

G.



CH

There exists a surjective function f : ω1 → R.

P = { f : A→ R : A ⊂ ω1, |A| ≤ ℵ0 }

f ≤ g i� g ⊆ f

If F ⊂ P is a filter, then
⋃

F is a (partial) function ω1 → R.

For r ∈ R let Dr = { f ∈ P : r ∈ Rng(f ) }. Dr is dense.

If F ∩ Dr 6= ∅, then r ∈ Rng(
⋃

F ).

If G is a V -generic filter, then r ∈ Rng(
⋃

G) for each r ∈ R ∩ V .

Put f =
⋃

G.



¬ CH

There exists C ⊂ R ( = 2ω), |C| = ℵ2.

P = { f : A→ 2 : A ⊂ ω2 × ω, |A| < ℵ0 }

f ≤ g i� g ⊆ f

If F ⊂ P is a filter, then
⋃

F is a (partial) function ω2 × ω → 2.
For α ∈ ω2, n ∈ ω the set D(α,n) = { f ∈ P : (α, n) ∈ Dom(f ) }
is dense.
If F ∩ D(α,n) 6= ∅, then (α, n) ∈ Dom(

⋃
F ).

If G is a V -generic filter, then
⋃

G : ω2 × ω → 2 is a total function.
For α ∈ ω2 define cα ∈ 2ω by cα(n) =

(⋃
G
)
(α, n).

For α 6= β ∈ ω2 let E(α,β) = { f ∈ P : ∃n ∈ ω f (α, n) 6= f (β, n) }.
E(α,β) is dense, i.e. cα 6= cβ .
Put C = { cα : α ∈ ω2 }, V [G] |= |C| = |ω2

V |.



¬ CH

There exists C ⊂ R ( = 2ω), |C| = ℵ2.

P = { f : A→ 2 : A ⊂ ω2 × ω, |A| < ℵ0 }

f ≤ g i� g ⊆ f

If F ⊂ P is a filter, then
⋃

F is a (partial) function ω2 × ω → 2.
For α ∈ ω2, n ∈ ω the set D(α,n) = { f ∈ P : (α, n) ∈ Dom(f ) }
is dense.
If F ∩ D(α,n) 6= ∅, then (α, n) ∈ Dom(

⋃
F ).

If G is a V -generic filter, then
⋃

G : ω2 × ω → 2 is a total function.
For α ∈ ω2 define cα ∈ 2ω by cα(n) =

(⋃
G
)
(α, n).

For α 6= β ∈ ω2 let E(α,β) = { f ∈ P : ∃n ∈ ω f (α, n) 6= f (β, n) }.
E(α,β) is dense, i.e. cα 6= cβ .
Put C = { cα : α ∈ ω2 }, V [G] |= |C| = |ω2

V |.



¬ CH

There exists C ⊂ R ( = 2ω), |C| = ℵ2.

P = { f : A→ 2 : A ⊂ ω2 × ω, |A| < ℵ0 }

f ≤ g i� g ⊆ f

If F ⊂ P is a filter, then
⋃

F is a (partial) function ω2 × ω → 2.

For α ∈ ω2, n ∈ ω the set D(α,n) = { f ∈ P : (α, n) ∈ Dom(f ) }
is dense.
If F ∩ D(α,n) 6= ∅, then (α, n) ∈ Dom(

⋃
F ).

If G is a V -generic filter, then
⋃

G : ω2 × ω → 2 is a total function.
For α ∈ ω2 define cα ∈ 2ω by cα(n) =

(⋃
G
)
(α, n).

For α 6= β ∈ ω2 let E(α,β) = { f ∈ P : ∃n ∈ ω f (α, n) 6= f (β, n) }.
E(α,β) is dense, i.e. cα 6= cβ .
Put C = { cα : α ∈ ω2 }, V [G] |= |C| = |ω2

V |.



¬ CH

There exists C ⊂ R ( = 2ω), |C| = ℵ2.

P = { f : A→ 2 : A ⊂ ω2 × ω, |A| < ℵ0 }

f ≤ g i� g ⊆ f

If F ⊂ P is a filter, then
⋃

F is a (partial) function ω2 × ω → 2.
For α ∈ ω2, n ∈ ω the set D(α,n) = { f ∈ P : (α, n) ∈ Dom(f ) }
is dense.

If F ∩ D(α,n) 6= ∅, then (α, n) ∈ Dom(
⋃

F ).
If G is a V -generic filter, then

⋃
G : ω2 × ω → 2 is a total function.

For α ∈ ω2 define cα ∈ 2ω by cα(n) =
(⋃

G
)
(α, n).

For α 6= β ∈ ω2 let E(α,β) = { f ∈ P : ∃n ∈ ω f (α, n) 6= f (β, n) }.
E(α,β) is dense, i.e. cα 6= cβ .
Put C = { cα : α ∈ ω2 }, V [G] |= |C| = |ω2

V |.



¬ CH

There exists C ⊂ R ( = 2ω), |C| = ℵ2.

P = { f : A→ 2 : A ⊂ ω2 × ω, |A| < ℵ0 }

f ≤ g i� g ⊆ f

If F ⊂ P is a filter, then
⋃

F is a (partial) function ω2 × ω → 2.
For α ∈ ω2, n ∈ ω the set D(α,n) = { f ∈ P : (α, n) ∈ Dom(f ) }
is dense.
If F ∩ D(α,n) 6= ∅, then (α, n) ∈ Dom(

⋃
F ).

If G is a V -generic filter, then
⋃

G : ω2 × ω → 2 is a total function.
For α ∈ ω2 define cα ∈ 2ω by cα(n) =

(⋃
G
)
(α, n).

For α 6= β ∈ ω2 let E(α,β) = { f ∈ P : ∃n ∈ ω f (α, n) 6= f (β, n) }.
E(α,β) is dense, i.e. cα 6= cβ .
Put C = { cα : α ∈ ω2 }, V [G] |= |C| = |ω2

V |.



¬ CH

There exists C ⊂ R ( = 2ω), |C| = ℵ2.

P = { f : A→ 2 : A ⊂ ω2 × ω, |A| < ℵ0 }

f ≤ g i� g ⊆ f

If F ⊂ P is a filter, then
⋃

F is a (partial) function ω2 × ω → 2.
For α ∈ ω2, n ∈ ω the set D(α,n) = { f ∈ P : (α, n) ∈ Dom(f ) }
is dense.
If F ∩ D(α,n) 6= ∅, then (α, n) ∈ Dom(

⋃
F ).

If G is a V -generic filter, then
⋃

G : ω2 × ω → 2 is a total function.

For α ∈ ω2 define cα ∈ 2ω by cα(n) =
(⋃

G
)
(α, n).

For α 6= β ∈ ω2 let E(α,β) = { f ∈ P : ∃n ∈ ω f (α, n) 6= f (β, n) }.
E(α,β) is dense, i.e. cα 6= cβ .
Put C = { cα : α ∈ ω2 }, V [G] |= |C| = |ω2

V |.



¬ CH

There exists C ⊂ R ( = 2ω), |C| = ℵ2.

P = { f : A→ 2 : A ⊂ ω2 × ω, |A| < ℵ0 }

f ≤ g i� g ⊆ f

If F ⊂ P is a filter, then
⋃

F is a (partial) function ω2 × ω → 2.
For α ∈ ω2, n ∈ ω the set D(α,n) = { f ∈ P : (α, n) ∈ Dom(f ) }
is dense.
If F ∩ D(α,n) 6= ∅, then (α, n) ∈ Dom(

⋃
F ).

If G is a V -generic filter, then
⋃

G : ω2 × ω → 2 is a total function.
For α ∈ ω2 define cα ∈ 2ω by cα(n) =

(⋃
G
)
(α, n).

For α 6= β ∈ ω2 let E(α,β) = { f ∈ P : ∃n ∈ ω f (α, n) 6= f (β, n) }.
E(α,β) is dense, i.e. cα 6= cβ .
Put C = { cα : α ∈ ω2 }, V [G] |= |C| = |ω2

V |.



¬ CH

There exists C ⊂ R ( = 2ω), |C| = ℵ2.

P = { f : A→ 2 : A ⊂ ω2 × ω, |A| < ℵ0 }

f ≤ g i� g ⊆ f

If F ⊂ P is a filter, then
⋃

F is a (partial) function ω2 × ω → 2.
For α ∈ ω2, n ∈ ω the set D(α,n) = { f ∈ P : (α, n) ∈ Dom(f ) }
is dense.
If F ∩ D(α,n) 6= ∅, then (α, n) ∈ Dom(

⋃
F ).

If G is a V -generic filter, then
⋃

G : ω2 × ω → 2 is a total function.
For α ∈ ω2 define cα ∈ 2ω by cα(n) =

(⋃
G
)
(α, n).

For α 6= β ∈ ω2 let E(α,β) = { f ∈ P : ∃n ∈ ω f (α, n) 6= f (β, n) }.
E(α,β) is dense, i.e. cα 6= cβ .

Put C = { cα : α ∈ ω2 }, V [G] |= |C| = |ω2
V |.



¬ CH

There exists C ⊂ R ( = 2ω), |C| = ℵ2.

P = { f : A→ 2 : A ⊂ ω2 × ω, |A| < ℵ0 }

f ≤ g i� g ⊆ f

If F ⊂ P is a filter, then
⋃

F is a (partial) function ω2 × ω → 2.
For α ∈ ω2, n ∈ ω the set D(α,n) = { f ∈ P : (α, n) ∈ Dom(f ) }
is dense.
If F ∩ D(α,n) 6= ∅, then (α, n) ∈ Dom(

⋃
F ).

If G is a V -generic filter, then
⋃

G : ω2 × ω → 2 is a total function.
For α ∈ ω2 define cα ∈ 2ω by cα(n) =

(⋃
G
)
(α, n).

For α 6= β ∈ ω2 let E(α,β) = { f ∈ P : ∃n ∈ ω f (α, n) 6= f (β, n) }.
E(α,β) is dense, i.e. cα 6= cβ .
Put C = { cα : α ∈ ω2 }, V [G] |= |C| = |ω2

V |.



Generic extensions (the forcing relation)
How to control what does hold in V [G]?

Fact
For every x ∈ V [G] there is a name ẋ ∈ V.

The name ẋ is a ‘recipe’ how to build x from G.

Theorem
For every formula ψ(ẋ, ẏ, . . . ) there is a set D ⊆ P, D ∈ V
such that for every G

V [G] |= ψ(ẋ, ẏ, . . . ) i� D ∩ G 6= ∅.

Dψ = { p ∈ P : p ∈ G ⇒ V [G] |= ψ } ∈ V

p ∈ Dψ is denoted p  ψ

I Dψ is downwards closed.
I (p ∈ Dψ ∧ q ∈ D¬ψ) ⇒ p⊥q (denote Dψ ⊥ D¬ψ).
I If Dψ is dense, then V [G] |= ψ.
I (Dψ ∪ D¬ψ) is dense.
I If ϕ⇒ ψ, then Dϕ ⊆ Dψ .
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For every formula ψ(ẋ, ẏ, . . . ) there is a set D ⊆ P, D ∈ V
such that for every G
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CH continued

P = { f : A→ R : A ⊂ ω1, |A| ≤ ℵ0 }

f ≤ g i� g ⊆ f

A poset is σ-closed if for each sequence p0 ≥ p1 ≥ p2 ≥ . . .
exists pω such that pn ≥ pω for all n ∈ ω.

Claim
P is σ-closed.

Theorem
If P is σ-closed, then V [G] |= R = (R ∩ V ).

Proof.
Take c ∈ V [G] ∩ R, investigate ċ . . .
Show that Dc =

⋃
{Dċ=x : x ∈ V ∩ R } is dense.

G ∩ Dc 6= ∅ implies G ∩ Dċ=x 6= ∅ for some x ∈ V ,
and V [G] |= c = x .
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{Dċ=x : x ∈ V ∩ R } is dense.

G ∩ Dc 6= ∅ implies G ∩ Dċ=x 6= ∅ for some x ∈ V ,
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¬ CH continued
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f ≤ g i� g ⊆ f

A poset P is c.c.c. if A ⊂ P , A antichain implies |A| < ℵ1.

Fact
P is c.c.c.

Theorem
If P is c.c.c. and V |= |κ| < |λ|, then V [G] |= |κ| < |λ|.

Corollary
If P is c.c.c., then V [G] |= |ω2

V | = ℵ2.
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c.c.c. posets preserve cardinals

Theorem
If P is c.c.c. and V |= |κ| < |λ|, then V [G] |= |κ| < |λ|.

Proof.
WLOG show that there is no surjection b : ω → ω1

V in V [G],
other cases are analogous.

Assume b : ω → ω1
V in V [G], investigate ḃ.

Dḃ(n)=α ⊥ Dḃ(n)=β for each n ∈ ω and α 6= β ∈ ω1.

Thus Rn = {α : Dḃ(n)=α 6= ∅ } is countable.

If Dḃ(n)=α = ∅, then V [G] |= b(n) 6= α.
I.e. b(n) ∈ Rn, and Rng(b) ⊂

⋃
{Rn : n ∈ ω }.⋃

{Rn : n ∈ ω } is in V and countable, and b is not a surjection.
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∆-system lemma

Lemma
Suppose γ ∈ On, { aα : α ∈ ω1 } ⊂ [γ]<ω . There exists I ∈ [ω1]ω1 and
∆ ∈ [γ]<ω such that aα ∩ aβ = ∆ for each α 6= β ∈ I.

Moreover if α < β, χ ∈ aα \∆, ξ ∈ aβ \∆, then χ < ξ.
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