DICHOTOMY FOR TSI POLISH GROUPS I: CLASSIFICATION BY
COUNTABLE STRUCTURES

JAN GREBIK

ABSTRACT. We introduce a property of orbit equivalence relation that we call property
(IC) and show that a Borel orbit equivalence relation EX induced by a continuous action
of a tsi Polish group G on a Polish space X satisfies property (IC) if and only if it is
classifiable by countable structures. Moreover, we describe a class of Borel equivalence
relations that serve as a base for non-classification by countable structures for such Borel
orbit equivalence relations.

The orbit equivalence relation Ej induced by a group action G ~ X is defined as
(r,y) €EESY & Fge€Gg-v=y.

We only work in the setting when X is a Polish space, G is a Polish group, G ~ X is a
continuous action and EF is a Borel subset of X x X.

We say that an equivalence relation E on a Polish space X is classifiable by countable
structures if it admits a Borel reduction to an isomorphism relation of countable structures
in some countable language. This is equivalent, see [7, Section 6, Theorem 6.1], with F
being Borel reducible to Egoo where Y is a Polish S,.-space and S, is the Polish group
of all permutations of natural numbers N. In fact, we use the latter as a definition of
classification by countable structures.

In this note we introduce a property for orbit equivalence relation that we call property
(IC), see Section [3] for the definition. Informally, property (IC) gives a countable Borel
decomposition of a Polish G-space X into arbitrarily small independent clusters within
each orbit. Next we state our main result.

Theorem. Let G be a tsi Polish group and X be a Polish G-space such that ES is a Borel
equivalence relation. Then the following are equivalent

e X satisfies property (IC),
e EJ is classifiable by countable structures.

Our result follows immediately from much refined Theorem [7.1} In the proof we use
a version of the Go-dichotomy, see [9], [12] and a certain class B of Borel equivalence
relations as a base for non-classification by countable structures. Informally, B consists of
all turbulent cyp-equalities, equivalence relations that are induced by canonical actions of
Polishable tall ideals on N and Borel equivalence relation that contain one of these and are
meager in the corresponding topology, see Section [5| for precise definition.

In [4] we use this characterization of classification by countable structures to show the

following. Let G be tsi Polish group and X be a Polish G-space such that EZ is Borel and
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classifiable by countable structures. Then either E¥ is essentially countable or E3 <p E&
where E; = EY.

1. NOTATION

For a set X we write X <N for the set of all nonempty finite sequences of X. Let 7 € X<V,
We define 5(7) € X, t(7) € X and [(T) € N to be the first element of 7, last element of T
and the length of Z. When X = N then we use |s| instead of I(s) where s € N<N. For a
natural number ¢ < [(Z) we define T; to be the i-th element of Z. Given a map ¢ : X — Y
we abuse the notation and extend it to a map ¢ : X<V — Y <N coordinate-wise, i.e.,

o(T); = o(T;)
for every i < [(T). Define
AX: {E€X<NE|’L<]<Z(QJ) El:fj}
Let X and Y be sets, I some index set and (A;);er and (B;)jer be sequences of subsets
of X<N and Y<N, respectively. We say that a map ¢ : X — Y is a homomorphism from
(Aj)jer to (Bj)jer if
EEAJ' = QO(E) ij
for every 7 € X<N and j € I. It is a reduction if

TeA; & ¢T) € B,

for every 7 € XN and j € I.

A (finite-dimensional) dihypergraph on X is any subset of X<N\ (Ax U X). If H is a
dihypergraph on X and A C X, then we say that A is H-independent if H N A<N = ().

A topological space X is a Polish space if the underlying topology is separable and
completely metrizable. A topological group G is a Polish group if the underlying topology
is Polish. We denote the o-ideal of meager sets on G as Mg. We use the category
quantifiers 3*, V* in the standard meaning, i.e.,

Vige U P(g) & {g€eU:-P(g)} € Mg

FgeUPg) < {geU:P(g)} ¢ Mg

where U C G is open set and P is some property.

A Polish group G is tsi (two-sided invariant) if there is an open basis at 1 made of
conjugacy invariant open sets. Equivalently, see [2, Exercise 2.1.4], there is a compatible
metric d on G that is two sided invariant, i.e., d(g,h) = d(h™' - g,1g) = d(g - h™',1¢)
for every g,h € G. It follows from [2] Exercise 2.2.4] that such a metric d is necessarily
complete. We fix such a metric d on G and put V., = {g € G : d(g,1¢) < €}. Note that
h-V.-h=!t =V_for every ¢ > 0 and h € G. We abuse the notation and put Vj, = ka. In

some cases we do not require G to be tsi and in that cases we assume that {V} }ren is some
open neighborhood base at 15 such that Viiq - Vg C Vi and Vj, = Vk,_1 for every k € N.
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If there is a fixed continuous action of a Polish group GG on a Polish space X, then we
say that X is a Polish G-space. The orbit equivalence relation EZ is defined as

(r,9) € E5 & JgecGg-x=y.

where z,y € X.
Let X be a Polish G-space, V C GG, U C X and x € X. We define

JV)={zc XN\ Ax: (Vi< l(T) = 1) Tiy1 €V - T},
J(x,V)={z € J(V):s(T) = x},
JUV)=JV)nU,

T(x, U, V) =T, V)NnJU,V).

If we assume that U and V are open neighborhoods of x and 1g, then the local orbit
O(z,U,V) is defined as

Oz, U, V)={t(T) : 7 € T (z,U,V)}

(see [2, Section 10.2]).
Let X be a Polish G-space, x € X and A C X. We write G(z,A) ={g € G:g-x € A}.

Definition 1.1. Let X be a Polish G-space. We say that C C X is a G-lg comeager set
if G\ G(z,C) € Mg for every x € X. Equivalently,

VigeGg-xeC
holds for every x € X

We say that a tree T C N<Nis finitely uniformly branching if there is a sequence {I% },,en
of natural numbers such that [L > 2 for every m € N and

y={ieN:s"(i)eT}

for every s € T. If T is a tree and s € T, then we define T, = {t € NV : s7¢ € T'}. Note
that T, = T; whenever ¢, s € T and |t| = |s|. We denote as [T] C N¥ the set of all branches
through 7, i.e., o € [T] if and only if « [ m € T for every m € N.

Definition 1.2. Let T be a finitely uniformly branching tree and s € T'. The dihypergraph
GT on [T] is defined as

6T ={(s~ () a)iar, 0 € [T~}
The equivalence relation El on [T7] is defined as
(a,8) €Ey « [{n€N:a(n) # B(n)} <Xy

where a, 3 € [T]. In the case when T = 2<N we write Ey instead of E§<N.

Let E be an equivalence relation on a Polish space X and F' be an equivalence relation
on a Polish space Y. Then we say that E is Borel reducible to F and write E <pg F' if
there is a Borel map ¢ : X — Y that is a reduction from E to F.
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2. Gy-LIKE DICHOTOMY

Recall that if G is a Polish group, then {Vj}ren is an open neighborhood base at 14
such that Vi1 - Vi C Vi and Vy = Vk_l for every k € N.
Let X be a Polish G-space. Define

Him ={Z€ XN :T€T(Vn) A HT) € Vi-s(2)}

for every k,m € N. Note that if A C X is Hy, ,,-independent, then it is Hy ,,/-independent
for every m < m’ € N and k > k' € N. This is because Hi, 2 Hirmr Whenever
m<m' €Nand k>Fk e€N.

Proposition 2.1. Let X be a Polish G-space such that EY is Borel. Then Hy., is a Borel
subset of X<N for every k,m € N.

Proof. Let V' C GG be an open neighborhood of 15. Define a binary relation Ry on X as
(x,y) E Ry & JgeV g-xz=uy.

Then it follows from the assumption that EZ is Borel together with [I, Theorem 7.1.2]
that Ry is Borel.
Let k,m € N. We have

TEHm © TEAx N Vi< ((T)—1) (Ti,Tiy1) € Ry, N (5(T),4(T)) € Ry,
and that shows that Hy,, is a Borel subset of X <N by the previous paragraph. O

Theorem 2.2 (Gy-like dichotomy). Let G be a Polish group, X be a Polish G-space such
that EX is Borel and A C X be a X7 set. Then one of the following holds
(A) there is a sequence { Ay hien of X subsets of X such that A = J,cy Ary for every
k € N and for every k,l € N there is m(k,l) € N such that Ap; is Hpm)-
ndependent,
(B) there is k € N, a finitely uniformly branching tree T, a dense set {sp}men C T
such that s, € N™ and a continuous map ¢ : [T] — A that is a homomorphism
from (sz)mEN to (Hk,m)mEN-

Proof. Tt follows from Proposition that H,‘f’m = Hy.m N AN is a 31 dihypergraph on an
analytic Hausdorff space A. Fix k € N and apply a version of the Gy-dichotomy, see [11],
Theorem 2.2.12], for sequence (Hj,,)men. Then ecither there is a sequence {Ag;}ien of
relative Borel subsets of A such that UleN Ay = A and Ay is H,ﬁm(kvl)—independent for
some m(k,l) € N, or (B) holds with k = k. It is easy to see that if the first case occurs
for every k € N, then {Ay;}x en is the desired sequence in (A). O

3. PropERTY (IC)

Definition 3.1. Let X be a Polish G-space and B C X be a G-invariant Borel set. We say
that B satisfies property (IC) if there is a sequence of Borel sets {Ay;}rien such that for
every k,l € N there is m(k,l) € N such that Ay is Hym,-independent and B = |J,cy Ar,
for every k € N.

We say that Polish G-space X satisfies property (IC) if X satisfies property (IC).
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Note that if V}, C G is a subgroup, then X is Hj i-independent. Therefore property
(IC) holds for X whenever G contain an open basis at 15 made of clopen subgroups, i.e.,
whenever G is a closed subgroup of S..

Let X be a Polish G-space. Recall that the action G ~ X is turbulent if

(1) every orbit is dense and meager in X,
(2) O(z,U,V) is somewhere dense for every x € X and every opensets U C X,V C ¢
such that x € U, 14 € V,

see [2l, Section 10].

Theorem 3.2. Let X be a Polish G-space that satisfies property (IC). Then the action is
not turbulent.

Proof. Suppose that the action is turbulent. Let D C X be a Borel comeager set such
that Ay, N D is relatively open in D for every k,l € N. This can be done using [8]
Proposition 8.26]. It follows from [8, Theorem 16.1] and [8, Theorem 8.41] that

D'={zxeD:¥VgeGg-z€D}

is a Borel comeager subset of X.

Pick 2 € D". Note that G(z,D’) is comeager in G. We show that G -z = [z]px is
nonmeager. Suppose that G - x is meager. Then there are closed nowhere dense sets
{F, }ren such that G -« C |J, oy F». Note that G(z, F,) is closed for every r € N and
G = U,en G, F.). By [8, Proposition 8.26] there is an index r € N such that G(z, F})
contains an open set. This implies that there is ¢ € G and k € N such that V-9 C G(z, F}.)
andy =g-x € D'. Let | € N such that y € A;,;. Note that

Vicy=Vy-g-2x CF,

because F;. is closed.

Use the definition of D to find an open set U such that U N D" = Ag; N D’. Consider
the local orbit O(y,U, Vi) and pick z € O(y,U, V). By the definition, there is
w € U<N such that wy = y, Wiw)—1 = 2 and wiy1 € Vi - 2 for every i < I(z) — 1. Let
P C X be an open neighborhood of z. Note that G(y,U), G(y, P) are open and G(y, D")
is comeager, in particular, dense in G(y,U). Therefore we can find a sequence 2z’ € U<N
such that [(2) = I(2'), 2z =y, zi € UN D' for every i < (%), 2,1 € Viny - % for every
i <I(z') — 1 and 2, € P. Note that we have

Z;EUOD/:AkJmD/gAk,l

for every i < I(2'). The set Ay, is Hp m,-independent and therefore Zl/(z/)—l € Vi, -y. This
implies that Vj - y N P # () and consequently that

O(y7 U7 Vm(k,l)) g ‘/;c Y.

Therefore F, contains an open set by the assumption that the action is turbulent, i.e.,
O(y, U, Vin(k,)) is somewhere dense. This shows that [z] BX is nonmeager and that contra-
dicts the definition of turbulence. O
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Recall that if GG is a tsi Polish group, then there is a fixed compatible complete two-sided
invariant metric d on G and the sequence {Vj }ren is defined as Vi, = {g € G : d(g,1¢) <
%}

Proposition 3.3. Let G be a tsi Polish group, X be a Polish G-space and A be a Hyt2.m-

independent X1 subset of X. Then there is a Borel G-invariant set B C X such that A C B

and a sequence { By, tnen of Him+2-independent Borel subsets of X such that UneN B, = B.

Proof. We may assume that k + 2 < m. Define
A={re X :3g€ Va9 v A}.

Then it is easy to see that A’ is a 3! subset of X. Let T € J(A’,V,,,2) and pick any
y € A<N such that ((T) = () and T; € V,,42 - T, for every ¢ < [(T). Then we have

— -1 = -1 — -1 — —
Uit1 € Vipo Tit1 S Vi Vinpo T C Vo - Vi Voo - 9, € Vi - 4

for every i < [(y) — 1. The set A is Hjyi2m-independent and that gives t(7) € Viio - 5(7).
We have

H(T) € Vinrz - t(¥) C Vi - Virz - 5(U) C Vi - Vi - Vi do - 8(T) C Vi - 8(T)

and that shows that A’ is Hy11 m+2-independent.
By [8, Theorem 28.5] there is a Borel set D' C X that is Hy11 m+2-independent and
A’ C D'. Define
D={xeX:IreNVygeV,g-z€D'}.

It follows from [8, Theorem 16.1] that D is a Borel set and the definition of A’ together
with A" C D’ implies that A C D. Similar argument as in previous paragraph shows that
D is Hp m+o-independent. Moreover it is easy to see that if G(x, D’) is comeager in V,,
then y € D for every y € V,41 - x. This shows that G(z, D) is open in G for every z € X.

Let {gn}nen be a dense subset of G such that go = 1g. Define B, = g, - D and
B = U, eny Bn- Then B is a G-invariant Borel set because G(x, D) is nonempty open set
whenever x € D. Moreover, A C D = By C B.

It remains to show that B, is Hj ,4o-invariant for every n € N. Let g € G, V be a
conjugacy invariant open neighborhood of 15 and =,y € X, then y € V - z if and only if
g-y €V -(g-x). This shows that

gn - j<D7 Vm+2) = j<Bna Vm+2)

where the action is extended coordinate-wise and consequently that B,, is Hj, ,,,+2-independent
for every n € N. This finishes the proof. U

Corollary 3.4. Let G be a tsi Polish group, X be a Polish G-space and A be a X1 subset
of X such that (A) in Theorem [2.4 holds. Then there is a Borel G-invariant set B C X
that satisfies property (IC) and A C B.

Proof. Let k,l € N. Apply Proposition to Apye; € X to get a Borel G-invariant set
B*! C X together with a sequence {B,’fbvl}neN of Hp m(k+2,)+2-independent Borel subsets of
X such that B* =, BF.
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Define
B=() <U B’“’l> :
keN \IeN
Then it is easy to see that B is a Borel G-invariant subset of X that satisfies property (IC)
and A C B. O

Next theorem shows that property (IC) is stronger condition than classification by count-
able structures for tsi Polish groups.

Theorem 3.5. Let G be a tsi Polish group and X be a Polish G-space that satisfies property
(IC) and EZ is Borel. Then EF is classifiable by countable structures.

Proof. An elementary proof of this statement follows from [3, Definition 3.3.6, Proposi-
tion 3.3.7, Theorem 3.3.8].Maybe sketch

Alternative approach that does not need the assumption that E3 is Borel is to appeal
to [7, Theorem 13.18] and Theorem [3.2] O

Corollary 3.6. Let G be a tsi Polish group, X be a Polish G-space such that EX is Borel
and A be a 31 subset of X such that (A) in Theorem holds. Then there is a G-invariant
Borel set B C X such that A C B and Eé I B x B is classifiable by countable structures.

In particular, if A= X, then (A) implies that EY is classifiable by countable structures.

Proof. Corollary produces a Borel G-invariant set B C X such that A C B. There is
a finer Polish topology on X such that B is clopen and the action is continuous, see [2
Corollary 4.3.4]. This turns B into a Polish G-space that satisfies (IC) and ES = EX
B x B is Borel. The proof is finished by applying Theorem [3.5]

00—

4. UNIFORM PSEUDOMETRIC

Definition 4.1. Let T be a finitely uniformly branching tree. A function d : [T] x [T] —
[0, +00] is called a Borel pseudometric if

(1) d is pseudometric,

(2) d7*([0,¢€)) is a Borel subset of [T] x [T] for every ¢ > 0,

(3) ({B :d(a, B) < +o0},d) is a separable pseudometric space for every a € [T,

(4) if oy =) a and {o bnen s a d-Cauchy sequence, then d(om,, o) — 0.
Moreover, we say that a Borel pseudoemtric is uniform if

o for ecverym €N, s,t € TNN™ and «, B € [Ts] = [T} we have

1
d(s™a,t7a) = d(s™B,179)] < 5

1
ld(s"a,s™6) —d(t"a,t7P)| < o

where we set | + 0o — +oo0| = 0.

First we show a canonical way how to find Borel pseudometrics. Recall that if G is a tsi
Polish group, then d is a fixed two-sided invariant metric on G.



8 JAN GREBIK

Proposition 4.2. Let G be a tsi Polish group, X be a Polish G-space such that EZ is
Borel, T be a finitely uniformly branching tree and ¢ : [T] — X be a continuous map.
Then the function dy, : [T] x [T] — [0, +00] defined as
dy (e, f) = inf{d(g,1c) 1 g € G N g-p(a) = ¢(B)}

18 a Borel pseudometric.
Proof. The invariance of d guarantees that d(g,1g) = d(g',1¢g) for every ¢ € G and
consequently that d, is symmetric. Let «, 3,7 € [T]. We may assume that d,(«, 3) +
d,(f,7) < +oo. In that case for every e > 0 there is g,h € G such that d(g,1q) <
dy(a, B) + € and d(h, 1) < d,(B,7) + €. Then we have

dtp<aa’y> — 2¢ S d(h' -9, 1G) — 2¢ S d(h7 1G’) + d(g7 1G) —2 < dw(a/76) + dtp(@a 7)

because d(h - g,1¢) < d(h - g,9) + d(g,1¢) = d(h,1c) + d(g,1g) by the invariance of d.
That proves (1).

Recall that for € > 0 we defined V, = {g € G : d(g,1g) < €}. It follows, as in the proof
of Proposition [2.1} that the relation Ry, defined as

(z,y) €Ry, & JgeVeg-z=y
is Borel for every € > 0. Note that we have
d,'([0,€)) = {(a, B) € [T] x [T] : dy(a, B) < e} = (07" x ') (Rv,)

and that shows (2).

Let a € [T] and S, = {ﬁ d(a, f) < +00}/d, be the metric quotient. Then the space
Go={9€G:38€[T] g-¢(a) =¢(B)} endowed with d is a separable metric space and
the assignment g — Where g-o(a) = p(P) is a contraction from (G, d) to (S,,d). This
shows (3).

Let {a, fnen, @ € [T] be such that the assumptions of (4) are satisfied. After possibly
passing to a subsequence we may suppose that there is a sequence {g, }nen C G such that
gn - (o) = @(au41) and d(gn, 1) < 5. Define b = g,—1 - ... - g, for every m < n € N.
Then it follows that {h },en is d-Cauchy whenever m € N is fixed and since d is complete
there is {hy, fmen € G such that A", — h,,. Moreover we have d(h,, 1g) < 2,71%1 Continuity
of the action and of ¢ gives

hum - o) <= hpy, - p(am) = @(an) = ¢(a).
This proves (4) and finishes the proof. O

It follows from (1) above that every Borel pseudoemtric d on [T] defines a Borel equiv-
alence relation Fyg on [T as

(a,B) € Fa < d(a,B) < +oo.
Note that in the case of Proposition 4.2\ we have that Fg = (¢~! x ¢ ') (EJ).

Theorem 4.3. Let T be a finitely uniformly branching tree and d be a uniform Borel
pseudometric such that EY C Fy. Then the following are equivalent

(a) Fq is nonmeager,
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(b) Fa = [T] > [T].

Proof. (b) = (a) is trivial. We show that (a) = (b). Suppose first, that for every
k € N\ {0} there is my € N such that d(o, 8) < 1 for every o, € [I] such that
{neN:an)#B(n)}Nmg =0 and (o, 8) € EI. We may assume that {my}rey C N
is strictly increasing and that mg = 0. Let z,y € [T] and define yx € [T] such that
yr | my =y and yi(n) = x(n) for every n > my. Then clearly yo = z, (y,,ys) € EJ C Fy
for every r,s € N and y, — 77 y. Let k € N\ {0} and r,s > k. Then we have

{n € Ny, (n) #yu(n)} Nmy =0

and consequently d(y,,ys) < % This shows that {yx}ren is a d-Cauchy sequence and by
(4) from the definition of Borel pseudometric we have d(yx,y) — 0. In particular, there is
k € N such that d(yk, y) < +o00 and therefore (yx,y) € Fq. Altogether we have (z,y) € Fy
and since x,y € [T] were arbitrary we have that Fy = [T x [T7.

The other case is when there is € > 0 such that for every m € N there are ay,, B, € [T
such that d(a, 8) > ¢, {n € N: a(n) # B(n)} Nm =0 and (a,,, B,) € EE. We show that
this contradicts Fy being non-meager.

Note that Fy is a Borel equivalence relation by (2) in the definition of Borel pseudo-
metric and every Fy-equivalence class is dense because El C Fy. This implies, by [8]
Theorem 8.41], that there is o € [T] such that [a]q is comeager in [T]. It follows from
(3) in the definition of Borel pseudometric that there are Borel sets {U,;}ieny such that

UleN U = [a]Fd and
d(z,y) <

N

for every | € N and x,y € Uj.

By [8, Proposition 8.26] we find ¢ € T and [ € N such that U; is comeager in '~ [T}].
Pick m € N such that m > |t/| and % < {. We may suppose that a,, = s uy" 2 and
Bm = s uy"x where |s| = m, |ug| = |ui| and x € [Ts~y,] = [Ts~u,)-

Let t € T be such that ¢’ C ¢ and [¢t| = |s| = m. Then we have that U; is comeager in
t™[T;] and therefore there is y € [Ti~y,] = [T3~4,] such that

7wy y, tu Ty € U
In particular we have d(t " uo ™y, t " u1"y) < 5.
Last step is to use that d is uniform. We have

|d(s™ (up"x),s (u1"x)) —d(t™ (ug" z),t" (u1"2))| <
and

[A((t o), (7 ua) ") = ((Ewo) "y, (0 w) " y)| < g
This implies

d(t"uy "y, t"u " y) > d(sTug w5 u " x) — % > %

and that contradicts d(t"uy~y,t"u;"y) < §. This finishes the proof. O
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5. BASE FOR NON-CLASSIFICATION

We describe the family that will serve as a base under <p for non-classification in the
proof of Theorem We denote the power set of N as P(N).

A map © : P(N) — [0, +oc] is a Isc submeasure if O(0) =0, O(MUN) < O(M)+6O(N)
whenever M, N € P(N), ©({m}) < +oo for every m € N and

O(M) = lim ©(M Nm)

for every M € P(N). We say that O is tall if lim,, o, ©({m}) = 0.
Let © be a tall Isc submeausre. Then the equivalence relation Eg on 2" is defined as

(x,y) € Eo & w%i_r}réo@({neN\m:x(n)#y(n)}):O

for every z,y € 2V, We remark that Fg is non-meager if and only if Eg = 2% x 2, compare
with Theorem [4.3]
A sequence of finite metric spaces {(Zn, 0m) fmen is called non-trivial if

liminf r(Z,;,,0,,) >0 & lim j(Z,,,0,) =0
m—00 m—0o0

where 7(Z,0) = max 0 and j(Z,9) is the minimal ¢ > 0 such that there is | € N and a
sequence (2o, ...z) that contains every element of Z and satisfies 9(z;, z;11) < € for every
1 <.

Let Z = {(Zm,0m) }men be a non-trivial sequence of finite metric spaces and [], . Zm

be endowed with the product topology. Then the equivalence relation Ez on ], .y Zm is
defined as

(x,y) € Ez < lim d,(z(m),y(m)) =0

m— 00

for every z,y € [,,en Zm-

Definition 5.1. Denote as B the collection of all Borel meager equivalence relations that
contain FEg for some tall lsc submeasure © or Ez for some non-trivial sequence of finite
metric spaces Z, i.e., for every E € B there is either tall lsc submeasure © such that
Eo C E and E is a meager subset of 2 x 2N, or there is a non-trivial sequence of finite
metric spaces Z such that Ez C E and E 1s a meager subset of HmeN Ly, X HmGN Lo

Theorem 5.2. Let £ € B. Then E is not classifiable by countable structures.

Proof. Tt is easy to see that if Fg is meager, then it is induced by a turbulent action of a
Polish group on 2 whenever O is a tall Isc submeasure and Ez is induced by a turbulent
action of a Polish group on ], .y Zm Whenever Z is a non-trivial sequence of finite metric
spaces, see [3, Appendix 3.7] and [6, Chapter 16].

Let EF € B be a Borel meager equivalence relation on Y. By the definition we find ' C E
such that either I’ = FEg for some tall Isc submeasure © or ' = Ez for some non-trivial
sequence of finite metric spaces Z.

Let W be a Polish S, -space and ¢ : Y — W be a Borel map that is a reduction from
E to EY . Then ¢ is a Borel homomorphism from F to E¢_ and it follows from [2]
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Theorem 10.4.3] that there is y € Y such that ¢*1([¢(y)]Egv ) is comeager in Y. Since 1
is a reduction we have
v [ W)ey ) € Wle-

An application of [§, Theorem 8.41] shows that E' is comeager and that is a contradiction.
0

6. NON-CLASSIFICATION BY COUNTABLE STRUCTURES

The aim of this section is to show that (B) in Theorem implies that EZ is compli-
cated.

Theorem 6.1. Let G be a tsi Polish group, X be a Polish G-space such that EX is Borel
and (B) in Theorem holds for A = X. Then EX is not classifiable by countable
structures.

Proof. Let k € N, T", {s), }men and ¢ : [T'] — X be as in (B) Theorem 2.2 First we
formulate the main technical result that uses crucially that G is tsi. See Section [§ for the
proof.

Lemma 6.2 (Refinement). Suppose that k € N, T", {s] }men and ¢ : [T'] = X are as
in (B) Theorem (2.4 Then there are k € N, T, {sp}men € T and ¢ : [T] - X as
in (B) Theorem such that dy is a uniform Borel pseudometric and ¢ = ¢ o ( where
¢ :[T) = [T"] is a continuous map.

Let k € N, T, {$}men and ¢ be as in Lemma [6.2] Observe that
Ey C Fa, = (¢~ x ¢ )(EF)

because s, € N™ N T for every m € N. The rest of the proof consists of four steps.

(I). The Borel equivalence relation Fy, is meager in [T] x [T']. Otherwise there is a € [T]
such that [a]q is comeager in [T] by [8, Theorem 8.41]. It follows from (3) in the definition
of Borel pseudometric that there are Borel sets {U; }ien such that (J,. U = [a] s, and

1
d¢(a7 5) < ﬁ
for every | € N and «, 8 € U;. Using [8, Proposition 8.41] and the density of {s,, }men we
find m, [ € N such that U is comeager in s, [T, ]. This gives x € [T§,,~ )] = [T5,,~az -1)]
such that
$m(0) "z, 5, (1L —1)" 2z € U
Since ¢ is a homomorphism from Gfm to Hx,m we have that

(@(sm™ (1) ")) iciz, € Hiem

and consequently that

G(sm™ (L = 1)72) & Ve 65w (0) 7).

This gives
TR = . 1
dy(sm(0)", s, (IF—1)"2) > ok
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and that contradicts the choice of x € [T}, ~ (o))
(IT). Let s,t € TNN™, 4,5 < I and 2,y € [Ty~ = [Ts~(j)- Then
v Ny 1
dy(s™(0) 5™ () ") — dy(t™ () 17 () 70l < g

We use that d, is uniform. Namely, we have

P N 1
[do(s™((2) "), s (()79)) = do(¢™ (1) "), ()" 9)| < o5
B N~ el 1
[do((s7 (), (57 (7)) 2) = do((s™ (@) 7y, (07 (1)) "yl < 5oy
and that gives the estimate by the triangle inequality.
(III). Let m € Nand 0 = (0,0,...). Since ({sm ()" 0};<ir, dy) is a finite pseudometric
space we find a metric space (Z,,,0,,) where Z,, = {0,1....,1F — 1} and

—~ PP . 1
|d¢<8m (Z) 0, s, (]) 0)_am(7’7j)|<2m,1

for every i,j < II. Then we have

1 1

ok~ om1 <00, 1y, = 1) < 7(Zim, 0m)

and j(Zm,0,) < 37— because ¢ is a homomorphism from Gy, to Hipm.
This implies immediately that Z = {(Z,,,0.n) }men is a non-trivial sequence of finite
metric spaces. Consider the bijective homeomorphism

n:HZm—>[T]

that is defined as
nx)(m) =i < z(m)=1.

If Bz C E = (n' x5 ')(Fa,), then we are done because £ € B by (I) and ¢ o7
is a reduction from F to Ej. Hence, E& is not classifiable by countable structures by
Theorem [5.2]

(IV). Suppose that Ez € E = (=" xn~')(Fa,) in (III). There is z,y € [],,cn Zm such
that

Om(z(m),y(m)) = 0

and (n(z),n(y)) € Fa,. Set a = n(r) and 8 = n(y). Note that |{m € N: a(m) # B(m)}| =
Ny because EOT C Fa,.

Let

S={seT: :Vi<]|s| (s(i) =ai)Vs@i)=p(i))}.

It follows that S C T is isomorphic to a full binary tree. Moreover, the restriction of dg
to [S] is a uniform Borel pseudometric, in the sense that the uniform condition holds for
every s,t € N NS and z,y € [S,] = [S;]. Write F for the restriction of Fy, to [S] x [S].
Then it follows from Theorem together with («, §) ¢ F that F' is meager.
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Let {m;},en be an increasing enumeration of {m € N : a(m) # f(m)} and set 0, =
a(my), 1; = B(my) for every I € N. Then there is a sequence {t;};ey € N<N such that
a=1ty"0"t,70, ... &B=ty Ly t; 1, ...
and consequently for every s € S there is [ € N such that
sCty ig t i ... 41t
where i; € {0;,1;} for every j < [. Define I' : 2N — S as
[(s)=t"s(0) t17s(1) ... 7 s(|s| =1) ¢y €8
where s(j) = 0; if s(j) = 0 and s(j) = 1; if s(j) = 1. It is easy to see that the unique

extension I' : 2V — [S] is a homeomorphism.
Final step is to define a tall Isc submeasure ©. Let M € P(N) be a finite set. Define

©(M) = sup {d¢(f($),f(y)) cxye2N {leN:z(l) £y} S M } =

=sup{dy(z,y) : 2,y € [S] {m € N: z(m) # y(m)} S {mutiens }.
Let M € P(N) be infinite. Then we define O(M) = lim;_,,, O(M N1).

To finish the proof we need to show that © is a tall Isc submeasure and Fg C F =
<f‘1 X f‘l) (F) = (f‘l X f‘l) (Fa,). Indeed, then we have E € B and ¢ o Tis a
reduction from E to EX.

(a). It is easy to see that © is monotone, () = 0 and O(M) = lim;_,,, O(M N 1)
for every M € P(N). Let M,N € P(N) be two finite sets and z,y € 2 such that
{leN:z(l) #y()} € MUN. Let /() = z(l) for every [ € N\ M and 2/(l) = y(l) for
every [ € M. The fact that dy is a pseudometric implies that

dy(0(2). I(y)) < do(I(), T(2)) + do(L(x'), T(y)) < O(M) + O(N).
This shows that O(M U N) < ©(M) + O(N) for every finite M, N € P(N) and one can
casily check that it extends for any M, N € P(N). Let I € N. It follows from (II),
definition of I and the definition of 9,, in (III) that
~ ~ ~ ~ 1 1
O{1}) < gl ~0m)™0), 8, Almy)"0)) + -y <0 (). Bm) + 5oy

This shows that ©({l}) < 400 for every [ € N and the choice of a = n(x) and 5 = n(y) in
the beginning of (IV) guarantees that

O{1}) < O (), y(m) + =g = 0.

Hence, © is a tall Isc submeasure.

(b) Let z,y € 2V such that (z,y) € Eg and put X = {l € N : z(I) # y(n)}. Then we
have that lim;_,. ©(X \ [) = 0 by the definition of Fg. Define z;(j) = y(j) for every j <
and x;(j) = x(j) for every j > for every [ € N. We have (z;,x) € E, for every [ € N and
x; — y. The definition of I' easily implies that

(f(xl),f(x)) € ET
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and f(xl) — f(y) Let | < r < s & N. We have that {j € N : z,.(j) # x:(j)} =
XN{r,...,s =1} € X \ [ and by the definition of © that

d, (f(mT),f(xs)) <OXN{r....s—1}) <OX\I).

This shows that {T'(z;)}en is a dg-Cauchy sequence. By (4) in the definition of Borel
pseudometric we find [ € N such that

d (T(w), T(y)) < +o0

and, in particular, (f(ml), f(y)) € Fy,. This gives (f(:c), f(y)) € Iy, because (f(:c), f(:cl)) €
E§ C Fa, and the proof is finished. O

7. REMARKS AND QUESTION

Our main result follows immediately from the following statement.

Theorem 7.1. Let G be a tsi Polish group, X be a Polish G-space such that E} is Borel
and A be a 37 subset of X. Then exactly on of the following holds

(1) there is a Borel G-invariant set B C X such that A C B and E§ | B x B is
classifiable by countable structures,

(2) there is E € B on a Polish space Y and a continuous map ¢ : Y — A that is a
reduction from E to EX.

Moreover, (1) is equivalent to

(1)’ there is a Borel G-invariant set B C X such that A C B and B satisfies property
(IC).

Proof. Apply Theorem 2.2, Note that (A) implies (1)’ by Corollary and (1)" implies
(1) by Theorem [3.5]

On the other hand (B) implies by the proof of Theorem [6.1] that there is £ € B on Y
and a continuous map ¢ : Y — X that is a reduction from F to E&. Note that ¢ is of the
form ¢ o T or ¢ on where ¢ is given by Lemmaﬂ and satisfies rng(¢) C rng(y) € A. This
shows that ¢ : Y — A and (2) follows.

Finally observe that (1) implies ~(B) by Theorem [5.2]and consequently (1) implies (1)".
That completes the proof. ]

It is a very interesting question if the base in (2) can be smaller.

Question 7.2. Let C be the collection of meager equivalence relations Eg and Ez where ©
runs over all tall lsc submeasures and Z over non-trivial sequences of finite metric spaces.
Is it enough to take C instead of B in Theorem[7.1] (2)?

Maybe mention Hjorth’s summable ideal dichotomy.
Next, we sketch another application of our approach.
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Theorem 7.3. Let G be a tsi Polish group, X a Polish G-space such that EX is Borel and
F an equivalence relation on a Polish space Y that is classifiable by countable structures.
Suppose that ¢ : Y — X is a Borel map that is a reduction from F to EX. Then there
is a Borel G-invariant set B C X such that p(Y) C B and EX | B x B is classifiable by
countable structures.

Proof Sketch. Put A = ¢(Y') an apply Theorem [7.1] We show that we get (1). Define d,
on Y as in Proposition . Then d, is a Borel pseudometric and Fg, = F since ¢ is a
reduction. In another words, we pull back the metric structure from G on any F-orbit via
the reduction ¢, see Proposition

Define Hgfn onY as

. ) . L 1 . = 1
gEHY, & Vi< -1)d, (7:Ti) < TR (s(7), t@)) > o

Then one can verify that {'Hgfl"}k,leN is a Borel sequence of dihypergraphs on Y and a
version of Theorem [2.2] applies.

If we get a version of (A) we compose the 'H  -independent sets with ¢ and obtain
Hp,m-independent subsets of X that cover A, hence Theorem [3.5] applies.

In the case of a version of (B) we get amap ¢ : [T] =Y that satisfies all the properties
of a version of (B). Note that ¢ o ( is as in B of Theorem [2.2] Applying Theorem we
obtain a refinement of o on that is a reduction from F to EZ for some E € B. However,
( on is a reduction from E to F and that is a contradiction. U

8. PROOF OF LEMMA

Before we prove Lemma we introduce some auxiliary notion and technical results.
Let T be a finitely uniformly branching tree. Let (A, «a) € [N]Y x [T] where [N]Y denotes
the set of all infinite subsets of N. Then we define T{4 ) € T" as

s€Taa & YngAs(n)=a(n)

and denote as [T{4,q)] the branches of T(4 ). Note that [T{4,4)] is closed in [T7].
Write {n; };eny = A for the increasing enumeration of A. Then there is a unique finitely
uniformly branching tree S = S(4,4) and a unique map e(4,) : S — T(4,o) that satisfy

o I7 =1I forevery [ € N,

® lecaa ()] =nyy
® (a0 () () = s(l) for every | < |s],
® ¢(10)(5)(j) = a(j) for every j < nj, such that j & A.

It is easy to verify that e 4, extends to a unique continuous homeomorphism

€aa) : [S] = [Tiam]
that is a reduction from G% to GT( (s  for every s € S. This is because if s(I) = t(l), then
we have e(4,4)(5)(J) = €e(a,a)(t)(J) for every ny < j < mngr
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Lemma 8.1. Let {T,},en be a sequence of finitely uniformly branching trees, (A,,a,) €
IN] x [T] be such that A, Nr+1=1r+1 for everyr € N and Sa, a,) = Tr41 for every
r € N. Then there is a finitely uniformly branching tree S and a sequence of continuous
maps {1 [S] = [T }ren such that

(1) IS5 = 1" for every r <1’ € N,

(2) for every s € SNN" and x € [Ss] there is y € [(T))s] such that ¥, (t"x) ="y

whenever t € SNN" for every r € N,
(3) ,lﬁ""yoo = fé/(Amar) o wT‘Fl,OO?
(4) Yoo is a reduction from G2 to GT for every s € T, NN'.

Proof. Observe that if » <1/ € N, then ;" = [T+ and define [¥ = [T, This defines S and
(1) is satisfied.

For s € SN N" we define ¢,s oo(s) = s for every » < ' € N and inductively 1, »(s) =
e(Ay,ar) © Yrit1,00 for every 0 < 7' < r. Then we have ¢, o = €4, a,) © Yr41,00 for every
re€Nandif s Cte S, then 1, (s) C 1y (t) for every r € N.

Define

w'f OO U /I7Z)7’ OO
leN
for every x € [S] and r € N. We have

wroo U 77/}7‘00 = U €(Ar,ar) © 77&7’-5-1,00(3j r l) =
leN leN
A Q) (U ¢7’+1 OO > = {/\;’/‘-l-l,oo(x)
leN

for every x € [S] and that shows (3).
Note that (1) and (2) imply (4) and therefore it remains to show (2). Let s € SN N"
and z € [Sy]. Put y € [(T})s] such that

Uroo(s7a) = 57,
Let t € SAN and r < I € N. It is clearly enough to show that ¢, .(s"x [ [)(j) =
Uroo(t™x [ 1)(j) for every r < j <.
We show inductively that ¢, (s7x [ 1)(j) = ¢ (t"x | 1)(j) for every r < j < I
where r < r’ < [. By the definition we have
(57 1DG) = (7 1D0) = (72 1)) = bt 11)0)
for every r < j < [. Suppose that it holds for 7’ + 1 where r < 7’ < [. Fix an enumeration

{m,}pen of A,.. Then for every r < j < [ there is p € N such that » < p < [ and
my < j < mypyq. This is because A, Nr+1=7r+41. If m, = j, then we have

wr’,oo(s/—\x f l)(j) = (e(AT,/,aT‘/) o 7/1r'+1,oo(3AfL’ r l)) (mp> = wrurl,oo(s/_\a: f l)(p) =
= @Z)r’-i—l,oo(t/\x r l)<p) = (e(AT/,oaT/) © ¢r’+1,oo<t/\m f l)) (mp) = wr’,oo(t/\x f l)(.])
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from the inductive assumption. If m, < j, then
%',oo(SAiU f l)(j) = (e(AT/,ozT/) o wr’+1,oo<sﬂx f l)) (]) = ar’(j) =

= (e(A,./,a,,/) o wr/Jrl,oo(tA'x r l)) (]) = wr’,oo(t/_\x f l)(])
and the proof is finished. O

Lemma 8.2. Let T be a finitely uniformly branching tree, A € [NJN, m € N, p € TNN™,
{ X, }ren be a sequence of subsets of [T'| with the Baire property such that |J, oy Xr = [T
and {8, }nea C T be dense in T and |s,| = n. Then there is (A,a) € [N]N x [T] such that,
if we put S = S(a,a), we have

(1) ANm =m,

(2) for every s € SNN™ there is r € N such that s7[Ss] C (€aa)) (X)),

(3) {veS:dneAewnn(v) =s,} is dense in S,

(4) there is n € A such that p T e(a,q)(P) = sy.

Proof. Let {p;}ien be an enumeration of 7" such that [{l € N : s = p}| = N, for every
s € T. The construction proceeds by induction on [ € N. Namely, in every step we
construct t; € NN n; € N, oy € T and S; C T such that n; = |y,

o =p to (0)"tm(0)" ... 7 (0)"t
and
Si={seT:lsl=m+1 AVm<j<n V'<Ilj#n —s(j)=aw4))}

In the end we put a = [J,cy s and A = m U {n; }sen.
(I) I = 0. Let {u;}icn, be an enumeration of {s € T : |s| = m}. Define inductively
v; € NN such that

e u; —~v; €T for every 1 < Ny,
o v; C vy for every i < Ny — 1,
o for every i < Ny there is (i) € N such that X, is comeager in u;”v; "[T5, ~,]-
This can be achieved by [8, Proposition 8.26]. Write v = wvy,_1 and use the density of
{Sn}nea to find n € N such that p~v C s,. Let ty € NN be such that ag = p~ty = s,
and ng = |p~tol-
Define
X = U UiAtOA[TuiAtO] ﬁXT(z)
i<No
Note that X is comeager in u; " to " [Ty,~1,] for every i < Ny. Let {O;}1en be a decreasing
collection of open subsets of [T] such that Oy = [T], (),0; € X and O; is dense in
w; " to " [Tu,~1,) for every i € Ny.
(IT) I — [+ 1. Suppose that we have {n, tm<i, {@m}mer, {Sm}m< and {t, }m<; that
satisfies

—~

(a) || = 1y and o, = p Tt (0)7 ... 7 (0) ¢, for every m <,

(b) u™[T,) C O, for every u € S,
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(c) if m <l and p,, C u for some u € S,,, then there is n € A such that |s,| =
Nms1 = Ny, pm C u £ s, and $,(j) = apy1(j) for every j < np,.q such that
j g mU {nr}r<m+1-
Note that if [ = 0, then (a)—(c) are satisfied. Next we show how to find t;,; € 2<N, ;44
and n;;; € N such that (a)—(c) holds.
Let {u;}i<n, be an enumeration of S;. Construct inductively {v;}i<n, such that
e u;"v; € T for every i < N,
o v; C v for every i < N; — 1,
o u; v, [Ty, ~v,] C Oy for every i < N,.
This can be done because for every ¢ < N; there is u € T such that u"ty, C wu; by the
definition of S; and we have O, is dense in "ty [Ty~,]. Put v = vy,_1. If p; satisfies
the assumption of (c), then pick ¢ < N; such that p; C u;. Otherwise pick any i < N,.
It follows from the density of {s,}n,ec4 that there is n € N such that u;”v C s,. Define
tip1 € NN such that u; "t 1 = sp, ap1 = a7 (0) "ty and ngyq = |uy "t
It is easy to see that we have (a). Let u € Sjy1, then there is i < N; such that u; C u.
Moreover, we have u; " v; C u by the definition of ¢;,; and S;;;. We have
u [Tu] E uiAUiA[Tui’“vi] g Ol—i—l

and that shows (b). Item (c) follows directly from the construction.
(IIT). Let A = mU {n; };en and a = [J,cy au- Property (1) is trivial. Let s € SON™. It
is easy to see that e(4.q)(s) = sty and that gives

eaa(s7[9]) € 57t [Tm,)-
By the definition in (I) there is r € N such that
X 5™ty [Thy] C X,
Let ¢ € [Ts] and [ € N Then we have
e (s (cTl) EsTtec(0)"ti™ ... c(l=1)"t7c(l) € 5
sty c(0) "t T T el = 1)t e(l) E ey (s (e T T+1))
and using (b) from the inductive assumption
€am)(57¢) € eam (s (c [T+ 1) T[Ty o (s~ (enr1y)] € O
Therefore
€ (sTc) € st [Tt N ﬂ 0 CX,
IeN
and that shows (2).
Let s € TNN™ and u € N<N such that s~u € S. Find [ € N such that |p;| < n; and
PL=eaa(sTu) =5t .. T u(|ul = 1)ty
It follows that there is w € S; such that p; C w and by (c) in (II) we have n € A such
that |s,| = n1 =n, p C s,. It is easy to see from the construction that

Sp =58ty ... sp(ny) "t = w .
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Put
v=25"8,(n0)" ... 7 sp(ny).
Then we have v € S, e(4,0)(v) = 5, and s~ u E v because e(4,4)(s7u) = p; & sp = €(4,0)(V).
This shows (3).
Finally, we have p C e(4,0)(P) = P to = s, where n € A by the construction in (I). O

Proof of Lemma[6.9 Let {g.}aen be a dense subset of G. The construction proceeds by
induction on 7 € N. Let {p,},eny be an enumeration of N<N such that |{r € N : p, =
s} = Ny for every s € N<N. We construct a sequence of finitely uniformly branching trees
{T,},en together with (A,, ;) € NN x [T,] such that S(a, a,) = Tr41 for every r € N,
{A"}en C NN, {87} ear C T, for every r € N and {p, : [T,] — X},ey such that the
following holds
(1) A, ﬁr+1_r+1foreveryr€N
(2) o = gooe(AO a0)© - - - €(A,_1,a,_1) 18 @ homomorphism from ]ETT to EX for every r € N
(where in the case r = 0 we put ¢g = ),
(3) r € A" for every r € N,
(4) {s tnear is a dense subset of T, such that |s! | = n and ¢, is a homomorphism from
G to Hy,, for every r,n € N,
(5) if pr € T, is such that [p,| <r, then p, C s/} (where p, € T,41 by (1)),
(6) for every s € T, such that |s| = r there is ¢®" € G such that for every ¢ € s™[(T})s]
there is ¢2" € GG such that we have

1

|d<gS:T7 ]'G) - d‘Pr(ST ¢S C)| <5 2T+2’

r

g9:" - pr(s,c) = w( c)
")

( ’gc < 2r+2

for every r € N.
If r =0, then we put To =T, A=N, s% = s/ for every m € N and ¢y = ¢’. Conditions
(1) and (5) are empty, (2)—(4) are satisfied by (B) Theorem [2.2]and for (6) it is enough to
take %0 = g% = 1 for every c € [Ty].
In the inductive step r — r + 1 we construct (4,, ), A", {s7™1},cy and ¢, 41 such
that (1)—(6) holds.
r—r+1 Weuse LemmaB2with 7T =T, A=A m=r+1, {s}pea, pr Cp €
T, " N™ if p, € T, N N<™ otherwise we put p = (0,...,0) € N™ and {X,},env where
N,={seT,:|s|=r+1} and
e if s € N, and s # p, then s~z € X, for every ¢ € N and z € [(T})],
o if v € [(T})p], then p~x € X, if and only if

1 -~ -
Vs € N, (Elg; € G d(g;, 9q(s)) < > A g o(pTT) = @r(s x)) A

A Nd(gges)s 1) — dy, (s7z, p"2)] < T
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It is easy to see that the first line in the second item defines i set and it follows from
Proposition that the second line defines Borel set. Altogether, X, is 31 subset of [T}
for every ¢ € N and [T,] = U, enn X

Lemma produces (A,,a,) € [N x [T}]. Define T,11 = S(4,.a,): Pre1 = ©r © €(A.0n)5

AT ={Jo] € Toi1: In € A7 8}, = e(a.00)(v)}

and {s"™'}, c4r+1 be any enumeration of e(_jhaT)({s;}neAr) that satisfies [s"™!| = n for
every n € N.

It is easy to see that (1) and (2) hold. Note that p = s/T] € T,4; because by
Lemma (4) we have p C e4,.a,)(P) = s, for some n € A". This shows (3) and
(5) follows from p, C p. First part of item (4) follows from Lemma (3). Second
part follows from the inductive hypothesis and definition of {s7*1}, . Namely, for every
n € A" there is ' € A" such that e(a, q,)(si"') = si,. Note that n < n’. Then we

n

. . ~ . . T,
have that ¢, is a homomorphism from GSTZ“/ to Hyn and €4, q,) is a reduction from GSTI}
n n

to GZZ/. This shows that ¢,; is a homomorphism from GSTZLI to Hxn C Hk, because
n < nT/L. "

It remains to show (6). Recall that p = s/ f]. It follows from Lemma (2) that there is
q € N such that p~[(T}41)p) C g(_Alr,aT)(Xq>' Let s € T,.41 and define ¢ = g, € G.
Take any ¢ € [(T,41)s]. By the definition of €4, o,) we find d € [(T}),] = [(T})p) such that

€40 (87¢) =5"d & ea, 0P c) =p d.
Since p~d € X, we find g>"*! = g5 € G such that

S, s, S 1
d(gz™,9""") = d(93 909) < 553
s,T —~ ~ - - 1
‘d(g ’ +17 1G) - dcpr+1(8 G, p C)| = |d(g(I(S)7 1G) - d‘P'r(s dap d)‘ < or+2
g o (PT6) = 93 01 0 €(a,00) (PTC) = 94 0 8(a,.00 (57 C) = pria(sTC)

by the definition of X,. That shows (6) an the proof is finished.

Constructing ¢. Lemma/8.1|gives a finitely uniformly branching tree T" and a sequence

of continuous maps {2/17.,00 [T] — [Tr]} . Define ¢ = ¢, 0 1), », for some, or equivalently
reN

(by Lemma (3)) any, r € N. Note that ¢ is a continuous map and ¢ = ¢ o { where

C = wO,oo-

Define {s,},en = {s]}ren. It follows from (1) and Lemma [8.1] (1) that s = s, € T for
every r € N and |s,| = r. By (4) and Lemma (4) we have that ¢ is a homomorphism
from Gg; to Hy, for every r € N. Let s € T. Then there is r > |s| such that p, = s. It
follows by (5) that s = p, C s,41 = s/1] and consequently that {s,} ey is dense in T'.

It remains to show that d,, is uniform. Let s € T NN, and z,y € [T}]. It follows from
Lemma [8.1] (2) that there is ¢, d € [(T}),] such that

Uroo(t7T) =17 Ayoo(t™y) =t7d
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whenever t € TNN". Let t = s, and ¢*", ¢°", 97" € G be as in (6). Then we have

|y (sr @, 57 0) —dy(s, "y, s7y)| = |dy, (577 ¢, 57 ¢) —dy, (5,7 d, s d)| <

7 T

—~ —~ s,T s,T r— —~ 1
< Iy, (577,57 ) — (g 16)| + |d(g*" 1) — d, (577 d, 5™ d)| < o

and consequently

o o 1
|d,(t"x,s7 ) —dy(ty,s y)\ﬁy

for any t € TN N".
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Pick any g,h € G such that g - p(s7x) = ¢(s7y) and h - p(s,"x) = @(s,"y) if they

exist. Then we have

—~

(93 g g2 (s, mm) = (g7") g g (s ) = wr(s. T d) = (s, y)

—~

97" (g T p(sTa) = g b (g27) T (5T e) = pil(sTd) = p(sTy)
by (6). The invariance of d gives

S,"\— s,r S,T S,r\— S,T S,T ]'
d((g3") ™" 992" 1) = d(g, 97" - (97)7") < d(g,1e) +d(gy", 92") < d(g, 1) + il
where the last inequality follows from

d(gy" 92") < d(gy",g>") +d(g*", g2").

Similarly
s,T S\ — 1
digg” - h-(927)" 1e) < d(h, 1) + 57
This implies
- _ _ 1
[do(s™,579) — duls 057 0)] < oy
and consequently
L o 1
|d<P(S x,s y) _dso(t l‘,t y)‘ S ?

for any t € TN N". If such ¢g,h € G do not exist, then we have
dy(s7z,s y) =dy,(t"z,t7y) = 400
and trivially

|d,(s7,87y) —dy(t"z,t7y)| <

)~

This finishes the proof.
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