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Abstract. We introduce a property of orbit equivalence relation that we call property
(IC) and show that a Borel orbit equivalence relation EX

G induced by a continuous action
of a tsi Polish group G on a Polish space X satisfies property (IC) if and only if it is
classifiable by countable structures. Moreover, we describe a class of Borel equivalence
relations that serve as a base for non-classification by countable structures for such Borel
orbit equivalence relations.

The orbit equivalence relation EX
G induced by a group action Gy X is defined as

(x, y) ∈ EX
G ⇔ ∃g ∈ G g · x = y.

We only work in the setting when X is a Polish space, G is a Polish group, G y X is a
continuous action and EX

G is a Borel subset of X ×X.
We say that an equivalence relation E on a Polish space X is classifiable by countable

structures if it admits a Borel reduction to an isomorphism relation of countable structures
in some countable language. This is equivalent, see [7, Section 6, Theorem 6.1], with E
being Borel reducible to EY

S∞ where Y is a Polish S∞-space and S∞ is the Polish group
of all permutations of natural numbers N. In fact, we use the latter as a definition of
classification by countable structures.

In this note we introduce a property for orbit equivalence relation that we call property
(IC), see Section 3 for the definition. Informally, property (IC) gives a countable Borel
decomposition of a Polish G-space X into arbitrarily small independent clusters within
each orbit. Next we state our main result.

Theorem. Let G be a tsi Polish group and X be a Polish G-space such that EX
G is a Borel

equivalence relation. Then the following are equivalent

• X satisfies property (IC),
• EX

G is classifiable by countable structures.

Our result follows immediately from much refined Theorem 7.1. In the proof we use
a version of the G0-dichotomy, see [9], [12] and a certain class B of Borel equivalence
relations as a base for non-classification by countable structures. Informally, B consists of
all turbulent c0-equalities, equivalence relations that are induced by canonical actions of
Polishable tall ideals on N and Borel equivalence relation that contain one of these and are
meager in the corresponding topology, see Section 5 for precise definition.

In [4] we use this characterization of classification by countable structures to show the
following. Let G be tsi Polish group and X be a Polish G-space such that EX

G is Borel and
1
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classifiable by countable structures. Then either EX
G is essentially countable or E3 ≤B EX

G

where E3 = EN
0 .

1. Notation

For a set X we write X<N for the set of all nonempty finite sequences of X. Let x ∈ X<N.
We define s(x) ∈ X, t(x) ∈ X and l(x) ∈ N to be the first element of x, last element of x
and the length of x. When X = N then we use |s| instead of l(s) where s ∈ N<N. For a
natural number i < l(x) we define xi to be the i-th element of x. Given a map ϕ : X → Y
we abuse the notation and extend it to a map ϕ : X<N → Y <N coordinate-wise, i.e.,

ϕ(x)i = ϕ(xi)

for every i < l(x). Define

∆X =
{
x ∈ X<N : ∃i < j < l(x) xi = xj

}
.

Let X and Y be sets, I some index set and (Aj)j∈I and (Bj)j∈I be sequences of subsets
of X<N and Y <N, respectively. We say that a map ϕ : X → Y is a homomorphism from
(Aj)j∈I to (Bj)j∈I if

x ∈ Aj ⇒ ϕ(x) ∈ Bj

for every x ∈ X<N and j ∈ I. It is a reduction if

x ∈ Aj ⇔ ϕ(x) ∈ Bj

for every x ∈ X<N and j ∈ I.
A (finite-dimensional) dihypergraph on X is any subset of X<N \ (∆X ∪ X). If H is a

dihypergraph on X and A ⊆ X, then we say that A is H-independent if H ∩ A<N = ∅.
A topological space X is a Polish space if the underlying topology is separable and

completely metrizable. A topological group G is a Polish group if the underlying topology
is Polish. We denote the σ-ideal of meager sets on G as MG. We use the category
quantifiers ∃∗, ∀∗ in the standard meaning, i.e.,

∀∗g ∈ U P (g) ⇔ {g ∈ U : ¬P (g)} ∈ MG

∃∗g ∈ U P (g) ⇔ {g ∈ U : P (g)} 6∈ MG

where U ⊆ G is open set and P is some property.
A Polish group G is tsi (two-sided invariant) if there is an open basis at 1G made of

conjugacy invariant open sets. Equivalently, see [2, Exercise 2.1.4], there is a compatible
metric d on G that is two sided invariant, i.e., d(g, h) = d(h−1 · g, 1G) = d(g · h−1, 1G)
for every g, h ∈ G. It follows from [2, Exercise 2.2.4] that such a metric d is necessarily
complete. We fix such a metric d on G and put Vε = {g ∈ G : d(g, 1G) < ε}. Note that
h · Vε · h−1 = Vε for every ε > 0 and h ∈ G. We abuse the notation and put Vk = V 1

2k
. In

some cases we do not require G to be tsi and in that cases we assume that {Vk}k∈N is some
open neighborhood base at 1G such that Vk+1 · Vk+1 ⊆ Vk and Vk = V −1

k for every k ∈ N.
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If there is a fixed continuous action of a Polish group G on a Polish space X, then we
say that X is a Polish G-space. The orbit equivalence relation EX

G is defined as

(x, y) ∈ EX
G ⇔ ∃g ∈ G g · x = y.

where x, y ∈ X.
Let X be a Polish G-space, V ⊆ G, U ⊆ X and x ∈ X. We define

J (V ) = {x ∈ X<N \∆X : (∀i < l(x)− 1) xi+1 ∈ V · xi},

J (x, V ) = {x ∈ J (V ) : s(x) = x},
J (U, V ) = J (V ) ∩ U<N,

J (x, U, V ) = J (x, V ) ∩ J (U, V ).

If we assume that U and V are open neighborhoods of x and 1G, then the local orbit
O(x, U, V ) is defined as

O(x, U, V ) = {t(x) : x ∈ J (x, U, V )}
(see [2, Section 10.2]).

Let X be a Polish G-space, x ∈ X and A ⊆ X. We write G(x,A) = {g ∈ G : g · x ∈ A}.

Definition 1.1. Let X be a Polish G-space. We say that C ⊆ X is a G-lg comeager set
if G \G(x,C) ∈MG for every x ∈ X. Equivalently,

∀∗g ∈ G g · x ∈ C
holds for every x ∈ X

We say that a tree T ⊆ N<N is finitely uniformly branching if there is a sequence {lTm}m∈N
of natural numbers such that lTm ≥ 2 for every m ∈ N and

lT|s| = {i ∈ N : s_(i) ∈ T}

for every s ∈ T . If T is a tree and s ∈ T , then we define Ts = {t ∈ N<N : s_t ∈ T}. Note
that Ts = Tt whenever t, s ∈ T and |t| = |s|. We denote as [T ] ⊆ NN the set of all branches
through T , i.e., α ∈ [T ] if and only if α � m ∈ T for every m ∈ N.

Definition 1.2. Let T be a finitely uniformly branching tree and s ∈ T . The dihypergraph
GT
s on [T ] is defined as

GT
s =

{
(s_(i)_α)i<lT|s| : α ∈ [Ts_(0)]

}
.

The equivalence relation ET0 on [T ] is defined as

(α, β) ∈ ET0 ⇔ |{n ∈ N : α(n) 6= β(n)}| < ℵ0

where α, β ∈ [T ]. In the case when T = 2<N we write E0 instead of E2<N
0 .

Let E be an equivalence relation on a Polish space X and F be an equivalence relation
on a Polish space Y . Then we say that E is Borel reducible to F and write E ≤B F if
there is a Borel map φ : X → Y that is a reduction from E to F .
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2. G0-like dichotomy

Recall that if G is a Polish group, then {Vk}k∈N is an open neighborhood base at 1G
such that Vk+1 · Vk+1 ⊆ Vk and Vk = V −1

k for every k ∈ N.
Let X be a Polish G-space. Define

Hk,m =
{
x ∈ X<N : x ∈ J (Vm) ∧ t(x) 6∈ Vk · s(x)

}
for every k,m ∈ N. Note that if A ⊆ X is Hk,m-independent, then it is Hk′,m′-independent
for every m ≤ m′ ∈ N and k ≥ k′ ∈ N. This is because Hk,m ⊇ Hk′,m′ whenever
m ≤ m′ ∈ N and k ≥ k′ ∈ N.

Proposition 2.1. Let X be a Polish G-space such that EX
G is Borel. Then Hk,m is a Borel

subset of X<N for every k,m ∈ N.

Proof. Let V ⊆ G be an open neighborhood of 1G. Define a binary relation RV on X as

(x, y) ∈ RV ⇔ ∃g ∈ V g · x = y.

Then it follows from the assumption that EX
G is Borel together with [1, Theorem 7.1.2]

that RV is Borel.
Let k,m ∈ N. We have

x ∈ Hk,m ⇔ x 6∈ ∆X ∧ ∀i < (l(x)− 1) (xi, xi+1) ∈ RVm ∧ (s(x), t(x)) 6∈ RVk

and that shows that Hk,m is a Borel subset of X<N by the previous paragraph. �

Theorem 2.2 (G0-like dichotomy). Let G be a Polish group, X be a Polish G-space such
that EX

G is Borel and A ⊆ X be a Σ1
1 set. Then one of the following holds

(A) there is a sequence {Ak,l}l∈N of Σ1
1 subsets of X such that A =

⋃
l∈NAk,l for every

k ∈ N and for every k, l ∈ N there is m(k, l) ∈ N such that Ak,l is Hk,m(k,l)-
independent,

(B) there is k ∈ N, a finitely uniformly branching tree T , a dense set {sm}m∈N ⊆ T
such that sm ∈ Nm and a continuous map ϕ : [T ] → A that is a homomorphism
from (GT

sm)m∈N to (Hk,m)m∈N.

Proof. It follows from Proposition 2.1 that HA
k,m = Hk,m∩A<N is a Σ1

1 dihypergraph on an
analytic Hausdorff space A. Fix k ∈ N and apply a version of the G0-dichotomy, see [11,
Theorem 2.2.12], for sequence (HA

k,m)m∈N. Then either there is a sequence {Ak,l}l∈N of

relative Borel subsets of A such that
⋃
l∈NAk,l = A and Ak,l is HA

k,m(k,l)-independent for

some m(k, l) ∈ N, or (B) holds with k = k. It is easy to see that if the first case occurs
for every k ∈ N, then {Ak,l}k,l∈N is the desired sequence in (A). �

3. Property (IC)

Definition 3.1. Let X be a Polish G-space and B ⊆ X be a G-invariant Borel set. We say
that B satisfies property (IC) if there is a sequence of Borel sets {Ak,l}k,l∈N such that for
every k, l ∈ N there is m(k, l) ∈ N such that Ak,l is Hk,m(k,l)-independent and B =

⋃
l∈NAk,l

for every k ∈ N.
We say that Polish G-space X satisfies property (IC) if X satisfies property (IC).
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Note that if Vk ⊆ G is a subgroup, then X is Hk,k-independent. Therefore property
(IC) holds for X whenever G contain an open basis at 1G made of clopen subgroups, i.e.,
whenever G is a closed subgroup of S∞.

Let X be a Polish G-space. Recall that the action Gy X is turbulent if

(1) every orbit is dense and meager in X,
(2) O(x, U, V ) is somewhere dense for every x ∈ X and every open sets U ⊆ X, V ⊆ G

such that x ∈ U , 1G ∈ V ,

see [2, Section 10].

Theorem 3.2. Let X be a Polish G-space that satisfies property (IC). Then the action is
not turbulent.

Proof. Suppose that the action is turbulent. Let D ⊆ X be a Borel comeager set such
that Ak,l ∩ D is relatively open in D for every k, l ∈ N. This can be done using [8,
Proposition 8.26]. It follows from [8, Theorem 16.1] and [8, Theorem 8.41] that

D′ = {x ∈ D : ∀∗g ∈ G g · x ∈ D}

is a Borel comeager subset of X.
Pick x ∈ D′. Note that G(x,D′) is comeager in G. We show that G · x = [x]EXG is

nonmeager. Suppose that G · x is meager. Then there are closed nowhere dense sets
{Fr}r∈N such that G · x ⊆

⋃
r∈N Fr. Note that G(x, Fr) is closed for every r ∈ N and

G =
⋃
r∈NG(x, Fr). By [8, Proposition 8.26] there is an index r ∈ N such that G(x, Fr)

contains an open set. This implies that there is g ∈ G and k ∈ N such that Vk ·g ⊆ G(x, Fr)
and y = g · x ∈ D′. Let l ∈ N such that y ∈ Ak,l. Note that

Vk · y = Vk · g · x ⊆ Fr

because Fr is closed.
Use the definition of D to find an open set U such that U ∩ D′ = Ak,l ∩ D′. Consider

the local orbit O(y, U, Vm(k,l)) and pick z ∈ O(y, U, Vm(k,l)). By the definition, there is
w ∈ U<N such that w0 = y, wl(w)−1 = z and wi+1 ∈ Vm(k,l) · zi for every i < l(z) − 1. Let
P ⊆ X be an open neighborhood of z. Note that G(y, U), G(y, P ) are open and G(y,D′)
is comeager, in particular, dense in G(y, U). Therefore we can find a sequence z′ ∈ U<N

such that l(z) = l(z′), z′0 = y, z′i ∈ U ∩ D′ for every i < l(z′), z′i+1 ∈ Vm(k,l) · z′i for every
i < l(z′)− 1 and z′l(z′)−1 ∈ P . Note that we have

z′i ∈ U ∩D′ = Ak,l ∩D′ ⊆ Ak,l

for every i < l(z′). The set Ak,l is Hk,m(k,l)-independent and therefore z′l(z′)−1 ∈ Vk · y. This

implies that Vk · y ∩ P 6= ∅ and consequently that

O(y, U, Vm(k,l)) ⊆ Vk · y.

Therefore Fr contains an open set by the assumption that the action is turbulent, i.e.,
O(y, U, Vm(k,l)) is somewhere dense. This shows that [x]EXG is nonmeager and that contra-
dicts the definition of turbulence. �
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Recall that if G is a tsi Polish group, then there is a fixed compatible complete two-sided
invariant metric d on G and the sequence {Vk}k∈N is defined as Vk = {g ∈ G : d(g, 1G) <
1
2k
}.

Proposition 3.3. Let G be a tsi Polish group, X be a Polish G-space and A be a Hk+2,m-
independent Σ1

1 subset of X. Then there is a Borel G-invariant set B ⊆ X such that A ⊆ B
and a sequence {Bn}n∈N of Hk,m+2-independent Borel subsets of X such that

⋃
n∈NBn = B.

Proof. We may assume that k + 2 ≤ m. Define

A′ = {x ∈ X : ∃g ∈ Vm+2 g · x ∈ A} .
Then it is easy to see that A′ is a Σ1

1 subset of X. Let x ∈ J (A′, Vm+2) and pick any
y ∈ A<N such that l(x) = l(y) and xi ∈ Vm+2 · yi for every i < l(x). Then we have

yi+1 ∈ V −1
m+2 · xi+1 ⊆ V −1

m+2 · Vm+2 · xi ⊆ V −1
m+2 · Vm+2 · Vm+2 · yi ⊆ Vm · yi

for every i < l(y)− 1. The set A is Hk+2,m-independent and that gives t(y) ∈ Vk+2 · s(y).
We have

t(x) ∈ Vm+2 · t(y) ⊆ Vm+2 · Vk+2 · s(y) ⊆ Vm+2 · Vk+2 · V −1
m+2 · s(x) ⊆ Vk+1 · s(x)

and that shows that A′ is Hk+1,m+2-independent.
By [8, Theorem 28.5] there is a Borel set D′ ⊆ X that is Hk+1,m+2-independent and

A′ ⊆ D′. Define

D = {x ∈ X : ∃r ∈ N ∀∗g ∈ Vr g · x ∈ D′} .
It follows from [8, Theorem 16.1] that D is a Borel set and the definition of A′ together
with A′ ⊆ D′ implies that A ⊆ D. Similar argument as in previous paragraph shows that
D is Hk,m+2-independent. Moreover it is easy to see that if G(x,D′) is comeager in Vr,
then y ∈ D for every y ∈ Vr+1 · x. This shows that G(x,D) is open in G for every x ∈ X.

Let {gn}n∈N be a dense subset of G such that g0 = 1G. Define Bn = gn · D and
B =

⋃
n∈NBn. Then B is a G-invariant Borel set because G(x,D) is nonempty open set

whenever x ∈ D. Moreover, A ⊆ D = B0 ⊆ B.
It remains to show that Bn is Hk,m+2-invariant for every n ∈ N. Let g ∈ G, V be a

conjugacy invariant open neighborhood of 1G and x, y ∈ X, then y ∈ V · x if and only if
g · y ∈ V · (g · x). This shows that

gn · J (D, Vm+2) = J (Bn, Vm+2)

where the action is extended coordinate-wise and consequently thatBn isHk,m+2-independent
for every n ∈ N. This finishes the proof. �

Corollary 3.4. Let G be a tsi Polish group, X be a Polish G-space and A be a Σ1
1 subset

of X such that (A) in Theorem 2.2 holds. Then there is a Borel G-invariant set B ⊆ X
that satisfies property (IC) and A ⊆ B.

Proof. Let k, l ∈ N. Apply Proposition 3.3 to Ak+2,l ⊆ X to get a Borel G-invariant set
Bk,l ⊆ X together with a sequence {Bk,l

n }n∈N of Hk,m(k+2,l)+2-independent Borel subsets of
X such that Bk,l =

⋃
n∈NB

k,l
n .
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Define

B =
⋂
k∈N

(⋃
l∈N

Bk,l

)
.

Then it is easy to see that B is a Borel G-invariant subset of X that satisfies property (IC)
and A ⊆ B. �

Next theorem shows that property (IC) is stronger condition than classification by count-
able structures for tsi Polish groups.

Theorem 3.5. Let G be a tsi Polish group and X be a Polish G-space that satisfies property
(IC) and EX

G is Borel. Then EX
G is classifiable by countable structures.

Proof. An elementary proof of this statement follows from [3, Definition 3.3.6, Proposi-
tion 3.3.7, Theorem 3.3.8].Maybe sketch

Alternative approach that does not need the assumption that EX
G is Borel is to appeal

to [7, Theorem 13.18] and Theorem 3.2. �

Corollary 3.6. Let G be a tsi Polish group, X be a Polish G-space such that EX
G is Borel

and A be a Σ1
1 subset of X such that (A) in Theorem 2.2 holds. Then there is a G-invariant

Borel set B ⊆ X such that A ⊆ B and EX
G � B ×B is classifiable by countable structures.

In particular, if A = X, then (A) implies that EX
G is classifiable by countable structures.

Proof. Corollary 3.4 produces a Borel G-invariant set B ⊆ X such that A ⊆ B. There is
a finer Polish topology on X such that B is clopen and the action is continuous, see [2,
Corollary 4.3.4]. This turns B into a Polish G-space that satisfies (IC) and EB

G = EX
G �

B ×B is Borel. The proof is finished by applying Theorem 3.5. �

4. Uniform Pseudometric

Definition 4.1. Let T be a finitely uniformly branching tree. A function d : [T ] × [T ] →
[0,+∞] is called a Borel pseudometric if

(1) d is pseudometric,
(2) d−1([0, ε)) is a Borel subset of [T ]× [T ] for every ε > 0,
(3) ({β : d(α, β) < +∞},d) is a separable pseudometric space for every α ∈ [T ],
(4) if αn →[T ] α and {αn}n∈N is a d-Cauchy sequence, then d(αn, α)→ 0.

Moreover, we say that a Borel pseudoemtric is uniform if

• for every m ∈ N, s, t ∈ T ∩ Nm and α, β ∈ [Ts] = [Tt] we have

|d(s_α, t_α)− d(s_β, t_β)| < 1

2m
,

|d(s_α, s_β)− d(t_α, t_β)| < 1

2m

where we set |+∞−+∞| = 0.

First we show a canonical way how to find Borel pseudometrics. Recall that if G is a tsi
Polish group, then d is a fixed two-sided invariant metric on G.
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Proposition 4.2. Let G be a tsi Polish group, X be a Polish G-space such that EX
G is

Borel, T be a finitely uniformly branching tree and ϕ : [T ] → X be a continuous map.
Then the function dϕ : [T ]× [T ]→ [0,+∞] defined as

dϕ(α, β) = inf{d(g, 1G) : g ∈ G ∧ g · ϕ(α) = ϕ(β)}
is a Borel pseudometric.

Proof. The invariance of d guarantees that d(g, 1G) = d(g−1, 1G) for every g ∈ G and
consequently that dϕ is symmetric. Let α, β, γ ∈ [T ]. We may assume that dϕ(α, β) +
dϕ(β, γ) < +∞. In that case for every ε > 0 there is g, h ∈ G such that d(g, 1G) <
dϕ(α, β) + ε and d(h, 1G) < dϕ(β, γ) + ε. Then we have

dϕ(α, γ)− 2ε ≤ d(h · g, 1G)− 2ε ≤ d(h, 1G) + d(g, 1G)− 2ε < dϕ(α, β) + dϕ(β, γ)

because d(h · g, 1G) ≤ d(h · g, g) + d(g, 1G) = d(h, 1G) + d(g, 1G) by the invariance of d.
That proves (1).

Recall that for ε > 0 we defined Vε = {g ∈ G : d(g, 1G) < ε}. It follows, as in the proof
of Proposition 2.1, that the relation RVε defined as

(x, y) ∈ RVε ⇔ ∃g ∈ Vε g · x = y

is Borel for every ε > 0. Note that we have

d−1
ϕ ([0, ε)) = {(α, β) ∈ [T ]× [T ] : dϕ(α, β) < ε} =

(
ϕ−1 × ϕ−1

)
(RVε)

and that shows (2).
Let α ∈ [T ] and Sα = {β : d(α, β) < +∞}/dϕ be the metric quotient. Then the space

Gα = {g ∈ G : ∃β ∈ [T ] g · ϕ(α) = ϕ(β)} endowed with d is a separable metric space and
the assignment g 7→ β where g ·ϕ(α) = ϕ(β) is a contraction from (Gα, d) to (Sα,d). This
shows (3).

Let {αn}n∈N, α ∈ [T ] be such that the assumptions of (4) are satisfied. After possibly
passing to a subsequence we may suppose that there is a sequence {gn}n∈N ⊆ G such that
gn · ϕ(αn) = ϕ(αn+1) and d(gn, 1G) < 1

2n
. Define hnm = gn−1 · . . . · gm for every m < n ∈ N.

Then it follows that {hnm}n∈N is d-Cauchy whenever m ∈ N is fixed and since d is complete
there is {hm}m∈N ∈ G such that hnm → hm. Moreover we have d(hm, 1G) < 1

2m−1 . Continuity
of the action and of ϕ gives

hm · ϕ(αm)← hnm · ϕ(αm) = ϕ(αn)→ ϕ(α).

This proves (4) and finishes the proof. �

It follows from (1) above that every Borel pseudoemtric d on [T ] defines a Borel equiv-
alence relation Fd on [T ] as

(α, β) ∈ Fd ⇔ d(α, β) < +∞.
Note that in the case of Proposition 4.2 we have that Fdϕ = (ϕ−1 × ϕ−1) (EX

G ).

Theorem 4.3. Let T be a finitely uniformly branching tree and d be a uniform Borel
pseudometric such that ET0 ⊆ Fd. Then the following are equivalent

(a) Fd is nonmeager,
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(b) Fd = [T ]× [T ].

Proof. (b) ⇒ (a) is trivial. We show that (a) ⇒ (b). Suppose first, that for every
k ∈ N \ {0} there is mk ∈ N such that d(α, β) < 1

k
for every α, β ∈ [T ] such that

{n ∈ N : α(n) 6= β(n)} ∩ mk = ∅ and (α, β) ∈ ET0 . We may assume that {mk}k∈N ⊆ N
is strictly increasing and that m0 = 0. Let x, y ∈ [T ] and define yk ∈ [T ] such that
yk � mk = y and yk(n) = x(n) for every n ≥ mk. Then clearly y0 = x, (yr, ys) ∈ ET0 ⊆ Fd

for every r, s ∈ N and yk →[T ] y. Let k ∈ N \ {0} and r, s ≥ k. Then we have

|{n ∈ N : yr(n) 6= ys(n)}| ∩mk = ∅

and consequently d(yr, ys) <
1
k
. This shows that {yk}k∈N is a d-Cauchy sequence and by

(4) from the definition of Borel pseudometric we have d(yk, y)→ 0. In particular, there is
k ∈ N such that d(yk, y) < +∞ and therefore (yk, y) ∈ Fd. Altogether we have (x, y) ∈ Fd

and since x, y ∈ [T ] were arbitrary we have that Fd = [T ]× [T ].
The other case is when there is ε > 0 such that for every m ∈ N there are αm, βm ∈ [T ]

such that d(α, β) > ε, {n ∈ N : α(n) 6= β(n)} ∩m = ∅ and (αm, βm) ∈ ET0 . We show that
this contradicts Fd being non-meager.

Note that Fd is a Borel equivalence relation by (2) in the definition of Borel pseudo-
metric and every Fd-equivalence class is dense because ET0 ⊆ Fd. This implies, by [8,
Theorem 8.41], that there is α ∈ [T ] such that [α]d is comeager in [T ]. It follows from
(3) in the definition of Borel pseudometric that there are Borel sets {Ul}l∈N such that⋃
l∈N Ul = [α]Fd

and

d(x, y) <
ε

2
for every l ∈ N and x, y ∈ Ul.

By [8, Proposition 8.26] we find t′ ∈ T and l ∈ N such that Ul is comeager in t′_[Tt].
Pick m ∈ N such that m ≥ |t′| and 1

m
< ε

4
. We may suppose that αm = s_u0

_x and
βm = s_u1

_x where |s| = m, |u0| = |u1| and x ∈ [Ts_u0 ] = [Ts_u1 ].
Let t ∈ T be such that t′ v t and |t| = |s| = m. Then we have that Ul is comeager in

t_[Tt] and therefore there is y ∈ [Tt_u0 ] = [Tt_u1 ] such that

t_u0
_y, t_u1

_y ∈ Ul.

In particular we have d(t_u0
_y, t_u1

_y) < ε
2
.

Last step is to use that d is uniform. We have

|d(s_(u0
_x), s_(u1

_x))− d(t_(u0
_x), t_(u1

_x))| < 1

2m
<

1

m
<
ε

4

and

|d((t_u0)_x, (t_u1)_x)− ((t_u0)_y, (t_u1)_y)| < 1

2|t_u0|
<

1

m
<
ε

4
.

This implies

d(t_u0
_y, t_u1

_y) ≥ d(s_u0
_x, s_u1

_x)− ε

2
>
ε

2
and that contradicts d(t_u0

_y, t_u1
_y) < ε

2
. This finishes the proof. �
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5. Base for Non-Classification

We describe the family that will serve as a base under ≤B for non-classification in the
proof of Theorem 6.1. We denote the power set of N as P(N).

A map Θ : P(N)→ [0,+∞] is a lsc submeasure if Θ(∅) = 0, Θ(M ∪N) ≤ Θ(M) + Θ(N)
whenever M,N ∈ P(N), Θ({m}) < +∞ for every m ∈ N and

Θ(M) = lim
m→∞

Θ(M ∩m)

for every M ∈ P(N). We say that Θ is tall if limm→∞Θ({m}) = 0.
Let Θ be a tall lsc submeausre. Then the equivalence relation EΘ on 2N is defined as

(x, y) ∈ EΘ ⇔ lim
m→∞

Θ({n ∈ N \m : x(n) 6= y(n)}) = 0

for every x, y ∈ 2N. We remark that EΘ is non-meager if and only if EΘ = 2N×2N, compare
with Theorem 4.3.

A sequence of finite metric spaces {(Zm, dm)}m∈N is called non-trivial if

lim inf
m→∞

r(Zm, dm) > 0 & lim
m→∞

j(Zm, dm) = 0

where r(Z, d) = max d and j(Z, d) is the minimal ε > 0 such that there is l ∈ N and a
sequence (z0, . . . zl) that contains every element of Z and satisfies d(zi, zi+1) < ε for every
i < l.

Let Z = {(Zm, dm)}m∈N be a non-trivial sequence of finite metric spaces and
∏

m∈N Zm
be endowed with the product topology. Then the equivalence relation EZ on

∏
m∈N Zm is

defined as

(x, y) ∈ EZ ⇔ lim
m→∞

dm(x(m), y(m)) = 0

for every x, y ∈
∏

m∈N Zm.

Definition 5.1. Denote as B the collection of all Borel meager equivalence relations that
contain EΘ for some tall lsc submeasure Θ or EZ for some non-trivial sequence of finite
metric spaces Z, i.e., for every E ∈ B there is either tall lsc submeasure Θ such that
EΘ ⊆ E and E is a meager subset of 2N × 2N, or there is a non-trivial sequence of finite
metric spaces Z such that EZ ⊆ E and E is a meager subset of

∏
m∈N Zm ×

∏
m∈N Zm.

Theorem 5.2. Let E ∈ B. Then E is not classifiable by countable structures.

Proof. It is easy to see that if EΘ is meager, then it is induced by a turbulent action of a
Polish group on 2N whenever Θ is a tall lsc submeasure and EZ is induced by a turbulent
action of a Polish group on

∏
m∈N Zm whenever Z is a non-trivial sequence of finite metric

spaces, see [3, Appendix 3.7] and [6, Chapter 16].
Let E ∈ B be a Borel meager equivalence relation on Y . By the definition we find F ⊆ E

such that either F = EΘ for some tall lsc submeasure Θ or F = EZ for some non-trivial
sequence of finite metric spaces Z.

Let W be a Polish S∞-space and ψ : Y → W be a Borel map that is a reduction from
E to EW

S∞ . Then ψ is a Borel homomorphism from F to EW
S∞ and it follows from [2,
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Theorem 10.4.3] that there is y ∈ Y such that ψ−1([ψ(y)]EWS∞
) is comeager in Y . Since ψ

is a reduction we have
ψ−1([ψ(y)]EWS∞

) ⊆ [y]E.

An application of [8, Theorem 8.41] shows that E is comeager and that is a contradiction.
�

6. Non-Classification by Countable Structures

The aim of this section is to show that (B) in Theorem 2.2 implies that EX
G is compli-

cated.

Theorem 6.1. Let G be a tsi Polish group, X be a Polish G-space such that EX
G is Borel

and (B) in Theorem 2.2 holds for A = X. Then EX
G is not classifiable by countable

structures.

Proof. Let k ∈ N, T ′, {s′m}m∈N and ϕ : [T ′] → X be as in (B) Theorem 2.2. First we
formulate the main technical result that uses crucially that G is tsi. See Section 8 for the
proof.

Lemma 6.2 (Refinement). Suppose that k ∈ N, T ′, {s′m}m∈N and ϕ : [T ′] → X are as
in (B) Theorem 2.2. Then there are k ∈ N, T , {sm}m∈N ⊆ T and φ : [T ] → X as
in (B) Theorem 2.2 such that dφ is a uniform Borel pseudometric and φ = ϕ ◦ ζ where
ζ : [T ]→ [T ′] is a continuous map.

Let k ∈ N, T , {sm}m∈N and φ be as in Lemma 6.2. Observe that

ET0 ⊆ Fdφ = (φ−1 × φ−1)(EX
G )

because sm ∈ Nm ∩ T for every m ∈ N. The rest of the proof consists of four steps.
(I). The Borel equivalence relation Fdφ is meager in [T ]× [T ]. Otherwise there is α ∈ [T ]

such that [α]d is comeager in [T ] by [8, Theorem 8.41]. It follows from (3) in the definition
of Borel pseudometric that there are Borel sets {Ul}l∈N such that

⋃
l∈N Ul = [α]Fd

and

dφ(α, β) <
1

2k

for every l ∈ N and α, β ∈ Ul. Using [8, Proposition 8.41] and the density of {sm}m∈N we
find m, l ∈ N such that Ul is comeager in sm

_[Tsm ]. This gives x ∈ [Tsm_(0)] = [Tsm_(lTm−1)]
such that

sm
_(0)_x, sm

_(lTm − 1)_x ∈ Ul.
Since φ is a homomorphism from GT

sm to Hk,m we have that

(φ(sm
_(i)_x))i<lTm ∈ Hk,m

and consequently that

φ(sm
_(lTm − 1)_x) 6∈ Vk · φ(sm

_(0)_x).

This gives

dφ(sm
_(0)_x, sm

_(lTm − 1)_x) >
1

2k
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and that contradicts the choice of x ∈ [Tsm_(0)].
(II). Let s, t ∈ T ∩ Nm, i, j < lTm and x, y ∈ [Ts_(i)] = [Ts_(j)]. Then

|dφ(s_(i)_x, s_(j)_x)− dφ(t_(i)_y, t_(j)_y| < 1

2m−1
.

We use that dφ is uniform. Namely, we have

|dφ(s_((i)_y), s_((j)_y))− dφ(t_((i)_y), t_((j)_y)| < 1

2m

|dφ((s_(i))_x, (s_(j))_x)− dφ((s_(i))_y, (t_(j))_y| < 1

2m+1

and that gives the estimate by the triangle inequality.
(III). Let m ∈ N and 0 = (0, 0, . . . ). Since ({sm_(i)_0}i<lTm ,dφ) is a finite pseudometric

space we find a metric space (Zm, dm) where Zm = {0, 1. . . . , lTm − 1} and

|dφ(sm
_(i)_0, sm

_(j)_0)− dm(i, j)| < 1

2m−1

for every i, j < lTm. Then we have

1

2k
− 1

2m−1
≤ dm(0, lTm − 1) ≤ r(Zm, dm)

and j(Zm, dm) < 1
2m−2 because φ is a homomorphism from Gsm to Hk,m.

This implies immediately that Z = {(Zm, dm)}m∈N is a non-trivial sequence of finite
metric spaces. Consider the bijective homeomorphism

η :
∏
m∈N

Zm → [T ]

that is defined as

η(x)(m) = i ⇔ x(m) = i.

If EZ ⊆ E = (η−1 × η−1)(Fdφ), then we are done because E ∈ B by (I) and φ ◦ η
is a reduction from E to EX

G . Hence, EX
G is not classifiable by countable structures by

Theorem 5.2.
(IV). Suppose that EZ 6⊆ E = (η−1× η−1)(Fdφ) in (III). There is x, y ∈

∏
m∈N Zm such

that

dm(x(m), y(m))→ 0

and (η(x), η(y)) 6∈ Fdφ . Set α = η(x) and β = η(y). Note that |{m ∈ N : α(m) 6= β(m)}| =
ℵ0 because ET0 ⊆ Fdφ .

Let

S = {s ∈ T : ∀i < |s| (s(i) = α(i) ∨ s(i) = β(i))}.
It follows that S ⊆ T is isomorphic to a full binary tree. Moreover, the restriction of dφ
to [S] is a uniform Borel pseudometric, in the sense that the uniform condition holds for
every s, t ∈ Nm ∩ S and x, y ∈ [Ss] = [St]. Write F for the restriction of Fdφ to [S] × [S].
Then it follows from Theorem 4.3 together with (α, β) 6∈ F that F is meager.
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Let {ml}l∈N be an increasing enumeration of {m ∈ N : α(m) 6= β(m)} and set 0l =
α(ml), 1l = β(ml) for every l ∈ N. Then there is a sequence {tl}l∈N ⊆ N<N such that

α = t0
_00

_t1
_01

_ . . . & β = t0
_10

_t1
_11

_ . . .

and consequently for every s ∈ S there is l ∈ N such that

s v t0
_i0

_t1
_i1

_ . . ._ il−1
_tl

where ij ∈ {0j,1j} for every j < l. Define Γ : 2<N → S as

Γ(s) = t0
_s(0)_t1

_s(1)_ . . ._ s(|s| − 1)_t|s| ∈ S
where s(j) = 0j if s(j) = 0 and s(j) = 1j if s(j) = 1. It is easy to see that the unique

extension Γ̃ : 2N → [S] is a homeomorphism.
Final step is to define a tall lsc submeasure Θ. Let M ∈ P(N) be a finite set. Define

Θ(M) = sup
{

dφ(Γ̃(x), Γ̃(y)) : x, y ∈ 2N {l ∈ N : x(l) 6= y(l)} ⊆M
}

=

= sup {dφ(x, y) : x, y ∈ [S] {m ∈ N : x(m) 6= y(m)} ⊆ {ml}l∈M } .
Let M ∈ P(N) be infinite. Then we define Θ(M) = liml→∞Θ(M ∩ l).

To finish the proof we need to show that Θ is a tall lsc submeasure and EΘ ⊆ E =(
Γ̃−1 × Γ̃−1

)
(F ) =

(
Γ̃−1 × Γ̃−1

)
(Fdφ). Indeed, then we have E ∈ B and φ ◦ Γ̃ is a

reduction from E to EX
G .

(a). It is easy to see that Θ is monotone, Θ(∅) = 0 and Θ(M) = liml→∞Θ(M ∩ l)
for every M ∈ P(N). Let M,N ∈ P(N) be two finite sets and x, y ∈ 2N such that
{l ∈ N : x(l) 6= y(l)} ⊆ M ∪ N . Let x′(l) = x(l) for every l ∈ N \M and x′(l) = y(l) for
every l ∈M . The fact that dφ is a pseudometric implies that

dφ(Γ̃(x), Γ̃(y)) ≤ dφ(Γ̃(x), Γ̃(x′)) + dφ(Γ̃(x′), Γ̃(y)) ≤ Θ(M) + Θ(N).

This shows that Θ(M ∪ N) ≤ Θ(M) + Θ(N) for every finite M,N ∈ P(N) and one can
easily check that it extends for any M,N ∈ P(N). Let l ∈ N. It follows from (II),

definition of Γ̃ and the definition of dm in (III) that

Θ({l}) ≤ dφ(sml
_α(ml)

_0), sml
_β(ml)

_0)) +
1

2ml−1
≤ dml(α(ml), β(ml)) +

1

2ml−2
.

This shows that Θ({l}) < +∞ for every l ∈ N and the choice of α = η(x) and β = η(y) in
the beginning of (IV) guarantees that

Θ({l}) ≤ dml(x(ml), y(nl)) +
1

2ml−2
→ 0.

Hence, Θ is a tall lsc submeasure.
(b) Let x, y ∈ 2N such that (x, y) ∈ EΘ and put X = {l ∈ N : x(l) 6= y(n)}. Then we

have that liml→∞Θ(X \ l) = 0 by the definition of EΘ. Define xl(j) = y(j) for every j < l
and xl(j) = x(j) for every j ≥ l for every l ∈ N. We have (xl, x) ∈ E0 for every l ∈ N and
xl → y. The definition of Γ easily implies that(

Γ̃(xl), Γ̃(x)
)
∈ ET0
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and Γ̃(xl) → Γ̃(y). Let l ≤ r ≤ s ∈ N. We have that {j ∈ N : xr(j) 6= xs(j)} =
X ∩ {r, . . . , s− 1} ⊆ X \ l and by the definition of Θ that

dφ

(
Γ̃(xr), Γ̃(xs)

)
≤ Θ(X ∩ {r, . . . , s− 1}) ≤ Θ(X \ l).

This shows that {Γ̃(xl)}l∈N is a dφ-Cauchy sequence. By (4) in the definition of Borel
pseudometric we find l ∈ N such that

dφ

(
Γ̃(xl), Γ̃(y)

)
< +∞

and, in particular,
(

Γ̃(xl), Γ̃(y)
)
∈ Fdφ . This gives

(
Γ̃(x), Γ̃(y)

)
∈ Fdφ because

(
Γ̃(x), Γ̃(xl)

)
∈

ET0 ⊆ Fdφ and the proof is finished. �

7. Remarks and Question

Our main result follows immediately from the following statement.

Theorem 7.1. Let G be a tsi Polish group, X be a Polish G-space such that EX
G is Borel

and A be a Σ1
1 subset of X. Then exactly on of the following holds

(1) there is a Borel G-invariant set B ⊆ X such that A ⊆ B and EX
G � B × B is

classifiable by countable structures,
(2) there is E ∈ B on a Polish space Y and a continuous map ζ : Y → A that is a

reduction from E to EX
G .

Moreover, (1) is equivalent to

(1)’ there is a Borel G-invariant set B ⊆ X such that A ⊆ B and B satisfies property
(IC).

Proof. Apply Theorem 2.2. Note that (A) implies (1)′ by Corollary 3.4 and (1)′ implies
(1) by Theorem 3.5.

On the other hand (B) implies by the proof of Theorem 6.1 that there is E ∈ B on Y
and a continuous map ζ : Y → X that is a reduction from E to EX

G . Note that ζ is of the

form φ◦ Γ̃ or φ◦ η where φ is given by Lemma 6.2 and satisfies rng(φ) ⊆ rng(ϕ) ⊆ A. This
shows that ζ : Y → A and (2) follows.

Finally observe that (1) implies ¬(B) by Theorem 5.2 and consequently (1) implies (1)′.
That completes the proof. �

It is a very interesting question if the base in (2) can be smaller.

Question 7.2. Let C be the collection of meager equivalence relations EΘ and EZ where Θ
runs over all tall lsc submeasures and Z over non-trivial sequences of finite metric spaces.
Is it enough to take C instead of B in Theorem 7.1 (2)?

Maybe mention Hjorth’s summable ideal dichotomy.
Next, we sketch another application of our approach.
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Theorem 7.3. Let G be a tsi Polish group, X a Polish G-space such that EX
G is Borel and

F an equivalence relation on a Polish space Y that is classifiable by countable structures.
Suppose that ϕ : Y → X is a Borel map that is a reduction from F to EX

G . Then there
is a Borel G-invariant set B ⊆ X such that ϕ(Y ) ⊆ B and EX

G � B × B is classifiable by
countable structures.

Proof Sketch. Put A = ϕ(Y ) an apply Theorem 7.1. We show that we get (1). Define dϕ
on Y as in Proposition 4.2. Then dϕ is a Borel pseudometric and Fdϕ = F since ϕ is a
reduction. In another words, we pull back the metric structure from G on any F -orbit via
the reduction ϕ, see Proposition 4.2.

Define Hdϕ
k,m on Y as

y ∈ Hdϕ
k,m ⇔ ∀i < (l(y)− 1) dϕ

(
yi, yi+1

)
<

1

2m
∧ dϕ (s(y), t(y)) >

1

2k
.

Then one can verify that {Hdϕ
k,l }k,l∈N is a Borel sequence of dihypergraphs on Y and a

version of Theorem 2.2 applies.

If we get a version of (A) we compose the Hdϕ
k,m-independent sets with ϕ and obtain

Hk,m-independent subsets of X that cover A, hence Theorem 3.5 applies.
In the case of a version of (B) we get a map ζ : [T ]→ Y that satisfies all the properties

of a version of (B). Note that ϕ ◦ ζ is as in B of Theorem 2.2. Applying Theorem 6.1 we
obtain a refinement of ϕ◦ζ ◦η that is a reduction from E to EX

G for some E ∈ B. However,
ζ ◦ η is a reduction from E to F and that is a contradiction. �

8. Proof of Lemma 6.2

Before we prove Lemma 6.2 we introduce some auxiliary notion and technical results.
Let T be a finitely uniformly branching tree. Let (A,α) ∈ [N]N × [T ] where [N]N denotes
the set of all infinite subsets of N. Then we define T(A,α) ⊆ T as

s ∈ T(A,α) ⇔ ∀n 6∈ A s(n) = α(n)

and denote as [T(A,α)] the branches of T(A,α). Note that [T(A,α)] is closed in [T ].
Write {nl}l∈N = A for the increasing enumeration of A. Then there is a unique finitely

uniformly branching tree S = S(A,α) and a unique map e(A,α) : S → T(A,α) that satisfy

• lSl = lTnl for every l ∈ N,
• |e(A,α)(s)| = n|s|
• e(A,α)(s)(nl) = s(l) for every l < |s|,
• e(A,α)(s)(j) = α(j) for every j < n|s| such that j 6∈ A.

It is easy to verify that e(A,α) extends to a unique continuous homeomorphism

ẽ(A,α) : [S]→ [T(A,α)]

that is a reduction from GS
s to GT

e(A,α)(s)
for every s ∈ S. This is because if s(l) = t(l), then

we have e(A,α)(s)(j) = e(A,α)(t)(j) for every nl ≤ j < nl+1.
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Lemma 8.1. Let {Tr}r∈N be a sequence of finitely uniformly branching trees, (Ar, αr) ∈
[N]N × [Tr] be such that Ar ∩ r + 1 = r + 1 for every r ∈ N and S(Ar,αr) = Tr+1 for every
r ∈ N. Then there is a finitely uniformly branching tree S and a sequence of continuous

maps {ψ̃r,∞ : [S]→ [Tr]}r∈N such that

(1) lSr = l
Tr′
r for every r ≤ r′ ∈ N,

(2) for every s ∈ S ∩ Nr and x ∈ [Ss] there is y ∈ [(Tr)s] such that ψ̃r,∞(t_x) = t_y
whenever t ∈ S ∩ Nr for every r ∈ N,

(3) ψ̃r,∞ = ẽ(Ar,αr) ◦ ψ̃r+1,∞,

(4) ψ̃r,∞ is a reduction from GS
s to GTr

s for every s ∈ Tr ∩ Nr.

Proof. Observe that if r ≤ r′ ∈ N, then l
Tr′
r = lTrr and define lSr = lTrr . This defines S and

(1) is satisfied.
For s ∈ S ∩ Nr we define ψr′,∞(s) = s for every r ≤ r′ ∈ N and inductively ψr′,∞(s) =

e(Ar,αr) ◦ ψr′+1,∞ for every 0 ≤ r′ < r. Then we have ψr,∞ = e(Ar,αr) ◦ ψr+1,∞ for every
r ∈ N and if s v t ∈ S, then ψr,∞(s) v ψr,∞(t) for every r ∈ N.

Define

ψ̃r,∞(x) =
⋃
l∈N

ψr,∞(x � l)

for every x ∈ [S] and r ∈ N. We have

ψ̃r,∞(x) =
⋃
l∈N

ψr,∞(x � l) =
⋃
l∈N

e(Ar,αr) ◦ ψr+1,∞(x � l) =

= ẽ(Ar,αr)

(⋃
l∈N

ψr+1,∞(x � l)

)
= ψ̃r+1,∞(x)

for every x ∈ [S] and that shows (3).
Note that (1) and (2) imply (4) and therefore it remains to show (2). Let s ∈ S ∩ Nr

and x ∈ [Ss]. Put y ∈ [(Tr)s] such that

ψ̃r,∞(s_x) = s_y.

Let t ∈ S ∩ Nr and r < l ∈ N. It is clearly enough to show that ψr,∞(s_x � l)(j) =
ψr,∞(t_x � l)(j) for every r ≤ j < l.

We show inductively that ψr′,∞(s_x � l)(j) = ψr′,∞(t_x � l)(j) for every r ≤ j < l
where r ≤ r′ ≤ l. By the definition we have

ψl,∞(s_x � l)(j) = (s_x � l)(j) = (t_x � l)(j) = ψl,∞(t_x � l)(j)

for every r ≤ j < l. Suppose that it holds for r′ + 1 where r ≤ r′ < l. Fix an enumeration
{mp}p∈N of Ar′ . Then for every r ≤ j < l there is p ∈ N such that r ≤ p < l and
mp ≤ j < mp+1. This is because Ar′ ∩ r + 1 = r + 1. If mp = j, then we have

ψr′,∞(s_x � l)(j) =
(
e(Ar′ ,αr′ )

◦ ψr′+1,∞(s_x � l)
)

(mp) = ψr′+1,∞(s_x � l)(p) =

= ψr′+1,∞(t_x � l)(p) =
(
e(Ar′ ,αr′ )

◦ ψr′+1,∞(t_x � l)
)

(mp) = ψr′,∞(t_x � l)(j)
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from the inductive assumption. If mp < j, then

ψr′,∞(s_x � l)(j) =
(
e(Ar′ ,αr′ )

◦ ψr′+1,∞(s_x � l)
)

(j) = αr′(j) =

=
(
e(Ar′ ,αr′ )

◦ ψr′+1,∞(t_x � l)
)

(j) = ψr′,∞(t_x � l)(j)

and the proof is finished. �

Lemma 8.2. Let T be a finitely uniformly branching tree, A ∈ [N]N, m ∈ N, p ∈ T ∩Nm,
{Xr}r∈N be a sequence of subsets of [T ] with the Baire property such that

⋃
r∈NXr = [T ]

and {sn}n∈A ⊆ T be dense in T and |sn| = n. Then there is (A,α) ∈ [N]N × [T ] such that,
if we put S = S(A,α), we have

(1) A ∩m = m,
(2) for every s ∈ S ∩ Nm there is r ∈ N such that s_[Ss] ⊆ (ẽ(A,α))

−1(Xr),
(3) {v ∈ S : ∃n ∈ A e(A,α)(v) = sn} is dense in S,
(4) there is n ∈ A such that p v e(A,α)(p) = sn.

Proof. Let {pl}l∈N be an enumeration of T such that |{l ∈ N : s = pl}| = ℵ0 for every
s ∈ T . The construction proceeds by induction on l ∈ N. Namely, in every step we
construct tl ∈ N<N, nl ∈ N, αl ∈ T and Sl ⊆ T such that nl = |αl|,

αl = p_t0
_(0)_t1

_(0)_ . . ._ (0)_tl

and

Sl = {s ∈ T : |s| = nl + 1 ∧ ∀m ≤ j < nl (∀l′ ≤ l j 6= nl′ → s(j) = αl(j))}.

In the end we put α =
⋃
l∈N αl and A = m ∪ {nl}l∈N.

(I) l = 0. Let {ui}i<N0 be an enumeration of {s ∈ T : |s| = m}. Define inductively
vi ∈ N<N such that

• ui _ vi ∈ T for every i < N0,
• vi v vi+1 for every i < N0 − 1,
• for every i < N0 there is r(i) ∈ N such that Xr(i) is comeager in ui

_vi
_[Tui_vi ].

This can be achieved by [8, Proposition 8.26]. Write v = vN0−1 and use the density of
{sn}n∈A to find n ∈ N such that p_v v sn. Let t0 ∈ N<N be such that α0 = p_t0 = sn
and n0 = |p_t0|.

Define

X =
⋃
i<N0

ui
_t0

_[Tui_t0 ] ∩Xr(i).

Note that X is comeager in ui
_t0

_[Tui_t0 ] for every i < N0. Let {Ol}l∈N be a decreasing
collection of open subsets of [T ] such that O0 = [T ],

⋂
lOl ⊆ X and Ol is dense in

ui
_t0

_[Tui_t0 ] for every i ∈ N0.
(II) l 7→ l + 1. Suppose that we have {nm}m≤l, {αm}m∈l, {Sm}m≤l and {tm}m≤l that

satisfies

(a) |αm| = nm and αm = p_t0
_(0)_ . . ._ (0)_tm for every m ≤ l,

(b) u_[Tu] ⊆ Ol for every u ∈ Sl,
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(c) if m < l and pm v u for some u ∈ Sm, then there is n ∈ A such that |sn| =
nm+1 = n, pm v u v sn and sn(j) = αm+1(j) for every j < nm+1 such that
j 6∈m ∪ {nr}r<m+1.

Note that if l = 0, then (a)–(c) are satisfied. Next we show how to find tl+1 ∈ 2<N, αl+1

and nl+1 ∈ N such that (a)–(c) holds.
Let {ui}i<Nl be an enumeration of Sl. Construct inductively {vi}i<Nl such that

• ui_vi ∈ T for every i < Nl,
• vi v vi+1 for every i < Nl − 1,
• ui_vi_[Tui_vi ] ⊆ Ol+1 for every i < Nl.

This can be done because for every i < Nl there is u ∈ T such that u_t0 v ui by the
definition of Sl and we have Ol+1 is dense in u_t0

_[Tu_t0 ]. Put v = vNl−1. If pl satisfies
the assumption of (c), then pick i < Nl such that pl v ui. Otherwise pick any i < Nl.
It follows from the density of {sn}n∈A that there is n ∈ N such that ui

_v v sn. Define
tl+1 ∈ N<N such that ui

_tl+1 = sn, αl+1 = αl
_(0)_tl+1 and nl+1 = |ui_tl+1|.

It is easy to see that we have (a). Let u ∈ Sl+1, then there is i < Nl such that ui v u.
Moreover, we have ui

_vi v u by the definition of tl+1 and Sl+1. We have

u_[Tu] v ui
_vi

_[Tui_vi ] ⊆ Ol+1

and that shows (b). Item (c) follows directly from the construction.
(III). Let A = m∪ {nl}l∈N and α =

⋃
l∈N αl. Property (1) is trivial. Let s ∈ S ∩Nm. It

is easy to see that e(A,α)(s) = s_t0 and that gives

ẽ(A,α)(s
_[Ss]) ⊆ s_t0

_[Ts_t0 ].

By the definition in (I) there is r ∈ N such that

X ∩ s_t0_[Ts_t0 ] ⊆ Xr.

Let c ∈ [Ts] and l ∈ N Then we have

e(A,α)(s
_(c � l)) v s_t0

_c(0)_t1
_ . . ._ c(l − 1)_t_l c(l) ∈ Sl

s_t0
_c(0)_t1

_ . . ._ c(l − 1)_t_l c(l) v e(A,α)(s
_(c � l + 1))

and using (b) from the inductive assumption

ẽ(A,α)(s
_c) ∈ e(A,α)(s

_(c � l + 1))_[Te(A,α)(s_(c�l+1))] ⊆ Ol.
Therefore

ẽ(A,α)(s
_c) ∈ s_t0_[Ts_t0 ] ∩

⋂
l∈N

Ol ⊆ Xr

and that shows (2).
Let s ∈ T ∩ Nm and u ∈ N<N such that s_u ∈ S. Find l ∈ N such that |pl| ≤ nl and

pl = e(A,α)(s
_u) = s_t0

_ . . ._ u(|u| − 1)_t|u|.

It follows that there is w ∈ Sl such that pl v w and by (c) in (II) we have n ∈ A such
that |sn| = nl+1 = n, pl v sn. It is easy to see from the construction that

sn = s_t0
_ . . ._ sn(nl)

_tl+1 = w_tl+1.
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Put
v = s_sn(n0)_ . . ._ sn(nl).

Then we have v ∈ S, e(A,α)(v) = sn and s_u v v because e(A,α)(s
_u) = pl v sn = e(A,α)(v).

This shows (3).
Finally, we have p v e(A,α)(p) = p_t0 = sn where n ∈ A by the construction in (I). �

Proof of Lemma 6.2. Let {ga}a∈N be a dense subset of G. The construction proceeds by
induction on r ∈ N. Let {pr}r∈N be an enumeration of N<N such that |{r ∈ N : pr =
s}| = ℵ0 for every s ∈ N<N. We construct a sequence of finitely uniformly branching trees
{Tr}r∈N together with (Ar, αr) ∈ [N]N × [Tr] such that S(Ar,αr) = Tr+1 for every r ∈ N,
{Ar}r∈N ⊆ [N]N, {srn}n∈Ar ⊆ Tr for every r ∈ N and {ϕr : [Tr] → X}r∈N such that the
following holds

(1) Ar ∩ r + 1 = r + 1 for every r ∈ N,
(2) ϕr = ϕ◦ ẽ(A0,α0) ◦ . . . ẽ(Ar−1,αr−1) is a homomorphism from ETr0 to EX

G for every r ∈ N
(where in the case r = 0 we put ϕ0 = ϕ),

(3) r ∈ Ar for every r ∈ N,
(4) {srn}n∈Ar is a dense subset of Tr such that |srn| = n and ϕr is a homomorphism from

GTr
srn

to Hk,n for every r, n ∈ N,

(5) if pr ∈ Tr is such that |pr| ≤ r, then pr v sr+1
r+1 (where pr ∈ Tr+1 by (1)),

(6) for every s ∈ Tr such that |s| = r there is gs,r ∈ G such that for every c ∈ s_[(Tr)s]
there is gs,rc ∈ G such that we have

|d(gs,r, 1G)− dϕr(s
r
r
_c, s_c)| < 1

2r+2
,

gs,rc · ϕr(srr
_c) = ϕr(s

_c)

d(gs,r, gs,rc ) <
1

2r+2

for every r ∈ N.

If r = 0, then we put T0 = T ′, A = N, s0
m = s′m for every m ∈ N and ϕ0 = ϕ′. Conditions

(1) and (5) are empty, (2)–(4) are satisfied by (B) Theorem 2.2 and for (6) it is enough to
take g∅,0 = g∅,0c = 1G for every c ∈ [T0].

In the inductive step r 7→ r + 1 we construct (Ar, αr), Ar+1, {sr+1
n }n∈N and ϕr+1 such

that (1)–(6) holds.
r 7→ r + 1. We use Lemma 8.2 with T = Tr, A = Ar, m = r + 1, {srn}n∈A, pr v p ∈

Tr ∩ Nm if pr ∈ Tr ∩ N<m otherwise we put p = (0, . . . , 0) ∈ Nm and {Xq}q∈NNr where
Nr = {s ∈ Tr : |s| = r + 1} and

• if s ∈ Nr and s 6= p, then s_x ∈ Xq for every q ∈ NNr and x ∈ [(Tr)s],
• if x ∈ [(Tr)p], then p_x ∈ Xq if and only if

∀s ∈ Nr

(
∃gsx ∈ G d(gsx, gq(s)) <

1

2r+2
∧ gsx · ϕr(p_x) = ϕr(s

_x)

)
∧

∧ |d(gq(s), 1G)− dϕr(s
_x,p_x)| < 1

2r+2
.
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It is easy to see that the first line in the second item defines Σ1
1 set and it follows from

Proposition 4.2 that the second line defines Borel set. Altogether, Xq is Σ1
1 subset of [Tr]

for every q ∈ NNr and [Tr] =
⋃
q∈NNr Xq.

Lemma 8.2 produces (Ar, αr) ∈ [N]N × [Tr]. Define Tr+1 = S(Ar,αr), ϕr+1 = ϕr ◦ ẽ(Ar,αr),

Ar+1 = {|v| ∈ Tr+1 : ∃n ∈ Ar srn = e(Ar,αr)(v)}

and {sr+1
n }n∈Ar+1 be any enumeration of e−1

(Ar,αr)
({srn}n∈Ar) that satisfies |sr+1

n | = n for

every n ∈ N.
It is easy to see that (1) and (2) hold. Note that p = sr+1

r+1 ∈ Tr+1 because by
Lemma 8.2 (4) we have p v e(Ar,αr)(p) = srn for some n ∈ Ar. This shows (3) and
(5) follows from pr v p. First part of item (4) follows from Lemma 8.2 (3). Second
part follows from the inductive hypothesis and definition of {sr+1

n }n∈N. Namely, for every
n ∈ Ar+1 there is n′ ∈ Ar such that e(Ar,αr)(s

r+1
n ) = srn′ . Note that n ≤ n′. Then we

have that ϕr is a homomorphism from GTr
sr
n′

to Hk,n′ and ẽ(Ar,αr) is a reduction from GTr+1

sr+1
n

to GTr
sr
n′

. This shows that ϕr+1 is a homomorphism from GTr+1

sr+1
n

to Hk,n′ ⊆ Hk,n because

n ≤ n′.
It remains to show (6). Recall that p = sr+1

r+1. It follows from Lemma 8.2 (2) that there is
q ∈ NNr such that p_[(Tr+1)p] ⊆ ẽ−1

(Ar,αr)
(Xq). Let s ∈ Tr+1 and define gs,r+1 = gq(s) ∈ G.

Take any c ∈ [(Tr+1)s]. By the definition of ẽ(Ar,αr) we find d ∈ [(Tr)s] = [(Tr)p] such that

ẽ(Ar,αr)(s
_c) = s_d & ẽ(Ar,αr)(p

_c) = p_d.

Since p_d ∈ Xq we find gs,r+1
c = gsd ∈ G such that

d(gs,r+1
c , gs,r+1) = d(gsd, gq(s)) <

1

2r+2

|d(gs,r+1, 1G)− dϕr+1(s
_c,p_c)| = |d(gq(s), 1G)− dϕr(s

_d,p_d)| < 1

2r+2

gs,r+1
c · ϕr+1(p_c) = gsd · ϕr ◦ ẽ(Ar,αr)(p

_c) = ϕr ◦ ẽ(Ar,αr)(s
_c) = ϕr+1(s_c)

by the definition of Xq. That shows (6) an the proof is finished.
Constructing φ. Lemma 8.1 gives a finitely uniformly branching tree T and a sequence

of continuous maps
{
ψ̃r,∞ : [T ]→ [Tr]

}
r∈N

. Define φ = ϕr ◦ ψ̃r,∞ for some, or equivalently

(by Lemma 8.2 (3)) any, r ∈ N. Note that φ is a continuous map and φ = ϕ ◦ ζ where

ζ = ψ̃0,∞.
Define {sr}r∈N = {srr}r∈N. It follows from (1) and Lemma 8.1 (1) that srr = sr ∈ T for

every r ∈ N and |sr| = r. By (4) and Lemma 8.1 (4) we have that ϕ is a homomorphism
from GT

sr to Hk,r for every r ∈ N. Let s ∈ T . Then there is r ≥ |s| such that pr = s. It

follows by (5) that s = pr v sr+1 = sr+1
r+1 and consequently that {sr}r∈N is dense in T .

It remains to show that dϕ is uniform. Let s ∈ T ∩ Nr and x, y ∈ [Ts]. It follows from
Lemma 8.1 (2) that there is c, d ∈ [(Tr)s] such that

ψ̃r,∞(t_x) = t_c ∧ ψ̃r,∞(t_y) = t_d
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whenever t ∈ T ∩ Nr. Let t = sr and gs,r, gs,rc , gs,rd ∈ G be as in (6). Then we have

|dϕ(sr
_x, s_x)− dϕ(sr

_y, s_y)| = |dϕr(srr
_c, s_c)− dϕr(s

r
r
_d, s_d)| ≤

≤ |dϕr(srr
_c, s_c)− d(gs,r, 1G)|+ |d(gs,r, 1G)− dϕr(s

r
r
_d, s_d)| ≤ 1

2r+1

and consequently

|dϕ(t_x, s_x)− dϕ(t_y, s_y)| ≤ 1

2r

for any t ∈ T ∩ Nr.
Pick any g, h ∈ G such that g · ϕ(s_x) = ϕ(s_y) and h · ϕ(sr

_x) = ϕ(sr
_y) if they

exist. Then we have

(gs,rd )−1 · g · gs,rc · ϕ(sr
_x) = (gs,rd )−1 · g · gs,rc · ϕr(sr_c) = ϕr(sr

_d) = ϕ(sr
_y)

gs,rd · h · (g
s,r
c )−1 · ϕ(s_x) = gs,rd · h · (g

s,r
c )−1 · ϕr(s_c) = ϕr(s

_d) = ϕ(s_y)

by (6). The invariance of d gives

d((gs,rd )−1 · g · gs,rc , 1G) = d(g, gs,rd · (g
s,r
c )−1) ≤ d(g, 1G) + d(gs,rd , gs,rc ) ≤ d(g, 1G) +

1

2r+1

where the last inequality follows from

d(gs,rd , gs,rc ) ≤ d(gs,rd , gs,r) + d(gs,r, gs,rc ).

Similarly

d(gs,rd · h · (g
s,r
c )−1, 1G) ≤ d(h, 1G) +

1

2r+1
.

This implies

|dϕ(s_x, s_y)− dϕ(sr
_x, sr

_y)| ≤ 1

2r+1

and consequently

|dϕ(s_x, s_y)− dϕ(t_x, t_y)| ≤ 1

2r

for any t ∈ T ∩ Nr. If such g, h ∈ G do not exist, then we have

dϕ(s_x, s_y) = dϕ(t_x, t_y) = +∞

and trivially

|dϕ(s_x, s_y)− dϕ(t_x, t_y)| ≤ 1

2r
.

This finishes the proof. �
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