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In this talk, “Set Theory” means ZFC.
Objects are sets. Language is (=, €).
Other relations and operations are derived; C,N, U, P(-), 0, ...

Axioms:

1. Extensionality
VxVy (Vz(zex&zey) & x=y)

2. ...

Infinitely many axioms, recursive system.

Things provable in ZFC:
> 1f 2% < R, forall n € w, then 2% < R, (Shelah 94),

> There exists an L-space (Moore 05),
» t = p (Malliaris—Shelah 13),

> ...

Godel’s incompleteness implies there are undecidable sentences.
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Defined by Cantor in 1878.

Cantor believed it is true.

One of Hilbert’s 23 problems (1900).

Godel (1940) shows it cannot be disproved (if ZFC consistent).
Cohen (1963) shows it is independent of ZFC, invented forcing.
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How to show given sentence ¢ is independent of ZFC?

Assume ZFC is consistent, demonstrate that
ZFC + ¢ is also consistent.

Given a model (universe of sets) V of ZFC,
modify V so that it satisfies ZFC + ¢.

> Idea 1: Remove some sets from V.
Inner models, e.g. Godel’s constructible universe L.

> ldea 2: Add some new sets.
The method of forcing.
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Theorem (Balcar-Vopénka)
If V[G] |E ZFC, then (essentially) P is a poset and G a V-generic filter.



Posets and Filters

» (P,<)is aposet if < is a transitive, reflexive relation on P.
a<bANb<c=a<c and a<a



Posets and Filters

» (P,<)is aposet if < is a transitive, reflexive relation on P.
a<bANb<c=a<c and a<a

> p,q € Pare compatible (p || q) if there exists r € P such that
r<pq



Posets and Filters

» (P,<)is aposet if < is a transitive, reflexive relation on P.
a<bANb<c=a<c and a<a

> p,q € Pare compatible (p || q) if there exists r € P such that
r<p,q.

» If p, g not compatible, then p, g orthogonal (p_Lq).



Posets

and Filters

(P, <) is a poset if < is a transitive, reflexive relation on P.
a<bANb<c=a<c and a<a
p, q € P are compatible (p || q) if there exists r € P such that
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» DC PisdenseifVpe P3dg < p,qe D.

> F C Pisafilter if Fis upwards closed and
Vp,q € F3r € Fsuchthatr <p,q.

» A C Pisanantichainif a, b € A a # bimplies aLb.
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Choosing poset for ¢

Given sentence ¢, we want to find G such that V[G] = ¢.

Cases:
1.¢ is IxVy...
2. is Vxdy...

Focus on case 1.

» CH & there exists a surjective function f: w; — R.
» —CH < there exists C C R (= 2¥), |C| = X,.

We want G to be the object witnessing 3x ... in ¢.
Choose P to be a poset of approximations of the desired G.
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There exists a surjective function f: w; — R.

P:{fA%RACUJ]AA‘SNo}
f<g i g<f
If F C Pis afilter, then | F is a (partial) function w; — R.
Forre Rlet D, = {f € P:r € Rng(f) }. D, is dense.
If FN D, # 0, then r € Rng(lJ F).

If Gis a V-generic filter, then r € Rng(|J G) foreachr e RN V.

Put f=UG.
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Fora# B €wlet Enpy={f€P:3ncw f(a,n)# f(B,n)}.
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Put C={c,:a€w}, VIG] E|C| = |w,"|
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Generic extensions (the forcing relation)
How to control what does hold in V[G]?

Fact
For every x € V[C] there is a name x € V.

The name x is a ‘recipe’ how to build x from G.

Theorem
For every formula y)(x,y,...) thereisasetD C P,D €V
such that for every G

VIG] E ¥(x,y,...) iff DNG#J.

Dy={peP:pecG=V[GlEy}eV
p€ Dy isdenoted pl-a

Dy is downwards closed.

(peDy N qgeDy) = plg (denote Dy, L D).
If Dy, is dense, then V[G] |= 1.

(Dy U D-y) is dense.

If o = 1, then D, C Dy,

vV vy VY VvYyy
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A poset is o-closed if for each sequence pg > p1 > ps > ...
exists p,, such that p, > p,, for all n € w.

Claim
P is o-closed.

Theorem
If P is o-closed, then V[G] = R = (RN V).

Proof.
Take ¢ € V[G] N R, investigate ¢ ...
Show that D, = [J{ D=« : x € VN R } is dense.

GN D, # () implies GND;—y # () for some x € V,
and V[C] E ¢ = x.
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P={f:A=>2:ACw, xw,|A <N}
f<g iff gCf

A poset Pis c.c.c. if A C P, Aantichain implies |A] < N;.
Fact

P isc.c.c.

Theorem
IfPiscccandV = |k <|A

, then V[G] = |k| < |A].
Corollary
If P is c.c.c., then V[G] = |w,"| = N,.



c.c.c. posets preserve cardinals

Theorem
IfPiscccandV = |k| < |\

, then V[G] = |k| < |Al.

Proof.
WLOG show that there is no surjection b: w — w;" in V[G],
other cases are analogous.
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Assume b: w — w1 in V[G], investigate b.

Db(n):a 1 Db(n):,@ foreachn € wand o # (3 € wy.
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Theorem
IfPiscccandV = |k| < |\

, then V[G] = |k| < |Al.

Proof.

WLOG show that there is no surjection b: w — w;" in V[G],
other cases are analogous.

Assume b: w — w1 in V[G], investigate b.

Db(n):a 1 Db(n):,@ foreachn € wand o # (3 € wy.

Thus R, = {a: Dy, # () } is countable.



c.c.c. posets preserve cardinals

Theorem

Proof.
WLOG show that there is no surjection b: w — w;" in V[G],
other cases are analogous.

Assume b: w — w1 in V[G], investigate b.
Dimy=a 1+ Di(m=p for each n € wand # B € w.
Thus R, = {a: Dy, # () } is countable.

If Dy y—o = 0, then V[C] = b(n) # o
l.e. b(n ) 6 Ry, and Rng(b) C U{R:n€w}.
U{ Ry : n € w}isin V and countable, and b is not a surjection.



A-system lemma

Lemma
Supposey € On, { ay : o € wy } C [y]=¥. There exists | € [wi]*" and
A € [y]=¥ such that a, N ag = A for each o # B € I.



A-system lemma

Lemma
Supposey € On, {a, : @ € wy } C []™*. There exists | € [w1]*" and

A € [y]=¥ such that a, N ag = A for each o # B € I.
Moreover ifa < 3, x € aq \ A, € € ag \ A, then x < &.



