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MIROSLAV ENGLIŠ, EL-HASSAN YOUSSFI, AND GENKAI ZHANG

Abstract. We identify the standard weighted Bergman kernels of spaces of
nearly holomorphic functions, in the sense of Shimura, on bounded symmetric
domains. This also yields a description of the analogous kernels for spaces of
“invariantly-polyanalytic” functions — a generalization of the ordinary poly-
analytic functions on the ball which seems to be the most appropriate one
from the point of view of holomorphic invariance. In both cases, the kernels
turn out to be given by certain spherical functions, or equivalently Heckman-
Opdam hypergeometric functions, and a conjecture relating some of these to a
Faraut-Koranyi hypergeometric function is formulated based on the study of
low rank situations. Finally, analogous results are established also for compact
Hermitian symmetric spaces, where explicit formulas in terms of multivariable
Jacobi polynomials are given.

1. Introduction

Let Ω be an irreducible bounded symmetric domain in Cd, d ≥ 1, in its Harish-
Chandra realization, and denote by p its genus and by h(z, w) the associated Jordan
triple determinant, which is a holomorphic polynomial in z and w on Cd. The stan-
dard weighted Bergman spaces on Ω are the spaces

(1) Aν(Ω) ≡ Aν := L2(Ω, dµν) ∩ O(Ω)

of all holomorphic functions on Ω square-integrable with respect to the measure

(2) dµν(z) := h(z, z)ν−p dz,

where dz stands for the Lebesgue measure. It is well known that Aν is nontrivial
if and only if ν > p− 1, and in that case Aν possesses a reproducing kernel — the
weighted Bergman kernel — given by

(3) Kν(z, w) = cνh(z, w)−ν ,

where cν = 1/µν(Ω) is a constant which can be evaluated explicitly.
For any φ ∈ Aut(Ω), the group of all biholomorphic self-maps of Ω, the Jordan

triple determinant satisfies the transformation rule

(4) h(φz, φw) =
h(a, a)h(z, w)
h(z, a)h(a, w)

, a = φ−10.
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(We will mostly write just φz instead of φ(z).) It follows that the Riemannian
metric

(5) ds2 = −
d∑

j,k=1

∂2 log h(z, z)
∂zj∂zk

is invariant under Aut(Ω). Recall now that, quite generally, for an arbitrary Kähler
manifold Ω with Kähler metric ds2 =

∑
j,k gjk dzj dzk, the invariant Cauchy-

Riemann operator D, introduced by Peetre [PZ], is the map from functions into
holomorphic vector fields defined by

Df = (Df)j ∂

∂zj
, (Df)j = glj∂lf,

where we have started to employ the Einstein summation convention, and also
to write for brevity ∂l := ∂/∂zl; namely, it is the ∂ operator combined with the
Riesz lemma identifying (0,1)-forms with holomorphic vector fields. Here gkj is the
inverse matrix to gjk. One can iterate this construction and set, for m = 1, 2, . . . ,

(Dmf)km...k1 = glmkm∂lm . . . gl2k2∂l2g
l1k1∂l1f.

It turns out that the tensor field (Dmf)km...k1 is symmetric in the indices k1, . . . , km

[PZ], and in fact coincides with the contravariant derivative f/k1...km with respect
to the Hermitian connection [En]. The m-th Cauchy-Riemann space Nm [EZ], or
the space of nearly holomorphic functions of order m, is, by definition, the kernel
of Dm:

Nm(Ω) ≡ Nm := {f ∈ C∞(Ω) : Dmf = 0 on Ω}.
An alternative definition is due to Shimura [Shi]: Nm is the vector space of all
functions on Ω that can (locally) be written as polynomials of degree < m in the
derivatives ∂jΨ, with holomorphic coefficients, where Ψ is a (local) potential for
the Kähler metric, i.e. gjk = ∂k∂jΨ. (This space does not depend on the choice of
the local potential Ψ.) See e.g. Proposition 7 in [EZ] for a proof of the equivalence
of these two definitions.

The above construction applies, in particular, to our bounded symmetric do-
main Ω with the invariant metric (5), possessing a global Kähler potential Ψ(z) =
− log h(z, z). In analogy with (1), we can consider the weighted Bergman spaces of
nearly holomorphic functions

(6) Nm
ν := L2(Ω, dµν) ∩Nm.

Of course, if m = 1 then N 1 = O(Ω) and N 1
ν = Aν for any ν.

For the simplest bounded symmetric domain Ω = Bd, the unit ball of Cd, d ≥ 1,
the Jordan triple determinant is given simply by h(z, w) = 1 − 〈z, w〉, so that
Ψj = zj

1−|z|2 . Nearly holomorphic functions of order m on Bd are thus precisely
the polynomials of degree ≤ m− 1 in (1− |z|2)−1z, with holomorphic coefficients.
In other words,

(7) Nm(Bd) = (1− |z|2)1−mPm(Bd),

where Pm(Bd) consists, by definition, of all linear combinations, with holomorphic
coefficients, of (1−|z|2)m−1−|α|zα, where α = (α1, . . . , αd) is a multiindex of length
|α| := α1 + · · · + αd < m; that is, by a simple check, Pm(Bd) consists of all
polynomials of degree ≤ m− 1 in z, with holomorphic coefficients. (Indeed, in one
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direction, (1 − |z|2)m−1−|α|zα is clearly a polynomial in z of degree m − 1 with
holomorphic coefficients; while in the other direction,

zα = (|z|2 + (1− |z|2))m−1−|α|zα

=
m−1−|α|∑

j=0

(
m− 1− |α|

j

)
|z|2j(1− |z|2)m−1−|α|−jzα

=
∑

|β|<m−1−|α|

(
m− 1− |α|

β

)
zβ(1− |z|2)m−1−|α+β|zα+β

is a linear combination of (1 − |z|2)m−1−|γ|zγ with holomorphic coefficients.) The
space Pm(Bd) is thus nothing else than the well-known space of m-analytic func-
tions on the ball, as studied by many authors. The reproducing kernel of the space

L2(Bd, (1− |z|2)s dz) ∩ Pq(Bd), s > −1,

was recently found by the second author [You] to be

(8) P q
s+d+1(z, w) :=

Γ(q + s + d)
πdΓ(q + s)

(1− 〈w, z〉)q−1

(1− 〈z, w〉)q+s+d
P

(d,s)
q−1 (1− 2|φzw|2),

where P
(d,s)
n denotes the Jacobi polynomial of degree n with parameters d, s, and

φz ∈ Aut(Bd) is the biholomorphic self-map of Bd interchanging z and the origin.
Returning to our general bounded symmetric domain Ω, we are thus led to define,
by analogy with (7), the space of invariantly polyanalytic functions of order m on
Ω as

(9) Pm(Ω) ≡ Pm := h(z, z)m−1Nm,

and consider the corresponding weighted Bergman spaces

(10) Pm
ν := L2(Ω, dµν) ∩ Pm.

Our aim in this paper is to find the reproducing kernels Nm
ν and Pm

ν of the spaces
Nm

ν and Pm
ν , respectively, thus generalizing the formulas (3) (which corresponds

to m = 1) and (8) (which corresponds to Ω = Bd).
On an abstract level, the answer is given by the group representation theory, more

specifically, by the Plancherel formula for certain representations of the identity
connected component G of the automorphism group Aut(Ω) of Ω. Namely, from
the fact that D

m
f is a tensor, it follows that the action of G by composition

preserves the space Nm; in other words,

f 7−→ f ◦ φ−1, f ∈ Nm, φ ∈ G,

is a representation of G on Nm. In combination with the transformation rule for µν ,

(11) dµν(φz) =
∣∣∣h(a, a)ν/2

h(z, a)ν

∣∣∣
2

dµν(z), a = φ−10, φ ∈ G,

which follows from (4), this implies that

(12) f 7−→ h(a, a)ν/2

h(z, a)ν
f ◦ φ−1, a = φ0, φ ∈ G,

is a projective unitary representation of G on Nm
ν . It is now a result of the third

author [Zh3] that for each m = 1, 2, . . . , Nm
ν comes as an orthogonal direct sum

of irreducible components which can be identified with certain so-called relative
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discrete series representations of G. Finally, a general Plancherel formula of Shi-
meno [Shm], applied to these representations, implies that the reproducing kernel
at the origin of each of these irreducible components must be a constant multiple
of φλ,`, the spherical function of G with parameter ` (describing the representa-
tion, actually ` = ν) and weight λ (uniquely associated to each of the irreducible
components). In this way, the reproducing kernel Nm

ν is thus expressed as a finite
sum of terms involving spherical functions. (For the particular case of Ω = Bd, this
expression was obtained in [Zh1].)

Recoursing to the available theory of multivariable special functions (see e.g.
Anker [Ank]), the spherical functions φλ,` can also be expressed as Heckman-Opdam
hypergeometric functions, or, if one wishes, as multivariable Jacobi polynomials of
Debiard [De1] (and many other authors). For instance, the result for Bd from [Zh1]
just mentioned reads

Nm
s+d+1(z, w) = km

s+d+1(|φwz|2)
with

(13) km
s+d+1(t) :=

m−1∑

l=0

cl(s)2F1

(−l, l − s− 1
d

∣∣∣ t

t− 1

)
,

where

cl(s) =
(s− 2l + 1)Γ(s + d + 1− l)d

πdl!Γ(s− l + 2)
,

and 2F1 is the ordinary (Gauss) hypergeometric function. On the other hand, from
(8) one can express Pm

s+d+1 and Nm
s+d+1 in terms of a single Jacobi polynomial

P
(d,s)
m−1 . Comparing both expressions leads (after working out the details) to the

equality
(14)

(1−t)q−1

q−1∑

l=0

cl(s+2q−2)2F1

(−l, l − s− 2q + 1
d

∣∣∣ t

t− 1

)
=

Γ(q + s + d)
πdΓ(q + s)

P
(d,s)
q−1 (1−2t).

It is amusing to prove this (valid) formula directly (cf. Lemma 33 below); note that

(15) P (d,s)
n (1− 2t) =

(
n + d

d

)
2F1

(−n, n + 1 + s + d
d + 1

∣∣∣t
)
.

Performing explicit computer calculations for rank 2 and rank 3 bounded symmet-
ric domains indicates that, analogously to the rank 1 situation just described, even
for general bounded symmetric domains the kernels Nm

ν and Pm
ν can in some cases

be expressed not only as a finite sum of terms involving Heckman-Opdam hyperge-
ometric functions, but actually as a constant multiple of a single special function,
namely a hypergeometric function of Faraut and Koranyi [FK] with certain param-
eters. We offer a conjecture to this effect, together with some consequences that
would follow; the latter include relations among the two kinds of hypergeometric
functions, as well as a generalization of a theorem of Helgason [He, Theorem V.4.5]
describing, in effect, the reproducing kernel for a certain space of radial functions
on the complex projective space CP d.

The paper is organized as follows. Section 2 contains the necessary background
material on bounded symmetric domains. Section 3 lists some elementary facts
about the kernels Nm

ν and Pm
ν and discusses radial nearly-holomorphic functions,
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which are relevant for the sequel. The expressions for Nm
ν in terms of spherical func-

tions and Heckman-Opdam hypergeometric functions are presented in Section 4.
Section 5 describes the computations for particular bounded symmetric domains
and the resulting conjectures mentioned above. The final section, Section 6, briefly
treats also the dual case of compact Hermitian symmetric spaces.

2. Prerequisites on bounded symmetric domains

Throughout the rest of this paper, Ω will be an irreducible bounded symmetric
domain in Cd in its Harish-Chandra realization (i.e. a Cartan domain). We denote
by G the identity connected component of the group Aut(Ω) of all biholomorphic
self-maps of Ω, and by K the stabilizer in G of the origin 0 ∈ Ω. Then K consists
precisely of the unitary maps on Cd that preserve Ω, and Ω is isomorphic to the
coset space G/K. We further denote by r, a, b and p the rank, the characteristic
multiplicities and the genus of Ω, respectively, so that

(16) p = (r − 1)a + b + 2, d =
r(r − 1)

2
a + rb + r.

If b = 0, Ω is said to be of tube type.
Irreducible bounded symmetric domains were completely classified by E. Cartan.

There are four infinite series of such domains plus two exceptional domains in C16

and C27. For future reference, we include a table with brief descriptions of these
domains and with the corresponding values of r, a, b, p and d. The symbol O stands
for the division algebra of octonions.

Domain Description

Imn Z ∈ Cm×n: ‖Z‖Cn→Cm < 1 n ≥ m ≥ 1
r = m, a = 2, b = n−m, p = n + m, d = mn

IIn Z ∈ Inn, Z = Zt n ≥ 2
r = n, a = 1, b = 0, p = n + 1, d = 1

2n(n + 1)

IIIm Z ∈ Imm, Z = −Zt m ≥ 5
r = [m

2 ], a = 4, b = 2(m− 2r), p = 2m− 2, d = 1
2m(m− 1)

IVn Z ∈ Cn×1, |ZtZ| < 1, 1 + |ZtZ|2 − 2Z∗Z > 0 n ≥ 5
r = 2, a = n− 2, b = 0, p = d = n

V Z ∈ O1×2, ‖Z‖ < 1
r = 2, a = 6, b = 4, p = 12, d = 16

VI Z ∈ O3×3, Z = Z∗, ‖Z‖ < 1
r = 3, a = 8, b = 0, p = 18, d = 27

The unit balls Bd = I1d are the only bounded symmetric domains of rank 1, and
the only bounded symmetric domain with smooth boundary.

For x ∈ Ω, φx will denote the (unique) geodesic symmetry which interchanges x
and the origin, i.e.

(17) φx ◦ φx = id, φx(0) = x, φx(x) = 0,

and φx has only an isolated fixed-point. (In fact, φx has only one fixed point,
namely the geodesic mid-point between 0 and x.) Note that from the definition of
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K it is immediate that any φ ∈ G is of the form φ = φxk, where k ∈ K and x ∈ Ω.
(In fact x = φ(0).)

It is known that the ambient space Cd =: Z possesses a structure of Jordan-
Banach ∗-triple system (or JB*-triple for short) for which Ω is the open unit ball.
That is, there exists a Jordan triple product

{·, ·, ·} : Z × Z × Z → Z, x, y, z 7→ {x, y, z},
(linear and symmetric in x, z and anti-linear in y) such that

Ω = {z ∈ Z : ‖{z, z, ·}‖ < 1}.
Moreover, if one uses the notation, for x, y ∈ Z,

D(x, y) = {x, y, ·} : Z → Z,

Q(x) = {x, ·, x} : Z → Z,

then for every x ∈ Ω, D(x, x) is Hermitian and has nonnegative spectrum, and
iD(x, x) is a triple derivation. The linear operator

(18) B(x, y) = I − 2D(x, y) + Q(x)Q(y)

on Z is called the Bergman operator.
Two vectors x, y ∈ Z are said to be orthogonal (in the Jordan-theoretic sense)

if D(x, y) = 0, and a vector v ∈ Z is called a tripotent if {v, v, v} = v. For any
tripotent v, the ambient space admits the Peirce decomposition

(19) Z = Z0(v)⊕ Z1/2(v)⊕ Z1(v)

into the orthogonal components

Zj/2(v) := {z ∈ Z : D(v, v)z =
j

2
z}.

(The orthogonality is only with respect to the inner product in Cd, not in the
triple-product (Jordan-theoretic) sense.) Each Zj/2(v) is a subtriple of Z, and
Z1(v) is a JB*-algebra under the product x◦y = {xvy}, with unit v and involution
z∗ = {vzv}. A tripotent v is called minimal if dimZ1(v) = 1. Any maximal
set e1, . . . , er of pairwise orthogonal minimal tripotents is called a Jordan frame;
its cardinality r is independent of the frame and equal to the rank r of Ω. For any
Jordan frame e1, . . . , er, we similarly as above have the joint Peirce decomposition

(20) Z =
⊕

0≤i≤j≤r

Zij

with

(21) Zij = {z ∈ Z : D(ek, ek)z =
δik + δjk

2
∀k = 1, . . . , r}.

Given any Jordan frame e1, . . . , er — which we choose and fix once and for all
from now on — any z ∈ Z has a polar decomposition

(22) z = k(t1e1 + · · ·+ trer)

with k ∈ K and t1 ≥ t2 ≥ · · · ≥ tr ≥ 0; the numbers t1, . . . , tr, called the singular
numbers of z, are determined uniquely, but k need not be (it is if all the tj are
distinct). Further, z ∈ Ω if and only if t1 < 1, z ∈ ∂Ω if and only if t1 = 1, and z
belongs to the Shilov boundary ∂eΩ of Ω if and only if t1 = · · · = tr = 1; that is,
if and only if z = ke, where e = e1 + · · ·+ er is a maximal tripotent.
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Since the Jordan triple product is invariant under K (i.e. {kx, ky, kx} = k{x, y, z}
∀k ∈ K), it is immediate from (21) that under the decomposition (20), the Bergman
operator B(z, z) with z as in (22) is given by

(23) B(z, z)|Zij
= (1− t2i )(1− t2j )I|Zij

(where t0 := 0).
There exists a unique polynomial h(x, y) on Cd × Cd, holomorphic in x and

anti-holomorphic in y, which is K-invariant, in the sense that

h(kx, ky) = h(x, y) ∀k ∈ K,

and satisfies

h(z, z) =
r∏

j=1

(1− t2j ) for z as in (22).

It is known that h(x, y) is irreducible, of degree r in x as well as in y, and h(x, 0) =
h(0, x) = 1 ∀x ∈ Cd; also, h(x, y)p = det B(x, y). Further, the measure

(24) h(z, z)ν−p dz

is finite if and only if ν > p−1, and the corresponding weighted Bergman kernel —
i.e. the reproducing kernel of the space of all holomorphic functions on Ω square-
integrable with respect to (24) — is equal to

(25) Kν(x, y) = cνh(x, y)−ν

where

(26) cν =
ΓΩ(ν)

πdΓΩ(ν − d
r )

.

Here ΓΩ is the Gindikin-Koecher Gamma function

ΓΩ(ν) :=
r∏

j=1

Γ
(
ν − j − 1

2
a
)
.

In the polar coordinates (22), the measures (24) assume the form

(27)
∫

Ω

f(z)h(z, z)ν dz = cΩ

∫

[0,1]r

∫

K

f(k
r∑

j=1

√
tjej) dk dµb,ν,a(t),

where dµb,ν,a is the Selberg measure

(28) dµb,ν,a(t) :=
r∏

j=1

(1− tj)ν−p
r∏

j=1

tbj
∏

1≤i<j≤r

|ti − tj |a dt,

where dt ≡ dt1 . . . dtr. Here dk is the normalized Haar measure on the (compact)
group K, and

(29) cΩ =
πdΓ(a

2 + 1)r

ΓΩ( ra
2 + 1)ΓΩ(d

r )
.
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Let P denote the vector space of all (holomorphic) polynomials on Cd. We endow
P with the Fock (or Fischer) inner product

(30)
〈f, g〉F : = π−d

∫

Cd

f(z) g(z) e−|z|
2
dz

= (f(∂)g∗)(0) = (g∗(∂)f)(0),

where
g∗(z) := g(z).

This makes P into a pre-Hilbert space, and the action

f 7→ f ◦ k−1, k ∈ K,

is a unitary representation of K on P. It is a deep result of W. Schmid [Sch] that
this representation has a multiplicity-free decomposition into irreducibles

P =
⊕
m

Pm

where m ranges over all signatures, i.e. r-tuples m = (m1,m2, . . . , mr) ∈ Zr sat-
isfying m1 ≥ m2 ≥ · · · ≥ mr ≥ 0. Polynomials in Pm are homogeneous of degree
|m| := m1 + m2 + · · · + mr; in particular, P(0) are the constants and P(1) the
linear polynomials. Any holomorphic function on Ω thus has a decomposition
f =

∑
m fm, fm ∈ Pm, which refines the usual homogeneous expansion.

Since the spaces Pm are finite dimensional, they automatically possess a repro-
ducing kernel: there exist polynomials Km(x, y) on Cd × Cd, holomorphic in x
and y, such that for each f ∈ Pm and y ∈ Cd,

(31) f(y) = 〈f, Km(·, y)〉F .

From the definition of the spaces Pm it also follows that the kernels Km(x, y) are
K-invariant.

It is a consequence of Schur’s lemma from representation theory that for any
K-invariant inner product 〈·, ·〉 on P, Pm and Pn are orthogonal if m 6= n, while
on each Pm, 〈·, ·〉 is proportional to 〈·, ·〉F . In particular, for the inner product

〈f, g〉ν := cν

∫

Ω

f(z) g(z) dµν(z) (ν > p− 1),

(with cν as in (25)) we have, for any fm ∈ Pm and gn ∈ Pn,

(32) 〈fm, gn〉ν =
〈fm, gn〉F

(ν)m

(cf. [FK]), where (ν)m is the generalized Pochhammer symbol

(ν)m := (ν)m1(ν − a
2 )m2 . . . (ν − r−1

2 a)mr ;

here

(ν)k := ν(ν + 1) . . . (ν + k − 1)
(

=
Γ(ν + k)

Γ(ν)
if ν 6= 0,−1,−2, . . . ,

)

is the ordinary Pochhammer symbol.
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A consequence of the relation (32) is the Faraut-Koranyi formula

(33) h(x, y)−ν =
∑
m

(ν)mKm(x, y)

relating the reproducing kernels Kν from (25) and Km from (31).
As already mentioned, the point e = e1 + · · ·+er belongs to the Shilov boundary

∂eΩ of Ω. The group K acts transitively on ∂eΩ, so that ∂eΩ = {ke, k ∈ K} ' K/L,
where L is the stabilizer of e in K. Each Peter-Weyl space Pm contains a unique L-
invariant polynomial φm satisfying the normalization condition φm(e) = 1. We will
sometimes write just φm(t1, . . . , tr) instead of φm(t1e1+ · · ·+trer). These spherical
polynomials φm satisfy φ(0) ≡ 1,

(34) φ(m1+1,m2+1,...,mr+1)(t1, . . . , tr) = t1 · · · tr φm(t1, . . . , tr),

and are related to the reproducing kernels Km by the formula

(35) Km(x, e) =
dm

(d/r)m
φm(x),

where dm := dimPm. It is known that the last dimension is given by the formula
([Up2], Lemmas 2.5 and 2.6)

dm =
(d/r)m
(qΩ)m

πm

where

(36) qΩ :=
r − 1

2
a + 1

and

(37) πm :=
∏

1≤i<j≤r

mi −mj + j−i
2 a

j−i
2 a

( j−i+1
2 a)mi−mj

( j−i−1
2 a + 1)mi−mj

.

Thus we may rewrite (35) as

(38) Km(x, e) =
πm

(qΩ)m
φm(x).

Combining the last formula with the fact that [FK, Lemma 3.2]

Km(
∑

jtjej ,
∑

jsjej) = Km(
∑

jtjsjej , e),

we thus get

(39) Km(k
∑

jtjej , k
∑

jtjej) =
πm

(qΩ)m
φm(t21, . . . , t

2
r).

The polynomials φm have also a combinatorial interpretation in terms of Jack
symmetric polynomials J

(λ)
m with parameter λ (cf. [MD], Section 10 of Chapter VI):

namely,

(40) φm(t1, . . . , tr) = j−1
m J (2/a)

m (t1, . . . , tr),

where

(41) jm := J (2/a)
m (1, . . . , 1︸ ︷︷ ︸

r

) =
(2

a

)|m|(ra

2

)
m

.

We will usually suppress the superscripts (2/a) in the sequel.
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Recall that in any Jordan algebra J with unit v and product x◦y an element x is
called invertible if it has a (necessarily unique) inverse y =: x−1 satisfying x◦y = v
and x2 ◦ y = x. In the special case that the Jordan algebra arises as J = Z1(v)
for a tripotent v of the JB*-triple Z then invertibility of z ∈ J is equivalent to
the invertibility of the operator Q(z) on J and z−1 = Q(z)−1Q(v)z. In particu-
lar, taking the inverse is a rational map on J that can be written (see e.g. [Up2,
Chapter 4]) in exact (i.e. reduced) form as z−1 = p(z)/N(z), where p : J → J is
a polynomial which generalizes the matrix adjoint and N : J → C is a polyno-
mial called the determinant polynomial, or Koecher norm, of the Jordan algebra.
In particular, fixing a Jordan frame e1, . . . , er of Z the above applies to the Jordan
algebras Z1(e1 + · · · + ej), 1 ≤ j ≤ r; we denote the corresponding determinant
polynomials by Nj and extend them to all of Z by defining Nj(z) := Nj(P

(j)
1 (z)),

where P
(j)
1 is the canonical projection of Z onto Z1(e1 + · · · + ej) given by the

Peirce decomposition (19). For a signature m, the conical polynomial Nm associ-
ated with m is

(42) Nm := Nm1−m2
1 Nm2−m3

2 · · ·Nmr
r .

In particular,

Nm
( r∑

j=1

tjej

)
=

r∏

j=1

t
mj

j .

Each polynomial space Pm is then spanned by Nm ◦ k, k ∈ K. In particular, the
conical polynomials are related to the spherical polynomials by

φm(z) =
∫

L

Nm(lz) dl,

where dl stands for the normalized Haar measure on L.
Standard references for the material in this section are [Ar], [Lo], [FK], or [Up2].

3. Radial nearly holomorphic functions

The following relation between the nearly-holomorphic reproducing kernels Nm
ν

and the invariantly-polyanalytic reproducing kernels Pm
ν is elementary.

Proposition 1. Pm
ν (z, w) = h(z, z)m−1h(w, w)m−1Nm

ν+2(m−1)(z, w).

Proof. By their very definition (9), the mapping

T : f(z) 7−→ h(z, z)m−1f(z)

is a bijection of Nm onto Pm. By (2), T clearly acts isometrically from L2(Ω, dµν)
into L2(Ω, dµν−2(m−1)), for any ν ∈ R. Thus if {ej(z)}j is an orthonormal basis for
Nm

ν+2(m−1), then {h(z, z)m−1ej(z)}j will be an orthonormal basis for Pm
ν . Recalling

the familiar formula for a reproducing kernel in terms of an orthonormal basis

(43) K(z, w) =
∑

j

ej(z)ej(w),

the assertion follows. ¤

We also readily get a transformation formula for Nm
ν (z, w).
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Proposition 2. For any φ ∈ Aut(Ω),

(44) Nm
ν (z, w) =

h(a, a)ν

h(z, a)νh(a,w)ν
Nm

ν (φz, φw), a := φ−10.

In particular,

(45) Nm
ν (z, w) = h(z, w)−νNm

ν (φwz, 0).

Proof. Since Dmf is a tensor and φ is just a coordinate change, the kernel Nm of
Dm is automatically invariant under the composition f 7→ f ◦φ with φ. As already
observed in the Introduction, it therefore follows from the transformation formula
(11) for the measure dµν (which formula is in turn a consequence of the transfor-
mation rule (4) for the Jordan triple determinant, in combination with the fact that
the measure dµ0 is Aut(Ω)-invariant) that the operator (12) acts unitarily on Nm

ν .
Employing again the formula (43), we thus obtain

Nm
ν (z, w) =

h(a, a)ν

h(z, a)νh(a,w)ν
Nm

ν (φ−1z, φ−1w), a := φ0.

Replacing φ by φ−1 yields (44), and taking φ = φw in (44) yields (45). ¤
Corollary 3. Pm

ν (z, w) = h(w, z)m−1h(z, w)1−m−νPm
ν (φwz, 0).

Proof. Combine the last two propositions. ¤
We have thus reduced the identification of both Nm

ν and Pm
ν to finding the

reproducing kernel Nm
ν (z, 0) at zero. Note that by (44),

Nm
ν (kz, 0) = Nm

ν (z, 0) ∀k ∈ K,

where as before K is the stabilizer of the origin 0 ∈ Ω in G = Aut(Ω)0; in other
words, Nm

ν (·, 0) is a radial function. We now proceed to identify the radial nearly
holomorphic functions.

Recall that an element z ∈ Cd is called quasi-invertible with respect to another
element w ∈ Cd if, by definition, the Bergman operator (18) is invertible on Cd,
and the quasi-inverse zw is then defined as

zw := B(z, w)−1(z −Q(z)w).

Note that zw is holomorphic in z and anti-holomorphic in w. Since det B(z, w) =
h(z, w)p does not vanish on Ω × Ω, the quasi-inverse zw is, in particular, defined
for all z, w ∈ Ω. It is now a result of [Zh3, formula (3.2) and Proposition 3.1], that,
first of all, D = B(z, z)∂, and furthermore

(46) ∂Ψ = zz = B(z, z)−1(z −Q(z)z),

where as before ∂Ψ stands for the vector of derivatives ∂jΨ of the Kähler potential
Ψ(z) = − log h(z, z).

Proposition 4. Radial functions in Nm consist precisely of functions of the form

(47) p(z, zz),

where p(z, w) is a polynomial in z, w ∈ Cd of degree < m in each argument which
is K-invariant in the sense that

(48) p(kz, kw) = p(z, w) ∀k ∈ K.

Consequently, the radial functions in Nm are the linear span of Km(z, zz), with
|m| < m.
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Proof. By (46) and the very definition of nearly-holomorphic functions, any f ∈ Nm

is of the form
f(z) = p(z, zz),

with p(z, w) holomorphic in z ∈ Ω and a polynomial of degree < m in w. Since
elements of K are Jordan triple automorphisms, we have kzkw = k(zw) for any
k ∈ K, hence

f(kz) = p(kz, k(zz))
with the same p. Thus f is radial if and only if

p(z, zz) = p(kz, kzkz) ∀z ∈ Ω, ∀k ∈ K.

The last equality means that, for any fixed k ∈ K, the two holomorphic functions
p(z, wz) and p(kz, kwkz) of z, w ∈ Ω coincide on the anti-diagonal z = w. By the
well-known uniqueness principle [BM, Proposition II.4.7], they must coincide for
all z, w. Since, for each fixed z ∈ Ω, the image of Ω under the (non-constant
anti-holomorphic) map w 7→ wz is a (nonempty) open set and p is a polynomial
in the second argument, actually p(z, y) = p(kz, ky) for all z ∈ Ω and y ∈ Cd,
proving (48). Now it is well known basically from Schur’s lemma [AE, Proposition 2]
that the functions p satisfying (48) are spanned by Km(z, w), as m ranges over
all signatures. As Km(z, w) is homogeneous of degree |m| in both z and w, the
proposition follows. ¤

Thanks to the last proposition, we can reduce the identification of Nm
ν (·, 0) to

that of the reproducing kernel at 0 of a certain space of symmetric polynomials
on Rr (with r, as before, denoting the rank of Ω). First of all, denote by Rm

ν the
subspace of all radial functions in Nm

ν , and let Rm
ν (z, w) be its reproducing kernel.

Then

(49) Nm
ν (·, 0) = Rm

ν (·, 0).

Indeed, by the very definition of a reproducing kernel, Rm
ν (·, 0) is the (unique)

element of Rm
ν which reproduces the value at 0 for all elements of Rm

ν . Now
Nm

ν (·, 0) reproduces the value at 0 even for all elements of Nm
ν , and belongs to Rm

ν

(being radial). So by uniqueness, (49) follows.
Secondly, the space Rm

ν can be described explicitly as follows. For ease of nota-
tion, let us write for an r-tuple t = (t1, . . . , tr) ∈ Rr

+,

tb :=
r∏

j=1

tbj , (1− t)ν :=
r∏

j=1

(1− tj)ν ,
√

t = t1/2,

t

1− t
:=

( t1
1− t1

, . . . ,
tr

1− tr

)
, dt := dt1 . . . dtr,

and so forth, and let dρb,ν,a be the modified Selberg measure

(50) dρb,ν,a(t) := cΩ tb(1 + t)−ν
∏

1≤i<j≤r

|ti − tj |a dt.

Finally, if e1, . . . , er is a fixed Jordan frame, we will write just te for t1e1+ · · ·+trer.
Let Sm be the vector space of all symmetric polynomials of degree < m in r
variables, denote

Sm
ν := Sm ∩ L2(Rr

+, dρb,ν,a),
and let Sm

ν (x, y) be the reproducing kernel of Sm
ν .
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Proposition 5. The mapping V from Sm into functions on Ω given by

(51) V f(k
√

te) := f
( t

1− t

)
, k ∈ K, t ∈ [0, 1]r,

is a bijection from Sm onto radial functions in Nm. Furthermore, V sends Sm
ν

unitarily onto Rm
ν , and

(52) Rm
ν (·, 0) = V Sm

ν (·, 0).

Proof. Let z = k
√

te be the polar decomposition of z ∈ Ω. From the formula (23)
for the action of B(z, z) on the Peirce subspaces (and the similar formula for the
action of Q(z)), one gets

zz = k

√
t

1− t
e.

Hence
Km(z, zz) = Km(k

√
te, k

√
t

1−te) = Km( t
1−te, e).

This is, as we have seen in Section 2, up to a constant factor just the Jack symmetric
polynomial Jm( t

1−t ) in r variables evaluated at t
1−t . Since Jm, |m| < m, span all

symmetric polynomials of degree < m, by the preceding proposition the radial
functions in Nm are precisely those of the form V f , with V as in (51) and f a
symmetric polynomial of degree < m. This proves the first assertion.

As for the second, we have by (27)

(53) ‖V f‖2L2(dµν) = cΩ

∫

[0,1]r

∣∣∣f
( t

1− t

)∣∣∣
2

dµb,ν,a(t).

Making the change of variable tj = xj

1+xj
, x ∈ Rr

+, we have

t

1− t
= x, dt = (1 + x)−2 dx, tb = xb(1 + x)−b,

(1− t)ν−p = (1 + x)p−ν , ti − tj =
xi − xj

(1 + xi)(1 + xj)
,

implying, by a direct computation using (16), that

(54) cΩ dµb,ν,a(t) = dρb,ν,a(x).

By (53), the second claim follows.
Finally, (52) follows from the general formula (43) (applied to Sm

ν and Rm
ν ),

together with the fact that under the above change of variables x = t
1−t , the point

t = 0 corresponds to x = 0. ¤
We summarize our findings so far as the main result of this section.

Theorem 6. The reproducing kernels Nm
ν and Pm

ν of the spaces Nm
ν and Pm

ν ,
respectively, are given by

Nm
ν (z, w) = h(z, w)−νNm

ν (φzw, 0),

Pm
ν (z, w) =

h(z, z)m−1h(w, w)m−1

h(z, w)ν+2m−2
Nm

ν+2m−2(φwz, 0),

where
Nm

ν (k
√

te, 0) = Sm
ν ( t

1−t , 0),

where Sm
ν is the reproducing kernel of the L2 space of symmetric polynomials of

degree < m on Rr
+ with respect to the measure (50).
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Proof. Combine Propositions 1, 2, 4 and 5, and the formula (49). ¤
We conclude this section by a simple observation concerning the nontriviality of

the spaces Nm
ν and Pm

ν .

Lemma 7. A polynomial P belongs to L2(Rr
+, dρb,ν,a) if and only if its degree in

each variable is less than (ν − p + 1)/2.

Proof. Let n1 be the degree of P (x) in the variable x1; thus the leading term
in the x1 variable is p1(x′)xn1

1 , where the polynomial p1 in the r − 1 variables
x′ = (x2, . . . , xr) is not identically zero. The zero-set of p1 is therefore a variety in
Rr−1 of codimension at least 1; we can therefore choose a closed ball Q (of positive
finite radius) lying wholly in {y ∈ Rr−1 : yj 6= yk for all j 6= k} such that |p1| > 0
on Q. Set R := 1 + sup{‖y‖ : y ∈ Q}. Then if P ∈ L2(Rr

+, dρb,ν,a), the integral
∫ ∞

R

∫

Q

|P (x1, x
′)|2 dρb,ν,a(x1, x

′)

has to be finite. However, due to our choice of Q and R, the integrand is ³
x2n1

1 (uniformly in x′), while the measure is ³ x
b−ν+(r−1)a
1 dx (uniformly in x′).

Consequently, x
2n1+(r−1)a+b−ν
1 must be integrable at infinity, implying that 2n1 +

(r − 1)a + b − ν = 2n1 + p − 2 − ν < −1, or n1 < (ν − p + 1)/2. Similarly,
nj < (ν − p + 1)/2 for the degree nj of P (x) in the variable xj , j = 1, . . . , r.

Conversely, let P (x) = xn1
1 . . . xnr

r with nj < (ν−p+1)/2 for all j. Making again
the change of variable x = t/(1 − t) shows that the L2-norm of P with respect to
c−1
Ω dρb,ν,a equals

∫

[0,1]r

r∏

j=1

(
t
2nj+b
j (1− tj)ν−p−2nj

) ∏

1≤i<j≤r

|ti − tj |a dt.

The second term in the integrand is bounded (by 1), while the first term yields just
the product of single-variable integrals

∫ 1

0

t
2nj+b
j (1− tj)ν−p−2nj dtj ,

which are finite since 2nj + b > −1 and ν − p− 2nj > −1. ¤
Proposition 8. (a) Nm

ν 6= {0} if and only if ν > p− 1, and Pm
ν 6= {0} if and

only if ν > p + 1− 2m.
(b) Nm

ν \Nm−1
ν 6= {0} if and only if there exists a signature m with |m| = m−1

and m1 < ν−p+1
2 .

(c) In fact, Km(z, zz) ∈ Nm
ν if and only if |m| < m and m1 < ν−p+1

2 .

Proof. (a) If Nm
ν 6= {0} then its reproducing kernel is not identically zero; by the

last theorem, this is equivalent, in turn, to Nm
ν (·, 0) 6≡ 0 and Sm

ν (·, 0) 6≡ 0. Thus Sm
ν

contains a nonzero polynomial p(x) (even one that does not vanish at the origin).
By the last lemma, necessarily ν − p + 1 > 0, or ν > p− 1.

Conversely, if ν > p − 1, then N 1
ν = Aν is nontrivial (it contains all bounded

holomorphic functions on Ω), hence so is Nm
ν ⊃ N 1

ν .
This settles the assertion forNm

ν ; the one for Pm
ν then follows from Proposition 1.

(b) By the same argument as in the proof of part (a), Nm
ν \ Nm−1

ν 6= {0} if and
only if Sm

ν contains a polynomial P whose total degree is m− 1 and whose degree
in each variable is < ν−p+1

2 . If xα, with α a multiindex, is any monomial in the top
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degree homogeneous component of P , then the nonincreasing rearrangement of α
yields the desired signature m.

(c) This follows in the same way as for part (b) from the fact that V maps
Km(z, zz) into a (nonzero) constant multiple of the Jack polynomial Jm(x), and
Jm(x) is equal to the symmetrization of (writing xm := xm1

1 . . . xmr
r )

(55) xm +
∑
n<m

cmnxn

where the sum is over (some) signatures n smaller than m with respect to the
lexicographic order; cf. Mcdonald [MD, formula (10.13)]. ¤

Corollary 9. Rm
ν = span{Km(z, zz) : |m| < m, m1 < ν−p+1

2 }.
In particular, if q denotes the nonnegative integer such that

q <
ν − p + 1

2
≤ q + 1,

then

Rm
ν = span{Km(z, zz) : |m| < m} if m ≤ q + 1,(56)

Rm
ν = span{Km(z, zz) : m1 ≤ q} if m ≥ rq + 1.(57)

This means that for m ≥ rq + 1, Rm
ν and, hence, Nm

ν equals N rq+1
ν — i.e. the

spaces Nm
ν “stabilize” and stop growing with m (for fixed ν). Likewise, Nm

ν (z, w) =
Nrq+1

ν (z, w) for all m ≥ rq + 1 if 2q − 1 < ν − p ≤ 2q + 1.

Remark 10. We pause to note that while, clearly,

N 1 ⊂ N 2 ⊂ N 2 ⊂ . . . ,

no such inclusions hold for Pm, except when the rank r = 1. More specifically, for
r > 1, the function 1 (constant one) belongs to P1, but not to any Pm, m ≥ 2.
Indeed, 1 ∈ Pm ⇐⇒ h(z, z)1−m ∈ Nm, by (9); and by Proposition 4, the latter is
equivalent to

(1− t)1−m =
∑

|m|<m

cmφm( t
1−t )

with some coefficients cm. Passing again to x = t
1−t , this translates into

(58) (1 + x)m−1 =
∑

|m|<m

cmφm(x).

But by the Faraut-Koranyi formula (33), the left-hand side equals

∑
n

(1−m)n
πn(−1)|n|

(qΩ)n
φn(x).

Since the φm are linearly independent, (58) can hold only if

(1−m)n = 0 whenever |n| ≥ m.

However, for n = (m− 1, 1) one has (1−m)n = (−1)m(m− 1)!(m− 1 + a
2 ) which

is nonzero. So 1 /∈ Pm for m ≥ 2 if r > 1. ¤
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4. Spherical functions

Any g ∈ G can be uniquely written in the form g = kφw, with w = g−10 ∈ Ω,
k ∈ K and φw the geodesic reflection (17) interchanging 0 and w. This yields the
formula for the complex Jacobian

(59) Jg(z) = det k · (−1)d h(w, w)p/2

h(z, w)p
,

which shows that the projective representation (12) is actually nothing else than

f 7−→ J
ν/p
φ−1 · f ◦ φ−1, φ ∈ G.

In order to make this not only projective but genuine representation if ν/p is not
an integer, one needs to pass from G to its universal cover G̃. The elements of G̃
can be thought of as elements g of G together with a consistent choice of log Jg.
The operators

(60) U (ν)
g : f 7−→ J

ν/p
g−1 · f ◦ g−1, g ∈ G̃,

then define a (honest, not only projective) unitary representation of G̃ on L2(Ω, dµν);
and one has Ω = G̃/K̃, where K̃, the preimage of K under the covering map
G̃ → G, is the universal cover of K and the stabilizer of 0 ∈ Ω in G̃. (Actually one
has K̃ ∼= K ×R, but we will not need this fact.)

Using (60), one can identify L2(Ω, dµν) with a subspace of L2(G̃/Z(G̃)), the
L2 space on the quotient of G̃ modulo its center Z(G̃) with respect to a suitably
normalized Haar measure on G̃. Namely, for f ∈ L2(Ω, dµν), the function f# on G̃
defined by

(61) f#(g) := f(g0)Jg(0)−ν/p, g ∈ G̃,

satisfies

(62) (U (ν)
g f)# = f# ◦ g−1

(i.e. the map f 7→ f# intertwines the representation (60) with the left regular
representation of G̃ on L2(G̃)) and

(63) f#(gk) = f#(g)J−ν/p
k , g ∈ G̃, k ∈ K̃.

(Note that Jk ≡ Jk(0) is a constant function, so we will write just Jk instead of
Jk(0) or Jk(z).) Furthermore, f 7→ f# is a unitary isomorphism of L2(Ω, dµν) onto
the subspace L2(G̃, ν) of all functions in L2(G̃/Z(G̃)) satisfying the transformation
rule (63); the inverse of the map f 7→ f# is given by F 7→ F [, where

(64) F [(g0) := F (g)Jg(0)ν/p

(the right-hand side depends only on g0, thanks to (63)). See Proposition 2.1 in
[DOZ] for the proof of all these facts. (Note: there is a misprint in the first formula
of Section 2 in [DOZ], the τν there should be τ−ν .)

Using the above identification, one can view also Nm
ν as a subspace of L2(G̃, ν)

invariant under the left regular representation (62). Note that radial functions
on Ω, i.e. those satisfying f(kz) = f(z) for all z ∈ Ω and k ∈ K, correspond to
functions f# on G̃ satisfying

(65) f#(k′gk) = J
−ν/p
k′ f#(g)J−ν/p

k , g ∈ G̃, k, k′ ∈ K̃.
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Such functions on G̃ are called ν-spherical.
The representation theory for the space L2(G̃, ν) has been developed by Shi-

meno [Shm] (his notation τ−`(k) corresponds to our J
−ν/p
k ). (Note that there is

a G̃-equivariant isomorphism between L2(G̃, ν) and L2(G̃,−ν), so we can always
assume that ν > 0 as we have started with.) Namely, let G̃ = K̃AN be the Iwa-
sawa decomposition of G̃ and let g, k, p and a be the Lie algebras of G (and G̃),
K (and K̃), AN and A, respectively, so that g = k + p is the Cartan decomposi-
tion of g and a ⊂ p is a maximal Abelian subspace of p. For g ∈ G̃ let H(g) be
the element in the Lie algebra a of A uniquely determined by g ∈ K̃ exp H(g)N .
Similarly, let κ(g) ∈ K̃ be uniquely determined by g ∈ κ(g)AN . For λ ∈ a∗C,
the complexification of the dual a∗ of a, one defines the spherical function φλ,ν of
type ν by

(66) φλ,ν(g) :=
∫
eK/Z( eG)

e−(λ+ρ)H(g−1k)J
ν/p
k−1κ(g−1k) dk,

where Z(G̃) denotes the center of G̃, dk is the invariant measure on the quotient
K̃/Z(G̃) with total mass 1, and ρ ∈ a∗ is the half-sum of positive roots (see (72)
below). Then φλ,ν is a ν-spherical function on G̃, and one defines the spherical
Fourier transform f̂ of a ν-spherical function f on G̃ by

(67) f̂(λ) :=
∫
eG/Z( eG)

f(g)φ−λ,−ν(g) dg, λ ∈ a∗C.

This definition makes sense e.g. whenever f is compactly supported modulo Z(G̃).
The main result of [Shm] then states that there is an inversion formula

f(g) =
∫
Sr

j=0 Dν,j+ia∗Θj

f̂(λ)φλ,ν(g) dγ(λ)

where Dν,j and a∗Θj
are certain systems of hyperplanes in a∗ and dγ is a certain

measure on them; and there is also a corresponding Plancherel theorem. See The-
orems 6.7 and 6.8 in [Shm] for the details. Both Dν,j and a∗Θj

have codimension j

in a∗; in particular, for j = r, a∗Θr
= {0} and

(68) Dν,r = {λm : m is a signature with m1 < ν−p+1
2 }

where

(69) λm :=
1
2

r∑

j=1

λjβj , λr+1−j = p− 1− ν − (j − 1)a + 2mj .

(Here β1, . . . , βr ∈ a∗ are the long roots of the root system of Ω; see below.) Thus
Dν,r is a finite discrete set in a∗. Furthermore, the Plancherel measure dγ on
Dν,r + ia∗Θr

= Dν,r reduces just to a multiple dr(λ, ν)δλ of the Dirac mass at each
λ = λm. Here dr(λ, ν) is given by an explicit expression involving Γ-functions;
see (4.18), (4.19), (4.21) and (6.18) in [Shm]. Altogether, it thus follows that the
spaceAm

ν (G̃) spanned in L2(G̃) by G̃-translates of φλm,ν , for each signature m, is an
irreducible direct summand of L2(G̃), and as m varies these summands are mutually
orthogonal. Such summands are called relative discrete series representations of G̃.
Note that by (68), only signatures m with m1 < ν−p+1

2 occur (in particular, there
are no relative discrete series representations if ν ≤ p− 1).
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Let
Am

ν (Ω) := {F [ : F ∈ Am
ν (G̃)}

be the space of functions on Ω corresponding to Am
ν (G̃) via (64). It is then, next,

the central result of [Zh3] that Am
ν (Ω) is actually a space of nearly holomorphic

functions of order |m|, and that, as m varies, these spaces exhaust all nearly holo-
morphic functions. Namely, let Nm be the conical polynomial on Ω from (42); one
can then form the composition Nm(zz) with the quasi-inverse (46), which gives a
function on Ω. By Theorem 4.7 in [Zh3], the space spanned by U

(ν)
g Nm(zz), g ∈ G̃,

coincides with Am
ν (Ω).

Finally, arguing as in the beginning of Section 3 in [Zh1], it follows from Shi-
meno’s Plancherel formula that the reproducing kernel Am

ν (z, w) of the spaceAm
ν (Ω)

is given for w = 0 (i.e. at the origin) simply by the appropriate multiple of the
spherical function:

(70) Am
ν (z, 0) = dr(λm, ν)φ[

λm,ν(z).

Summarizing the discussion so far, we have thus arrived at the following result.

Theorem 11. The nearly-holomorphic reproducing kernel Nm
ν at the origin is

given by

(71) Nm
ν (z, 0) =

∑

|m|<m

m1< ν−p+1
2

dr(λm, ν)φ[
λm,ν(z),

with dr(λ, ν), φλ,ν and λm as above.

We pause to note that actually dr(λ, ν) = ‖φλ,ν‖−2

L2( eG)
, cf. Remark 6.9 in [Shm].

We conclude by recalling the relation between the spherical functions φλ,ν and
the hypergeometric functions of Heckman and Opdam [HS, Part I]. With our nota-
tion g for the Lie algebra of G, let Σ be the restricted root system of the pair (g, a).
Then Σ is a root system of type BC, i.e. has the form

Σ = {± 1
2βj ,±βj ,± 1

2 (βj ± βk), 1 ≤ j, k ≤ r, j 6= k},
where {βj}j is a certain basis of a∗. Here the short roots ± 1

2βj have multiplicity
mS = 2b, the long roots ±βj have multiplicity mL = 1, and the middle roots
1
2 (±βj ± βk) have multiplicity mM = a; if b = 0, then the short roots are actually
absent (and if r = 1, then the middle roots are actually absent). The positive roots
are 1

2βj , βj , j = 1, . . . , r, and 1
2 (βj ± βk), 1 ≤ k < j ≤ r; the half-sum of positive

roots is thus given by

(72) ρ =
r∑

j=1

b + 1 + (j − 1)a
2

βj .

Let now F (λ,kν , ·) be the Heckman-Opdam hypergeometric function with param-
eter λ ∈ a∗C corresponding to the root system 2Σ with multiplicities kν given by

(73) kν,S =
mS

2
− ν = b− ν, kν,L =

mL

2
+ ν =

1
2

+ ν, kν,M =
mM

2
=

a

2
,

for the “doubles” of the short, long and middle roots of Σ, respectively. Then for
any g ∈ A ⊂ G̃ we have

(74) φλ,ν(g) = h(g0, g0)−ν/2F (λ,kν , g).
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See [HS, Theorem 5.2.2] (cf. also Remark 3.8 in [Shm]). Note further that by [HS,
(4.4.10)] (cf. also Remark 5.12 in [Shm]), if λ is a dominant weight (i.e. 〈λ,α〉

〈α,α〉 ∈ N
for all positive roots α of Σ), then

(75) F (λ, ρν ,kν , ·) = c(λ + ρν ,kν)P (λ,kν , ·),
where ρν is given by (72) with b replaced by b+ν, and P (λ,kν , ·) are the multivari-
able Jacobi polynomials (cf. Debiard [De1], [De2]). Here c(λ,k) is the generalized
c-function of Harish-Chandra with line bundle parameter ν (cf. (3.15) in [Shm] or
(3.4.3) in [HS]).

Combining (71), (74) and (72) with Theorem 6, we can express also the invariantly-
polyanalytic reproducing kernels Pm

ν and the reproducing kernels Sm
ν of the spaces

Sm
ν of symmetric polynomials on Rr

+ in terms of spherical functions, or Heckman-
Opdam hypergeometric functions, or multivariable Jacobi polynomials. We omit
the details.

Example 12. For Ω = Bd, the unit ball of Cd, we have r = 1, b = d− 1, a is not
defined, p = d+1 and h(z, w) = 1−〈z, w〉. The elements of the group G = SU(1, n)
can be identified with (n + 1) × (n + 1) complex matrices

(
A B
Ct D

)
, with A ∈ C,

B, C ∈ C1×n and D ∈ Cn×n, acting by z 7→ (Az + B)(Cz + D)−1, with z ∈ Bd

written as row vector. The Lie algebra a equals RH, where

H =




1 01×(n−1) 0
0(n−1)×1 0(n−1)×(n−1) 0(n−1)×1

0 01×(n−1) 1


 ,

and defining β ∈ a∗ by β(H) = 2 the root system is given by Σ = {± 1
2β,±β}.

We have

exp(tH) =




cosh t 01×(n−1) sinh t
0(n−1)×1 I(n−1)×(n−1) 0(n−1)×1

sinh t 01×(n−1) cosh t


 ,

hence | exp(tH)0| = | tanh t| and

(76) cosh t = h(exp(tH)0, exp(tH)0)−1/2.

The spherical functions φλ,ν are given by ([Shm, (8.2) and (8.3)])

φλ,ν(exp tH) = (cosh t)−ν
2F1

(d−ν+λ
2 , d−ν−λ

2
d

∣∣∣− sinh2 t
)

= (cosh t)ν
2F1

(d+ν+λ
2 , d+ν−λ

2
d

∣∣∣− sinh2 t
)
,(77)

that is, by (64) and (76), and since Jexp tH(0) = cosh−p t,

φ[
λ,ν(z) = (1− |z|2)ν

2F1

(d−ν+λ
2 , d−ν−λ

2
d

∣∣∣ |z|2
|z|2 − 1

)

= 2F1

(d+ν+λ
2 , d+ν−λ

2
d

∣∣∣ |z|2
|z|2 − 1

)
,

where 2F1 is the Gauss hypergeometric function and on the right-hand sides, we write
just λ for λ(H). Using the standard transformation formula for 2F1 [BE, §2.1 (22)]

(78) 2F1

(a, b
c

∣∣∣z
)

= (1− z)−a
2F1

(a, c− b
c

∣∣∣ z

z − 1

)
= (1− z)−b

2F1

(c− a, b
c

∣∣∣ z

z − 1

)
,
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this can also be written as

φ[
λ,ν(z) = (1− |z|2) d+λ+ν

2 2F1

(d+λ+ν
2 , d+λ−ν

2
d

∣∣∣|z|2
)

= (1− |z|2) d−λ+ν
2 2F1

(d−λ+ν
2 , d−λ−ν

2
d

∣∣∣|z|2
)
.

The elements λm ∈ a∗, m = (m1), are given by λm = λ1
β
2 with λ1 = 2m1 + d− ν,

m1 ∈ Z, 0 ≤ m1 < ν−d
2 . The corresponding space Am

ν (Bd) is spanned by G-
translates of the function zm1

1 (1 − |z|2)−m1 under the action (12) [Zh3, Section 5]
and coincides with the orthogonal complement Nm1+1

ν ªNm1
ν [Zh1, pp. 116-117].

The reproducing kernel of Am
ν (Bd) at the origin is given by (71) with

d1(λm, ν) =
(ν − d− 2m1)π−dΓ(d + m1)Γ(ν −m1)

m1!Γ(d)Γ(ν − d + 1−m1)
,

in complete agreement with [Zh1, Section 3, bottom of p. 116]. (Note that there is
a misprint in the formula (1.5) in [Zh1]: the Γ(α+1+d) in the numerator should be
Γ(α +1 + d− l). Also the labeling of spherical functions is different there: our φλ,ν

corresponds to φiλ,ν in [Zh1].)
By [Op, p. 90], the Heckman-Opdam hypergeometric function for root system

BC1 is given by

F (λ,k, exp tH) = 2F1

(d+ν+λ
2 , d+ν−λ

2
d

∣∣∣− sinh2 t
)
,

in full accordance with (74) and (77) in view of (76).
Finally, for rank one (75) reduces just to (15), and thus for m− 1 < ν−p+1

2

Nm
ν (z, 0) =

m−1∑
m1=0

d1(λm, ν)2F1

(−m1, d− ν + m1

d

∣∣∣ |z|2
|z|2 − 1

)

=
m−1∑
m1=0

d1(λm, ν)(1− |z|2)−m1
2F1

(−m1, ν −m1

d

∣∣∣|z|2
)

by (78)

=
m−1∑
m1=0

d1(λm, ν)
(1− |z|2)−m1

(
m1+d−1

d−1

) P (d−1,ν−d−2m1)
m1

(1− 2|z|2),

recovering (13) and its reformulation in terms of Jacobi polynomials.
From Theorem 6 we see that the reproducing kernel at the origin for the subspace

of all polynomials of degree < m in L2(R+, cBdtd−1(1 + t)−ν dt) equals

(79) Sm
ν (x, 0) =

∑

0≤m1<min(m, ν−d
2 )

d1(λ(m1), ν) 2F1

(−m1, d− ν + m1

d

∣∣∣− x
)
,

the summands being actually mutually orthogonal. ¤

5. Faraut-Koranyi hypergeometric functions

With Theorem 6 in mind, let us return to the reproducing kernels Sm
ν (x, y)

of the subspaces Sm
ν of symmetric polynomials of degree < m in L2(Rr

+, dρb,ν,a).
By Propositions 4 and 5, the functions

(80) Km(xe, e), |m| < m, m1 < ν−p+1
2 ,
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span Sm
ν . The following easy fact — capturing, in effect, the standard Gram-

Schmidt orthogonalization process — describes how to extract the reproducing
kernel from an arbitrary basis.

Proposition 13. Let H be a finite-dimensional Hilbert space of functions with
(not necesarily orthogonal) basis {fj}. Denote by U(x) the column vector (fj(x))j.
Then the reproducing kernel of H is given by

(81) KH(x, y) = U(y)∗G−1U(x),

where G = (〈fj , fk〉H)dimH
j,k=1 is the Grammian matrix of the basis {fj}j.

Proof. Let {el}l be an orthonormal basis of H and let el =
∑

j cljfj be the expres-
sions of el as linear combinations of the fj . Let C denote the matrix (clj)dimH

l,j=1 .
From

δlm = 〈el, em〉H =
∑

j,k

cljcmk〈fj , fk〉H = (CGC∗)lm

we see that CGC∗ is the identity matrix; that is, G = (C∗C)−1. Hence by (43)

KH(x, y) =
∑

l

el(x)el(y) =
∑

l,j,k

cljfj(x)clkfk(y)

= U(y)C∗CU(x) = U(y)G−1U(x),

proving the claim. ¤

For the basis (80), the Grammian matrix G is in principle easy to compute
explicitly for low values of m and r. For instance, for r = 2, starting from

(1− t)n = h(te, e)n =
∑

m:m1≤n

(−n)mKm(te, e), n = 0, 1, 2, . . . ,

one recursively reads off (−n)(n,m2)K(n,m2)(te, e) as the homogeneous component
of degree n + m2 in (1− t)n:

K(0) = 1, K(1) = t1 + t2, K(1,1) =
2t1t2
a + 2

,

K(2,0) =
t21 + t22

2
+

at1t2
a + 2

, K(2,1) =
2t1t2(t1 + t2)

a + 4
,

K(2,2) =
2t21t

2
2

(a + 2)(a + 4)
, . . . .

(For brevity, we have omitted the arguments (te, e).) This reduces the computation
of G to evaluation of the integrals

(82)
∫ ∞

0

∫ ∞

0

xq1
1 xq2

2 (1 + x1)−ν(1 + x2)−ν |x1 − x2|a dx1 dx2.

For a an even nonnegative integer, the last integral can be evaluated by expanding
(x1−x2)a via the binomial theorem and integrating term by term using the standard
formula
∫ ∞

0

xq

(1 + x)ν
dx =

Γ(q + 1)Γ(ν − q − 1)
Γ(ν)

≡ B(q +1, ν− q−1), −1 < q < ν−1,
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for the Beta integral. The outcome is that (82) equals
a∑

j=0

(−a)j

j!
B(q1 + j + 1, ν − q1− a− 1)B(q2 + a− j + 1, ν − q2− a− 1), a ∈ 2N.

Taking for U(x) the column vector (Km(xe, e))|m|<m,m1<(ν−p+1)/2, one can then
use (81) to obtain a formula for Sm

ν (x, 0).
For a /∈ 2N, a possible way of evaluating (82) is first making the change of

variable x = t
1−t , which transforms (82) into

(83)

∫ 1

0

∫ 1

0

tq1
1 tq2

2 (1− t1)ν−a−2−q1(1− t2)ν−a−2−q2 |t1 − t2|a dt1 dt2

=
∫ 1

0

∫ 1

0

(1− t1)q1(1− t2)q2tν−a−2−q1
1 tν−a−2−q2

2 |t1 − t2|a dt1 dt2.

Introducing temporarily the notation

I(α, β, γ, δ) :=
∫ 1

0

∫ t1

0

(1− t1)α(1− t2)βtγ1 tδ2|t1 − t2|a dt2 dt1,

(83) thus equals

I(q1, q2, ν − a− 2− q1, ν − a− 2− q2) + I(q2, q1, ν − a− 2− q2, ν − a− 2− q1).

Now making the change of variable t2 = yt1 yields

I(α, β, γ, δ) =
∫ 1

0

∫ 1

0

(1− t1)α(1− yt1)βtγ1(yt1)δta1(1− y)a t1 dy dt1

=
∞∑

j=0

(−β)j

j!

∫ 1

0

∫ 1

0

(1− t1)α(yt1)jtγ1(yt1)δta1(1− y)a t1 dy dt1

=
∞∑

j=0

(−β)j

j!
B(α + 1, j + γ + δ + a + 2)B(a + 1, j + δ + 1).(84)

For β ∈ N — which is our case in (83) — the series terminates, and one thus has
an expression for (82), albeit the formula is a bit more unwieldy than the one from
the previous paragraph.

Similarly, for rank 3, recall that

Km(te, e) =
πm

(qΩ)m
φm(te),

with πm and qΩ given by (37) and (36), respectively, and φm the spherical poly-
nomial corresponding to the signature m. Using the formula (34), one can again
successively read off Km(te, e) as the term of the appropriate homogeneity degree in

(1− t)n = h(te, e)n =
∑

m:m1≤n

(−n)m
πm

(qΩ)m
φm(te), n = 0, 1, 2, . . . .

This yields (omitting again the argument te)

φ(0) = 1, φ(1) =
t1 + t2 + t3

3
, φ(1,1) =

t1t2 + t1t3 + t2t3
3

,

φ(1,1,1) = t1t2t3, φ(2) =
(a + 2)(t21 + t22 + t23)

3(3a + 2)
+

2a(t1t2 + t1t3 + t2t3)
3(3a + 2)

,
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φ(2,1) =
(a + 1)(t21t2 + t21t3 + t22t1 + t22t3 + t23t1 + t23t2)

3(3a + 2)
+

3at1t2t3
3(3a + 2)

,

φ(2,1,1) =
(t1 + t2 + t3)t1t2t3

3
,

φ(2,2) =
(a + 2)(t21t

2
2 + t21t

2
3 + t22t

2
3)

3(3a + 2)
+

2a(t1 + t2 + t3)t1t2t3
3(3a + 2)

,

φ(2,2,1) =
(t1t2 + t1t3 + t2t3)t1t2t3

3
, φ(2,2,2) = t21t

2
2t

2
3, . . . .

This once more reduces the computation of G to the evaluation of the three-variable
analogue of (82), which for a ∈ 2N is again by the same “bare hands” method seen
to be equal to

a∑

j,k,l=0

(−a)j(−a)k(−a)l

j!k!l!
B(q1 + 1 + j + k, ν − 2a− 1− q1)

×B(q2 + 1 + a− j + l, ν − 2a− 1− q2)

×B(q3 + 1 + 2a− k − l, ν − 2a− 1− q3), a ∈ 2N.

For a /∈ 2N, one can again proceed as for (84), but the outcome is quite cumbersome.
Carrying out all these calculations leads to the following conjecture.
Recall that for α, β, γ ∈ C, the Faraut-Koranyi hypergeometric function on Ω

with parameters α, β, γ is defined by [FK]

(85) 2FΩ
1

(
α, β
γ

∣∣∣z
)

:=
∑
m

(α)m(β)m
(γ)m

Km(z, z).

Here γ is assumed to be such that (γ)m 6= 0 ∀m. Alternatively, one sometimes
views these just as symmetric functions on Rr

+ [Yan]:

(86) 2F1

(
α, β
γ

∣∣∣t
)

:=
∑
m

(α)m(β)m
(γ)m

Km(te, e),

the two variants being related simply by 2FΩ
1 (z) = 2F1(t) for z = k

√
te.

Conjecture 14. Assume that m ≥ rq + 1 where q is the nonnegative integer such
that q < ν−p+1

2 ≤ q + 1. Then the reproducing kernel Sm
ν on Rr

+ at the origin is
given by

(87) Sm
ν (x, 0) = cq

ν2F1

(−q,−b− ν + 2p + q − 2r
p

∣∣∣− x
)
,

where

(88) cq
ν =

ΓΩ(ν − p− q + 2r + b)ΓΩ(qΩ)ΓΩ(p + q)
πdΓΩ(ν − p− q + 2r − qΩ)ΓΩ(qΩ + q)ΓΩ(p)

.

The last conjecture holds for r = 1, by (8), (15), Theorem 6 and (78). It has
also been verified by computer for

r = 2, q ∈ {0, 1, 2}, a ∈ {1, 2, 3, 4, 5, 6, 7, 8}, b ∈ {0, 1, 2, 3}, ν arbitrary,

r = 2, q = 3, a ∈ {1, 2, 3, 4}, b ∈ {0, 1, 2, 3}, ν arbitrary,

r = 3, q ∈ {0, 1, 2}, a ∈ {2, 4}, b ∈ {0, 1, 2, 3}, ν arbitrary,

r = 3, q ∈ {0, 1, 2}, a = 8, b = 0, ν arbitrary,
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and a couple more values of a, b and ν for r ∈ {2, 3} and q ∈ {0, 1, 2}. (Note
that the above values of r, a, b include, in particular, both exceptional bounded
symmetric domains of dimensions 16 and 27.)

Note that the hypothesis of the conjecture, that is,

(89) q − 1 <
ν − p− 1

2
≤ q ≤ m− 1

r
,

corresponds precisely to the case (57) of the “stabilized” kernels from Corollary 9.
Without this hypothesis, the conjecture fails, as the following example shows.

Example 15. Let r = 2, m = 2 and ν − p > 1 (note that this corresponds to the
case (56) in Corollary 9). The space Sm

ν is thus spanned by K(0)(xe, e) = 1 and
K(1)(xe, e) = x1 + x2. Performing the calculations outlined above yields

1
C Sm

ν (x, 0) = K(0) +
(b− ν + a + 3)(2b− 2ν + a + 4)

a2 + (7 + 4b− 2ν)a + (4b2 − 4bν + 16b− 6ν + 14)
K(1)

with some constant C. (We have omitted the arguments (xe, e) at K(0) and K(1).)
Plainly, the right-hand side is not of the form 2F1. ¤

In the remaining case from Corollary 9 (i.e. q +1 < m < rq +1), the kernels can
be expected to be even more “ugly” than in the last example.

By the results of the preceding sections, the validity of the conjecture would have
the following consequences.

Corollary 16. (Subject to Conjecture 14) Assume that m ≥ rq + 1 where q is the
nonnegative integer such that q < ν−p+1

2 ≤ q + 1. Then the nearly-holomorphic
reproducing kernel Nm

ν at the origin is given by

Nm
ν (k

√
te, 0) = cq

ν2F1

(−q,−b− ν + 2p + q − 2r
p

∣∣∣ t

t− 1

)
,

or

Nm
ν (z, 0) = cq

νh(z, z)−q
2FΩ

1

(−q, b + ν − p− q + 2r
p

∣∣∣z
)
.

Proof. By Theorem 6,
Nm

ν (k
√

te, 0) = Sm
ν ( t

1−t , 0),

and (87) gives the first formula. The second formula then follows from the Kummer
relation (a counterpart of (78) for the ordinary 2F1)

(90) 2F1

(
α, β
γ

∣∣∣t
)

= (1− t)−α
2F1

(α, γ − β
γ

∣∣∣ t

t− 1

)
,

see [Yan, formula (35)]. ¤

Theorem 17. (Subject to Conjecture 14) Assume that m ≥ rq + 1 where q is the
nonnegative integer such that q < ν−p+1

2 ≤ q + 1. Then with the notation (73),
(69) and (85),

(91)

∑

|m|: m1≤q

dr(λm, ν)F (λm,kν , g) =

h(z, z)−qcq
ν2FΩ

1

(−q, b + ν − p− q + 2r
p

∣∣∣z
)

for z = g0 with g ∈ A.
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Proof. Since Jg(0) = g(g0, g0)p/2 for g ∈ A, (64) and (74) yield

φ[
λ,ν(g0) = F (λ,kν , g0).

Thus by (71), the left-hand side of (91) equals Nm
ν (g0, 0). By Corollary 16, the lat-

ter is precisely the right-hand side of (91). ¤

Note that for r = 1, (91) recovers the formula (14) from the Introduction.

Remark 18. By Theorem 4.2 of Beerends and Opdam [BO], F (λ,kν , ·) for the
special value

λ = −α
∑

j

βj + ρν , α ∈ C,

can be expressed in terms of

2F1

(
α, d/r + ν − α

d/r

∣∣∣ ·
)
;

however the 2F1 in (91) does not seem reducible to this form. ¤

Using again Theorem 6, the conjecture also implies a formula for the invariantly-
polyanalytic kernel Sm

ν (x, 0).

Corollary 19. (Subject to Conjecture 14) Assume that m ≥ rq + 1 where q is the
nonnegative integer such that q < ν−p−1

2 + m ≤ q + 1. Then the reproducing kernel
Pm

ν at the origin is given by

Pm
ν (z, 0) = cm

ν+2m−2h(z, z)m−1−q
2F1

(−q, b + ν + 2m− 2− p− q + 2r
p

∣∣∣z
)
.

Proof. By Theorem 6, Pm
ν (z, 0) = h(z, z)m−1Nm

ν+2m−2(z, 0), and the claim follows
by Corollary 16. ¤

Example 20. Continuing our example of Ω = Bd from the previous section, for
rank 1 the Faraut-Koranyi hypergeometric function coincides with the ordinary
Gauss hypergeometric function

2FBd

1

(α, β
γ

∣∣∣z
)

= 2F1

(
α, β
γ

∣∣∣|z|2
)
.

By (79) and (87) we therefore get, for 0 ≤ q < ν−d
2 ≤ q + 1 ≤ m,

q∑

j=0

d1(λ(j), ν)2F1

(−j, d− ν + j
d

∣∣∣− x
)

= cq
ν2F1

(−q, d + q + 1− ν
d + 1

∣∣∣− x
)
.

This is, of course, just (14) in disguise. ¤

Remark 21. The formula (79) actually shows that d1(λ(j), ν)2F1

(−j, d− ν + j
d

∣∣∣−x
)

is the reproducing kernel of the orthogonal complement Sj
ν ª Sj−1

ν , 0 ≤ j < ν−d
2

(with S−1
ν := {0}). Theorem V.4.5 in Helgason [He] identifies the last 2F1 as the

spherical function for the compact dual SU(d + 1)/SU(d) = CP d of Bd. ¤
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By the reproducing property, Conjecture 14 is equivalent to

(92)

∫

Rr
+

Km(xe, e) 2F1

(−q,−b− ν + 2p + q − 2r
p

∣∣∣− x
)

dρb,ν,a(x)

=
1
cq
ν
δm,(0), ∀m with m1 ≤ q,

where q is the nonnegative integer such that q < ν−p+1
2 ≤ q + 1 and m ≥ rq + 1.

Taking in particular m = (0) yields

1
cq
ν

=
∫

Rr
+

2F1

(−q,−b− ν + 2p + q − 2r
p

∣∣∣− x
)

dρb,ν,a(x)

(subject to the validity of Conjecture 14). The last integral can be evaluated ex-
plicitly.

Proposition 22.
∫

Rr
+

2F1

(−q,−b− ν + 2p + q − 2r
p

∣∣∣− x
)

dρb,ν,a(x)

=
1

cν−q
3FΩ

2

(−q, b + ν − p− q + 2r, d/r
p, ν − q

∣∣∣e
)
,

where the Faraut-Koranyi function 3FΩ
2 is defined analogously as in (85).

Proof. Making again the change of variable x = t
1−t , we get from (54) and (86)

∫

Rr
+

2F1

(−q,−b− ν + 2p + q − 2r
p

∣∣∣− x
)

dρb,ν,a(x)

= cΩ

∫

[0,1]r
2F1

(−q,−b− ν + 2p + q − 2r
p

∣∣∣ t

t− 1

)
dµb,ν,a(t)

= cΩ

∫

[0,1]r
(1− t)−q

2F1

(−q, b + ν − p− q + 2r
p

∣∣∣t
)

dµb,ν,a(t)

= cΩ

∫

[0,1]r
2F1

(−q, b + ν − p− q + 2r
p

∣∣∣t
)

dµb,ν−q,a(t)

= cΩ

∑

|m|<m

(−q)m(b + ν − p− q + 2r)m
(p)m

∫

[0,1]r
Km(te, e) dµb,ν−q,a(t).

If {ψj}dm
j=1 is an orthonormal basis of Pm with respect to the Fock norm, the last

integral equals, by (43),
∫

[0,1]r
Km(

√
te,
√

te) dµb,ν−q,a(t) =
∫

K

∫

[0,1]r
Km(k

√
te, k

√
te) dµb,ν−q,a(t) dk

=
1
cΩ

∫

Ω

Km(z, z) dµν−q(z) by (27)

=
1
cΩ

∫

Ω

∑

j

|ψj(z)|2 dµν−q(z)

=
1
cΩ

∑

j

‖ψj‖2ν−q
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=
1
cΩ

∑

j

‖ψj‖2F
(ν − q)mcν−q

by (32)

=
dm

cΩ(ν − q)mcν−q
.

Consequently,
∫

Rr
+

2F1

(−q,−b− ν + 2p + q − 2r
p

∣∣∣− x
)

dρb,ν,a(x)

=
∑

|m|<m

(−q)m(b + ν − p− q + 2r)m
(p)m

dm

(ν − q)mcν−q

=
∑

|m|<m

(−q)m(b + ν − p− q + 2r)m
(p)m

(d/r)m
(ν − q)mcν−q

Km(e, e)

=
1

cν−q
3FΩ

2

(−q, b + ν − p− q + 2r, d/r
p, ν − q

∣∣∣e
)
,

as claimed. Here the second equality is due to (35). ¤

The formula (88) thus gives a conjectured value for this 3F2 function.
For rank 1, we have b + ν − p− q + 2r = ν − q, so the 3F2 becomes 2F1 and (88)

follows by the standard formula for 2F1

(
a, b
c

∣∣∣1
)
.

6. Compact Hermitian symmetric spaces

We now consider also the compact duals of Hermitian symmetric spaces Ω̂, the
simplest examples of these being the complex projective space CP d as the compact
dual of the unit ball Bd (including, in particular, the Riemann sphere CP 1 as the
compact dual of the unit disc). Most results are obtained by formally replacing ν

by −ν, h(z, z) by h(z,−z), and Ω ⊂ Cd by the open chart Cd ⊂ Ω̂. We shall be
rather brief.

The symmetric space Ω = G/K has its compact dual Ω̂ = Ĝ/K where Ĝ is a
simply connected compact Lie group with Lie algebra ĝ = k + ip. There is a dense
open subset of Ω̂ that is biholomorphic to Cd, and we shall simply identify this
local chart with Cd throughout. The stabilizer subgroup K of the origin in Ĝ is the
same as in the bounded case. For x ∈ Ω̂, there is again a unique geodesic symmetry
φ̂x ∈ Ĝ which interchanges x and the origin, i.e. φ̂x ◦ φ̂x = id, φ̂x(0) = x, φ̂x(x) = 0,
and φ̂x has only isolated fixed points. Any g ∈ Ĝ can be uniquely written in the
form g = φ̂xk with k ∈ K and x = g0 ∈ Ω̂. The measure

dµ̂ν(z) := h(z,−z)−ν−p dz

on Cd ⊂ Ω̂ is finite if and only of ν > −1, and one can again consider the spaces

Âν := L2(Ω̂, dµ̂ν) ∩ O(Cd).

The elements of Âν extend to holomorphic sections on all of Ω̂ if and only if ν is
an integer, which we will assume from now on throughout the rest of this section.
In that case,

Âν =
⊕

m:m1≤ν

Pm,
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and Âν possesses a reproducing kernel, given by

K̂ν(z, w) = ĉν h(z,−w)ν , z, w ∈ Cd ⊂ Ω̂, ν ∈ N,

where

ĉν =
ΓΩ(ν + p)

πdΓΩ(ν + p− d
r )

.

(Here, as before, p, r, a and b denote the genus, the rank, and the characteristic
multiplicities of Ω̂, which are all the same as for Ω.) From the transformation rule

h(φ̂z,−φ̂w) =
h(a,−a)h(z,−w)
h(z,−a)h(a,−w)

, a = φ̂−10, z, w ∈ Cd, φ̂ ∈ Ĝ,

it again follows that the measure dµ̂0 is Ĝ-invariant and that Ψ̂(z) := − log h(z,−z)
is the Kähler potential for a Ĝ-invariant Riemannian metric on Ω̂. We thus again
have the associated Cauchy-Riemann operator D, and the corresponding spaces
N̂m := Ker Dm of nearly holomorphic functions on Ω̂ of order m, as well as their
Bergman-type subspaces

N̂m
ν := L2(Ω̂, dµ̂ν) ∩KerDm.

One can also proceed to define the invariantly polyanalytic functions P̂m and their
Bergman-type subspaces P̂m

ν as in the bounded case.
In the polar coordinates (22), the measures dµ̂ν assume the form

(93)
∫

Ω̂

f(z) dµ̂ν(z) = cΩ

∫

Rr
+

∫

K

f(k
√

te) dk dµ̂b,ν,a(t),

where

(94) dµ̂b,ν,a(t) := tb(1 + t)−ν−p
∏

1≤i<j≤r

|ti − tj |a dt

and cΩ is given by (29).
By the above transformation rule for h(z,−w), it again also follows that

f 7−→ h(a,−a)−ν/2

h(z,−a)−ν
f ◦ φ̂−1, a = φ̂0, φ̂ ∈ Ĝ, ν ∈ N,

is a projective unitary representation of Ĝ on N̂m
ν . Let Ŝm be the vector space of

all symmetric polynomials of degree < m in r variables, denote

Ŝm
ν := Ŝm ∩ L2([0, 1]r, dρ̂b,ν,a),

where
dρ̂b,ν,a(t) := cΩ tb(1− t)ν

∏

1≤i<j≤r

|ti − tj |a dt,

and let Ŝm
ν (x, y) be the reproducing kernel of Ŝm

ν . Proceeding as in Section 3 above,
we then obtain the following analogue of Theorem 6.

Theorem 23. (a) For any φ̂ ∈ Ĝ, the reproducing kernel N̂m
ν of N̂m

ν satisfies

N̂m
ν (z, w) =

h(z,−a)νh(a,−w)ν

h(a,−a)ν
N̂m

ν (φ̂z, φ̂w), a := φ̂−10;

in particular,

N̂m
ν (z, w) = h(z,−w)νN̂m

ν (φ̂wz, 0).
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(b) Radial functions in N̂m consist precisely of functions of the form

p(z, (−z)z),

where p(z, w) is a polynomial in z, w ∈ Cd of degree < m in each argument
which is K-invariant in the sense of (48).
Consequently, the radial functions in N̂m coincide with the linear span of
Km(z, (−z)z), |m| < m.

(c) The mapping V̂ from Ŝm into functions on Ω̂ given by

V̂ f(k
√

xe) := f
( x

1 + x

)
, k ∈ K, x ∈ Rr

+,

is a bijection from Ŝm onto radial functions in N̂m. Furthermore, V̂ sends
Ŝm

ν unitarily onto the subspace R̂m
ν of radial function in N̂m

ν , and

N̂m
ν (·, 0) = V Ŝm

ν (·, 0).

Proof. The proof is the same as for Propositions 2, 4 and 5, hence omitted. ¤

Unlike the bounded case, for the compact dual we can give an explicit formula for
the kernel N̂m

ν in terms of multivariable Jacobi polynomials P
(α,β,a/2)
m (also called

Heckman-Opdam polynomials; see [HS, Section 1.3]). Recall from [De3, Section 4.b]
that P

(α,β,a/2)
m (t) are symmetric polynomials on Rr such that

(i) P
(α,β,a/2)
m (t) is the symmetrization of

(95) tm +
∑
n<m

cmntn

where the sum is over (some) signatures n smaller than m with respect to
the lexicographic order; and

(ii) P
(α,β,a/2)
m (t), |m| ≥ 0, are orthogonal on [−1, +1]r with respect to the

measure

(1− t)α(1 + t)β
∏

1≤i<j≤r

|ti − tj |a dt.

By change of variable, it follows that P
(α,β,a/2)
m (1 − 2t) are orthogonal on [0, 1]r

with respect to the measure tα(1− t)β
∏

1≤i<j≤r |ti− tj |a dt, with the norm-square
on [−1, +1]r given by 2r(r−1)a/2+rα+rβ+r times the norm-square on [0, 1]r. Setting
in particular α = b, β = ν we get an orthogonal basis for symmetric polynomials
with respect to dρ̂b,ν,a on [0, 1]r. By (43), we thus arrive at the following theorem.

Theorem 24. For ν ∈ N, the reproducing kernel Ŝm
ν at the origin is given by

(96) Ŝm
ν (t, 0) =

∑

|m|<m

2d+rνP
(b,ν,a/2)
m (1)

‖P (b,ν,a/2)
m ‖2

P (b,ν,a/2)
m (1− 2t).

Here the norm-square is understood on [−1,+1]r.

We remark that explicit formulas both for P
(b,ν,a/2)
m (1) and for ‖P (b,ν,a/2)

m ‖2 are
available, see Theorems 3.5.5 and 3.6.6 in [HS].
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Example 25. For rank r = 1, P
(b,ν,a/2)
m are up to a constant factor just the

ordinary Jacobi polynomials P
(b,ν)
n of degree n on [−1, +1]:

P
(b,ν,a/2)
(n) (t) =

2n

(
2n+b+ν

n

)P (b,ν)
n (t).

From the formulas [BE2, Section 10.8]

P (b,ν)
n (1) =

(
n + b

n

)
, ‖P (b,ν)

n ‖2 =
2b+ν+1Γ(n + b + 1)Γ(n + ν + 1)

n!(2n + b + ν + 1)Γ(n + b + ν + 1)
,

we therefore get

Ŝm
ν (t, 0) =

m−1∑

j=0

Γ(j + ν + 1)
(d− 1)!j!2(d + 2j + ν)Γ(d + j + ν)

P
(d−1,ν)
j (1− 2t). ¤

Using Theorem 23, we can also obtain from (96) a formula for the nearly-
holomorphic reproducing kernel N̂m

ν (z, w) on Ω̂ in terms of multivariable Jacobi
polynomials.

Corollary 26. For ν ∈ N, the nearly-holomorphic reproducing kernel N̂m
ν is

given by N̂m
ν (z, w) = h(z,−w)νN̂m

ν (φ̂wz, 0), where

N̂m
ν (k

√
xe, 0) =

∑

|m|<m

2d+rνP
(b,ν,a/2)
m (1)

‖P (b,ν,a/2)
m ‖2

P (b,ν,a/2)
m

(1− x

1 + x

)
.

Proof. Straightforward from Theorem 23 and (96). ¤

One can also get the invariantly-polyanalytic kernels P̂m
ν . We leave the details

(which are utterly routine) to the interested reader.

Remark 27. Note that in (96) there is no restriction on m1 in the sum, in contrast
to Corollary 9 or (71); the reason being, of course, that dρ̂b,ν,a is a finite measure
on [0, 1]r for ν ∈ N, so that the corresponding L2 space contains all polynomials.
Still, proceeding as in Section 5, one can get the following analogue of Conjecture 14
for the compact case. For q, ν ∈ N, let Qq

ν be the subspace of L2([0, 1]r, dρ̂b,ν,a)
spanned by {Km(te, e) : m1 ≤ q}, and let Qq

ν be its reproducing kernel. Then it
seems that

(97) Qq
ν(t, 0) = ĉq

ν 2F1

(−q, ν + p + q
p

∣∣∣t
)
,

where

ĉq
ν =

ΓΩ(p + q)ΓΩ(p + q + ν)ΓΩ(qΩ)
πdΓΩ(p)ΓΩ(q + qΩ)ΓΩ(q + qΩ + ν)

.

This has been checked for the same set of values of r, q, a, b as for Conjecture 14.
Note that in view of (55) and (95), the Jacobi polynomials P

(b,ν,a/2)
m (1−2t) with

m1 ≤ q form an orthogonal basis for Qq
ν , thus again by (43)

Qq
ν(t, 0) =

∑

|m|: m1≤q

2d+rνP
(b,ν,a/2)
m (1)

‖P (b,ν,a/2)
m ‖2

P (b,ν,a/2)
m (1− 2t).

Hence (97) gives a conjectured value for this sum. ¤
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We conclude this section by deriving the counterpart of Section 4, i.e. the rep-
resentation theory of for the L2 spaces of sections of line bundles — especially the
results of [Zh3] — for the compact case. We give a representation theoretic proof
of Corollary 26.

We follow the presentation as in [Lo]. We consider the holomorphic line bundle
L over Ĝ/K,

(98) Ĝ×K,τ C → Ω̂ = Ĝ/K,

where τ(k) = (detAd(k)|p+)1/p, k ∈ K. This is the holomorphic line bundle such
that Lp = K−1 and it generates the Picard group of Ω̂; see [Lo, 7.1-7.11]. Here K−1

is the dual of the canonical line bundle. Let τν = τν for any fixed integer ν, where
as before we assume that ν ≥ 0.

Let L2(Ω̂; ν) be the L2-space of sections of the line bundle Lν . We normalize
the measure so that the realization of sections f ∈ L2(Ω̂; ν) as functions on L2(Ĝ)
is an isometry. More precisely L2(Ω̂; ν) consists of f ∈ L2(Ĝ) such that

τν(k)f(gk) = f(g), k ∈ K,

and

‖f‖2ν =
∫

Ĝ

|f(g)|2 dg < ∞,

where dg is the Haar measure on Ĝ normalized so that
∫

Ĝ
dg = 1.

The space V := Cd can be realized as an open subset in Ω̂ and we shall realize
the space L2(Ω̂; ν) as point-wise functions on V . Under our assumption ν ≥ 0 the
space of holomorphic sections of the line bundle (98) is non-zero, and there exists
a global frame eν(z) with point-wise norm

‖eν(z)‖2z = h(z,−z)−ν .

Then a section f ∈ L2(Ω̂; ν) will be written as f = f(z)eν(z) for a point-wise
function on V such that

‖f‖2ν = ĉν

∫

V

|f(z)|2h(z,−z)−νdµ0(z), f = f(z)eν(z),

where

dµ0(z) =
dz

h(z,−z)p

is the Ĝ-invariant (Kähler) measure on Ω̂. To avoid confusion we write L2(V, ν) for
the space of L2-functions f(z) with the above norm. As an L2-space and unitary
representation of Ĝ, L2(Ω̂; ν) = L2(V, ν) via this identification.

Let gC = p+ + kC + p− be the Harish-Chandra decomposition of gC. We use
the same complex structure for Ω as for Ω̂, so that p+ = T

(1,0)
0 (Ω̂) ≡ V is the

holomorphic tangent space at 0 ∈ V ⊂ Ω̂. Let t ⊂ kC be a Cartan subalgebra, and
let γ1 > · · · > γr be the Harish-Chandra strongly ortogonal roots so that γ1 is the
highest root for p+ as representation of kC. In particular γ1 is the highest root of
gC as representation of gC. Let t− be the span of the co-roots of γ1, · · · , γr and
let t = t− + t+ with γ1, · · · , γr vanishing on t+. The root space decomposition of
gC = p+ + kC + p− is refined as gC = (p+ + k+) + t + (k− + p−) with k− + p− the
space of negative root vectors, and k+ + k− ⊂ [kC, kC].
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The L2-space L2(Ω̂, ν) is decomposed as

(99) L2(Ω̂, ν) =
∑
m

Vν,m

where each Vν,m is of highest weight whose restriction on t− is

ν

2
+ m1γ1 + · · ·+ mrγr,

ν

2
:=

1
2
ν(γ1 + · · ·+ γr),

where mj are nonnegative integers subject to the condition

(100) m1 ≥ · · · ≥ mr ≥ 0.

When Ω = G/K is not of tube type this does not define completely the high-
est weights and it requires some extra specifications; however the highest weights
of these representations that appear in L2(Ω̂, ν) are uniquely determined by the
condition above, see [Sci], [Shm], [Zh2].

Recall the τν-spherical functions on Ĝ

τ(k1)ντ(k2)νf(k1gk2) = f(g), g ∈ Ĝ, k1, k2 ∈ K.

As functions on Ĝ each space Vν,m contains a unique τν-spherical function Ψν,m

normalized by Ψν,m(e) = 1. We set

φν,m(z) = Jg(0)−
ν
p Ψν,m(g), g · 0 = z,

as a trivialization of the τν-spherical function Ψν,m. In particular φν,m(z) is now
both left and K-invariant, and thus can be realized as a left K-invariant function
on V ⊂ Ω̂, φν,m(kz) = φν,m(z), φν,m(0) = 1, and

φν,m(z) = h(z,−z)−
ν
2 Ψν,m(φ̂z).

In the notation above φm(z) is the coefficient of the section Ψν,m with respect to
the frame eν(z). The orthogonality relations for φν,m read now

ĉν

∫

V

φν,m(z)φν,m′(z)h(z,−z)−νdµ0(z)

= ĉνcΩ2r

∫

Rr
+

φν,m(x)φν,m′(x)
r∏

j=1

(1 + x2
j )

ν−p
∏

1≤j<k≤r

(x2
j − x2

k)a
r∏

j=1

x2b+1
j dxj

=
1

dν,m
δm,m′ ,

where dν,m = dim Vν,m is the dimension of Vν,m (which can be computed using
the Weyl dimension formula). These are the Jacobi polynomials of Heckman and
Opdam. (The functions Ψν,m are the spherical functions φλ,ν studied by Shimeno
for specific discrete values of the parameter λ; see [Shm, Remark 5.12].)

In particular, for m = (0), Vν,(0) is the Bergman space of holomorphic sections
of the line bundle defined by ν in L2(Ω̂, ν). It can be realized as the space of holo-
morphic polynomials of degree ≤ ν and has reproducing kernel ĉνh(z,−w)ν . The
corresponding Heckman-Opdam polynomial is the constant function φν,(0)(z) = 1.

We equip Ω̂ with the Ĝ-invariant (Kähler) metric and let D be the associated
invariant Cauchy-Riemann operator. We describe the decomposition (99) using
the kernels of D

m
. We shall need some results on the vanishing properties of

Shimura operators on the spaces Vν,m obtained in [SaZ]. First we recall the Shimura
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operators using our present formulation. Recall from Section 2 the Hua-Schmid
decomposition

⊗mV =
∑

|m|=m

SmV

of the symmetric tensor product ⊗mV under K. Let Pm be the corresponding
projection. It is a general fact that D̄m : C∞(G,K; τν) → C∞(G,K; τν ⊗ ⊗mV ),
where as before V is identified as the holomorphic tangent space T

(1,0)
0 (Ω̂) of Ω̂

at 0, and C∞(G, K; τν ⊗ ⊗mV ) is the space of smooth sections of the line bundle
Lν ⊗⊗mT (1,0) realized as functions on Ĝ transforming under K as

τν(k)⊗m Ad(k)f(gk) = f(g), g ∈ Ĝ.

The Shimura operators are defined by

Lm = (D̄|m|)∗PmD̄|m|.

We have then
(D̄m+1)∗D̄m+1 =

∑

|m|=m+1

Lm.

Theorem 28. The kernel Ker D̄m+1 in L2(Ω̂, ν) is precisely the direct sum

Ker D̄m+1 =
⊕∑

|m|≤m

Vν,m.

In particular the reproducing kernel at the origin for the space of of nearly holo-
morphic sections of order m + 1 in L2(Ω̂, ν) is given by

N̂m+1
ν (z, 0) =

∑

|m|≤m

dmφν,m(z).

Proof. The operator Lm acts on each irreducible component Vν,n in (99) as a non-
negative scalar multiple of the identity, by Schur’s lemma, and their eigenvalues are
shown in [SaZ] to be given by Okounkov polynomials. More precisely, the eigenvalue
of Lm on Vν,n is a symmetric polynomial L̃m(ν

2 + n + ρ) of ν
2 + n + ρ, where ρ is

the half-sum of positive roots of t in gC. (One may also take ν
2 into the definition

of ρ as above.) It follows from [SaZ, Theorem 5.1] that L̃m(ν
2 + n + ρ) = 0 unless

m ⊆ n (i.e. mj ≤ nj for all j = 1, . . . , r). This implies that

(101)
⊕∑

|n|≤m

Vν,n ⊆ Ker(D̄m+1)∗D̄m+1 = Ker D̄m+1.

Now we prove the reverse inclusion, namely that if |n| > m then D̄m+1 on Vν,n is
non-zero. Suppose to the contrary that D̄m+1 : Vν,n → 0. We use the formulation
as in [SaZ, Section 3.4] for the realization of Vν,n to compute the action of D̄m+1.
As a unitary representation (Vν,n, Ĝ, πn) of Ĝ, the space Vν,n contains a unique
non-zero vector vν such that

πn(k)vν = τν(k)vν

where τν is the one-dimensional representation defined as above. Moreover both
representations τ−ν and τν appear in Vν,n. As functions on G, the space Vν,n ⊂



34 M. ENGLIŠ, E.-H. YOUSSFI, AND G. ZHANG

L2(Ω̂, ν) ⊂ L2(Ĝ) is obtained as

v ∈ Vν,n 7→ fv(g) = 〈πn(g−1)v, v−ν〉, fv ∈ Vν,n ⊂ L2(Ĝ),

where with some abuse of notation we have used the same notation Vν,n both as
Ĝ-representation and as a space of functions. The assumption D̄m+1 : Vν,n → 0
implies in particular that D̄m+1fv−ν = 0, and its evaluation at g = e implies further
that

πn(X)v−ν = 0
for all X ∈ Sm+1(p−). Let X = X1Y where X1 ∈ p− is an arbitrary negative root
vector and Y ∈ Sm(p−) is a k+-lowest weight vector in Sm(p−) with lowest weight
−(m1γ1 + · · · + mrγr) with m1 ≥ · · · ≥ mr ≥ 0. (A construction of all lowest
weight vectors is found in [Up1] but we shall not need the explicit form.) We have
then πn(X1)πn(Y )v−ν = 0. Since v−ν defines a one-dimensional representation of
kC we have always πn(X)πn(Y )v−ν = 0, for X ∈ k− ⊂ [kC, kC]. In other words,
πn(Y )v−ν is a lowest weight vector for the gC-representation unless it vanishes.
However by the Hua-Schmid decomposition the element πn(Y )v−ν has lowest weight
−ν

2 − (m1γ1 + · · ·+mrγr), m1 + · · ·+mr = m < |n|. But the space Vν,n has lowest
weight −ν

2 − (n1γ1 + · · ·+ nrγr) and thus πn(Y )v−ν = 0. Acting by k ∈ K we find
πn(Ad(k)Y )πn(k)v−ν = 0. Again v−ν defines a one-dimensional representation of
K, πn(k)v−ν = τ−ν(k)v−ν with scalar character τ−ν(k). Thus πn(Ad(k)Y )v−ν = 0.
Furthermore {Ad(k)Y, k ∈ K} generates the irreducible the representation Sm(p−)
so we get πn(X)v−ν = 0 for all X ∈ Sm(p−), and further πn(X)v−ν = 0 for all
X ∈ Sm(p−). Continuing this procedure we get that v−ν = 0, a contradiction.
This proves our claim on Ker D̄m+1 and then on the reproducing kernel. ¤
Remark 29. As noted in [Shm, Remark 5.12] the spherical functions φν,m(z) here
are precisely the Heckman-Opdam polynomials in Corollary 26 under proper coor-
dinate change. Thus Theorem 28 is just an abstract restatement and a different
proof of the expansion in Corollary 26 (with m + 1 replacing m for notational
convenience) with interpretation of the coefficients using the dimension dν,m. ¤
Remark 30. The subspace Vν,m can also be described using, as in Section 3, the
quasi-inverse ∂ log h(z,−z). In the local coordinates z ∈ V ⊂ Ω̂ the space Vν,m

consists of functions
f(z) = ⊗m(∂ log h(z,−z))(F (z))

where F is a holomorphic section of the bundle Lν⊗⊗mT (1,0) in the highest weight
representation above. ¤
Remark 31. It follows from the proof above that for any n there exists an n′,
|n′| ≤ |n| such that the eigenvalue L̃n′(ν

2 + n + ρ) of the Shimura operator on Vν,n

is nonvanishing, L̃n′(ν
2 + n + ρ) 6= 0. This might be a known fact or can be proved

by using Koornwinder’s formula (see [Ko], [Ok] and [SaZ, Theorem 5.5]) for L̃n′ ,
which in turn can give a different proof of the reverse inclusion of (101). ¤
Example 32. Let us again make everything more specific for the rank one case,
i.e. when Ĝ/K = CP d is the complex projective space. In this case it is more
convenient to use the realization of CP d as CP d = U(d+1)/U(d)×U(1). We choose
the Cartan subalgebra of U(d + 1) as diagonal matrices identified as Rd+1, with
the Harish-Chandra root β = (1, 0, · · · , 0,−1). The highest weights above are now
(ν + m, 0, · · · ,−m). The sections of the line bundle with parameter ν on CP d =
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U(d + 1)/U(d) × U(1) can be realized as functions on the sphere S2d+1 = U(d +
1)/U(d) and the representation space with the highest weight (ν + m, 0, · · · ,−m)
is the space of (p, q) = (ν + m,m)-spherical harmonic polynomials. We write
φν,(m) = φν,m.

When ν = 0, i.e. the spherical case, the highest weight is of the form m = mβ
with spherical polynomial

φ0,m(exp(H)) = 2F1

(−m, d + m
d

∣∣∣ sin2 β(H)
2

)
;

see [He, Theorem V.4.5] and Remark 21 above. For general ν ≥ 0,

φν,m(exp(tH)) = 2F1

(d + m + ν,−m
d

∣∣∣ sin2 t
)
.

See [SaZ], [JW].
By the Schur orthogonality we have

〈φν,m, φν,m′〉 =
1

dν,m
δm,m′ ,

where dν,m is the dimension of the representation space Vν,m. Here the inner
product is given by

〈φ, ψ〉 = ĉν

∫ π
2

0

φ(sin2 t)ψ(sin2 t) sin2ν+1(2t) sin2(d−1)−2ν(t)dt

= ĉν

∫ π
2

0

φ(sin2 t)ψ(sin2 t) sin2ν(2t) sin2(d−1)−2ν(t)d sin2 t

= ĉν

∫ 1

0

φ(x)ψ(x)(1− x)νxd−1dx.

The τν-spherical function above is

φν,m(x) = 2F1

(−m,m + d + ν
d

∣∣∣x
)
.

The dimension of the representation space Vν,m can be easily found using the Weyl
dimension formula and equals

dν,m =
(2m + ν + d)(m + ν + 1)d−1(m + 1)d−1

d!(d− 1)!
.

In particular,

dν,0 =
(ν + d)(ν + 1)d−1

d!
=

(ν + 1)d

d!
=

(
ν + d

d

)

which is precisely the dimension of the space of polynomials P≤ν(Cd) on Cd of
degree ≤ ν realized as the holomorphic sections in L2(Ω̂, ν).

So we are computing the sum
∑

m≤n

dν,mφν,m(x) =

∑

m≤n

(2m + ν + d)(m + ν + 1)d−1(m + 1)d−1

d!(d− 1)! 2F1

(−m,m + d + ν
d

∣∣∣x
)
.

To carry out the summation we use the following elementary observation.
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Lemma 33. Let dµ(x) be a finite Borel measure on R+ such that all polynomials
are dense in L2(R+, dµ). Let {pm}∞m=0 be the orthonormal basis obtained from the
Gram-Schmidt orthogonalization of the polynomials {xm}∞m=0. Then the reproduc-
ing kernel

∑n
m=0 pm(x)pm(0) evaluated at 0 is

n∑
m=0

pm(x)pm(0) = Anqn(x)

for some constant An, where {qn(x)}∞n=0 is the orthonormal basis obtained from
{xn}∞n=0 for the space L2(R+, dµ̃), where dµ̃ = x dµ(x).

Proof. Write Pn(x) =
∑n

m=0 pm(x)pm(0). We prove that Pn(x) is orthogonal to
all polynomials xm, 0 ≤ m ≤ n − 1, in the space L2(R+, dµ̃). Indeed the inner
product of xn and Pm in L2(R+, dµ̃) is∫ ∞

0

xmPn(x)x dµ(x) =
∫ ∞

0

xm+1Pn(x) dµ(x) = xm+1|x=0 = 0,

since Pn(x) is the reproducing kernel at 0 in L2(R+, dµ) for the polynomials of
degree ≤ n and 0 < m + 1 ≤ n. Thus Pn is proportional to qn. This proves the
lemma. ¤
Theorem 34. The reproducing kernel N̂n

ν (z, 0) at the origin for the space N̂n
ν (CP d),

under the local trivialization above using the local frame eν on Cd ⊂ CP d, is

N̂n
ν (z, 0) =

∑

m≤n

dν,mφν,m(x) = An 2F1

(−n, n + d + ν + 2
d + 1

∣∣∣x
)
, x =

|z|2
1 + |z|2 ,

where the positive constant An is given by (103) below.

Proof. We use Lemma 33. The polynomials {φν,m(x)} form an orthogonal ba-
sis for the space L2((0, 1), dµ(x)), dµ(x) = (1 − x)νxd−1 dx, and they are the
same orthogonal basis as obtained from the Gram-Schmidt process from the mea-
sure dµ(x). The orthogonal basis for the measure dµ̃(x) = x dµ(x) = (1− x)νxd+1

is 2F1

(−m,m + d + ν + 2
d + 1

∣∣∣x
)
. Thus

∑

m≤n

dν,mφν,m(x) =
∑

m≤n

dν,mφν,m(x)

= An 2F1

(−n, n + d + ν + 2
d + 1

∣∣∣x
)(102)

for some constant An. To find An, we view (102) as an identity of two polynomials
of x ∈ R. The leading coefficients of xn in (102) are

dn,ν
(−n)n(n + d + ν)n

(d)nn!
= An

(−n)n(n + d + ν + 2)n

(d + 1)nn!
.

Thus

An = dn,ν
(n + d + ν)n(d + 1)n

(n + d + ν + 2)n(d)n
= dn,ν

(n + d + ν)n(d + n)
(n + d + ν + 2)nd

=
(2n + ν + d)(n + ν + 1)d−1(n + 1)d−1

d!(d− 1)!
(n + d + ν)n(d + n)
(n + d + ν + 2)nd

=
(n + ν + 1)d+1(n + 1)n+d−1

(2n + d + ν + 1)d!2
.

(103)
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