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MIROSLAV ENGLIŠ AND EL-HASSAN YOUSSFI

Abstract. Using the machinery of unitary spherical harmonics due to Koorn-
winder, Folland and other authors, we obtain expansions for the Szegö and the
weighted Bergman kernels of M -harmonic functions, i.e. functions annihilated
by the invariant Laplacian on the unit ball of the complex n-space. This
yields, among others, an explicit formula for the M -harmonic Szegö kernel
in terms of multivariable as well as single-variable hypergeometric functions,
and also shows that most likely there is no explicit (“closed”) formula for the
corresponding weighted Bergman kernels.

1. Introduction

Recall that a function on the unit ball Bn of Cn, n ≥ 1, is called Moebius-
harmonic (or invariantly harmonic), or M -harmonic for short, if it is annihilated
by the invariant Laplacian

(1) ∆̃ = 4(1− |z|2)
n∑

j,k=1

(δjk − zjzk)
∂2

∂zj∂zk
.

It is well known (see e.g. Rudin [Ru], Stoll [St], or Chapter 6 in Krantz [Kr1]) that
∆̃ commutes with biholomorphic self-maps (Moebius maps) of the ball:

∆̃(f ◦ φ) = (∆̃f) ◦ φ, ∀f ∈ C2(Bn), φ ∈ Aut(Bn);

and, accordingly, that M -harmonic functions possess the invariant mean-value
property : namely, if ∆̃f = 0 and z ∈ Bn, then f(z) equals the mean value, with re-
spect to the Aut(Bn)-invariant measure dτ(z) = (1−|z|2)−n−1 dz, over any Moebius
ball in Bn centered at z (and similarly for spheres in the place of balls). It follows
by a standard argument that the point evaluations f 7→ f(z) at any z ∈ Bn are
continuous linear functionals on the subspace

L2
Mh(Bn) := {f ∈ L2(Bn) : f is M -harmonic}

of all M -harmonic functions in L2(Bn) (the M -harmonic Bergman space), and
therefore there exists a reproducing kernel for L2

Mh(Bn) (the M -harmonic Bergman
kernel), namely a function K(x, y) on Bn×Bn, M -harmonic in both variables and
such that

f(x) =
∫

Bn

f(y)K(x, y) dy ∀x ∈ Bn, ∀f ∈ L2
Mh(Bn).
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More generally, for any s > −1, one can consider the weighted M -harmonic Berg-
man space

(2) L2
Mh(Bn, (1− |z|2)s dz)

(where dz stands, throughout, for the Lebesgue measure of the appropriate dimen-
sion) and its reproducing kernel Ks(x, y) on Bn × Bn (the weighted M -harmonic
Bergman kernel).

For the analogous weighted Bergman spaces of holomorphic, rather than M -
harmonic, functions on Bn, the reproducing kernels have been known explicitly for
a long time: one has

(3) Khol
s (x, y) =

Γ(n + s + 1)
Γ(s + 1)πn

(1− 〈x, y〉)−n−s−1.

Similarly, there are formulas expressing the harmonic weighted Bergman kernels
Kharm

s (x, y), s > −1, on Bn in terms of Appell’s hypergeometric function F1 of two
variables [Bk, Section 3]:

(4)
Kharm

s (x, y) =
Γ(n + s + 1)
Γ(s + 1)πn

F1

(
n + s + 1; n− 1, n− 1

n− 1

∣∣∣z, z
)
,

z = 〈x, y〉+ i
√
|x|2|y|2 − |〈x, y〉|2.

For n = 1, the unit ball Bn becomes just the unit disc D := {z ∈ C : |z| < 1},
and (1) reduces to the multiple (1− |z|2)2∆ of the ordinary Laplacian ∆; thus M -
harmonic and harmonic functions coincide for n = 1. Also, any harmonic function
on D can be written as f +g with f, g holomorphic and g(0) = 0. Since holomorphic
and conjugate-holomorphic functions are orthogonal in any L2(D, (1 − |z|2)s dz)
except for the constants, it follows that for n = 1

Ks = Kharm
s = 2Re Khol

s − Γ(n + s + 1)
Γ(s + 1)πn

.

However, no explicit formula seems to be available for the M -harmonic Bergman
kernels on Bn for n > 1.

If we multiply the measures in (2) by the factor 2(s + 1) and let s ↘ −1, it is
easily shown that 2(s+1)(1− |z|2)s dz converges weakly to dσ, the (unnormalized)
surface measure on the topological boundary ∂Bn of Bn. As a limit of the weighted
Bergman spaces (2) we thus obtain the M -harmonic Hardy space H2

Mh(Bn) of M -
harmonic functions on Bn, whose reproducing kernel KSz(x, y) — the M -harmonic
Szegö kernel — is the function on Bn ×Bn, M -harmonic in both variables, which
satisfies

(5) f(x) =
∫

∂Bn

f(ζ)KSz(x, ζ) dσ(ζ), ∀f ∈ H2
Mh(∂Bn), ∀x ∈ Bn,

where, abusing the notation slightly, we denote by the same letter f also the radial
boundary values of f on ∂Bn, and similarly for KSz(x, ·). In the holomorphic case,
one again has the explicit formula

(6) Khol
Sz (x, y) =

Γ(n)
2πn

(1− 〈x, y〉)−n
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for the ordinary Szegö kernel of Bn, and similarly from (4) we get the harmonic
Szegö kernel

(7) Kharm
Sz (x, y) =

Γ(n)
2πn

1− |x|2|y|2
(1− 2 Re〈x, y〉+ |x|2|y|2)n

for the harmonic case.
The harmonic and M -harmonic Szegö kernels are intimately connected with the

associated Poisson kernels. Namely, recall that the ordinary Poisson kernel

P harm(x, ζ) =
Γ(n)
2πn

1− |x|2
|x− ζ|2n

on Bn reproduces the values of a harmonic function in the interior of Bn from its
boundary values:

f(x) =
∫

∂Bn

f(ζ)P harm(x, ζ) dσ(ζ), ∀x ∈ Bn,

for any function f harmonic on Bn and, say, continuous on the closure Bn. Com-
paring this with the (harmonic version of) (5), we thus see that P harm(x, ·) are
just the boundary values of Kharm

Sz (x, ·); that is, Kharm
Sz (x, ·) is just the harmonic

extension of P harm(x, ·) from ∂Bn into Bn, or

Kharm
Sz (x, y) =

∫

∂Bn

P harm(x, ζ)P harm(y, ζ) dσ(ζ).

In other words, Kharm
Sz is just P harm extended from Bn × ∂Bn to a function on

Bn ×Bn harmonic in both variables.
Exactly the same argument shows that also the M -harmonic Poisson kernel

(called Poisson-Szegö kernel in [Kr1])

P (x, ζ) =
Γ(n)
2πn

(1− |x|2)n

|1− 〈x, ζ〉|2n

(cf. [St, Chapter 5]), which reproduces any function f M -harmonic on Bn and
continuous on Bn from its boundary values:

(8) f(x) =
∫

∂Bn

f(ζ)P (x, ζ) dσ(ζ), ∀x ∈ Bn,

is just the boundary value of KSz(x, y) as y → ζ; that is, KSz(x, ·) is just the
M -harmonic extension of P (x, ·) from ∂Bn into Bn, or

(9) KSz(x, y) =
Γ(n)2

4π2n

∫

∂Bn

(1− |x|2)n(1− |y|2)n

|1− 〈x, ζ〉|2n|1− 〈y, ζ〉|2n
dσ(ζ).

For n = 1, this is easily evaluated to

(10) KSz(x, y) =
1
2π

1− |x|2|y|2
|1− 〈x, y〉|2 ,

however, again, nothing seems to be known for n ≥ 2.
The aim of this paper is, firstly, to give an explicit formula for the M -harmonic

Szegö kernel KSz(x, y) for any n, in terms of certain hypergeometric functions;
and secondly, to give a series expansion for Ks(x, y), for any n and any s > −1.
This series expansion is sufficient to show that, on the one hand, there is probably
no explicit formula for Ks when n ≥ 2 (even for s = 0, i.e. in the case of the
unweighted M -harmonic Bergman space); and, on the other hand, to give at least
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a rough idea of what is the singularity of Ks(x, y) when both x and y approach the
boundary ∂Bn.

To describe our results, we recall some facts about hypergeometric functions.
The ordinary (Gauss) hypergeometric function 2F1 of one variable is defined by

2F1

(
a, b
c

∣∣∣z
)

=
∞∑

j=0

(a)j(b)j

(c)j

zj

j!
, |z| < 1.

Here c /∈ {0,−1,−2, . . . } while a, b can be any complex numbers, and

(a)j := a(a + 1) . . . (a + j − 1) =
Γ(a + j)

Γ(a)
stands for the Pochhammer symbol (raising factorial). We have also already met
in (4) the Appell function F1 of two variables, defined by

F1

(a; b1, b2

c

∣∣∣x, y
)

=
∞∑

j,k=0

(a)j+k(b1)j(b2)k

(c)j+k

xj

j!
yk

k!
, |x| < 1, |y| < 1.

The hypergeometric function FD1 of four variables

(11)

FD1

(
a, a′, b1, b2

c

∣∣∣x1, x2, y1, y2

)
=

∞∑

i1,i2,j1,j2=0

(a)i1+i2(a
′)j1+j2(b1)i1+j1(b2)i2+j2

(c)i1+i2+j1+j2

xi1
1

i1!
xi2

2

i2!
yj1
1

j1!
yj2
2

j2!

has been denoted K16(a, b1, b2, a
′; c;x1, x2, y1, y2) in Exton [Ex1, p. 78] and K∗

16(a, b1,
a′, b2; c; x2, x1, y1, y2) in [Ex2]; our notation follows Karlsson [Ka]. The series (11)
converges for x1, x2, y1, y2 ∈ D.

Our main results are the following.

Theorem (Theorem 2). For any α, β, γ, δ ∈ C and n ≥ 1,∫

∂Bn

(1− 〈z, ζ〉)−α(1− 〈ζ, z〉)−β(1− 〈w, ζ〉)−γ(1− 〈ζ, w〉)−δ dσ(ζ)

=
2πn

Γ(n)
FD1

(
β, δ, α, γ

n

∣∣∣|z|2, 〈z, w〉, 〈w, z〉, |w|2
)
.

Corollary (Corollary 4). For any n ≥ 1,
(12)

KSz(z, w) =
Γ(n)
2πn

(1− |z|2)n(1− |w|2)nFD1

(
n, n, n, n

n

∣∣∣|z|2, 〈z, w〉, 〈w, z〉, |w|2
)
.

The last right-hand side can be expressed in terms of ordinary 2F1 functions.

Theorem (Theorem 6). For any n ≥ 1, KSz(z, w) equals

Γ(n)
2πn

(1− |w|2)n

|1− 〈z, w〉|2n

n∑

i1=0

n−i1∑

i2,j1=0

(−n)i1+i2(−n)i1+j1(n)i2(n)j1

i1!i2!j1!(n)i1+i2+j1

× ti11 ti22 tj13 2F1

( i2 + n, j1 + n
i1 + i2 + j1 + n

∣∣∣t4
)
,

where

t1 = |z|2, t2 =
|z|2 − 〈w, z〉
1− 〈w, z〉 , t3 = t2, t4 = 1− (1− |z|2)(1− |w|2)

|1− 〈z, w〉|2 .
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Note that for z, w ∈ Bn we have t2, t3 ∈ D, while 0 ≤ t1, t4 < 1. Note also that
using standard formulas for hypergeometric functions (cf. (57) in Section 3), the
last 2F1 are actually expressible in the form a(t4) + b(t4) log(1 − t4) with rational
functions a, b.

Both the holomorphic Szegö kernel (6) and the harmonic Szegö kernel (7) are
clearly smooth functions on the closure Bn ×Bn except for the boundary diagonal
diag ∂Bn = {(x, y) ∈ ∂Bn × ∂Bn : x = y}. This is no longer the case for the
M -harmonic Szegö kernel.

Proposition (Proposition 7). For n > 1,

KSz ∈ Cn−1(Bn ×Bn \ diag ∂Bn) \ Cn(Bn ×Bn \ diag ∂Bn).

As for the M -harmonic kernels Ks, s > −1, we may actually consider more
general measures dµ⊗ dσ on Bn given by

(13)
∫

Bn

F (z) (dµ⊗ dσ)(z) :=
∫ 1

0

∫

∂Bn

F (
√

tζ) tn−1 dµ(t) dσ(ζ),

where dµ is any finite Borel measure on the interval [0, 1] such that 1 ∈ supp dµ.
Denote by L2

Mh(Bn, dµ ⊗ dσ) the corresponding M -harmonic weighted Bergman
space and let Kµ be its reproducing kernel. The spaces (2) and their kernels Ks(x, y)
thus correspond to the choice dµ(t) = 1

2 (1− t)s dt.

Theorem (Theorem 8). For any n ≥ 1 and µ as above, Kµ is given by
(14)

Kµ(z, w) =
Γ(n)
2πn

(1− |z|2)n(1− |w|2)n
∞∑

p,q,j,m=0

Apqjm(µ)
〈z, w〉p〈w, z〉q|z|2j |w|2m

p!q!j!m!
,

where

(15)
Apqjm(µ) :=

min(m,j)∑

l=0

Γ(n + p + j)Γ(n + q + j)
Γ(n)Γ(n + p + q + j + l)

Γ(n + p + m)Γ(n + q + m)
Γ(n)Γ(n + p + q + m + l)

(−1)lΓ(n + p + q + l − 1)(n + p + q + 2l − 1)(−j)l(−m)l

Γ(n)l!cp+l,q+l(µ)
,

with

(16) cpq(µ) :=
Γ(p + n)2Γ(q + n)2

Γ(n)2Γ(p + q + n)2

∫ 1

0

tp+q+n−1
2F1

( p, q
p + q + n

∣∣∣t
)2

dµ(t).

We remark that for µ the unit mass at the point t = 1, L2
Mh(Bn, dµ⊗dσ) reduces

just to H2
Mh(Bn) and Kµ to KSz, while one can then show that cpq(µ) = 1 for all

p, q and Apqjm = (n)j+p(n)j+q(n)m+p(n)m+q/(n)m+j+p+q; thus the last theorem
recovers Corollary 4 as its special case.

Denoting cpq(µ) for dµ(t) = 1
2 (1 − t)s dt by cpq(s), the last theorem thus gives

also a series expansion for the kernels Ks, s > −1. We will show that even for s = 0
and n = 2 (i.e. the unweighted M -harmonic Bergman space on B2), c11(s)/c00(s)
and, hence, also A0000(s)/A1100(s), is of the form a + bζ(3), where a, b are nonzero
rational numbers and ζ stands for the Riemann zeta function. That is, the Taylor
coefficients of K0 on B2 involve ζ(3) in a nontrivial way. This makes it pretty
unlikely that K0, and a fortiori Ks for general s > −1 and n ≥ 2, be given by any
“nice” explicit formula in terms of e.g. hypergeometric and similar functions.
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The coefficients cpq(s) can be expressed as certain multivariable hypergeometric
functions at unit argument; unfortunately, again these expressions do not seem to
lend themselves to an explicit evaluation. However, we can at least describe the
asymptotic behavior of cpq(s) for large p, q, which turns out to be sufficient for
getting some idea about the boundary behavior of the kernels Ks.

Theorem (Theorem 11). Let p, q > 0 be fixed. Then as λ → +∞, we have the
asymptotic expansion

cλp,λq(s) ≈ Γ(2n + s + 1)Γ(n + s + 1)2Γ(s + 1)
Γ(n)2Γ(2n + 2s + 2)

λ−2s−2

(pq)s+1

∞∑

j=0

aj(p, q)
λj

,

where a0(p, q) = 1.

For the omitted case pq = 0, we get directly from (16)

(17) c0q(s) = cq0(s) =
Γ(q + n)Γ(s + 1)
Γ(q + n + s + 1)

≈ Γ(n)Γ(s + 1)
Γ(n + s + 1)

q−s−1 as q → +∞.

Thus in all cases cpq(s) ≈ Γ(n)Γ(s+1)
Γ(n+s+1) (p + 1)−s−1(q + 1)−s−1 as p + q → +∞.

Our final result, though falling short of showing the situation for Ks itself, thus at
least describes the boundary behavior of a series whose “leading order term” is the
same as for Ks.

Theorem (Theorem 12). For n > 1 and s = 0, 1, 2, . . . , consider the function
Fs(z, w) given by (14), (15) but with cpq(µ) replaced by (p+ n−1

2 )−s−1(q+ n−1
2 )−s−1.

Then
(18)

Fs(z, w) = Ls+1
[Γ(n)

2πn

(1− y2)n

(1− x2)n(1− y1)n

n∑

i1=0

n−i1∑

i2,j1=0

(−n)i1+i2(−n)i1+j1(n)i2(n)j1

i1!i2!j1!(n)i1+i2+j1

xi1
1

(x1 − y1

1− y1

)i2(x1 − x2

1− x2

)j1

2F1

( i2 + n, j1 + n
i1 + i2 + j1 + n

∣∣∣1− (1− x1)(1− y2)
(1− x2)(1− y1)

)]

∣∣∣
x1=|z|2,x2=〈z,w〉,y1=〈w,z〉,y2=|w|2

,

where L is the linear differential operator

L := (x2y1 − x1y2)
∂2

∂x2∂y1
+

n− 1
2

(
x2

∂

∂x2
+ y1

∂

∂y1

)
+

(n− 1)2

4
I.

Note that L involves differentiations only with respect to x2 and y1.
Recall that for each z ∈ Bn, z 6= 0, there is a (unique) biholomorphic self-map

φz ∈ Aut(Bn) which interchanges z and the origin 0; explicitly,

φz(w) =
z − Pzw −

√
1− |z|2(w − Pzw)

1− 〈w, z〉 , Pzw :=
〈w, z〉
|z|2 z.

For z = 0, we set φ0(w) := −w. One has the useful formula [Ru, Theorem 2.2.2]

(19) 1− 〈φzw1, φzw2〉 =
(1− |z|2)(1− 〈w1, w2〉)

(1− 〈z, w2〉)(1− 〈w1, z〉) ,

from which it follows that the various quantities appearing in (18) are in fact
given by

x1 = |z|2, x1 − x2

1− x2
= 〈z, φzw〉, x1 − y1

1− y1
= 〈φzw, z〉,
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1− (1− x1)(1− y2)
(1− x2)(1− y1)

= |φzw|2.

We set

(20) U := |z|2, V := |φzw|2, Z := 〈z, φzw〉;
it will be shown that the map (z, w) 7→ (U, V, Z) is actually a bijection of

Bn ×Bn modulo the action of the group U(n) of unitary maps of Cn

onto the set

Ω := {(U, V, Z) : 0 ≤ U, V < 1, Z ∈ C, |Z|2 ≤ UV }.
The coordinates U, V, Z are well suited for the description of the singularity of Fs

near the boundary diagonal.

Corollary (Corollaries 13 and 14). For n > 1 and s = 0, 1, 2, . . . ,

Fs ∈ Cn−1(Bn ×Bn \ diag ∂Bn),

and

Fs(z, w) =
(1− V )n

(1− U)n+s+1

n∑

i1=0

n−i1∑

i2,j1=0

s+1∑

k=0

Pi1i2j1k(U,Z, Z, V )

× 2F1

(
i2 + m + k, j1 + n + k
i1 + i2 + j1 + n + k

∣∣∣V
)
,

where Pi1i2j1k(U,Z, Z, V ) is a polynomial of degree at most i1 + s + 1, j1 + s + 1,
i2 + s + 1 and k + s + 1, respectively, in the indicated variables.

We expect the boundary behavior of the M -harmonic kernels Ks to be of the
same nature as for Fs.

The paper is organized as follows. In Section 2, we review the necessary prerequi-
sites on the Peter-Weyl decomposition of M -harmonic functions under the action of
the unitary group U(n) of Cn. The results about the M -harmonic Szegö kernel are
proved in Section 3, and those about Kµ in Section 4. The asymptotic expansion
of cpq(s) and the assertions about Fs are derived in Section 5. Some final remarks,
comments and open problems are collected in the final section, Section 6.

To make typesetting a little neater, the shorthand

Γ
(
a1, a2, . . . , ak

b1, b2, . . . , bm

)
:=

Γ(a1)Γ(a2) . . . Γ(ak)
Γ(b1)Γ(b2) . . . Γ(bm)

is often employed throughout the paper. The inner product 〈z, w〉 of z, w ∈ Cn is
sometimes also written as z · w; and φz(w) is frequently abbreviated just to φzw
(which we actually already did a few paragraphs above).

2. Notation and preliminaries

The stabilizer of the origin 0 ∈ Bn in Aut(Bn) is the group U(n) of all unitary
transformations of Cn; that is, of all linear operators U that preserve inner products:

〈Uz,Uw〉 = 〈z, w〉 ∀z, w ∈ Cn.

Each U ∈ U(n) maps the unit sphere ∂Bn onto itself, and the surface measure dσ
on ∂Bn is invariant under U . It follows that the composition with elements of U(n),

(21) TU : f 7→ f ◦ U−1,
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is a unitary representation of U(n) on L2(∂Bn, dσ). We will need the decomposition
of this representation into irreducible subspaces. These turn out to be given by
bigraded spherical harmonics Hpq; the standard sources for this are Rudin [Ru,
Chapter 12.1–12.2], or Krantz [Kr1, Chapter 6.6–6.8], with basic ingredients going
back to Folland [Fo].

Namely, for integers p, q ≥ 0, let Hpq be vector space of restrictions to ∂Bn of
harmonic polynomials f(z, z) on Cn which are homogeneous of degree p in z and
homogeneous of degree q in z. Then Hpq is invariant under the action (21) of U(n),
is U(n)-irreducible (i.e. has no proper U(n)-invariant subspace) and

(22) L2(∂Bn, dσ) =
∞⊕

p,q=0

Hpq.

Furthermore, the representations of U(n) on Hpq are mutually inequivalent; that is,
if T : Hpq → Hkl is a linear operator commuting with the action (21), then neces-
sarily

(23)

{
T = 0 if (k, l) 6= (p, q),
T = cI|Hpq for some c ∈ C if (k, l) = (p, q),

where I denotes the identity operator.
Since each space Hpq is finite-dimensional, the evaluation functional f 7→ f(ζ)

at each ζ ∈ ∂Bn is automatically continuous on it; it follows that Hpq — with
the inner product inherited from L2(∂Bn, dσ) — has a reproducing kernel. This
reproducing kernel turns out to be given by Hpq(ζ · η), where for n ≥ 2

(24)

Hpq(reiθ) =
(p + q + n− 1)(p + n− 2)!(q + n− 2)!

p!q!(n− 1)!(n− 2)!

× r|p−q|e(p−q)iθ Γ(n)
2πn

P
(n−2,|p−q|)
min(p,q) (2r2 − 1)

P
(n−2,|p−q|)
min(p,q) (1)

,

where

P (α,β)
m (x) = (−1)n (1− x)−α(1 + x)−β

m!2m

dm

dxm
[(1− x)α+m(1 + x)β+m]

are the Jacobi polynomials. Thus

f(ζ) =
∫

∂Bn

f(η)Hpq(ζ · η) dσ(η), ∀ζ ∈ ∂Bn,∀f ∈ Hpq.

In particular, we have the orthogonality relations

(25)
∫

∂Bn

Hpq(ζ · η)Hkl(η · ξ) dσ(η) = δpkδqlH
pq(ζ · ξ).

Note that by [BE, formula 10.8(16)],

P (α,β)
m (x) = (−1)m

(
m + β

m

)
2F1

(−m, m + α + β + 1
β + 1

∣∣∣1 + x

2

)
,

so we have

(26)
Hpq(z) =

Γ(n)
2πn

(−1)q(n + p + q − 1)(n + p− 2)!
(n− 1)!q!(p− q)!

× zp−q
2F1

(−q, n + p− 1
p− q + 1

∣∣∣|z|2
)

for p ≥ q,
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while Hpq(z) = Hqp(z) for p < q. This formula will be useful later on.
Denote

(27)
Spq(r) := rp+q

2F1

( p, q
p + q + n

∣∣∣r2
)/

2F1

( p, q
p + q + n

∣∣∣1
)

= Γ
(p + n, q + n
n, p + q + n

)
rp+q

2F1

( p, q
p + q + n

∣∣∣r2
)
.

Then for each f ∈ Hpq, the (unique) solution to the Dirichlet problem ∆̃u = 0
on Bn, u|∂Bn = f is given by

(28) u(rζ) = Spq(r)f(ζ), 0 ≤ r ≤ 1, ζ ∈ ∂Bn.

For n = 1, all the above remains in force, only the spaces Hpq reduce just to {0}
if pq 6= 0, while Hp0 = Czp, H0q = Czq and Hp0(z) = 1

2π zp, H0q(z) = 1
2π zq; note

that the formula (26) still works for n = 1 and pq = 0.
For each fixed x ∈ Bn, the M -harmonic Poisson kernel P (x, ·) always belongs

to L2(∂Bn, dσ) (it is a smooth function on the sphere), hence it can be decom-
posed into the Hpq components as in (22). This decomposition was obtained by
Folland [Fo]:

(29) P (rζ, η) =
∞∑

p,q=0

Spq(r)Hpq(ζ · η), 0 ≤ r < 1, ζ, η ∈ ∂Bn.

Folland gave his proof for n ≥ 2, but with the caveat from the preceding paragraph
it actually holds also for n = 1. (We will give an alternative proof for any n in
Remark 10 in Section 4). The sum converges pointwise, uniformly for η ∈ ∂Bn and
rζ in a compact subset of Bn, as well as in L2(∂Bn, dσ) for each fixed r and ζ.

Using the orthogonality relations (25), one can get from (29) the analogous
decomposition for the M -harmonic Szegö kernel. Namely, starting from (9):

KSz(x, y) =
∫

∂Bn

P (x, ζ)P (y, ζ) dσ(ζ)

(note that the complex conjugation actually has no effect, since P (y, ζ) is real-
valued), and substituting (29) for P (x, ζ) and P (y, ζ), we get

KSz(rζ, Rξ) =
∞∑

p,q,k,l=0

Spq(r)Skl(R)
∫

∂Bn

Hpq(ζ · η)Hkl(η · ξ) dσ(η)

=
∞∑

p,q=0

Spq(r)Spq(R)Hpq(ζ · ξ) by (25),(30)

the interchange of integration and summation being justified by the L2-convergence.
We conclude this section by giving a similar formula for the reproducing kernel

of any Hilbert space of M -harmonic functions on Bn with a U(n)-invariant inner
product.

For each p, q ≥ 0, let Hpq be he space of all functions on Bn of the form (28)
with f ∈ Hpq. In other words, while Hpq is the space of spherical harmonics on the
sphere ∂Bn, Hpq is the associated space of “solid” M -harmonic functions on Bn.
With the inner product inherited from L2(∂Bn, dσ), each Hpq is thus a finite-
dimensional Hilbert space of M -harmonic functions on Bn, unitarily isomorphic to
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the space Hpq via the isomorphism (28), and with reproducing kernel

(31) Kpq(rζ,Rξ) := Spq(r)Spq(R)Hpq(ζ · ξ).
Proposition 1. Let H be any Hilbert space of M -harmonic functions on Bn which
contains Hpq for all p, q ≥ 0, is invariant under the action (21) (i.e. TUf ∈ H
whenever f ∈ H and U ∈ U(n)) and whose inner product is U(n)-invariant:

(32) 〈TUf, TUg〉H = 〈f, g〉H ∀f, g ∈ H, U ∈ U(n).

Then
(i) the spaces Hpq are pairwise orthogonal in H;
(ii) on each Hpq, the H-inner product is a constant multiple of the L2(dσ)-inner

product: there exist finite constants cpq > 0 such that

(33) 〈f, g〉H = cpq〈f, g〉L2(∂Bn,dσ) ∀f, g ∈ Hpq.

Furthermore, if the action U 7→ TU of U(n) on H is strongly continuous (i.e. for
each f ∈ H, U 7→ TUf is continuous from U(n) into H), then additionally

(iii) the linear span of Hpq, p, q ≥ 0, is dense in H;
(iv) if the point evaluations are bounded on H, then the reproducing kernel KH

of H is given by

(34) KH(rζ, Rξ) =
∞∑

p,q=0

Spq(r)Spq(R)Hpq(ζ · ξ)
cpq

,

with the sum converging pointwise and locally uniformly on compact subsets
of Bn×Bn, as well as in H as a function of x = rζ for each fixed y = Rξ,
or vice versa.

Note that the last proposition applies, in particular, to H = L2(∂Bn, dσ); in that
case trivially cpq = 1 ∀p, q, so we recover (30).

Proof. The restriction of the inner product inH to Hpq×Hkl is a continuous sesqui-
linear form on these (finite dimensional) spaces, so by the Riesz-Fischer theorem

〈f, g〉H = 〈Tf, g〉L2(dσ) ∀f ∈ Hpq, g ∈ Hkl

for some linear operator T : Hpq → Hkl. By (32), T is U(n)-invariant; thus by (23),
T = 0 if (p, q) 6= (k, l) while T = cpqI if (p, q) = (k, l). This proves (i) and (ii).

To prove (iii), let f ∈ H. Since f is M -harmonic, by Theorem 2.1 of [ABC],
f can be expanded in the form

(35) f =
∑
p,q

fpq

where fpq ∈ Hpq for all p, q, and the series converges uniformly on compact subsets
of Bn. Furthermore, fpq is actually given explicitly by

fpq(rζ) =
∫

∂Bn

f(rη)Hpq(ζ · η) dσ(η)

(see [ABC, p. 107]). Setting η = U−1ζ, this can also be written as

(36) fpq =
∫

U(n)

χpq(U)TUf dU,

where dU is the Haar measure on the compact group U(n), normalized to be of
total mass 2πn

Γ(n) , and χpq(U) := Hpq(Uζ · ζ) (this function — the character of the
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representation TU on Hpq — does not depend on ζ). Now by the hypothesis of
strong continuity of TU , the last integral exists also as a Bochner integral, i.e. con-
verges also in H. Also, by an elementary estimate of the same integral, the map
Ppq : f 7→ fpq is continuous from H into Hpq ⊂ H. Making the change of variable
U 7→ U−1 in (36) shows that Ppq is self-adjoint, and since Ppq clearly reduces to
the identity on Hpq, it follows that Ppq has to be the precisely the projection in H
onto Hpq ⊂ H.

Now if f ∈ H is orthogonal to all Hpq, then fpq = Ppqf = 0 for all p, q ≥ 0;
thus by (35) f = 0. It follows that the linear span of Hpq, p, q ≥ 0, is dense in H,
proving (iii).

As for (iv), recall that for any functional Hilbert space with bounded point
evaluations, the reproducing kernel is given by the formula

(37) KH(x, y) =
∑

j

fj(x)fj(y)

where {fj}j is any orthonormal basis of H; see [Ar]. In our case, thanks to (i)–(ii),
we can choose an orthonormal basis of the form {fpqj/

√
cpq}pqj , where for each

p, q ≥ 0, {fpqj}dimHpq

j=1 is an orthonormal basis in Hpq with respect to the L2(dσ)
inner product. Thus

KH(x, y) =
∞∑

p,q=0

1
cpq

dimHpq∑

j=1

fpqj(x)fpqj(y).

However, by (37) now applied to Hpq with the L2(dσ) inner product, the inner
sum is precisely the reproducing kernel of Hpq with respect to the L2(dσ) inner
product, which we know to be given by (31). This settles (34). The claim concerning
convergence inH is immediate from the same property for (37) (cf. again [Ar]), while
for the uniform convergence on compact subsets of Bn×Bn it is, similarly, enough
to show that the norms ‖KH(·, z)‖H = KH(z, z)1/2 stay bounded if z ranges in a
compact subset of Bn. However, this is immediate from the fact that KH(x, y),
being M -harmonic in each variable, is real-analytic in (x, y) ∈ Bn × Bn by the
standard elliptic regularity theory; in particular, KH(z, z) is a continuous function
on Bn. This completes the proof. ¤

We remark the Proposition 1 remains in force even when the hypothesis that
Hpq ⊂ H for all p, q ≥ 0 is dropped. Indeed, denoting in that case

Y pq := H ∩Hpq,

it follows from the U(n)-irreducibility ofHpq (and, hence, of Hpq) that if Y pq 6= {0},
then already Y pq = Hpq (and, so, Hpq ⊂ H). All the items (i)–(iv) then remain in
force, except for the fact that in (iii) the linear span of Y pq is dense in H and in
(iv) instead of all p, q ≥ 0 one takes only those p, q for which Y pq 6= {0}. We are
leaving the details to the reader.
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3. The M-harmonic Szegö kernel

Theorem 2. For any α, β, γ, δ ∈ C and n ≥ 1,

(38)

∫

∂Bn

(1− 〈z, ζ〉)−α(1− 〈ζ, z〉)−β(1− 〈w, ζ〉)−γ(1− 〈ζ, w〉)−δ dσ(ζ)

=
2πn

Γ(n)
FD1

(
β, δ, α, γ

n

∣∣∣|z|2, 〈z, w〉, 〈w, z〉, |w|2
)
.

Recall that the function FD1 has been defined in (11).

Proof. Clearly the integrand in (38) remains unchanged if z, w, ζ are replaced by
Uz, Uw, Uζ, respectively, with any U ∈ U(n). Since the surface measure dσ on ∂Bn

is U(n)-invariant, it therefore follows that the integral (38) remains unchanged if
z, w are replaced by Uz, Uw, for any U ∈ U(n). Now we can pick U ∈ U(n)
which maps z into |z|e1, where e1 = (1, 0, . . . , 0) ∈ Cn. This U sends w into a
point in Bn whose first coordinate — denote it by b — satisfies b|z| = 〈z, w〉; for
n > 1, we can then continue by choosing a suitable element of U(n − 1), acting
on the remaining n− 1 coordinates, so that in the end w is mapped into the point
be1 + ce2, e2 = (0, 1, 0, . . . , 0), where c =

√
|w|2 − |b|2. Altogether, we thus see that

for n > 1, the integral (38) is equal to

(39)
∫

∂Bn

(1− aζ1)
−α(1− aζ1)−β(1− bζ1 − cζ2)

−γ(1− bζ1 − cζ2)−δ dσ(ζ),

where

(40)

{
a = |z|, b = 〈z,w〉

|z| , c =
√
|w|2 − |b|2 for z 6= 0,

a = b = 0, c =
√
|w|2 − |b|2(= |w|) for z = 0.

For n = 1, this has to be replaced by

(41)

{
a = |z|, b = 〈z,w〉

|z| for z 6= 0,

a = 0, b = |w| for z = 0,

while c = 0 (so that cζ2 and cζ2 in (39) both disappear).
Let us now compute the integral (39). The binomial expansion

(42) (1− z)−ν =
∞∑

j=0

(ν)j

j!
zj , ν ∈ C,

converges uniformly for z in a compact subset of D. Substituting this into (41)
four times, we see that (39) equals

∞∑

j,k,l,m=0

(α)j(β)k(γ)l(δ)m

j!k!l!m!

∫

∂Bn

(aζ1)
j(aζ1)k(bζ1 + cζ2)

l(bζ1 + cζ2)m dσ(ζ)

=
∞∑

j,k,l,m=0

(α)j(β)k(γ)l(δ)m

j!k!l!m!

∫

∂Bn

(aζ1)
j(aζ1)k

l∑
p=0

m∑
q=0(

l

p

)(
m

q

)
(bζ1)

p(cζ2)
l−p(bζ1)q(cζ2)m−q.

Using the familiar formula, valid for any multiindices ν, µ,

(43)
∫

∂Bn

ζνζ
µ

dσ(ζ) = δνµ
ν!

(n)|ν|

2πn

Γ(n)
,
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it transpires that (39) equals

(44)

2πn

Γ(n)

∞∑

j,k,l,m=0

(α)j(β)k(γ)l(δ)m

j!k!l!m!

∫

∂Bn

(aζ1)
j(aζ1)k

l∑
p=0

m∑
q=0

(
l

p

)(
m

q

)

× ajakbpb
q
cl−pcm−qδp−q,l−mδp−q,k−j

(k + q)!(m− q)!
(n)k+m

.

We first deal with the summands for which p ≥ q — say, p = q+r with some r ≥ 0.
The two delta functions are then nonzero only if l = m + r and k = j + r. Thus
the sum of all such summands will equal
(45)
∞∑

r=0

arbr
∞∑

j,m=0

(α)j(β)j+r(γ)m+r(δ)m

j!(j + r)!(m + r)!m!

m∑
q=0

(
m + r

q + r

)(
m

q

)
|a|2j |b|2q|c|2m−2q (j + q + r)!(m− q)!

(n)j+r+m
.

Since
(
m+r
q+r

)(
m
q

)
= (m+r)!m!

q!(q+r)!(m−q)!2 , we can continue by

∞∑
r=0

arbr
∞∑

j,m=0

(α)j(β)j+r(γ)m+r(δ)m

j!(j + r)!

m∑
q=0

|a|2j |b|2q|c|2m−2q (j + q + r)!
(n)j+r+mq!(q + r)!(m− q)!

.

Writing m = q + k, this becomes
∞∑

r=0

arbr
∞∑

j,q,k=0

(α)j(β)j+r(γ)q+k+r(δ)q+k

j!(j + r)!
|a|2j |b|2q|c|2k (j + q + r)!

(n)j+r+q+kq!(q + r)!k!
.

Substituting |c|2k =
∑k

l=0

(
k
l

)
(−1)l|b|2l|w|2k−2l from (40), this takes the form

∞∑
r=0

arbr
∞∑

j,q,k=0

(α)j(β)j+r(γ)q+k+r(δ)q+k

j!(j + r)!(q + r)!q!
(j + q + r)!
(n)j+r+q+k

k∑

l=0

(−1)l

l!(k − l)!
|a|2j |b|2q+2l|w|2k−2l,

or, writing k = l + m,
∞∑

r=0

arbr
∞∑

j,q,l,m=0

(α)j(β)j+r(γ)q+l+m+r(δ)q+l+m

j!(j + r)!(q + r)!q!
(j + q + r)!

(n)j+r+q+l+m

(−1)l

l!m!
|a|2j |b|2q+2l|w|2m.

Setting q + l = k, this becomes
∞∑

r=0

arbr
∞∑

j,m,k=0

k∑
q=0

(α)j(β)j+r(γ)k+m+r(δ)k+m

j!(j + r)!(q + r)!q!
(j + q + r)!
(n)j+r+k+m

(−1)k−q

(k − q)!m!
|a|2j |b|2k|w|2m,

or, since k!/(k − q)! = (−1)q(−k)q,

∞∑
r=0

arbr
∞∑

j,m,k=0

k∑
q=0

(α)j(β)j+r(γ)k+m+r(δ)k+m

j!(j + r)!(q + r)!q!
(j + q + r)!
(n)j+r+k+m

(−1)k(−k)q

k!m!
|a|2j |b|2k|w|2m

=
∞∑

r=0

arbr
∞∑

j,m,k=0

(α)j(β)j+r(γ)k+m+r(δ)k+m

j!(j + r)!k!m!
(−1)k

(n)j+r+k+m
|a|2j |b|2k|w|2m (j + r)!

r! 2F1

(−k, j + r + 1
r + 1

∣∣∣1
)
.

By the Chu-Vandermonde formula,

(j + r)!
r! 2F1

(−k, j + r + 1
r + 1

∣∣∣1
)

=
(j + r)!

r!
(−j)k

(r + 1)k
=

(−j)k(j + r)!
(r + k)!

,
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so we finally get
∞∑

r=0

arbr
∞∑

j,m,k=0

(α)j(β)j+r(γ)k+m+r(δ)k+m

j!(k + r)!k!m!
(−1)k(−j)k

(n)j+r+k+m
|a|2j |b|2k|w|2m.

Since (−j)k vanishes for j < k, the sum effectively extends only over j ≥ k, say,
j = k + l; as (−k− l)k = (−1)k(l + 1)k = (−1)k(l + k)!/l!, we thus obtain that (45)
is equal to

∞∑
r=0

arbr
∞∑

m,k,l=0

(α)k+l(β)k+l+r(γ)k+m+r(δ)k+m

l!(k + r)!k!m!(n)l+r+2k+m
|a|2k+2l|b|2k|w|2m.

Since by (40) always a = |z| and ab = 〈z, w〉, we finally arrive at
∞∑

k,l,m,r=0

(α)k+l(β)k+l+r(γ)k+m+r(δ)k+m

l!(k + r)!k!m!(n)l+r+2k+m
〈z, w〉k+r〈w, z〉k|z|2l|w|2m,

or, rechristening k + r, k and l to q + r = p, q and j, respectively,

(46)
∞∑

p,q,j,m=0
p≥q

(α)q+j(β)p+j(γ)p+m(δ)q+m

p!q!j!m!(n)p+q+j+m
〈z, w〉p〈w, z〉q|z|2j |w|2m.

This came from the summands in (44) with p ≥ q; in the same way, the sum over
p < q in (44) turns out to be given again by (46), but with the summation extending
over p < q. Putting these two pieces together, we thus see that the integral (39) is
equal to

2πn

Γ(n)

∞∑

p,q,j,m=0

(α)q+j(β)p+j(γ)p+m(δ)q+m

p!q!j!m!(n)p+q+j+m
〈z, w〉p〈w, z〉q|z|2j |w|2m

=
2πn

Γ(n)
FD1

(
β, δ, α, γ

n

∣∣∣|z|2, 〈z, w〉, 〈w, z〉, |w|2
)
,

as claimed. This completes the proof for the case n > 1.
For n = 1 and z 6= 0, we still have

√
|w|2 − |b|2 = 0 = c since |〈z, w〉|/|z| = |w|

in this case; thus the whole argument above still works without change. Finally,
for n = 1 and z = 0, the integral (39) reduces just to

∫

∂B1
(1− |w|ζ)−γ(1− |w|ζ)−δ dσ(ζ) = 2π2F1

(γ, δ
1

∣∣∣|w|2
)

by (42), while

FD1

(β, δ, α, γ
1

∣∣∣0, 0, 0, |w|2
)

= 2F1

(γ, δ
1

∣∣∣|w|2
)

by (11). Thus the assertion holds in this case as well. ¤

Remark 3. If we carry out the integration over (ζ3, . . . , ζn) in (39), the integral
transforms into

2πn−1

Γ(n− 1)

∫

B2
(1−aζ1)

−α(1−aζ1)−β(1−bζ1−cζ2)
−γ(1−bζ1−cζ2)−δ (1−|ζ1|2−|ζ2|2)n− 3

2 dζ1 dζ2.
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This is strangely reminiscent of the following known integral formula for FD1, valid
for b1, b2 > 0, and c− b1 − b2 > 0 [Ka, formula 4.3.(8)]:

(47)

FD1

(a, a′, b1, b2

c

∣∣∣x1, x2, y1, y2

)
= Γ

( c
b1, b2, c− b1 − b2

)

×
∫

u1,u2>0
u1+u2<1

ub1−1
1 ub2−1

2 (1− u1 − u2)c−b1−b2−1

(1− x1u1 − x2u2)a(1− y1u1 − y2u2)a′ du1 du2.

However, it does not seem possible to derive our Theorem 2 from (47). ¤

The following corollary to the last theorem is immediate from (9).

Corollary 4. For any n ≥ 1,
(48)

KSz(z, w) =
Γ(n)
2πn

(1− |z|2)n(1− |w|2)nFD1

(n, n, n, n
n

∣∣∣|z|2, 〈z, w〉, 〈w, z〉, |w|2
)
.

Remark 5. A posteriori, it is possible to give a “direct” proof of the last corollary
by checking straight away that, for each fixed w ∈ Bn, the right-hand side of (48)
is M -harmonic in z and its boundary value as z → ζ ∈ ∂Bn coincides with P (w, ζ).
To see the former, denote temporarily

apqjm :=
(n)j+p(n)j+q(n)m+p(n)m+q

(n)j+p+q+m
,

Ipqj := (1− |z|2)n 〈z, w〉p〈w, z〉q|z|2j

p!q!j!
,

Wm := (1− |w|2)n |w|2m

m!
,

so that

KSz(z, w) =
Γ(n)
2πn

∞∑

p,q,j,m=0

apqjmIpqjWm.

By a routine computation (here ∆̃ applies to the z variable)

∆̃Ipqj

1− |z|2 = |w|2Ip−1,q−1,j − (j + n + p)(j + n + q)Ipqj + (p + q + n + j − 1)Ip,q,j−1.

Consequently, with the understanding that Ipqj ≡ 0 if any of the subscripts p, q, j
is negative,

2πn/Γ(n)
1− |z|2 ∆̃zKSz(z, w) = |w|2

∑

pqjm

apqjmIp−1,q−1,jWm

−
∑

pqjm

(j + n + p)(j + n + q)apqjmIpqjWm

+
∑

pqjm

(p + q + n + j − 1)apqjmIp,q,j−1Wm

= |w|2
∑

pqjm

apqjmIp−1,q−1,jWm

−
∑

pqjm

(j + n + p)(j + n + q)apqjmIpqjWm
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+
∑

pqjm

(p + q + n + j)ap,q,j+1,mIpqjWm.(49)

Since ap,q,j+1.m = (n+j+p)(n+j+q)
n+p+q+m+j apqjm, the second and third sums combine into

−
∑

pqjm

m(n + p + j)(n + q + j)
n + p + q + j + m

apqjmIpqjWm

= −|w|2
∑

pqjm

(n + p + j)(n + q + j)
n + p + q + j + m

apqjmIpqjWm−1

= −|w|2
∑

pqjm

(n + p + j)(n + q + j)
n + p + q + j + m + 1

apqj,m+1IpqjWm.

Since
(n + p + j)(n + q + j)
n + p + q + j + m + 1

apqj,m+1

=
(n + p + j)(n + q + j)(n + m + p)(n + m + q)
(n + p + q + j + m)(n + p + q + j + m + 1)

apqjm

= ap+1,q+1,j,m,

this exactly cancels the first sum in (49). Thus, indeed, ∆̃zKSz(z, w) ≡ 0.
To verify the latter claim, let us carry out the summation over j in (55):

(50)

2πn

Γ(n)
KSz(z, w) = (1− |z|2)n(1− |w|2)n

∑
pqm

(n)p(n)q(n)m+p(n)m+q

(n)p+q+m

× 〈z, w〉p〈w, z〉q|w|2m

p!q!m! 2F1

( n + p, n + q
n + p + q + m

∣∣∣|z|2
)
.

Using the standard Euler transformation formula for 2F1 [BE, §2.1(23)]

(51) 2F1

(a, b
c

∣∣∣t
)

= (1− t)c−a−b
2F1

(c− a, c− b
c

∣∣∣t
)
,

the right-hand side of (50) becomes

(1− |w|2)n
∑
pqm

(n)p(n)q(n)m+p(n)m+q

(n)p+q+m

〈z, w〉p〈w, z〉q|w|2m

p!q!m!

× (1− |z|2)m
2F1

( p + m, q + m
n + p + q + m

∣∣∣|z|2
)
.

As z → ζ ∈ ∂Bn, only the terms with m = 0 survive, yielding

(1− |w|2)n
∑
pq

(n)2p(n)2q
(n)p+q

〈ζ, w〉p〈w, ζ〉q
p!q! 2F1

( p, q
n + p + q

∣∣∣1
)

= (1− |w|2)n
∑
pq

(n)2p(n)2q
(n)p+q

〈ζ, w〉p〈w, ζ〉q
p!q!

Γ
(n + p + q, n
n + p, n + q

)

= (1− |w|2)n
∑
pq

(n)p(n)q

p!q!
〈ζ, w〉p〈w, ζ〉q

= (1− |w|2)n(1− 〈ζ, w〉)−n(1− 〈w, ζ〉)−n =
2πn

Γ(n)
P (w, ζ),
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completing the proof. ¤

The function FD1 is known to satisfy an Euler-type transformation formula [Ka,
formula 7.1.(4)]

(52)
FD1

(a, a′, b1, b2

c

∣∣∣x1, x2, y1, y2

)
= (1− x1)−b1(1− x2)−b2

× FD1

(c− a− a′, a′, b1, b2

c

∣∣∣ x1

x1 − 1
,

x2

x2 − 1
,
y1 − x1

1− x1
,
y2 − x2

1− x2

)
.

On the other hand, from its definition (47) it is apparent that FD1 enjoys the
symmetry property

(53) FD1

(a, a′, b1, b2

c

∣∣∣x1, x2, y1, y2

)
= FD1

(b1, b2, a, a′

c

∣∣∣x1, y1, x2, y2

)
.

These formulas can be used to simplify (48).

Theorem 6. For any n ≥ 1, KSz(z, w) equals

(54)

Γ(n)
2πn

(1− |w|2)n

|1− 〈z, w〉|2n

n∑

i1=0

n−i1∑

i2,j1=0

(−n)i1+i2(−n)i1+j1(n)i2(n)j1

i1!i2!j1!(n)i1+i2+j1

× ti11 ti22 tj13 2F1

( i2 + n, j1 + n
i1 + i2 + j1 + n

∣∣∣t4
)
,

where

(55) t1 = |z|2, t2 =
|z|2 − 〈w, z〉
1− 〈w, z〉 , t3 = t2, t4 = 1− (1− |z|2)(1− |w|2)

|1− 〈z, w〉|2 .

Proof. Applying (53) to the right-hand side of (52) gives

FD1

(
a, a′, b1, b2

c

∣∣∣x1, x2, y1, y2

)
= (1− x1)−b1(1− x2)−b2

× FD1

(
b1, b2, c− a− a′, a′

c

∣∣∣ x1

x1 − 1
,
y1 − x1

1− x1
,

x2

x2 − 1
,
y2 − x2

1− x2

)
.

Now we apply (53) one more time, to the last right-hand side; after a small com-
putation, this yields

FD1

(
a, a′, b1, b2

c

∣∣∣x1, x2, y1, y2

)
= (1− x1)c−a−b(1− x2)−b2(1− y1)−a′

× FD1

(
c− b1 − b2, b2, c− a− a′, a′

c

∣∣∣x1,
x1 − y1

1− y1
,
x1 − x2

1− x2
,
x1 + y2 − x2 − y1 + x2y1 − x1y2

(1− x2)(1− y1)

)
.

Multiplying both sides by (1− x1)n(1− y2)n and setting a = a′ = b1 = b2 = c = n,
x1 = |z|2, x2 = 〈z, w〉, y1 = 〈w, z〉, y2 = |w|2, we thus get from (48)

(56) KSz(z, w) =
Γ(n)
2πn

(1− |w|2)n

|1− 〈z, w〉|2n
FD1

(−n, n,−n, n
n

∣∣∣t1, t2, t3, t4
)

with t1, t2, t3, t4 as in (55). Finally, by (11)

FD1

(−n, n,−n, n
n

∣∣∣t1, t2, t3, t4
)

=
∑

i1+i2≤n,
i1+j1≤n,

j2≥0

ti11 ti22 tj13 tj24
i1!i2!j1!j2!

(−n)i1+i2(n)j1+j2(−n)i1+j1(n)i2+j2

(n)i1+i2+j1+j2
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=
∑

i1+i2≤n,
i1+j1≤n

ti11 ti22 tj13
i1!i2!j1!

(−n)i1+i2(n)j1(−n)i1+j1(n)i2

(n)i1+i2+j1

∑

j2≥0

(n + j1)j2(n + i2)j2

(n + i1 + i2 + j1)j2

tj24
j2!

=
∑

i1+i2≤n,
i1+j1≤n

ti11 ti22 tj13
i1!i2!j1!

(−n)i1+i2(n)j1(−n)i1+j1(n)i2

(n)i1+i2+j1
2F1

(
n + j1, n + i2

n + i1 + i2 + j1

∣∣∣t4
)
.

Substituting this into (56) yields (54), completing the proof. ¤

Using the formula [BE, §2.10(11)]

(57)
2F1

(n + 1, n + m + 1
n + m + l + 2

∣∣∣z
)

=
(n + m + l + 1)!(−1)m+1

l!n!(m + n)!(m + l)!

× dn+m

dzn+m

[
(1− z)m+l dl

dzl

log(1− z)
z

]
, m, n, l = 0, 1, 2, . . . ,

it is possible to express each 2F1 in (54) in terms of log(1−t4) and rational functions
of t4.

For instance, for n = 1 we get in this way

FD1

(1, 1, 1, 1
1

∣∣∣t1, t2, t3, t4
)

=
t2t3 + (1− t2 − t3)t4

t4(1− t4)
+

t2t3 − t1t4
t24

log(1− t4).

For t1 = |z|2, t2 = z z−w
1−zw , t3 = t2 and t4 = 1− (1−|z|2)(1−|w|2)

|1−wz|2 , the right-hand side

simplifies just to 1−|z|2|w|2
1−|w|2 , implying that KSz(z, w) = 1

2π
1−|z|2|w|2
|1−wz|2 , in complete

accordance with (10). For n = 2, the formula for KSz already becomes quite
complicated, without any apparent possibility of simplification.

Note also that the M -harmonic Szegö kernel KSz(z, w) is symmetric in z, w,
though this is not visible at all from the formula (54).

We conclude this section by discussing the smoothness of KSz on the closure of
Bn ×Bn.

Proposition 7. For n > 1,

KSz ∈ Cn−1(Bn ×Bn \ diag ∂Bn) \ Cn(Bn ×Bn \ diag ∂Bn).

Proof. Let U be a neighborhood of diag(∂Bn). Then 1− 〈z, w〉 stays away from 0
on Bn ×Bn \U . Keeping our previous notation x1 = |z|2, x2 = 〈z, w〉, y1 = 〈w, z〉,
y2 = |w|2, and denoting in addition temporarily Q := 1/(1 − 〈z, w〉), we have
t2 = t3 = 1− (1− x1)Q, so from (54)
(58)

KSz(z, w) = (1− y2)n|Q|2n Γ(n)
2πn

n∑

i1=0

n−i1∑

i2,j1=0

xi1
1 (1− (1− x1)Q)i2(1− (1− x1)Q)j1

× (−n)i1+i2(n)j1(−n)i1+j1(n)i2

(n)i1+i2+j1
2F1

( n + j1, n + i2
n + i1 + i2 + j1

∣∣∣1− (1− x1)(1− y2)|Q|2
)
.

By the standard formulas for the analytic continuation of the hypergeometric func-
tions 2F1 [BE, §2.10(14)], we have for any a, b > 0 and m = 0, 1, 2, . . . ,

2F1

( a, b
a + b−m

∣∣∣z
)

= (1− z)−mAabm(1− z) + Babm(1− z) log(1− z),
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with some functions Aabm, Babm holomorphic on D. The right-hand side of (58)
therefore equals, omitting for a moment the factor Γ(n)

2πn ,

n∑

i1=0

n−i1∑

i2,j1=0

xi1
1 (1− (1− x1)Q)i2(1− (1− x1)Q)j1

(−n)i1+i2(n)j1(−n)i1+j1(n)i2

(n)i1+i2+j1

×
[ (1− y2)i1 |Q|2i1

(1− x1)n−i1
A + (1− y2)n|Q|2nB log[(1− x1)(1− y2)|Q|2]

]
,

where A ≡ An+j1,n+i2,n−i1(1− 1(1− x1)(1− y2)|Q|2) and B ≡ Bn+j1,n+i2,n−i1(1−
1(1 − x1)(1 − y2)|Q|2). In terms of Taylor series around (x1, y2) = (1, 1), the last
expression has the form

(59)

∞∑

j=−n

∞∑

k,l,m=0

ajklm(1− x1)j(1− y2)kQlQ
m

+
∞∑

k=n

∞∑

j,l,m=0

bjklm(1− x1)j(1− y2)kQlQ
m

log[(1− x1)(1− y2)|Q|2],

with some coefficients ajklm, bjklm. However, since KSz(z, w) is symmetric in z, w,
(59) remains unchanged upon replacing x1, y2 and Q by y2, x1 and Q, respectively.
Consequently, ajkml must vanish for j < 0, and bjklm must vanish for j < n.
It follows that the first sum in (59) is C∞ on (1−x1, 1−y2, Q) ∈ D×D×(C\{0}),
while the second sum is Cn−1 there. (Note that Q is bounded away from zero,
in fact |Q| > 1

2 .) This in turn means that the right-hand side of (58) is Cn−1 on
Bn ×Bn \ U . Thus, indeed, KSz ∈ Cn−1(Bn ×Bn \ diag ∂Bn).

It remains to show that KSz does not belong to Cn(Bn ×Bn \ diag ∂Bn). If it did,
then the function

∫

∂Bn

KSz(z,Rξ)Hpq(ξ · η) dσ(ξ)

would belong to Cn(Bn), for any fixed 0 < R < 1, η ∈ ∂Bn and p, q ≥ 0.
However, by (30) and the orthogonality relations (25), the last integral equals
Spq(|z|)Spq(R)Hpq( z

|z| · η), and the hypergeometric function Spq(t) is well known
not to be Cn at the point t = 1 (it again contains a logarithmic singularity of the
form (1− t)n log(1− t)). This completes the proof. ¤

4. General M-harmonic kernels

We now turn to general U(n)-invariant measures dµ⊗ dσ on Bn and their asso-
ciated M -harmonic kernels Kµ.

Theorem 8. For any n ≥ 1 and µ as in (13), Kµ is given by
(60)

Kµ(z, w) =
Γ(n)
2πn

(1− |z|2)n(1− |w|2)n
∞∑

p,q,j,m=0

Apqjm(µ)
〈z, w〉p〈w, z〉q|z|2j |w|2m

p!q!j!m!
,
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where

(61)
Apqjm(µ) :=

min(m,j)∑

l=0

Γ(n + p + j)Γ(n + q + j)
Γ(n)Γ(n + p + q + j + l)

Γ(n + p + m)Γ(n + q + m)
Γ(n)Γ(n + p + q + m + l)

× (−1)lΓ(n + p + q + l − 1)(n + p + q + 2l − 1)(−j)l(−m)l

Γ(n)l!cp+l,q+l(µ)
,

with

(62) cpq(µ) :=
Γ(p + n)2Γ(q + n)2

Γ(n)2Γ(p + q + n)2

∫ 1

0

tp+q+n−1
2F1

(
p, q

p + q + n

∣∣∣t
)2

dµ(t).

Proof. Clearly, the space H = L2
Mh(Bn, dµ⊗ dσ) satisfies the hypotheses of Propo-

sition 1. For any pair of functions u(rζ) = Spq(r)f(ζ) and v(rζ) = Spq(r)g(ζ)
in Hpq, we have

〈u, v〉H =
∫ 1

0

∫

∂Bn

Spq(
√

t)f(ζ)Spq(
√

t)g(ζ) (dµ⊗ dσ)(t, ζ)

= 〈f, g〉L2(∂Bn,dσ)

∫ 1

0

Spq(
√

t)2tn−1dµ(t),

so (33) holds with

cpq = Γ
(
p + n, q + n
n, p + q + n

)2
∫ 1

0

tp+q+n−1
2F1

(
p, q

p + q + n

∣∣∣t
)2

dµ(t) ≡ cpq(µ),

by (62). Consequently, by (34), for z = rξ and w = Rη,

(63) Kµ(z, w) =
∑
p,q

Spq(r)Spq(R)Hpq(ξ · η)
cpq(µ)

.

To simplify the notation, let us temporarily denote ξ · η =: ζ ∈ D and

spq(t) = Γ
(
n + p, n + q
n, n + p + q

)
2F1

(
p, q

n + p + q

∣∣∣t
)
,

so that Spq(r) = rp+qspq(r2). Let us first consider the sum in (63) over terms with
p ≥ q — say, p = q + r, r ≥ 0. Using (26), the sum becomes (omitting momentarily
the constant factor Γ(n)

2πn )
∞∑

q,r=0

|z|2q+rsq+r,q(|z|2)|w|2q+rsq+r,q(|w|2)
cq+r,q(µ)

×

(−1)q(n + 2q + r − 1)(n + q + r − 2)!
Γ(n)q!r!

ζ
r

q∑

j=0

(−q)j(n + q + r − 1)j

(r + 1)jj!
ζjζ

j

=
∞∑

q,r=0

q∑

j=0

|z|2q+rsq+r,q(|z|2)|w|2q+rsq+r,q(|w|2)
cq+r,q(µ)

×

(−1)q(n + 2q + r − 1)(n + q + r + j − 2)!(−q)j

Γ(n)q!(r + j)!j!
ζjζ

j+r
.(64)

Letting q = j + l and noticing that (−q)j/q! = (−1)j/(q − j)!, this becomes
∑

j,l,r≥0

|z|2j+2l+rsj+l+r,j+l(|z|2)|w|2j+2l+rsj+l+r,j+l(|w|2)
cj+l+r,j+l(µ)
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× (−1)l(n + 2j + 2l + r − 1)(n + 2j + l + r − 2)!
Γ(n)(r + j)!j!l!

ζjζ
j+r

,

or, writing q and p = q + r instead of j and j + r, respectively,

∑

q,r≥0
p=q+r

∑

l≥0

|z|p+q+2lsp+l,q+l(|z|2)|w|p+q+2lsp+l,q+l(|w|2)
cp+l,q+l(µ)

× (−1)l(n + p + q + 2l − 1)(n + p + q + l − 2)!
Γ(n)p!q!l!

ζqζ
p
.

The sum over p < q in (63) is treated in the same way, and recalling that 〈z, w〉 =
|z||w|ζ, we thus arrive at

Kµ(z, w) =
Γ(n)
2πn

∞∑

p,q,l=0

|z|2lsp+l,q+l(|z|2)|w|2lsp+l,q+l(|w|2)
cp+l,q+l(µ)

×

(−1)l(n + p + q + 2l − 1)(n + p + q + l − 2)!
Γ(n)l!

〈z, w〉q〈w, z〉p
q!p!

.

On the other hand, by the Euler transformation formula (51), we have

spq(t) = Γ
(
p + n, q + n
n, p + q + n

)
(1− t)n

2F1

(
p + n, q + n
p + q + n

∣∣∣t
)

= (1− t)n
∞∑

k=0

Γ
(p + n + k, q + n + k

p + q + n + k, n

) tk

k!
.

Consequently,

Kµ(z, w) = (1− |z|2)n(1− |w|2)n Γ(n)
2πn

∞∑

p,q,j,m=0

Apqjm(µ)
|z|2j |w|2k

j!k!
〈z, w〉q〈w, z〉p

q!p!

with

Apqjm(µ) =
∑

l,i,k≥0,
l+i=j,
l+k=m

(−1)l(n + p + q + 2l − 1)(n + p + q + l − 2)!
Γ(n)l!cp+l,q+l(µ)

×

Γ
(p + l + n + i, q + l + n + i

n, p + q + n + i + 2l

)
Γ
(p + l + n + k, q + l + n + k

n, p + q + n + k + 2l

)j!
i!

m!
k!

=
min(m,j)∑

l=0

(−1)l(n + p + q + 2l − 1)(n + p + q + l − 2)!
Γ(n)l!cp+l,q+l(µ)

×

Γ
(p + n + j, q + n + j
n, p + q + n + j + l

)
Γ
(p + n + m, q + n + m

n, p + q + n + m + l

)
(−j)l(−m)l,

since j!/(j − l)! = (−1)l(−j)l and similarly for m!/(m − l)!. But this is precisely
(60) and (61), completing the proof. ¤

Remark 9. Taking for dµ(t) the point mass at t = 1, one can use the last theorem
to give an independent proof of the formula (48) for the M -harmonic Szegö kernel
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(not using Theorem 1). Indeed, in that case cpq = 1 for all p, q, so, pulling out
some Gamma functions,

Apqjm(µ) = Γ
(n + p + j, n + q + j

n, n + p + q + j

)
Γ
(n + p + m,n + q + m

n,n + p + q + m

)

min(m,j)∑

l=0

(−1)l(n + p + q + 2l − 1)(n + p + q + l − 2)!
Γ(n)l!

(−j)l(−m)l

(p + q + n + j)l(p + q + n + m)l
.

Denoting momentarily for brevity n + p + q =: h, we have

n + p + q + 2l − 1 = 2
(h− 1

2
+ l

)
= (h− 1)

(h+1
2 )l

(h−1
2 )l

,

so the last sum can be written as
h− 1
Γ(n)

∑

l

(−j)l(−m)l

(h + j)l(h + m)l

(−1)l

l!
(h+1

2 )l

(h−1
2 )l

Γ(h + l − 1)

=
Γ(h)
Γ(n) 4F3

(−j,−m, h+1
2 , h− 1

h + j, h + m, h−1
2

∣∣∣− 1
)
.(65)

Now by a formula of Bailey [BE, §4.5(4)]

4F3

(
a, 1 + a

2 , b, c
a
2 , 1 + a− b, 1 + a− c

∣∣∣− 1
)

= Γ
(1 + a− b, 1 + a− c
1 + a, 1 + a− b− c

)
,

so (65) is equal to

Γ(h)
Γ(n)

Γ
(
h + j, h + m
h, h + j + m

)
= Γ

(
h + j, h + m
n, h + j + m

)

and

Apqjm(µ) = Γ
(n + p + j, n + q + j

n

)
Γ
(n + p + m,n + q + m

n

)
Γ
( −
n, n + p + q + j + m

)

=
(n)p+j(n)q+j(n)p+m(n)q+m

(n)p+q+j+m
,

proving the claim. ¤
Remark 10. A similar argument as in the proof of Theorem 8 can also be used to
give another proof of Folland’s formula (29) for the M -harmonic Poisson kernel:
for z = rξ,

(66)
∑
p,q

Spq(|z|)Hpq(ξ · η) =
Γ(n)
2πn

(1− |z|2)n

|1− 〈z, η〉|2n
.

Indeed, assuming again first that p ≥ q — say, p = q + r, r ≥ 0 — and using (26),
the sum over p ≥ q becomes, as in (64) (omitting yet again temporarily the constant
factor Γ(n)/2πn, and denoting again ξ · η =: ζ)
∞∑

q,r=0

q∑

j=0

|z|2q+rsq+r,q(|z|2) (−1)q(n + 2q + r − 1)(n + q + r + j − 2)!(−q)j

Γ(n)q!(r + j)!j!
ζjζ

j+r
,

or, upon setting q = j + l,
∑

j,l,r≥0

|z|2j+2l+rsj+l+r,j+l(|z|2) (−1)l(n + 2j + 2l + r − 1)(n + 2j + l + r − 2)!
Γ(n)(r + j)!j!l!

ζjζ
j+r

,
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that is, writing q and q = p + r instead of j and j + r, respectively,
∑

q,r≥0
p=q+r

∑

l≥0

|z|p+q+2lsp+l,q+l(|z|2) (−1)l(n + p + q + 2l − 1)(n + p + q + l − 2)!
Γ(n)p!q!l!

ζqζ
p
.

The sum over p < q is treated in the same way, and we see that the right-hand side
of (66) equals

Γ(n)
2πn

∞∑

p,q,l=0

|z|2lsp+l,q+l(|z|2) (−1)l(n + p + q + 2l − 1)(n + p + q + l − 2)!
Γ(n)l!

〈z, η〉q〈η, z〉p
q!p!

=
Γ(n)
2πn

(1− |z|2)n
∞∑

p,q,m=0

Apqm
|z|2m

m!
〈z, η〉q〈η, z〉p

q!p!
,

where

Apqm =
∑

l,k≥0
l+k=m

(−1)l(n + p + q + 2l − 1)(n + p + q + l − 2)!
Γ(n)l!

Γ
(p + l + n + k, q + l + n + k

n, p + q + n + k + 2l

)m!
k!

=
m∑

l=0

(n + p + q + 2l − 1)(n + p + q + l − 2)!
Γ(n)l!

Γ
(
p + n + m, q + n + m
n, p + q + n + m + l

)
(−m)l

= Γ
(
p + n + m, q + n + m

n, p + q + n + m

) m∑

l=0

(n + p + q + 2l − 1)(n + p + q + l − 2)!
Γ(n)l!

(−m)l

(p + q + n + m)l

= Γ
(
p + n + m, q + n + m

n, h + m

)
Γ
(
h
n

)
3F2

(
h− 1, h+1

2 ,−m
h−1

2 , h + m

∣∣∣1
)
,

as in (65); here we have again set n + p + q =: h. Now by a formula due to Dixon
[BE, §4.4(5)]

3F2

(
a, b, c

1 + a− b, 1 + a− c

∣∣∣1
)

= Γ
(1 + a

2 , 1 + a− b, 1 + a− c, 1 + a
2 − b− c

1 + a.1 + a
2 − b, 1 + a

2 − c, 1 + a− b− c

)
,

so the penultimate 3F2 is equal to

Γ
( h+1

2 , h−1
2 , h + m,m

h, 0, h+1
2 + m, h−1

2 + m

)
.

This vanishes for m ≥ 1, and reduces to 1 for m = 0. Hence Apqm = 0 for m ≥ 1,
while

Apq0 = Γ
(
p + n, q + n
n, p + q + n

)
Γ
(
p + q + n

n

)
= (n)p(n)q,

so that
∞∑

p,q,m=0

Apqm
|z|2m

m!
〈z, η〉q〈η, z〉p

q!p!
=

∑
p,q

(n)p(n)q
〈z, η〉q〈η, z〉p

q!p!
= (1−〈z, η〉)−n(1−〈η, z〉)−n,

proving (66). ¤
Choosing dµ(t) = 1

2 (1 − t)s dt, the last theorem gives, in particular, a formula
for the weighted M -harmonic Bergman kernels Ks, s > −1. The coefficients cpq(µ)
are then given by

(67) cpq(s) :=
1
2
Γ
(n + p, n + q
n, n + p + q

)2
∫ 1

0

tp+q+n−1
2F1

( p, q
p + q + n

∣∣∣t
)2

(1− t)s dt.
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We conclude this section by evaluating c00 and c01 in the particular case of the
unweighted M -harmonic Bergman kernel s = 0 in dimension n = 2.

For c00, we actually have quite generally

(68) c00(s) =
1
2

∫ 1

0

tn−1(1− t)s dt =
Γ(n)Γ(s + 1)
2Γ(n + s + 1)

.

For p = q = 1 and s = 0, (67) reads

c11(0) =
1
2

n2

(n + 1)2

∫ 1

0

tn+1
2F1

( 1, 1
n + 2

∣∣∣t
)2

dt.

Using (51) and (57),

2F1

( 1, 1
n + 2

∣∣∣t
)

= (1− t)n
2F1

(n + 1, n + 1
n + 2

∣∣∣t
)

= (1− t)n (n + 1)!
n!2

dn

dtn
− log(1− t)

t
.

For n = 2, a short computation reveals that this reduces to

(69) 2F1

(1, 1
4

∣∣∣t
)

=
3t(3t− 2)− 6(1− t)2 log(1− t)

2t3
.

Differentiating the familiar Beta integral
∫ 1

0

ta(1− t)b dt =
Γ(a + 1)Γ(b + 1)

Γ(a + b + 2)
, a, b > −1,

with respect to b and setting b = 0, we get
∫ 1

0

ta log(1− t) dt =
ψ(1)− ψ(a + 2)

a + 1
,

∫ 1

0

ta log(1− t)2 dt =
(ψ(1)− ψ(a + 2))2 + ψ′(1)− ψ′(a + 2)

a + 1
,

where ψ = Γ′/Γ is the logarithmic derivative of the Gamma function. Squaring (69),
multiplying by tx+3, x > 2, and using the last two formulas yields an (unwieldy)

explicit formula for
∫ 1

0
tx+3

2F1

(1, 1
4

∣∣∣t
)2

dt. A tedious but utterly routine calculation

reveals that the result extends analytically to Re x > −4 (as it should!), and its
value at x = 0 is

117
2

ψ(1)− 171
8

+
9
2
(ψ(3)− ψ(1))2 − 36(ψ(1)− ψ(2))2 +

27
2

ψ(3)− 72ψ(2)

− 63
2

ψ′(1) + 36ψ′(2)− 9
2
ψ′(3)− 54ψ′′(1).

Finally, recalling that for k,m = 1, 2, 3, . . . ,

ψ(m) = −C +
m−1∑

j=1

1
j
,

ψ(k)(m) = (−1)k(k − 1)!ζ(k + 1) + (−1)kk!
m−1∑

j=1

1
jk+1

,

where C is the Euler constant and ζ the Riemann zeta function, we finally get that
for n = 2

c11(0) =
96ζ(3)− 115

4
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and
c11(0)
c00(0)

= 96ζ(3)− 115.

Since by (61)

A0000(s) =
1

c00(s)
, A1100(s) =

n3

(n + 1)c11(s)
,

we also get for n = 2

A0000(0) = 4, A1100(0) =
32

96ζ(3)− 115
.

It is somewhat unlikely for a function whose Taylor coefficient involves 96ζ(3) −
115 in the denominator to be given by some nice “closed” formula in terms of
e.g. hypergeometric and similar functions. Thus there is probably no “explicit”
expression for K0(z, w) when n = 2, hence a fortiori also for Ks(z, w) for general
s > −1 and n ≥ 2.

5. Asymptotics of cpq(s)

Recall that in the polar coordinates z = rζ on Cn (r > 0, ζ ∈ ∂Bn), the
Euclidean Laplacian ∆ is given by

∆ =
∂2

∂r2
+

2n− 1
r

∂

∂r
+

1
r2

∆sph,

where ∆sph is the spherical Laplacian, which involves only differentiations with
respect to the ζ variables. In particular, the value of ∆sphφ on a sphere |z| =const.
depends only on the values of the function φ on that sphere. Another operator with
this property is the complex normal derivative (or Reeb vector field)

R :=
n∑

j=1

(
zj

∂

∂zj
− zj

∂

∂zj

)
.

Both ∆sph and R commute with the action of U(n), i.e. ∆sph(φ ◦U) = (∆sphφ) ◦U
for any U ∈ U(n), and similarly for R. (In fact, the algebra of all U(n)-invariant
linear differential operators on ∂Bn is generated by ∆sph and R, but we will not
need this fact.) From the irreducibility of the multiplicity-free decomposition (22) it
follows by abstract theory that ∆sph and R map each Hpq (and Hpq) into itself and
actually reduce on it to a multiple of the identity. Evaluation on e.g. the element
ζp
1 ζ

q

2 ∈ Hpq (for n ≥ 2) shows that, explicitly,

(70)
∆sph|Hpq = −(p + q)(p + q + 2n− 2)I|Hpq,

R|Hpq = (p− q)I|Hpq

(which formulas prevail also for n = 1; in that case ∆sph = −R2). In view of (22),
both ∆sph and R thus give rise to self-adjoint operators on L2(∂Bn, dσ), and the
operator

D := [−∆sph + (n− 1)2I]1/2

(in the sense of functional calculus of self-adjoint operators) corresponds to mul-
tiplication by p + q on Hpq. Consequently, the operators D+R

2 , D−R2 correspond
to multiplication on Hpq by p and q, respectively, and for “any” double sequence
{f(p, q)}∞p,q=0, the operator f(D+R

2 , D−R2 ) (again taken in the sense of functional
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calculus) will correspond to multiplication by f(p, q) on Hpq. Taking, in particu-
lar, f(p, q) = 1/cpq(s) with the cpq(s) from (67), and denoting the corresponding
operator f(D+R

2 , D−R2 ) by Ms, we thus deduce from (34) and (30) that

(71) Ks(z, w) = MsKSz(z, w),

where on the right-hand side we can choose to apply Ms to either the z or the w
variable (the result will be the same). Looking at the “leading order term” of Ms,
i.e. the one corresponding — loosely speaking — to highest order derivatives, we can
thus get a rough idea of the behavior of Ks from that of KSz (which we are familiar
with from Section 3). (This is the usual machinery of microlocal analysis.)

Since, in view of (70), the order of differentiation corresponds to the homogeneity
degree of f(p, q) in (p, q), we thus need to find the asymptotic behavior of cpq(s) as
p + q → +∞.

Theorem 11. Let p, q > 0 be fixed. Then as λ → +∞, we have the asymptotic
expansion

(72) cλp,λq(s) ≈ Γ
(2n + s + 1, n + s + 1, n + s + 1, s + 1

n, n, 2n + 2s + 2

) λ−2s−2

(pq)s+1

∞∑

j=0

aj(p, q)
λj

,

where a0(p, q) = 1.

Proof. Inserting the standard representation for the 2F1 function

2F1

(a, b
c

∣∣∣z
)

= Γ
( c
b, c− b

) ∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt, c > b > 0,

into (67) yields

2cpq(s) = Γ
(
p + n, q + n

n, n, p, q

) ∫ 1

0

∫ 1

0

∫ 1

0

tp+q+n−1(1−t)s xq−1(1− x)n+p−1yp−1(1− y)n+q−1

(1− tx)p(1− ty)q
dx dy dt.

Using the representation [BE, §5.8 (5)]

F1

(
a; b, b′

c

∣∣∣x, y
)

= Γ
(

c
a, c− a

) ∫ 1

0

ta−1(1− t)c−a−1

(1− tx)b(1− ty)b′ dt, c > a > 0,

for the Appell F1 function, this becomes

2cpq(s) = Γ
(p + n, q + n

n, n, p, q

)
Γ
(

p + q + n, s + 1
p + q + n + s + 1

) ∫ 1

0

∫ 1

0

xq−1(1− x)n+p−1yp−1(1− y)n+q−1

× F1

( p + q + n; p, q
p + q + n + s + 1

∣∣∣x, y
)

dx dy.

By the transformation formula for F1 [BE, §5.11(1)]

F1

(a; b, b′

c

∣∣∣x, y
)

= (1− x)−b(1− y)−b′F1

(c− a; b, b′

c

∣∣∣ x

x− 1
,

y

y − 1

)
,

we can continue with

2cpq(s) = Γ
(p + n, q + n

n, n, p, q

)
Γ
( p + q + n, s + 1
p + q + n + s + 1

) ∫ 1

0

∫ 1

0

xq−1(1− x)n−1yp−1(1− y)n−1

× F1

( s + 1; p, q
p + q + n + s + 1

∣∣∣ x

x− 1
,

y

y − 1

)
dx dy.
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Applying yet another representation formula for F1 [BE, §5.8(1)]

F1

(a; b, b′

c

∣∣∣x, y
)

= Γ
( c
b, b′, c− b− b′

)∫∫
u,v>0
u+v<1

ub−1vb′−1(1− u− v)c−b−b′−1

(1− ux− vy)a
du dv,

b, b′ > 0, c− b− b′ > 0,

we arrive at

2cpq(s) = Γ
(p + q + n, s + 1, p + n, q + n

n, n, p, p, q, q, n + s + 1

) ∫ 1

0

∫ 1

0

∫∫
u,v>0
u+v<1

xq−1(1− x)n−1yp−1(1− y)n−1

× up−1vq−1(1− u− v)n+s

(1 + ux
1−x + vy

1−y )s+1
du dv dx dy.

Performing the change of variable u = τσ, v = (1 − τ)σ, du dv = σ dσ dτ , this
transforms into

2cpq(s) = Γ
(
p + q + n, s + 1, p + n, q + n

n, n, p, p, q, q, n + s + 1

) ∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

xq−1(1− x)n−1yp−1(1− y)n−1

× σp+q−1(1− σ)n+sτp−1(1− τ)q−1

(1 + στx
1−x + σ(1−τ)y

1−y )s+1
dσ dτ dx dy

= Γ
(
p + q + n, s + 1, p + n, q + n

n, n, p, p, q, q, n + s + 1

) ∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

xq−1(1− x)n+syp−1(1− y)n+s

× σp+q−1(1− σ)n+sτp−1(1− τ)q−1

((1− x)(1− y) + στx(1− y) + σ(1− τ)y(1− x))s+1
dσ dτ dx dy.

To get hands on large p, q asymptotics, we make one more change of variable from
x, y, σ to X, U, S via

x = e−XU/q, y = e−(1−X)U/p, σ = e−S/(p+q),

dx dy dσ =
xyσU

pq(p + q)
dX dU dS,

and also find it convenient to multiply both sides by s + 1 and to introduce the
function G(w) := 1−e−w

w . This leads to

2(s + 1)cpq(s) = Γ
(p + q + n, s + 2, p + n, q + n

n, n, p, p, q, q, n + s + 1

)∫ ∞

0

∫ ∞

0

∫ 1

0

∫ 1

0

× e−U−S
[XU

q

(1−X)U
p

S

p + q
G

(XU

q

)
G

( (1−X)U
p

)
G

( S

p + q

)]n+s

τp−1(1− τ)q−1

×
[XU

q

(1−X)U
p

G
(XU

q

)
G

( (1−X)U
p

)
+ τe−

S
p+q−XU

q
(1−X)U

p
G

( (1−X)U
p

)

+ (1− τ)e−
S

p+q− (1−X)U
p

XU

q
G

(XU

q

)]−s−1 U dτ dX dU dS

pq(p + q)
.
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Now we specialize to the situation of the theorem, i.e. take p = Pλ, q = (1−P )λ,
with 0 < P < 1 fixed and λ → +∞. This yields the huge formula

(73)

2(s + 1)cpq(s) = Γ
(p + q + n, s + 2, p + n, q + n

n, n, p, p, q, q, n + s + 1

) ∫ ∞

0

∫ ∞

0

∫ 1

0

∫ 1

0

e−U−S Xn+s(1−X)n+sSn+s

[P (1− P )λ3]n+s+1

[
G

(U1

λ

)
G

(U2

λ

)
G

(S

λ

)]n+s

(τP (1− τ)1−P )λ/(τ(1− τ))U2n+2s+1λs+1 dτ dX dU dS[
U1U2

λ G
(

U1
λ

)
G

(
U2
λ

)
+ τe−

S
λ−

U1
λ U2G

(
U2
λ

)
+ (1− τ)e−

S
λ−

U2
λ U1G

(
U1
λ

)]s+1 ,

where for typographical reasons we have momentarily introduced the notations
U1 := XU

1−P , U2 = (1−X)U
P . Let gk momentarily stand for the Taylor coefficients of

the (entire) function G(w)n+s:

G(w)n+s =:
∞∑

k=0

gkwk, g0 = 1.

Then

(74)
[
G

(U1

λ

)
G

(U2

λ

)
G

(S

λ

)]n+s

=
∑

j,k,l

gjgkgl
U j

1Uk
2 Sl

λj+k+l
.

Also,

(75)

U1U2

λ
G

(U1

λ

)
G

(U2

λ

)
+ τe−

S
λ−

U1
λ U2G

(U2

λ

)
+ (1− τ)e−

S
λ−

U2
λ U1G

(U1

λ

)

=
[
τU2 + (1− τ)U1

][
1 +

∞∑
m=1

λ−m pm+1(U1, U2, S, τ)
τU2 + (1− τ)U1

]
,

where pm+1 is a polynomial homogeneous of degree m+1 in U1, U2, S and of degree
1 in τ . Feeding (74) and (75) into (73), we arrive at

(76)

2(s + 1)cpq(s) = Γ
(
p + q + n, s + 2, p + n, q + n

n, n, p, p, q, q, n + s + 1

) ∫ ∞

0

∫ ∞

0

∫ 1

0

∫ 1

0

e−U−S [X(1−X)S]n+sU2n+2s+1

[P (1− P )]n+s+1λ3n+2s+2τ(1− τ)[τU2 + (1− τ)U1]s+1

∞∑

j=0

a2j(U1, U2, S, τ)
λj((1− τ)U1 + τU2)j

(τP (1− τ)1−P )λ dτ dX dU dS,

where a2j is a polynomial homogeneous of degree 2j in U1, U2, S and of degree at
most j in τ , a0 ≡ 1. Carrying out the X, S and U integrations in (76) already pro-
duces the desired asymptotic expansion in decreasing powers of λ; it only remains
to treat the τ integral. To do that, we recall the standard asymptotics of a Laplace
integral, see e.g. [Fe, §2.1, Theorem 1.3]: if f,S are smooth real-valued functions
on a finite interval [a, b], and S attains its maximum at a unique point τ0 ∈ (a, b),
with S ′′(τ0) 6= 0, then the Laplace integral

I(λ) =
∫ b

a

f(τ)eλS(τ) dτ
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possesses the following asymptotics as λ → +∞:

I(λ) ≈ eλS(τ0)
∞∑

k=0

ckλ−k− 1
2 ,

with

ck =
Γ(k + 1

2 )
(2k)!

d2k

dτ2k
[f(τ)S(τ, τ0)−k− 1

2 ]τ=τ0 ,

where S(τ, τ0) := S(τ0)−S(τ)
(τ−τ0)2/2 ; in particular,

c0 = f(τ0)

√
2π

−S ′′(τ0)
.

Applying this to (76), taking for S the function S(τ) = P log τ +(1−P ) log(1− τ),
with τ0 = P (so, in particular, S(τ, τ0) =

∑∞
j=0

2(τ−P )j

j+2 ((1−P )−j−1− (−P )−j−1)),
and for f all the remaining terms of the integrand, we get

2(s + 1)cpq(s) = Γ
(p + q + n, s + 2, p + n, q + n

n, n, p, p, q, q, n + s + 1

)
(PP (1− P )(1−P ))λ

∫ ∞

0

∫ ∞

0

∫ 1

0

e−U−S [X(1−X)S]n+sU2n+2s+1

[P (1− P )]n+s+1λ3n+2s+2

∞∑

j,k=0

Γ
(

k + 1
2

2k + 1

) d2k

dτ2k

[ a2j(U1, U2, S, τ)
τ(1− τ)[(1− τ)U1 + τU2]j+s+1

S(τ, P )−k− 1
2

]
τ=P

λ−k− 1
2−j dX dU dS

= Γ
(
p + q + n, s + 2, p + n, q + n

n, n, p, p, q, q, n + s + 1

)√
π(PP (1− P )(1−P ))λ

∞∑

j,k=0

λ−3n−2s− 5
2−j−k

∫ ∞

0

∫ ∞

0

∫ 1

0

e−U−S [X(1−X)S]n+sU2n+s−j

[P (1− P )]n+s+ 3
2

Φjk(X, 1
P , 1

1−P , U, S) dX dU dS

with some polynomials Φjk in the indicated variables, Φ00 ≡ 1. Carrying out the
S, U and X integrations, we obtain

(77)

2(s + 1)cpq(s) = Γ
(p + q + n, s + 2, p + n, q + n

n, n, p, p, q, q, n + s + 1

)√π(PP (1− P )1−P )λ

[P (1− P )]n+s+ 3
2

λ−3n−2s− 5
2

∞∑
m=0

bm( 1
P , 1

1−P )λ−m,

with some polynomials bm, b0 ≡ Γ(n+s+1)3Γ(2n+s+1)
Γ(2n+2s+2) . (All of pm+1, a2j , Φjk and

bm depends also on s, although this is not explicitly reflected by the notation.)
Now we employ the fact that 2(s + 1)cpq(s) → 1 as s ↘ 1 (since the measures
(s + 1)(1− t)s dt converge weakly to the Dirac mass at t = 1); dividing both sides
by (77) by the same expressions with s = −1, and restoring the variables p = Pλ,
q = (1− P )λ, we finally arrive at

(s+1)cpq(s) ≈ Γ
(2n + s + 1, n + s + 1, n + s + 1, s + 2

n, n, 2n + 2s + 2

)
(pq)−s−1

[
1+

∞∑

j=1

Aj(p, q)
]
,

with some functions Aj homogeneous of degree −j. But this is precisely (72),
completing the proof. ¤
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Combining the last theorem with (17) from the Introduction, we see that cpq(s) ≈
(p + 1)−s−1(q + 1)−s−1 as p + q → +∞ (for fixed s). As argued in the beginning of
this section, the “leading order” term of Ks(z, w) can thus be expected to be the
same as for the function

(78) Fs(rζ,Rη) :=
∑
p,q

Spq(r)Spq(R)Hpq(ζ · η)(p + n−1
2 )s+1(q + n−1

2 )s+1.

We conclude this section by discussing the boundary singularity of Fs.

Theorem 12. For n > 1 and s = 0, 1, 2, . . .
(79)

Fs(z, w) = Ls+1
[Γ(n)

2πn

(1− y2)n

(1− x2)n(1− y1)n

n∑

i1=0

n−i1∑

i2,j1=0

(−n)i1+i2(−n)i1+j1(n)i2(n)j1

i1!i2!j1!(n)i1+i2+j1

xi1
1

(x1 − y1

1− y1

)i2(x1 − x2

1− x2

)j1

2F1

(
i2 + n, j1 + n

i1 + i2 + j1 + n

∣∣∣1− (1− x1)(1− y2)
(1− x2)(1− y1)

)]∣∣∣x1=|z|2,x2=〈z,w〉,
y1=〈w,z〉,y2=|w|2

,

where L is the linear differential operator

(80) L := (x2y1 − x1y2)
∂2

∂x2∂y1
+

n− 1
2

(
x2

∂

∂x2
+ y1

∂

∂y1

)
+

(n− 1)2

4
I.

Proof. Consider the differential operator

D := −∆sph

4
− R2

4
+

(n− 1)2

4
I.

By (70),
D|Hpq = (p + n−1

2 )(q + n−1
2 )I|Hpq.

Consequently, using (30),

(81) Fs(z, w) = Ds+1KSz(z, w),

with the understanding that, to fix ideas, D is always applied to the z variable.
Note that since ∆sph and R are “tangential” operators — that is, they act only on
the ζ variable in the polar coordinates z = rζ — we have D(fg) = fDg for any
function f depending on |z| only. Substituting (12) for the KSz in (81), we thus
obtain

Fs(z, w) =
Γ(n)
2πn

(1− |z|2)n(1− |w|2)n
∞∑

p,q,j,m=0

(n)p+j(n)q+j(n)p+m(n)q+m

(n)p+q+j+m

×Ds+1 〈z, w〉p〈w, z〉q|z|2j |w|2m

p!q!j!m!
.

Now by direct computation

D[〈z, w〉p〈w, z〉q|z|2j |w|2m]

=
[(

1− |z|2|w|2
|〈z, w〉|2

)
pq +

n− 1
2

(p + q) +
(n− 1

2

)2]
〈z, w〉p〈w, z〉q|z|2j |w|2m

= L[xj
1x

p
2y

q
1y

m
2 ]x1=|z|2,x2=〈z,w〉,y1=〈w,z〉,y2=|w|2 .

Hence

Fs(z, w) = Ls+1
[Γ(n)

2πn
(1−x1)n(1−y2)nFD1

(n, n, n, n
n

∣∣∣x1, x2, y1, y2

)]
x1=|z|2,x2=〈z,w〉,
y1=〈w,z〉,y2=|w|2

.
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Replacing the expression in the square brackets by the one from Corollary 4 yields
the desired claim. ¤

Corollary 13. For n > 1 and s = 0, 1, 2, . . . , Fs ∈ Cn−1(Bn ×Bn \ diag ∂Bn).

Proof. We have seen in course of the proof of Proposition 7, cf. (59), that
(82)

KSz(z, w) =
∞∑

j,k=0

ajk(Q, Q)(1−x1)j(1−y2)k+
∞∑

j,k=0

bjk(Q, Q)(1−x1)j(1−y2)k log[(1−x1)(1−y2)],

where we have again set x1 = |z|2, x2 = 〈z, w〉, y1 = 〈w, z〉, y2 = |w|2 and Q :=
1/(1 − x2), Q = 1/(1 − y1), and ajk, bjk are holomorphic functions of Q, Q in the
right half-plane Re Q > 0. Now since L involves only differentiations with respect
to the x2 and y1 variables, the application of Ls+1 to (82) preserves this form of
the right-hand side (only the functions ajk, bjk will get changed). Since, again as
in the proof of Proposition 7, the first summand is C∞ on |1−x1| < 1, |1− y2| < 1
and ReQ > 0, while the second summand is Cn−1 there, the claim follows. ¤

For z, w ∈ Bn, the three quantities

x1 = |z|2, x2 = y1 = 〈z, w〉, y2 = |w|2,
are preserved upon replacing z, w by Uz,Uw with any U ∈ U(n), and satisfy

(83) 0 ≤ x1, y2 < 1, x2 ∈ C, |x2|2 ≤ x1y2.

Conversely, all triples x1, x2, y2 satisfying (83) arise in this way, and if z′, w′ ∈ Bn

give rise to the same triple x1, x2, y2 as z, w, then there is some U ∈ U(n) for which
z′ = Uz and w′ = Uw. In other words, the map (z, w) 7→ (|z|2, 〈z, w〉, |w|2) is a
bijection of the equivalence classes of Bn×Bn modulo the diagonal action of U(n)
onto the set of all triples x1, x2, y2 satisfying (83).

Now instead of z, w, we can apply the observation in the preceding paragraph
to the pair z, φzw. Since

φUz(Uw) = U(φzw), ∀z, w ∈ Bn, U ∈ U(n),

it again transpires that the map

(84) (z, w) 7→ (U, V, Z), U := |z|2, V := |φzw|2, Z := 〈z, φzw〉,
is a bijection of the equivalence classes of Bn ×Bn modulo the diagonal action of
U(n) onto the set

(85) Ω := {(U, V, Z) : 0 ≤ U, V < 1, Z ∈ C, |Z|2 ≤ UV }.
We conclude by expressing the singularity of Fs(z, w) at the boundary diagonal in
terms of the “coordinates” (U, V, Z).

Corollary 14. For n > 1 and s = 0, 1, 2, . . . ,

Fs(z, w) =
(1− V )n

(1− U)n+s+1

n∑

i1=0

n−i1∑

i2,j1=0

s+1∑

k=0

Pi1i2j1k(U,Z, Z, V )2F1

(i2 + m + k, j1 + n + k
i1 + i2 + j1 + n + k

∣∣∣V
)
,

where Pi1i2j1k(U,Z, Z, V ) is a polynomial of degree at most i1 + s + 1, j1 + s + 1,
i2 + s + 1 and k + s + 1, respectively, in the indicated variables.
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Proof. We still keep the previous notation x1 = |z|2, x2 = 〈z, w〉, y1 = 〈w, z〉,
y2 = |w|2. Taking 0 and w for w1 and w2, respectively, in (19), we get

Z = 〈φz0, φzw〉 = 1− 1− |z|2
1− 〈z, w〉 =

x1 − x2

1− x2
,

and similarly

Z =
x1 − y1

1− y1
, V = 1− (1− x1)(1− y2)

(1− x2)(1− y1)

(which establishes (20)). In terms of U, V, Z, (54) therefore becomes simply

KSz(z, w) =
(1− V )n

(1− U)n

∑

i1+i2≤n,
i1+j1≤n

ai1i2j1U
i1Z

i2
Zj1

2F1

( i2 + n, j1 + n
i1 + i2 + j1 + n

∣∣∣V
)
,

with ai1i2j1 := Γ(n)
2πn

(−n)i1+i2 (−n)i1+j1 (n)i2 (n)j1
i1!i2!j1!(n)i1+i2+j1

. On the other hand, by a tedious but
routine computation, the operator L expressed in the coordinates U, V, Z takes the
form

L =
|Z|2 − UV

1− U
[|1− Z|2∂Z∂Z + (1− Z)(1− V )∂Z∂V + (1− Z)(1− V )∂Z∂V + (1− V )2∂2

V − (1− V )∂V ]

− n− 1
2(1− U)

[(1− Z)(U − Z)∂Z + (1− Z)(U − Z)∂Z + (1− V )(2U − Z − Z)∂V ] +
(n− 1

2

)2

I.

Combining these two facts with the formula

(86) ∂V 2F1

(
a, b
c

∣∣∣V
)

=
ab

c
2F1

(
a + 1, b + 1

c + 1

∣∣∣V
)

for the derivative of a hypergeometric function, the claim follows by a simple in-
duction argument. ¤

The advantage of the coordinates U, V, Z is that when (z, w) approaches the
boundary diagonal — that is, essentially, when both z and w approach the same
point ζ ∈ ∂Bn — then of course all of x1 = |z|2, x2 = 〈z, w〉, y1 = 〈w, z〉 and
y2 = |w|2 tend to 1, but |φzw|2 = V can behave in many ways: or instance, for
z = w one has V = 0, while e.g. for z = (1−h)e1, w = (1−h2)e1 one has V → 1 as
h ↘ 0. Thus the coordinates U, V, Z capture how z approaches ζ “relative” to w.
Of course, the downside of the formula in the last corollary is that it completely
hides the symmetry z ↔ w. At the moment, we do not know how to express the
boundary singularity of Fs in a manner that would make this symmetry evident.

6. Concluding remarks

6.1. Formulas for cpq. The coefficients cpq(s) can be expressed in terms of various
multivariable hypergeometric functions. One such expression comes from using the
formula for the Taylor coefficients of the square of a 2F1 function [BE, §4.3(14)]

2F1

(a, b
c

∣∣∣z
)2

=
∞∑

m=0

4F3

( a, b, 1− c−m,−m
c, 1− a−m, 1− b−m

∣∣∣1
) (a)m(b)m

(c)mm!
zm,
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yielding

(87)
2cpq(s) = Γ

(n + p, n + q
n, n + p + q

)2 ∞∑
m=0

4F3

( p, q, 1− n− p− q −m,−m
n + p + q, 1− p−m, 1− q −m

∣∣∣1
)

× (p)m(q)m

(n + p + q)mm!
Γ
(

n + p + q + m, s + 1
n + p + q + m + s + 1

)
,

which however is not very useful. A somewhat nicer expression is obtained upon
expanding both 2F1 factors in (67) into Taylor series and integrating term by term;
this gives
(88)

2cpq(s) = Γ
(n + p, n + q
n, n + p + q

)2 ∞∑

j,k=0

(p)j(q)j

(n + p + q)jj!
(p)k(q)k

(n + p + q)kk!
Γ
( n + p + q + j + k, s + 1
n + p + q + j + k + s + 1

)

= Γ
(n + p, n + q
n, n + p + q

)2

Γ
( n + p + q, s + 1
n + p + q + s + 1

)

×
∞∑

j,k=0

(p)j(q)j

(n + p + q)jj!
(p)k(q)k

(n + p + q)kk!
(n + p + q)j+k

(n + p + q + s + 1)j+k
.

In terms of the higher order hypergeometric function of two variables of Appell and
Kampé de Fériet [AK, p. 150]

F




µ
ν
ρ
σ

∣∣∣∣∣∣∣∣

a1, . . . , aµ

b1, b
′
1, . . . , bν , b′ν

c1, . . . , cρ

d1, d
′
1, . . . , dσ, d′σ

∣∣∣∣∣∣∣∣
x, y


 :=

∞∑

j,k=0

∏µ
i=1(ai)j+k∏ρ
i=1(ci)j+k

∏ν
i=1(bi)j(b′i)k∏σ
i=1(di)j(d′i)k

xjyk

j!k!

this becomes
(89)

2cpq(s) = Γ
(

n + p, n + p, n + q, n + q, s + 1
n, n, n + p + q, n + p + q + s + 1

)
F




1
2
1
1

∣∣∣∣∣∣∣∣

n + p + q
p, p, q, q

n + p + q + s + 1
n + p + q, n + p + q

∣∣∣∣∣∣∣∣
1, 1


.

In the notation of Karlsson and Srivastava [KS, p. 27], the last function is de-

noted F 1:2,2
1:1,1

( p + q + n : p, q; p, q;
p + q + n + s + 1 : p + q + n; p + q + n;1, 1

)
. However, an explicit

expression for the value of these seems again not to be available. In fact, our com-
putations at the end of Section 4 amount to an evaluation of (89) for the special
case of n = 2, s = 0 and p = q = 1.

6.2. Uniformity of asymptotic expansions. In Theorem 11, we have found
the asymptotics of cλP,λ(1−P )(s) as λ → +∞, for fixed s and fixed 0 < P < 1;
also, the case of P ∈ {0, 1} has been handled separately. We expect that the
asymptotic expansion obtained is actually uniform in P ∈ [0, 1], and hence in
fact yields the unrestricted asymptotics of cpq(s) as p + q → +∞ (with s fixed);
however, at the moment we can offer no proof that this is indeed the case. This
kind of difficulty arises also in other situations where two-parameter asymptotics
are involved, cf. e.g. §II.7 in [Fe].
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6.3. The Wallach set. In the holomorphic case, the weighted Bergman kernels
Khol

s (z, w), s > −1, on Bn actually extend by analytic continuation to a meromor-
phic function of s ∈ C, and continue to be positive defnite functions on Bn ×Bn

for all s ∈ (−n−1,+∞); the last interval is called the Wallach set of Bn, and there
is a similar story for Bn replaced by any irreducible bounded symmetric domain in
Cn [RV]. More precisely, if one first normalizes the measures (1 − |z|2)s dz on Bn

to be of total mass one — that is, in other words, multiplies them by 1/c00(s) —
then the normalized reproducing kernels

(90) c00(s)Khol
s (z, w) = (1− 〈z, w〉)−n−1−s

extend to a holomorphic function of z, w ∈ Bn and s ∈ C, and this analytic
continuation is still a positive definite kernel in (z, w) on Bn × Bn as long as
s > −n− 1 (and only for these s).

Similar phenomenon prevails for the harmonic case [E2]. We show that the
M -harmonic case is, likewise, no exception.

Proposition 15. The normalized M -harmonic weighted Bergman kernels

c00(s)Ks(z, w)

extend by analytic continuation in s to a meromorphic function on Bn ×Bn ×C,
and remain positive definite in (z, w) as long as s > −n− 1 (and only for such s).

Thus, the “M -harmonic Wallach set” for Bn is the interval (−n− 1, +∞).

Proof. By (63), we have

(91) c00(s)Ks(rζ, Rη) =
∑
p,q

c00(s)
cpq(s)

Spq(r)Spq(R)Hpq(ζ · η).

It is therefore enough to exhibit an analytic continuation of the functions fpq(s) :=
c00(s)
cpq(s) in s for all p, q, and show that the “Wallach set”

W := {s ∈ C : 0 < fpq(s) < +∞ ∀p, q ≥ 0}
coincides with the interval (−n− 1, +∞). A routine convergence check then yields
the desired analytic continuation of (91), and we are done.

First of all, from either (87) or (88) it is immediate that cpq(s) and, hence, fpq(s)
extend meromorphically to all s ∈ C (because the Gamma function does).

Next, we have already seen in (68) that

2c00(s) = Γ
( n, s + 1
n + s + 1

)
=

Γ(n)
(s + 1)n

.

Similarly

2c10(s) = Γ
(n + 1, s + 1

n + s + 2

)
.

Hence

f10(s) =
c00(s)
c10(s)

= Γ
( n, s + 1, n + s + 2
n + s + 1, n + 1, s + 1

)
=

n + s + 1
n

.

This is positive only for n + s + 1 > 0, so W ⊂ (−n− 1, +∞).
Let us momentarily denote

(92) Gpq(t) := Γ
(n + p, n + q
n, n + p + q

)2

tp+q+n−1
2F1

( p, q
n + p + q

∣∣∣t
)2

,
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so that

(93) 2cpq(s) =
∫ 1

0

Gpq(t)(1− t)s dt, Re s > −1.

Integrating by parts n times, we obtain

(94) 2cpq(s) =
n−1∑

j=0

[−G
(j)
pq (t)(1− t)s+j+1]t=1

t=0

(s + 1)j+1
+

1
(s + 1)n

∫ 1

0

G(n)
pq (t)(1− t)s+n dt,

provided all the terms are finite. Now by (92), the derivative G
(k)
pq (t) is continuous

up to t = 1 for k < n, while G
(n)
pq (t) ≈ log 1

1−t . Also, G
(j)
pq (0) = 0 whenever

j < p+q+n−1. Thus all the terms in the sum in (94) actually vanish for s > −n−1,
and we thus get for any (p, q) 6= (0, 0) and s > −n− 1 the representation

2cpq(s) =
1

(s + 1)n

∫ 1

0

G(n)
pq (t)(1− t)s+n dt

and

(95)
cpq(s)
c00(s)

=
1

Γ(n)

∫ 1

0

G(n)
pq (t)(1− t)s+n dt.

Furthermore, in view of (86), all derivatives of Gpq are positive on (0, 1), hence the
integrand in (95) is positive, and fpq(s) is positive and finite, for all s > −n − 1.
Consequently, (−n− 1,+∞) ⊂ W, completing the proof. ¤

6.4. Semiclassical asymptotics. In the holomorphic case, the behavior of Ks(z, w)
as s → +∞ is of importance in certain quantization procedures [E1]; the weight
parameter s plays the role of the reciprocal of the Planck constant, and one there-
fore speaks of “semiclassical” limits. The following result is again the same as for
the holomorphic, as well as for some harmonic [E3], situations.

Proposition 16. For all z ∈ Bn,

lim
s→+∞

Ks(z, z)1/s = (1− |z|2)−1.

Proof. From the definition of the reproducing kernel KH(z, z) as the norm square
of the evaluation functional,

(96) KH(z, z) = sup{|f(z)|2 : f ∈ H, ‖f‖H ≤ 1},
and the fact that holomorphic functions are M -harmonic it follows that

Ks(z, z) ≥ Khol
s (z, z).

Hence

(97) lim inf
s→+∞

Ks(z, z)1/s ≥ lim inf
s→+∞

Khol
s (z, z)1/s = (1− |z|2)−1,

by the known result for the holomorphic case (cf. (90)).
On the other hand, by the invariant mean value property of M -harmonic func-

tions, we have for any M -harmonic f and 0 < r < 1

f(z) = (f ◦ φz)(0) =
n!

πnr2n

∫

|x|<r

(f ◦ φz)(x) dx

=
n!

πnr2n

∫

|φzy|<r

f(y)Jz(y) dy,
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where Jz is the Jacobian of φz. By Cauchy-Schwarz,

|f(z)| ≤ n!
πnr2n

(∫

|φzy|<r

|f(y)|2(1− |y|2)s dy
)1/2( ∫

|φzy|<r

Jz(y)2

(1− |y|2)s
dy

)1/2

≤ n!
πnr2n

‖f‖s

( ∫

|φzy|<r

Jz(y)2

(1− |y|2)s
dy

)1/2

.

Taking supremum over all f with ‖f‖s ≤ 1, we get by (96)

Ks(z, z)1/2 ≤ n!
πnr2n

( ∫

|φzy|<r

Jz(y)2

(1− |y|2)s
dy

)1/2

,

whence

Ks(z, z)1/s ≤
( n!

πnr2n

)2/s( ∫

|φzy|<r

Jz(y)2

(1− |y|2)s
dy

)1/s

.

Letting s → +∞ and using the fact that

‖F‖Ls(dµ → ‖F‖L∞(dµ) as s → +∞
for any finite measure µ and bounded function F , we obtain

lim sup
s→+∞

Ks(z, z)1/s ≤ sup
|φz(y)|<r

(1− |y|2)−1.

Finally, since r ∈ (0, 1) was arbitrary, letting r ↘ 0 yields

lim sup
s→+∞

Ks(z, z)1/s ≤ (1− |z|2)−1.

Combining this with (97) completes the proof. ¤

It would be interesting to know what is the limit of |Ks(z, w)|1/s as s → +∞
for z 6= w, or whether there is any asymptotic expansion of Ks(z, z)(1 − |z|2)s in
decreasing powers of s, as is the case for some harmonic Bergman kernels [E3].

6.5. Particular cases. For z⊥w, the formula (9) for the Szegö kernel KSz(z, w)
can also be evaluated in a different way: namely, using U(n)-invariance, we can
assume without loss of generality that z = |z|e1 and w = |w|e2. The integral in (9)
then takes the form

(1− |z|2)n(1− |w|2)n

∫

∂Bn

|1− |z|ζ1|−2n|1− |w|ζ2|−2n dσ(ζ).

Using the binomial expansion for (1 − t)−n and integrating term by term shows
that the last integral equals

(98)
2πn

Γ(n)

∞∑

k,l=0

(n)2k(n)2l
(n)k+l

|z|2k|w|2l

k!l!
=

2πn

Γ(n)
F3

(n, n, n, n
n

∣∣∣|z|2, |w|2
)
,

where F3 is the third Appell hypergeometric function

F3

(a, a′, b, b′

c

∣∣∣x, y
)

=
∑

j,k

(a)j(a′)k(b)j(b′)k

(c)j+kj!k!
xjyk.

Naturally, (98) agrees with the formula (12) for 〈z, w〉 = 〈w, z〉 = 0, as it should.
Another case when KSz(z, w) can be evaluated independently is when z = w.

The integral in (9) then becomes

(1− |z|2)2n

∫

∂Bn

|1− 〈z, ζ〉|−4n dσ(ζ).
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Upon substituting again the binomial expansion and integrating term by term, this
produces

2πn

Γ(n)
(1− |z|2)2n

∑

k

(2n)2k
(n)k

|z|2k

k!
=

2πn

Γ(n)
(1− |z|2)2n

2F1

(2n, 2n
n

∣∣∣|z|2
)

=
2πn

Γ(n)
(1− |z|2)−n

2F1

(−n,−n
n

∣∣∣|z|2
)

(99)

(note that the last 2F1 is actually a polynomial; we have used the Euler transfor-
mation formula (51)).

It is entertaining to compare (99) with direct application of the formula (63),
where in the latter the Szegö case corresponds, as we have already noted repeatedly,
to cpq ≡ 1 ∀p, q. Namely, (63) gives

KSz(z, z) =
∑
p,q

Spq(|z|)2Hpq(1).

Now by (24)

Hpq(1) =
(n + p + q − 1)(n + p− 2)!(n + q − 2)!

p!q!(n− 1)!(n− 2)!
.

Substituting (27) for Spq, we thus get from (99)
∑
p,q

tp+qΓ
(
n + p, n + q
n, n + p + q

)2

2F1

(
p, q

n + p + q

∣∣∣t
)2

Hpq(1) = (1− t)−n
2F1

(−n,−n
n

∣∣∣t
)
,

or, using again (51),
∑
p,q

tp+qΓ
(
n + p, n + q
n, n + p + q

)2

2F1

(
n + p, n + q
n + p + q

∣∣∣t
)2

Hpq(1) = 2F1

(2n, 2n
n

∣∣∣t
)
.

Looking at the coefficients at like powers of t, this is equivalent to
∑

p,q,j,k≥0
p+q+j+k=m

Γ
(p + n + j, q + n + j

n, p + q + n + j

)
Γ
(p + n + k, q + n + k

n, p + q + n + k

)
Hpq(1) =

(2n)2m
m!(n)m

,

for all m = 0, 1, 2, . . . . We do not know a direct proof of this (valid) formula.

6.6. Weighted M-harmonic Green functions. It has been known since the
monograph of Bergman and Schiffer [BS] that the harmonic Bergman kernel H(z, w)
on a domain is intimately connected with the Green function G(z, w) for the bihar-
monic operator ∆2 with Dirichlet boundary conditions: namely,

H(z, w) = −∆z∆wG(z, w),

where the subscript at ∆ indicates the variable that the operator is applied to.
An analogous formula holds also for the weighted case. We conclude this paper by
pointing out a similar connection in the M -harmonic case.

Let
dτ(z) := (1− |z|2)−n−1 dz

be the invariant measure on Bn. Given a positive C∞ weight functions ρ on Bn,
consider the “invariant weighted biharmonic” operator

∆̃ρ∆̃
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with our ∆̃ from (1). By its Green function at a point w ∈ Bn we mean, by defini-
tion, a function G(z, w) ≡ Gw(z) such that, firstly,

u(w) =
∫

Bn

Gw∆̃ρ∆̃u dτ

for all smooth functions u whose support is a compact subset of Bn (that is,
∆̃ρ∆̃Gw = δw, the Dirac point mass at w with respect to dτ , in the sense of
distributions); and secondly, both Gw and its normal derivative ∂Gw/∂n vanish
at ∂Bn. (More precisely — they grow sufficiently slowly as |z| ↗ 1; we are skip-
ping some technical details here.) It is then a fact that such Gw exists, is uniquely
determined, G(z, w) = G(w, z), and the following proposition holds.

Proposition 17. The weighted M -harmonic Bergman kernel on Bn with respect
to the measure ρ(z)−1 dτ(z) satisfies

(100) Kdτ/ρ(z, w) = −ρ(z)ρ(w)∆̃z∆̃wG(z, w).

We omit the proof, which is the same as for the original harmonic case in [BS],
only using the Green formula for dτ from [Zh, Section 1.6] in the place of the
ordinary Green formula.

Choosing, in particular, ρ(z) = (1− |z|2)−n−s−1, the M -harmonic kernels Kdτ/ρ

in (100) will be precisely our Ks. One of our earlier ideas how to compute Ks(z, w)
was to find G(z, w) first and then apply (100); a possible approach to finding G(z, w)
being along the lines of the one used in [EP1] for the ordinary biharmonic Green
function on the annulus, and in [EP2] for the unweighted invariant biharmonic
Green function on the ball. In both cases, the ordinary decomposition of a function
into its Fourier components would need to be replaced by the decomposition (22)
into the (p, q) components with respect to the action of U(n). Unfortunately, so far
we have not been able to carry out this program.
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Czech Republic and Mathematics Institute, Žitná 25, 11567 Prague 1, Czech Republic

E-mail address: englis@math.cas.cz
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