DICHOTOMY FOR TSI POLISH GROUPS I: CLASSIFICATION BY COUNTABLE STRUCTURES

JAN GREBÍK

ABSTRACT. We introduce a property of orbit equivalence relation that we call *property* (IC) and show that a Borel orbit equivalence relation E_G^X induced by a continuous action of a tsi Polish group G on a Polish space X satisfies property (IC) if and only if it is classifiable by countable structures. Moreover, we describe a class of Borel equivalence relations that serve as a base for non-classification by countable structures for such Borel orbit equivalence relations.

The orbit equivalence relation E_G^X induced by a group action $G \curvearrowright X$ is defined as

$$
(x, y) \in E_G^X \iff \exists g \in G \ g \cdot x = y.
$$

We only work in the setting when X is a Polish space, G is a Polish group, $G \curvearrowright X$ is a continuous action and E_G^X is a Borel subset of $X \times X$.

We say that an equivalence relation E on a Polish space X is *classifiable by countable* structures if it admits a Borel reduction to an isomorphism relation of countable structures in some countable language. This is equivalent, see [\[7,](#page-21-0) Section 6, Theorem 6.1], with E being Borel reducible to $E_{S_{\infty}}^{Y}$ where Y is a Polish S_{∞} -space and S_{∞} is the Polish group of all permutations of natural numbers N. In fact, we use the latter as a definition of classification by countable structures.

In this note we introduce a property for orbit equivalence relation that we call *property* (IC) , see Section [3](#page-3-0) for the definition. Informally, property (IC) gives a countable Borel decomposition of a Polish G -space X into arbitrarily small independent clusters within each orbit. Next we state our main result.

Theorem. Let G be a **tsi** Polish group and X be a Polish G-space such that E_G^X is a Borel equivalence relation. Then the following are equivalent

- X satisfies property (IC),
- E_G^X is classifiable by countable structures.

Our result follows immediately from much refined Theorem [7.1.](#page-13-0) In the proof we use a version of the \mathbb{G}_0 -dichotomy, see [\[9\]](#page-21-1), [\[12\]](#page-21-2) and a certain class \mathcal{B} of Borel equivalence relations as a base for non-classification by countable structures. Informally, B consists of all turbulent c_0 -equalities, equivalence relations that are induced by canonical actions of Polishable tall ideals on N and Borel equivalence relation that contain one of these and are meager in the corresponding topology, see Section [5](#page-9-0) for precise definition.

In [\[4\]](#page-21-3) we use this characterization of classification by countable structures to show the following. Let G be tsi Polish group and X be a Polish G-space such that E_G^X is Borel and

$1\,\mathrm{AN}$ GREBÍK

classifiable by countable structures. Then either E_G^X is essentially countable or $\mathbb{E}_3 \leq_B E_G^X$ where $\mathbb{E}_3 = \mathbb{E}_0^{\mathbb{N}}$ $_{0}^{\mathbb{N}}.$

1. NOTATION

For a set X we write $X^{\leq \mathbb{N}}$ for the set of all nonempty finite sequences of X. Let $\overline{x} \in X^{\leq \mathbb{N}}$. We define $\mathfrak{s}(\overline{x}) \in X$, $\mathfrak{t}(\overline{x}) \in X$ and $l(\overline{x}) \in \mathbb{N}$ to be the first element of \overline{x} , last element of \overline{x} and the length of \overline{x} . When $X = \mathbb{N}$ then we use |s| instead of $l(s)$ where $s \in \mathbb{N}^{\leq \mathbb{N}}$. For a natural number $i < l(\overline{x})$ we define \overline{x}_i to be the *i*-th element of \overline{x} . Given a map $\varphi: X \to Y$ we abuse the notation and extend it to a map $\varphi: X^{\leq N} \to Y^{\leq N}$ coordinate-wise, i.e.,

$$
\varphi(\overline{x})_i = \varphi(\overline{x}_i)
$$

for every $i < l(\overline{x})$. Define

$$
\Delta_X = \left\{ \overline{x} \in X^{< \mathbb{N}} : \exists i < j < l(x) \; \overline{x}_i = \overline{x}_j \right\}.
$$

Let X and Y be sets, I some index set and $(A_j)_{j\in I}$ and $(B_j)_{j\in I}$ be sequences of subsets of $X^{\leq N}$ and $Y^{\leq N}$, respectively. We say that a map $\varphi: X \to Y$ is a *homomorphism from* $(A_j)_{j\in I}$ to $(B_j)_{j\in I}$ if

$$
\overline{x} \in A_j \implies \varphi(\overline{x}) \in B_j
$$

for every $\overline{x} \in X^{\leq \mathbb{N}}$ and $j \in I$. It is a *reduction* if

$$
\overline{x} \in A_j \iff \varphi(\overline{x}) \in B_j
$$

for every $\overline{x} \in X^{\leq \mathbb{N}}$ and $j \in I$.

A (finite-dimensional) dihypergraph on X is any subset of $X^{\leq N} \setminus (\Delta_X \cup X)$. If H is a dihypergraph on X and $A \subseteq X$, then we say that A is H-independent if $\mathcal{H} \cap A^{\leq N} = \emptyset$.

A topological space X is a Polish space if the underlying topology is separable and completely metrizable. A topological group G is a *Polish group* if the underlying topology is Polish. We denote the σ -ideal of meager sets on G as \mathcal{M}_G . We use the category quantifiers \exists^*, \forall^* in the standard meaning, i.e.,

$$
\forall^* g \in U \ P(g) \Leftrightarrow \{g \in U : \neg P(g)\} \in \mathcal{M}_G
$$

$$
\exists^* g \in U \ P(g) \Leftrightarrow \{g \in U : P(g)\} \notin \mathcal{M}_G
$$

where $U \subseteq G$ is open set and P is some property.

A Polish group G is tsi (two-sided invariant) if there is an open basis at 1_G made of conjugacy invariant open sets. Equivalently, see [\[2,](#page-21-4) Exercise 2.1.4], there is a compatible metric d on G that is two sided invariant, i.e., $d(g,h) = d(h^{-1} \cdot g, 1_G) = d(g \cdot h^{-1}, 1_G)$ for every $g, h \in G$. It follows from [\[2,](#page-21-4) Exercise 2.2.4] that such a metric d is necessarily complete. We fix such a metric d on G and put $V_{\epsilon} = \{g \in G : d(g, 1_G) < \epsilon\}.$ Note that $h \cdot V_{\epsilon} \cdot h^{-1} = V_{\epsilon}$ for every $\epsilon > 0$ and $h \in G$. We abuse the notation and put $V_k = V_{\frac{1}{2^k}}$. In some cases we do not require G to be tsi and in that cases we assume that $\{V_k\}_{k\in\mathbb{N}}$ is some open neighborhood base at 1_G such that $V_{k+1} \cdot V_{k+1} \subseteq V_k$ and $V_k = V_k^{-1}$ κ_k^{-1} for every $k \in \mathbb{N}$.

If there is a fixed continuous action of a Polish group G on a Polish space X , then we say that X is a Polish G-space. The orbit equivalence relation E_G^X is defined as

$$
(x, y) \in E_G^X \iff \exists g \in G \ g \cdot x = y.
$$

where $x, y \in X$.

Let X be a Polish G-space, $V \subseteq G$, $U \subseteq X$ and $x \in X$. We define

$$
\mathcal{J}(V) = \{ \overline{x} \in X^{\leq \mathbb{N}} \setminus \Delta_X : (\forall i < l(\overline{x}) - 1) \ \overline{x}_{i+1} \in V \cdot \overline{x}_i \},
$$
\n
$$
\mathcal{J}(x, V) = \{ \overline{x} \in \mathcal{J}(V) : \mathfrak{s}(\overline{x}) = x \},
$$
\n
$$
\mathcal{J}(U, V) = \mathcal{J}(V) \cap U^{\leq \mathbb{N}},
$$
\n
$$
\mathcal{J}(x, U, V) = \mathcal{J}(x, V) \cap \mathcal{J}(U, V).
$$

If we assume that U and V are open neighborhoods of x and 1_G , then the local orbit $\mathcal{O}(x, U, V)$ is defined as

$$
\mathcal{O}(x,U,V) = \{ \mathfrak{t}(\overline{x}) : \overline{x} \in \mathcal{J}(x,U,V) \}
$$

(see [\[2,](#page-21-4) Section 10.2]).

Let X be a Polish G-space, $x \in X$ and $A \subseteq X$. We write $G(x, A) = \{g \in G : g \cdot x \in A\}$.

Definition 1.1. Let X be a Polish G-space. We say that $C \subseteq X$ is a G-lg comeager set if $G \setminus G(x, C) \in \mathcal{M}_G$ for every $x \in X$. Equivalently,

$$
\forall^* g \in G \ g \cdot x \in C
$$

holds for every $x \in X$

We say that a tree $T \subseteq \mathbb{N}^{\leq \mathbb{N}}$ is *finitely uniformly branching* if there is a sequence $\{l_m^T\}_{m \in \mathbb{N}}$ of natural numbers such that $l_m^T \geq 2$ for every $m \in \mathbb{N}$ and

$$
l_{|s|}^T = \{i \in \mathbb{N}: s^\frown(i) \in T\}
$$

for every $s \in T$. If T is a tree and $s \in T$, then we define $T_s = \{t \in \mathbb{N}^{\leq \mathbb{N}} : s^\frown t \in T\}$. Note that $T_s = T_t$ whenever $t, s \in T$ and $|t| = |s|$. We denote as $[T] \subseteq \mathbb{N}^{\mathbb{N}}$ the set of all branches through T, i.e., $\alpha \in [T]$ if and only if $\alpha \restriction m \in T$ for every $m \in \mathbb{N}$.

Definition 1.2. Let T be a finitely uniformly branching tree and $s \in T$. The dihypergraph \mathbb{G}_s^T on $[T]$ is defined as

$$
\mathbb{G}_s^T = \left\{ (s^{\widehat{\ }}(i)^{\widehat{\ }}\alpha)_{i < l^T_{|s|}} : \alpha \in [T_{s^{\widehat{\ }}(0)}] \right\}.
$$

The equivalence relation \mathbb{E}_0^T on $[T]$ is defined as

$$
(\alpha, \beta) \in \mathbb{E}_0^T \iff |\{n \in \mathbb{N} : \alpha(n) \neq \beta(n)\}| < \aleph_0
$$

where $\alpha, \beta \in [T]$. In the case when $T = 2^{\langle \mathbb{N} \rangle}$ we write \mathbb{E}_0 instead of $\mathbb{E}_0^{2^{\langle \mathbb{N} \rangle}}$.

Let E be an equivalence relation on a Polish space X and F be an equivalence relation on a Polish space Y. Then we say that E is Borel reducible to F and write $E \leq_B F$ if there is a Borel map $\phi: X \to Y$ that is a reduction from E to F.

4 JAN GREB´IK

2. \mathbb{G}_0 -LIKE DICHOTOMY

Recall that if G is a Polish group, then ${V_k}_{k\in\mathbb{N}}$ is an open neighborhood base at 1_G such that $V_{k+1} \cdot V_{k+1} \subseteq V_k$ and $V_k = V_k^{-1}$ κ_k^{-1} for every $k \in \mathbb{N}$.

Let X be a Polish G -space. Define

$$
\mathcal{H}_{k,m} = \left\{ \overline{x} \in X^{< \mathbb{N}} : \overline{x} \in \mathcal{J}(V_m) \ \wedge \ \mathfrak{t}(\overline{x}) \notin V_k \cdot \mathfrak{s}(\overline{x}) \right\}
$$

for every $k, m \in \mathbb{N}$. Note that if $A \subseteq X$ is $\mathcal{H}_{k,m}$ -independent, then it is $\mathcal{H}_{k',m'}$ -independent for every $m \leq m' \in \mathbb{N}$ and $k \geq k' \in \mathbb{N}$. This is because $\mathcal{H}_{k,m} \supseteq \mathcal{H}_{k',m'}$ whenever $m \leq m' \in \mathbb{N}$ and $k \geq k' \in \mathbb{N}$.

Proposition 2.1. Let X be a Polish G-space such that E_G^X is Borel. Then $\mathcal{H}_{k,m}$ is a Borel subset of $X^{\leq \mathbb{N}}$ for every $k, m \in \mathbb{N}$.

Proof. Let $V \subseteq G$ be an open neighborhood of 1_G . Define a binary relation R_V on X as

$$
(x, y) \in R_V \Leftrightarrow \exists g \in V \ g \cdot x = y.
$$

Then it follows from the assumption that E_G^X is Borel together with [\[1,](#page-21-5) Theorem 7.1.2] that R_V is Borel.

Let $k, m \in \mathbb{N}$. We have

$$
\overline{x} \in \mathcal{H}_{k,m} \Leftrightarrow \overline{x} \notin \Delta_X \wedge \forall i < (l(\overline{x}) - 1) (\overline{x}_i, \overline{x}_{i+1}) \in R_{V_m} \wedge (\mathfrak{s}(\overline{x}), \mathfrak{t}(\overline{x})) \notin R_{V_k}
$$

and that shows that $\mathcal{H}_{k,m}$ is a Borel subset of $X^{\lt N}$ by the previous paragraph.

Theorem 2.2 (\mathbb{G}_0 -like dichotomy). Let G be a Polish group, X be a Polish G-space such that E_G^X is Borel and $A \subseteq X$ be a Σ_1^1 $\frac{1}{1}$ set. Then one of the following holds

- (A) there is a sequence $\{A_{k,l}\}_{l\in\mathbb{N}}$ of Σ_1^1 subsets of X such that $A=\bigcup_{l\in\mathbb{N}}A_{k,l}$ for every $k \in \mathbb{N}$ and for every $k, l \in \mathbb{N}$ there is $m(k, l) \in \mathbb{N}$ such that $A_{k,l}$ is $\mathcal{H}_{k,m(k,l)}$ independent,
- (B) there is $k \in \mathbb{N}$, a finitely uniformly branching tree T, a dense set $\{s_m\}_{m\in\mathbb{N}} \subseteq T$ such that $s_m \in \mathbb{N}^m$ and a continuous map $\varphi : [T] \to A$ that is a homomorphism from $(\mathbb{G}_{s_m}^T)_{m\in\mathbb{N}}$ to $(\mathcal{H}_{\mathbf{k},m})_{m\in\mathbb{N}}$.

Proof. It follows from Proposition [2.1](#page-3-1) that $\mathcal{H}_{k,m}^A = \mathcal{H}_{k,m} \cap A^{\leq \mathbb{N}}$ is a Σ_1^1 dihypergraph on an analytic Hausdorff space A. Fix $k \in \mathbb{N}$ and apply a version of the \mathbb{G}_0 -dichotomy, see [\[11,](#page-21-6) Theorem 2.2.12], for sequence $(\mathcal{H}_{k,m}^A)_{m\in\mathbb{N}}$. Then either there is a sequence $\{A_{k,l}\}_{l\in\mathbb{N}}$ of relative Borel subsets of A such that $\bigcup_{l\in\mathbb{N}} A_{k,l} = A$ and $A_{k,l}$ is $\mathcal{H}_{k,m(k,l)}^A$ -independent for some $m(k, l) \in \mathbb{N}$, or (B) holds with $k = k$. It is easy to see that if the first case occurs for every $k \in \mathbb{N}$, then $\{A_{k,l}\}_{k,l\in\mathbb{N}}$ is the desired sequence in (\mathbf{A}) .

3. Property (IC)

Definition 3.1. Let X be a Polish G-space and $B \subseteq X$ be a G-invariant Borel set. We say that B satisfies property (IC) if there is a sequence of Borel sets $\{A_{k,l}\}_{k,l\in\mathbb{N}}$ such that for every $k, l \in \mathbb{N}$ there is $m(k, l) \in \mathbb{N}$ such that $A_{k,l}$ is $\mathcal{H}_{k,m(k,l)}$ -independent and $B = \bigcup_{l \in \mathbb{N}} A_{k,l}$ for every $k \in \mathbb{N}$.

We say that Polish G-space X satisfies property (IC) if X satisfies property (IC) .

Note that if $V_k \subseteq G$ is a subgroup, then X is $\mathcal{H}_{k,k}$ -independent. Therefore property (IC) holds for X whenever G contain an open basis at 1_G made of clopen subgroups, i.e., whenever G is a closed subgroup of S_{∞} .

Let X be a Polish G-space. Recall that the action $G \curvearrowright X$ is turbulent if

- (1) every orbit is dense and meager in X,
- (2) $\mathcal{O}(x, U, V)$ is somewhere dense for every $x \in X$ and every open sets $U \subseteq X, V \subseteq G$ such that $x \in U$, $1_G \in V$,

see [\[2,](#page-21-4) Section 10].

Theorem 3.2. Let X be a Polish G-space that satisfies property (IC) . Then the action is not turbulent.

Proof. Suppose that the action is turbulent. Let $D \subseteq X$ be a Borel comeager set such that $A_{k,l} \cap D$ is relatively open in D for every $k, l \in \mathbb{N}$. This can be done using [\[8,](#page-21-7) Proposition 8.26]. It follows from [\[8,](#page-21-7) Theorem 16.1] and [\[8,](#page-21-7) Theorem 8.41] that

$$
D' = \{ x \in D : \forall^* g \in G \ g \cdot x \in D \}
$$

is a Borel comeager subset of X.

Pick $x \in D'$. Note that $G(x, D')$ is comeager in G. We show that $G \cdot x = [x]_{E_G^X}$ is nonmeager. Suppose that $G \cdot x$ is meager. Then there are closed nowhere dense sets ${F_r}_{r \in \mathbb{N}}$ such that $G \cdot x \subseteq \bigcup_{r \in \mathbb{N}} F_r$. Note that $G(x, F_r)$ is closed for every $r \in \mathbb{N}$ and $G = \bigcup_{r \in \mathbb{N}} G(x, F_r)$. By [\[8,](#page-21-7) Proposition 8.26] there is an index $r \in \mathbb{N}$ such that $G(x, F_r)$ contains an open set. This implies that there is $g \in G$ and $k \in \mathbb{N}$ such that $V_k \cdot g \subseteq G(x, F_r)$ and $y = g \cdot x \in D'$. Let $l \in \mathbb{N}$ such that $y \in A_{k,l}$. Note that

$$
\overline{V_k \cdot y} = \overline{V_k \cdot g \cdot x} \subseteq F_r
$$

because F_r is closed.

Use the definition of D to find an open set U such that $U \cap D' = A_{k,l} \cap D'$. Consider the local orbit $\mathcal{O}(y, U, V_{m(k,l)})$ and pick $z \in \mathcal{O}(y, U, V_{m(k,l)})$. By the definition, there is $w \in U^{\leq N}$ such that $w_0 = y$, $w_{l(w)-1} = z$ and $w_{i+1} \in V_{m(k,l)} \cdot z_i$ for every $i < l(z) - 1$. Let $P \subseteq X$ be an open neighborhood of z. Note that $G(y, U)$, $G(y, P)$ are open and $G(y, D')$ is comeager, in particular, dense in $G(y, U)$. Therefore we can find a sequence $z' \in U^{ $\hat{\mathbb{N}}}$$ such that $l(z) = l(z')$, $z'_0 = y$, $z'_i \in U \cap D'$ for every $i < l(z')$, $z'_{i+1} \in V_{m(k,l)} \cdot z'_i$ for every $i < l(z') - 1$ and $z'_{l(z')-1} \in P$. Note that we have

$$
z_i' \in U \cap D' = A_{k,l} \cap D' \subseteq A_{k,l}
$$

for every $i < l(z')$. The set $A_{k,l}$ is $\mathcal{H}_{k,m(k,l)}$ -independent and therefore $z'_{l(z')-1} \in V_k \cdot y$. This implies that $V_k \cdot y \cap P \neq \emptyset$ and consequently that

$$
\mathcal{O}(y, U, V_{m(k,l)}) \subseteq \overline{V_k \cdot y}.
$$

Therefore F_r contains an open set by the assumption that the action is turbulent, i.e., $\mathcal{O}(y, U, V_{m(k,l)})$ is somewhere dense. This shows that $[x]_{E_G^X}$ is nonmeager and that contradicts the definition of turbulence.

$\,$ 6 JAN GREBÍK

Recall that if G is a tsi Polish group, then there is a fixed compatible complete two-sided invariant metric d on G and the sequence ${V_k}_{k\in\mathbb{N}}$ is defined as $V_k = {g \in G : d(g, 1_G)$ 1 $\frac{1}{2^k}\big\}.$

Proposition 3.3. Let G be a tsi Polish group, X be a Polish G-space and A be a $\mathcal{H}_{k+2,m}$ independent Σ_1^1 subset of X. Then there is a Borel G-invariant set $B \subseteq X$ such that $A \subseteq B$ and a sequence ${B_n}_{n \in \mathbb{N}}$ of $\mathcal{H}_{k,m+2}$ -independent Borel subsets of X such that $\bigcup_{n \in \mathbb{N}} B_n = B$.

Proof. We may assume that $k + 2 \le m$. Define

$$
A' = \{ x \in X : \exists g \in V_{m+2} \ g \cdot x \in A \} .
$$

Then it is easy to see that A' is a Σ_1^1 subset of X. Let $\overline{x} \in \mathcal{J}(A', V_{m+2})$ and pick any $\overline{y} \in A^{\leq \mathbb{N}}$ such that $l(\overline{x}) = l(\overline{y})$ and $\overline{x}_i \in V_{m+2} \cdot \overline{y}_i$ for every $i < l(\overline{x})$. Then we have

$$
\overline{y}_{i+1} \in V_{m+2}^{-1} \cdot \overline{x}_{i+1} \subseteq V_{m+2}^{-1} \cdot V_{m+2} \cdot \overline{x}_i \subseteq V_{m+2}^{-1} \cdot V_{m+2} \cdot V_{m+2} \cdot \overline{y}_i \subseteq V_m \cdot \overline{y}_i
$$

for every $i < l(\overline{y}) - 1$. The set A is $\mathcal{H}_{k+2,m}$ -independent and that gives $\mathfrak{t}(\overline{y}) \in V_{k+2} \cdot \mathfrak{s}(\overline{y})$. We have

$$
\mathfrak{t}(\overline{x}) \in V_{m+2} \cdot \mathfrak{t}(\overline{y}) \subseteq V_{m+2} \cdot V_{k+2} \cdot \mathfrak{s}(\overline{y}) \subseteq V_{m+2} \cdot V_{k+2} \cdot V_{m+2}^{-1} \cdot \mathfrak{s}(\overline{x}) \subseteq V_{k+1} \cdot \mathfrak{s}(\overline{x})
$$

and that shows that A' is $\mathcal{H}_{k+1,m+2}$ -independent.

By [\[8,](#page-21-7) Theorem 28.5] there is a Borel set $D' \subseteq X$ that is $\mathcal{H}_{k+1,m+2}$ -independent and $A' \subseteq D'$. Define

$$
D = \{ x \in X : \exists r \in \mathbb{N} \; \forall^* g \in V_r \; g \cdot x \in D' \} \, .
$$

It follows from [\[8,](#page-21-7) Theorem 16.1] that D is a Borel set and the definition of A' together with $A' \subseteq D'$ implies that $A \subseteq D$. Similar argument as in previous paragraph shows that D is $\mathcal{H}_{k,m+2}$ -independent. Moreover it is easy to see that if $G(x, D')$ is comeager in V_r , then $y \in D$ for every $y \in V_{r+1} \cdot x$. This shows that $G(x, D)$ is open in G for every $x \in X$. Let ${g_n}_{n\in\mathbb{N}}$ be a dense subset of G such that $g_0 = 1_G$. Define $B_n = g_n \cdot D$ and $B = \bigcup_{n \in \mathbb{N}} B_n$. Then B is a G-invariant Borel set because $G(x, D)$ is nonempty open set whenever $x \in D$. Moreover, $A \subseteq D = B_0 \subseteq B$.

It remains to show that B_n is $\mathcal{H}_{k,m+2}$ -invariant for every $n \in \mathbb{N}$. Let $g \in G$, V be a conjugacy invariant open neighborhood of 1_G and $x, y \in X$, then $y \in V \cdot x$ if and only if $g \cdot y \in V \cdot (g \cdot x)$. This shows that

$$
g_n \cdot \mathcal{J}(D, V_{m+2}) = \mathcal{J}(B_n, V_{m+2})
$$

where the action is extended coordinate-wise and consequently that B_n is $\mathcal{H}_{k,m+2}$ -independent for every $n \in \mathbb{N}$. This finishes the proof.

Corollary 3.4. Let G be a tsi Polish group, X be a Polish G-space and A be a Σ^1 subset of X such that (A) in Theorem [2.2](#page-3-2) holds. Then there is a Borel G-invariant set $B \subseteq X$ that satisfies property (IC) and $A \subseteq B$.

Proof. Let $k, l \in \mathbb{N}$. Apply Proposition [3.3](#page-5-0) to $A_{k+2,l} \subseteq X$ to get a Borel G-invariant set $B^{k,l} \subseteq X$ together with a sequence ${B_n^{k,l}}_{n \in \mathbb{N}}$ of $\mathcal{H}_{k,m(k+2,l)+2}$ -independent Borel subsets of X such that $B^{k,l} = \bigcup_{n \in \mathbb{N}} B_n^{k,l}$.

Define

$$
B=\bigcap_{k\in\mathbb{N}}\left(\bigcup_{l\in\mathbb{N}}B^{k,l}\right).
$$

Then it is easy to see that B is a Borel G-invariant subset of X that satisfies property (IC) and $A \subseteq B$.

Next theorem shows that property (IC) is stronger condition than classification by countable structures for tsi Polish groups.

Theorem 3.5. Let G be a tsi Polish group and X be a Polish G-space that satisfies property (IC) and E_G^X is Borel. Then E_G^X is classifiable by countable structures.

Proof. An elementary proof of this statement follows from [\[3,](#page-21-8) Definition 3.3.6, Proposition 3.3.7, Theorem 3.3.8].Maybe sketch

Alternative approach that does not need the assumption that E_G^X is Borel is to appeal to [\[7,](#page-21-0) Theorem 13.18] and Theorem [3.2.](#page-4-0)

Corollary 3.6. Let G be a tsi Polish group, X be a Polish G-space such that E_G^X is Borel and A be a Σ^1_1 subset of X such that (A) in Theorem [2.2](#page-3-2) holds. Then there is a G-invariant Borel set $B \subseteq X$ such that $A \subseteq B$ and $E_G^X \upharpoonright B \times B$ is classifiable by countable structures. In particular, if $A = X$, then (A) implies that E_G^X is classifiable by countable structures.

Proof. Corollary [3.4](#page-5-1) produces a Borel G-invariant set $B \subseteq X$ such that $A \subseteq B$. There is a finer Polish topology on X such that B is clopen and the action is continuous, see [\[2,](#page-21-4) Corollary 4.3.4. This turns B into a Polish G-space that satisfies (IC) and $E_G^B = E_G^X$ $B \times B$ is Borel. The proof is finished by applying Theorem [3.5.](#page-6-0)

4. Uniform Pseudometric

Definition 4.1. Let T be a finitely uniformly branching tree. A function $d : [T] \times [T] \rightarrow$ $[0, +\infty]$ is called a Borel pseudometric if

- (1) d is pseudometric,
- (2) $\mathbf{d}^{-1}([0,\epsilon))$ is a Borel subset of $[T] \times [T]$ for every $\epsilon > 0$,
- (3) $({\beta : \mathbf{d}(\alpha, \beta) < +\infty}, \mathbf{d})$ is a separable pseudometric space for every $\alpha \in [T]$,
- (4) if $\alpha_n \to_{[T]} \alpha$ and $\{\alpha_n\}_{n \in \mathbb{N}}$ is a **d**-Cauchy sequence, then $\mathbf{d}(\alpha_n, \alpha) \to 0$.

Moreover, we say that a Borel pseudoemtric is uniform if

• for every $m \in \mathbb{N}$, $s, t \in T \cap \mathbb{N}^m$ and $\alpha, \beta \in [T_s] = [T_t]$ we have

$$
|\mathbf{d}(s^\frown \alpha, t^\frown \alpha) - \mathbf{d}(s^\frown \beta, t^\frown \beta)| < \frac{1}{2^m},
$$

$$
|\mathbf{d}(s^\frown \alpha, s^\frown \beta) - \mathbf{d}(t^\frown \alpha, t^\frown \beta)| < \frac{1}{2^m}
$$

where we set $|+\infty - +\infty| = 0$.

First we show a canonical way how to find Borel pseudometrics. Recall that if G is a tsi Polish group, then d is a fixed two-sided invariant metric on G.

Proposition 4.2. Let G be a tsi Polish group, X be a Polish G-space such that E_G^X is Borel, T be a finitely uniformly branching tree and $\varphi : [T] \to X$ be a continuous map. Then the function $\mathbf{d}_{\varphi} : [T] \times [T] \to [0, +\infty]$ defined as

$$
\mathbf{d}_{\varphi}(\alpha,\beta) = \inf \{ d(g,1_G) : g \in G \ \land \ g \cdot \varphi(\alpha) = \varphi(\beta) \}
$$

is a Borel pseudometric.

Proof. The invariance of d guarantees that $d(g, 1_G) = d(g^{-1}, 1_G)$ for every $g \in G$ and consequently that \mathbf{d}_{φ} is symmetric. Let $\alpha, \beta, \gamma \in [T]$. We may assume that $\mathbf{d}_{\varphi}(\alpha, \beta)$ + $d_{\varphi}(\beta, \gamma) < +\infty$. In that case for every $\epsilon > 0$ there is $g, h \in G$ such that $d(g, 1_G)$ $\mathbf{d}_{\varphi}(\alpha,\beta) + \epsilon$ and $d(h,1_G) < \mathbf{d}_{\varphi}(\beta,\gamma) + \epsilon$. Then we have

$$
\mathbf{d}_{\varphi}(\alpha,\gamma)-2\epsilon\leq d(h\cdot g,1_G)-2\epsilon\leq d(h,1_G)+d(g,1_G)-2\epsilon<\mathbf{d}_{\varphi}(\alpha,\beta)+\mathbf{d}_{\varphi}(\beta,\gamma)
$$

because $d(h \cdot g, 1_G) \leq d(h \cdot g, g) + d(g, 1_G) = d(h, 1_G) + d(g, 1_G)$ by the invariance of d. That proves (1).

Recall that for $\epsilon > 0$ we defined $V_{\epsilon} = \{g \in G : d(g, 1_G) < \epsilon\}$. It follows, as in the proof of Proposition [2.1,](#page-3-1) that the relation $R_{V_{\epsilon}}$ defined as

$$
(x, y) \in R_{V_{\epsilon}} \iff \exists g \in V_{\epsilon} \ g \cdot x = y
$$

is Borel for every $\epsilon > 0$. Note that we have

$$
\mathbf{d}_{\varphi}^{-1}([0,\epsilon)) = \{(\alpha,\beta) \in [T] \times [T] : \mathbf{d}_{\varphi}(\alpha,\beta) < \epsilon\} = \left(\varphi^{-1} \times \varphi^{-1}\right)(R_{V_{\epsilon}})
$$

and that shows (2).

Let $\alpha \in [T]$ and $S_{\alpha} = {\beta : \mathbf{d}(\alpha, \beta) < +\infty }$ \mathbf{d}_{φ} be the metric quotient. Then the space $G_{\alpha} = \{g \in G : \exists \beta \in [T] \mid g \cdot \varphi(\alpha) = \varphi(\beta)\}\$ endowed with d is a separable metric space and the assignment $g \mapsto \beta$ where $g \cdot \varphi(\alpha) = \varphi(\beta)$ is a contraction from (G_{α}, d) to (S_{α}, d) . This shows (3) .

Let $\{\alpha_n\}_{n\in\mathbb{N}}, \alpha \in [T]$ be such that the assumptions of (4) are satisfied. After possibly passing to a subsequence we may suppose that there is a sequence $\{g_n\}_{n\in\mathbb{N}}\subseteq G$ such that $g_n \cdot \varphi(\alpha_n) = \varphi(\alpha_{n+1})$ and $d(g_n, 1_G) < \frac{1}{2^n}$. Define $h_m^n = g_{n-1} \cdot \ldots \cdot g_m$ for every $m < n \in \mathbb{N}$. Then it follows that $\{h_m^n\}_{n\in\mathbb{N}}$ is d-Cauchy whenever $m\in\mathbb{N}$ is fixed and since d is complete there is $\{h_m\}_{m\in\mathbb{N}}\in G$ such that $h_m^n\to h_m$. Moreover we have $d(h_m,1_G)<\frac{1}{2^{m+1}}$ $\frac{1}{2^{m-1}}$. Continuity of the action and of φ gives

$$
h_m \cdot \varphi(\alpha_m) \leftarrow h_m^n \cdot \varphi(\alpha_m) = \varphi(\alpha_n) \to \varphi(\alpha).
$$

This proves (4) and finishes the proof.

It follows from (1) above that every Borel pseudoemtric **d** on $[T]$ defines a Borel equivalence relation $F_{\mathbf{d}}$ on [T] as

$$
(\alpha, \beta) \in F_{\mathbf{d}} \iff \mathbf{d}(\alpha, \beta) < +\infty.
$$

Note that in the case of Proposition [4.2](#page-7-0) we have that $F_{\mathbf{d}_{\varphi}} = (\varphi^{-1} \times \varphi^{-1}) (E_G^X)$.

Theorem 4.3. Let T be a finitely uniformly branching tree and d be a uniform Borel pseudometric such that $\mathbb{E}^T_0 \subseteq F_d$. Then the following are equivalent

(a) $F_{\mathbf{d}}$ is nonmeager,

$$
\qquad \qquad \Box
$$

(b)
$$
F_{\mathbf{d}} = [T] \times [T].
$$

Proof. (b) \Rightarrow (a) is trivial. We show that (a) \Rightarrow (b). Suppose first, that for every $k \in \mathbb{N} \setminus \{0\}$ there is $m_k \in \mathbb{N}$ such that $\mathbf{d}(\alpha, \beta) < \frac{1}{k}$ $\frac{1}{k}$ for every $\alpha, \beta \in [T]$ such that ${n \in \mathbb{N} : \alpha(n) \neq \beta(n)} \cap m_k = \emptyset$ and $(\alpha, \beta) \in \mathbb{E}_0^T$. We may assume that ${m_k}_{k \in \mathbb{N}} \subseteq \mathbb{N}$ is strictly increasing and that $m_0 = 0$. Let $x, y \in [T]$ and define $y_k \in [T]$ such that $y_k \restriction m_k = y$ and $y_k(n) = x(n)$ for every $n \geq m_k$. Then clearly $y_0 = x$, $(y_r, y_s) \in \mathbb{E}_0^T \subseteq F_d$ for every $r, s \in \mathbb{N}$ and $y_k \to_{[T]} y$. Let $k \in \mathbb{N} \setminus \{0\}$ and $r, s \geq k$. Then we have

$$
|\{n \in \mathbb{N} : y_r(n) \neq y_s(n)\}| \cap m_k = \emptyset
$$

and consequently $\mathbf{d}(y_r, y_s) < \frac{1}{k}$ $\frac{1}{k}$. This shows that $\{y_k\}_{k\in\mathbb{N}}$ is a **d**-Cauchy sequence and by (4) from the definition of Borel pseudometric we have $\mathbf{d}(y_k, y) \to 0$. In particular, there is $k \in \mathbb{N}$ such that $\mathbf{d}(y_k, y) < +\infty$ and therefore $(y_k, y) \in F_{\mathbf{d}}$. Altogether we have $(x, y) \in F_{\mathbf{d}}$ and since $x, y \in [T]$ were arbitrary we have that $F_d = [T] \times [T]$.

The other case is when there is $\epsilon > 0$ such that for every $m \in \mathbb{N}$ there are $\alpha_m, \beta_m \in [T]$ such that $\mathbf{d}(\alpha, \beta) > \epsilon$, $\{n \in \mathbb{N} : \alpha(n) \neq \beta(n)\} \cap m = \emptyset$ and $(\alpha_m, \beta_m) \in \mathbb{E}_0^T$. We show that this contradicts $F_{\mathbf{d}}$ being non-meager.

Note that F_d is a Borel equivalence relation by (2) in the definition of Borel pseudometric and every F_{d} -equivalence class is dense because $\mathbb{E}_{0}^{T} \subseteq F_{d}$. This implies, by [\[8,](#page-21-7) Theorem 8.41, that there is $\alpha \in [T]$ such that $[\alpha]_d$ is comeager in [T]. It follows from (3) in the definition of Borel pseudometric that there are Borel sets $\{U_l\}_{l\in\mathbb{N}}$ such that $\bigcup_{l \in \mathbb{N}} U_l = [\alpha]_{F_{\mathbf{d}}}$ and

$$
\mathbf{d}(x,y) < \frac{\epsilon}{2}
$$

for every $l \in \mathbb{N}$ and $x, y \in U_l$.

By [\[8,](#page-21-7) Proposition 8.26] we find $t' \in T$ and $l \in \mathbb{N}$ such that U_l is comeager in $t'^{n}[T_t]$. Pick $m \in \mathbb{N}$ such that $m \geq |t'|$ and $\frac{1}{m} < \frac{\epsilon}{4}$ $\frac{\epsilon}{4}$. We may suppose that $\alpha_m = s^{\frown} u_0 \, \hat{\,} x$ and $\beta_m = s^\frown u_1^\frown x$ where $|s| = m$, $|u_0| = |\ddot{u_1}|$ and $x \in [T_{s^\frown u_0}] = [T_{s^\frown u_1}]$.

Let $t \in T$ be such that $t' \sqsubseteq t$ and $|t| = |s| = m$. Then we have that U_l is comeager in $t^{\frown}[T_t]$ and therefore there is $y \in [T_{t\frown u_0}] = [T_{t\frown u_1}]$ such that

$$
t^\frown u_0^\frown y, t^\frown u_1^\frown y \in U_l.
$$

In particular we have $\mathbf{d}(t^\frown u_0^\frown y, t^\frown u_1^\frown y) < \frac{\epsilon}{2}$ $\frac{\epsilon}{2}$.

Last step is to use that d is uniform. We have

$$
|\mathbf{d}(s^\frown(u_0^\frown x), s^\frown(u_1^\frown x)) - \mathbf{d}(t^\frown(u_0^\frown x), t^\frown(u_1^\frown x))| < \frac{1}{2^m} < \frac{1}{m} < \frac{6}{4}
$$

and

$$
|\mathbf{d}((t^\frown u_0)^\frown x, (t^\frown u_1)^\frown x) - ((t^\frown u_0)^\frown y, (t^\frown u_1)^\frown y)| < \frac{1}{2^{|t^\frown u_0|}} < \frac{1}{m} < \frac{\epsilon}{4}.
$$

This implies

$$
\mathbf{d}(t^\frown u_0^\frown y, t^\frown u_1^\frown y) \ge \mathbf{d}(s^\frown u_0^\frown x, s^\frown u_1^\frown x) - \frac{\epsilon}{2} > \frac{\epsilon}{2}
$$

and that contradicts $\mathbf{d}(t^\frown u_0^\frown y, t^\frown u_1^\frown y) < \frac{\epsilon}{2}$ $\frac{\epsilon}{2}$. This finishes the proof. \Box

5. Base for Non-Classification

We describe the family that will serve as a base under \leq_B for non-classification in the proof of Theorem [6.1.](#page-10-0) We denote the power set of N as $\mathcal{P}(\mathbb{N})$.

A map Θ : $\mathcal{P}(\mathbb{N}) \to [0, +\infty]$ is a lsc submeasure if $\Theta(\emptyset) = 0$, $\Theta(M \cup N) \leq \Theta(M) + \Theta(N)$ whenever $M, N \in \mathcal{P}(\mathbb{N}), \Theta({m}) < +\infty$ for every $m \in \mathbb{N}$ and

$$
\Theta(M) = \lim_{m \to \infty} \Theta(M \cap m)
$$

for every $M \in \mathcal{P}(\mathbb{N})$. We say that Θ is tall if $\lim_{m \to \infty} \Theta({m}) = 0$.

Let Θ be a tall lsc submeausre. Then the equivalence relation E_{Θ} on $2^{\mathbb{N}}$ is defined as

$$
(x, y) \in E_{\Theta} \Leftrightarrow \lim_{m \to \infty} \Theta(\{n \in \mathbb{N} \setminus m : x(n) \neq y(n)\}) = 0
$$

for every $x, y \in 2^{\mathbb{N}}$. We remark that E_{Θ} is non-meager if and only if $E_{\Theta} = 2^{\mathbb{N}} \times 2^{\mathbb{N}}$, compare with Theorem [4.3.](#page-7-1)

A sequence of finite metric spaces $\{(Z_m, \mathfrak{d}_m)\}_{m\in\mathbb{N}}$ is called non-trivial if

$$
\liminf_{m \to \infty} r(Z_m, \mathfrak{d}_m) > 0 \& \lim_{m \to \infty} j(Z_m, \mathfrak{d}_m) = 0
$$

where $r(Z, \mathfrak{d}) = \max \mathfrak{d}$ and $j(Z, \mathfrak{d})$ is the minimal $\epsilon > 0$ such that there is $l \in \mathbb{N}$ and a sequence $(z_0, \ldots z_l)$ that contains every element of Z and satisfies $\mathfrak{d}(z_i, z_{i+1}) < \epsilon$ for every $i < l$.

Let $\mathcal{Z} = \{(Z_m, \mathfrak{d}_m)\}_{m \in \mathbb{N}}$ be a non-trivial sequence of finite metric spaces and $\prod_{m \in \mathbb{N}} Z_m$ be endowed with the product topology. Then the equivalence relation E_z on $\prod_{m\in\mathbb{N}}\overline{Z}_m$ is defined as

$$
(x,y)\in E_{\mathcal{Z}} \Leftrightarrow \lim_{m\to\infty} \mathfrak{d}_m(x(m),y(m))=0
$$

for every $x, y \in \prod_{m \in \mathbb{N}} Z_m$.

Definition 5.1. Denote as β the collection of all Borel meager equivalence relations that contain E_{Θ} for some tall lsc submeasure Θ or $E_{\mathcal{Z}}$ for some non-trivial sequence of finite metric spaces \mathcal{Z} , i.e., for every $E \in \mathcal{B}$ there is either tall lsc submeasure Θ such that $E_{\Theta} \subseteq E$ and E is a meager subset of $2^{\mathbb{N}} \times 2^{\mathbb{N}}$, or there is a non-trivial sequence of finite metric spaces Z such that $E_z \subseteq E$ and E is a meager subset of $\prod_{m\in\mathbb{N}} Z_m \times \prod_{m\in\mathbb{N}} Z_m$.

Theorem 5.2. Let $E \in \mathcal{B}$. Then E is not classifiable by countable structures.

Proof. It is easy to see that if E_{Θ} is meager, then it is induced by a turbulent action of a Polish group on 2^N whenever Θ is a tall lsc submeasure and E_z is induced by a turbulent action of a Polish group on $\prod_{m\in\mathbb{N}}Z_m$ whenever $\mathcal Z$ is a non-trivial sequence of finite metric spaces, see [\[3,](#page-21-8) Appendix 3.7] and [\[6,](#page-21-9) Chapter 16].

Let $E \in \mathcal{B}$ be a Borel meager equivalence relation on Y. By the definition we find $F \subseteq E$ such that either $F = E_{\Theta}$ for some tall lsc submeasure Θ or $F = E_{\mathcal{Z}}$ for some non-trivial sequence of finite metric spaces \mathcal{Z} .

Let W be a Polish S_{∞} -space and $\psi: Y \to W$ be a Borel map that is a reduction from E to $E_{S_{\infty}}^W$. Then ψ is a Borel homomorphism from F to $E_{S_{\infty}}^W$ and it follows from [\[2,](#page-21-4)

Theorem 10.4.3] that there is $y \in Y$ such that $\psi^{-1}([\psi(y)]_{E_{S_\infty}^W})$ is comeager in Y. Since ψ is a reduction we have

$$
\psi^{-1}([\psi(y)]_{E_{S_{\infty}}^W}) \subseteq [y]_E.
$$

An application of [\[8,](#page-21-7) Theorem 8.41] shows that E is comeager and that is a contradiction. \Box

6. Non-Classification by Countable Structures

The aim of this section is to show that (B) in Theorem [2.2](#page-3-2) implies that E_G^X is complicated.

Theorem 6.1. Let G be a tsi Polish group, X be a Polish G-space such that E_G^X is Borel and (B) in Theorem [2.2](#page-3-2) holds for $A = X$. Then E_G^X is not classifiable by countable structures.

Proof. Let $\mathbf{k} \in \mathbb{N}$, T' , $\{s'_m\}_{m\in\mathbb{N}}$ and $\varphi : [T'] \to X$ be as in (B) Theorem [2.2.](#page-3-2) First we formulate the main technical result that uses crucially that G is tsi. See Section [8](#page-14-0) for the proof.

Lemma 6.2 (Refinement). Suppose that $\mathbf{k} \in \mathbb{N}$, T' , $\{s'_m\}_{m\in\mathbb{N}}$ and $\varphi : [T'] \to X$ are as in (B) Theorem [2.2.](#page-3-2) Then there are $\mathbf{k} \in \mathbb{N}$, T , $\{s_m\}_{m\in\mathbb{N}} \subseteq T$ and $\phi : [T] \to X$ as in (B) Theorem [2.2](#page-3-2) such that d_{ϕ} is a uniform Borel pseudometric and $\phi = \varphi \circ \zeta$ where $\zeta : [T] \to [T']$ is a continuous map.

Let $\mathbf{k} \in \mathbb{N}, T, \{s_m\}_{m \in \mathbb{N}}$ and ϕ be as in Lemma [6.2.](#page-10-1) Observe that

$$
\mathbb{E}_0^T \subseteq F_{\mathbf{d}_{\phi}} = (\phi^{-1} \times \phi^{-1})(E_G^X)
$$

because $s_m \in \mathbb{N}^m \cap T$ for every $m \in \mathbb{N}$. The rest of the proof consists of four steps.

(I). The Borel equivalence relation $F_{\mathbf{d}_{\phi}}$ is meager in $[T] \times [T]$. Otherwise there is $\alpha \in [T]$ such that $[\alpha]_d$ is comeager in [T] by [\[8,](#page-21-7) Theorem 8.41]. It follows from (3) in the definition of Borel pseudometric that there are Borel sets $\{U_l\}_{l\in\mathbb{N}}$ such that $\bigcup_{l\in\mathbb{N}} U_l = [\alpha]_{F_{\bf d}}$ and

$$
\mathbf{d}_{\phi}(\alpha, \beta) < \frac{1}{2^{\mathbf{k}}}
$$

for every $l \in \mathbb{N}$ and $\alpha, \beta \in U_l$. Using [\[8,](#page-21-7) Proposition 8.41] and the density of $\{s_m\}_{m\in\mathbb{N}}$ we find $m, l \in \mathbb{N}$ such that U_l is comeager in $s_m \cap [T_{s_m}]$. This gives $x \in [T_{s_m \cap (0)}] = [T_{s_m \cap (l_m-1)}]$ such that

$$
s_m^{\frown}(0)^{\frown}x, s_m^{\frown}(l_m^T-1)^{\frown}x \in U_l.
$$

Since ϕ is a homomorphism from $\mathbb{G}_{s_m}^T$ to $\mathcal{H}_{\mathbf{k},m}$ we have that

$$
(\phi(s_m{}^\frown(i) {}^\frown x))_{i < l_m^T} \in \mathcal{H}_{\mathbf{k},m}
$$

and consequently that

$$
\phi(s_m \cap (l_m^T - 1)^\frown x) \not\in V_{\mathbf{k}} \cdot \phi(s_m \cap (0)^\frown x).
$$

This gives

$$
\mathbf{d}_{\phi}(s_m \widehat{}(0)^\frown x, s_m \widehat{}(l_m^T - 1)^\frown x) > \frac{1}{2^{\mathbf{k}}}
$$

and that contradicts the choice of $x \in [T_{s_m}(0)].$

(II). Let $s, t \in T \cap \mathbb{N}^m$, $i, j < l_m^T$ and $x, y \in [T_{s_l}(i)] = [T_{s_l}(i)]$. Then

$$
|\mathbf{d}_{\phi}(s^\frown(i)^\frown x, s^\frown(j)^\frown x) - \mathbf{d}_{\phi}(t^\frown(i)^\frown y, t^\frown(j)^\frown y| < \frac{1}{2^{m-1}}.
$$

We use that \mathbf{d}_{ϕ} is uniform. Namely, we have

$$
|\mathbf{d}_{\phi}(s^\frown((i)^\frown y), s^\frown((j)^\frown y)) - \mathbf{d}_{\phi}(t^\frown((i)^\frown y), t^\frown((j)^\frown y)) < \frac{1}{2^m}
$$

$$
|\mathbf{d}_{\phi}((s^\frown(i))^\frown x, (s^\frown(j))^\frown x) - \mathbf{d}_{\phi}((s^\frown(i))^\frown y, (t^\frown(j))^\frown y| < \frac{1}{2^{m+1}}
$$

and that gives the estimate by the triangle inequality.

(III). Let $m \in \mathbb{N}$ and $\mathbf{0} = (0, 0, \dots)$. Since $(\{s_m \hat{-(i)} \cap \mathbf{0}\}_{i \le l_m^T}, \mathbf{d}_{\phi})$ is a finite pseudometric space we find a metric space (Z_m, \mathfrak{d}_m) where $Z_m = \{0, 1, \ldots, l_m^T - 1\}$ and

$$
|\mathbf{d}_{\phi}(s_m{}^\frown(i) {}^\frown \mathbf{0}, s_m{}^\frown(j) {}^\frown \mathbf{0}) - \mathfrak{d}_m(i,j)| < \frac{1}{2^{m-1}}
$$

for every $i, j < l_m^T$. Then we have

$$
\frac{1}{2^{\mathbf{k}}}-\frac{1}{2^{m-1}}\leq \mathfrak{d}_m(0,l_m^T-1)\leq r(Z_m,\mathfrak{d}_m)
$$

and $j(Z_m, \mathfrak{d}_m) < \frac{1}{2^{m-2}}$ because ϕ is a homomorphism from \mathbb{G}_{s_m} to $\mathcal{H}_{\mathbf{k},m}$.

This implies immediately that $\mathcal{Z} = \{(Z_m, \mathfrak{d}_m)\}_{m \in \mathbb{N}}$ is a non-trivial sequence of finite metric spaces. Consider the bijective homeomorphism

$$
\eta: \prod_{m \in \mathbb{N}} Z_m \to [T]
$$

that is defined as

$$
\eta(x)(m) = i \iff x(m) = i.
$$

If $E_z \subseteq E = (\eta^{-1} \times \eta^{-1})(F_{d_{\phi}})$, then we are done because $E \in \mathcal{B}$ by (I) and $\phi \circ \eta$ is a reduction from E to E_G^X . Hence, E_G^X is not classifiable by countable structures by Theorem [5.2.](#page-9-1)

(IV). Suppose that $E_z \nsubseteq E = (\eta^{-1} \times \eta^{-1})(F_{\mathbf{d}_{\phi}})$ in **(III)**. There is $x, y \in \prod_{m \in \mathbb{N}} Z_m$ such that

$$
\mathfrak{d}_m(x(m), y(m)) \to 0
$$

and $(\eta(x), \eta(y)) \notin F_{\mathbf{d}_{\phi}}$. Set $\alpha = \eta(x)$ and $\beta = \eta(y)$. Note that $|\{m \in \mathbb{N} : \alpha(m) \neq \beta(m)\}|$ \aleph_0 because $\mathbb{E}_0^T \subseteq F_{\mathbf{d}_{\phi}}$.

Let

$$
S = \{ s \in T : \forall i < |s| \ (s(i) = \alpha(i) \lor s(i) = \beta(i)) \}.
$$

It follows that $S \subseteq T$ is isomorphic to a full binary tree. Moreover, the restriction of \mathbf{d}_{ϕ} to $[S]$ is a uniform Borel pseudometric, in the sense that the uniform condition holds for every $s, t \in \mathbb{N}^m \cap S$ and $x, y \in [S_s] = [S_t]$. Write F for the restriction of $F_{\mathbf{d}_{\phi}}$ to $[S] \times [S]$. Then it follows from Theorem [4.3](#page-7-1) together with $(\alpha, \beta) \notin F$ that F is meager.

Let ${m_l}_{l \in \mathbb{N}}$ be an increasing enumeration of ${m \in \mathbb{N} : \alpha(m) \neq \beta(m)}$ and set $\mathbf{0}_l =$ $\alpha(m_l)$, $\mathbf{1}_l = \beta(m_l)$ for every $l \in \mathbb{N}$. Then there is a sequence $\{t_l\}_{l \in \mathbb{N}} \subseteq \mathbb{N}^{\leq \mathbb{N}}$ such that

$$
\alpha = t_0^\frown \mathbf{0}_0^\frown t_1^\frown \mathbf{0}_1^\frown \dots \ \& \ \beta = t_0^\frown \mathbf{1}_0^\frown t_1^\frown \mathbf{1}_1^\frown \dots
$$

and consequently for every $s \in S$ there is $l \in \mathbb{N}$ such that

$$
s \sqsubseteq t_0^\frown i_0^\frown t_1^\frown i_1^\frown \dots^\frown i_{l-1}^\frown t_l
$$

where $\mathbf{i}_j \in \{0_j, 1_j\}$ for every $j < l$. Define $\Gamma : 2^{\langle \mathbb{N} \rangle} \to S$ as

$$
\Gamma(s) = t_0^\frown \mathbf{s}(0)^\frown t_1^\frown \mathbf{s}(1)^\frown \dots^\frown \mathbf{s}(|\mathbf{s}|-1)^\frown t_{|s|} \in S
$$

where $s(j) = 0_j$ if $s(j) = 0$ and $s(j) = 1_j$ if $s(j) = 1$. It is easy to see that the unique extension $\widetilde{\Gamma}: 2^{\mathbb{N}} \to [S]$ is a homeomorphism.

Final step is to define a tall lsc submeasure Θ . Let $M \in \mathcal{P}(\mathbb{N})$ be a finite set. Define

$$
\Theta(M) = \sup \Big\{ \mathbf{d}_{\phi}(\widetilde{\Gamma}(x), \widetilde{\Gamma}(y)) : x, y \in 2^{\mathbb{N}} \ \{ l \in \mathbb{N} : x(l) \neq y(l) \} \subseteq M \Big\} =
$$

=
$$
\sup \{ \mathbf{d}_{\phi}(x, y) : x, y \in [S] \ \{ m \in \mathbb{N} : x(m) \neq y(m) \} \subseteq \{ m_l \}_{l \in M} \ \}.
$$

Let $M \in \mathcal{P}(\mathbb{N})$ be infinite. Then we define $\Theta(M) = \lim_{l \to \infty} \Theta(M \cap l)$.

 $(\widetilde{\Gamma}^{-1} \times \widetilde{\Gamma}^{-1})(F) = (\widetilde{\Gamma}^{-1} \times \widetilde{\Gamma}^{-1})(F_{\mathbf{d}_{\phi}})$. Indeed, then we have $E \in \mathcal{B}$ and $\phi \circ \widetilde{\Gamma}$ is a To finish the proof we need to show that Θ is a tall lsc submeasure and $E_{\Theta} \subseteq E$ = reduction from E to E_G^X .

(a). It is easy to see that Θ is monotone, $\Theta(\emptyset) = 0$ and $\Theta(M) = \lim_{l \to \infty} \Theta(M \cap l)$ for every $M \in \mathcal{P}(\mathbb{N})$. Let $M, N \in \mathcal{P}(\mathbb{N})$ be two finite sets and $x, y \in 2^{\mathbb{N}}$ such that $\{l \in \mathbb{N} : x(l) \neq y(l)\} \subseteq M \cup N$. Let $x'(l) = x(l)$ for every $l \in \mathbb{N} \setminus M$ and $x'(l) = y(l)$ for every $l \in M$. The fact that \mathbf{d}_{ϕ} is a pseudometric implies that

$$
\mathbf{d}_{\phi}(\widetilde{\Gamma}(x), \widetilde{\Gamma}(y)) \leq \mathbf{d}_{\phi}(\widetilde{\Gamma}(x), \widetilde{\Gamma}(x')) + \mathbf{d}_{\phi}(\widetilde{\Gamma}(x'), \widetilde{\Gamma}(y)) \leq \Theta(M) + \Theta(N).
$$

This shows that $\Theta(M \cup N) \leq \Theta(M) + \Theta(N)$ for every finite $M, N \in \mathcal{P}(\mathbb{N})$ and one can easily check that it extends for any $M, N \in \mathcal{P}(\mathbb{N})$. Let $l \in \mathbb{N}$. It follows from (II), definition of $\widetilde{\Gamma}$ and the definition of \mathfrak{d}_m in (III) that

$$
\Theta({l}) \leq \mathbf{d}_{\phi}(s_{m_l} \cap \alpha(m_l) \cap \mathbf{0}), s_{m_l} \cap \beta(m_l) \cap \mathbf{0}) + \frac{1}{2^{m_l-1}} \leq \mathfrak{d}_{m_l}(\alpha(m_l), \beta(m_l)) + \frac{1}{2^{m_l-2}}.
$$

This shows that $\Theta({l}) < +\infty$ for every $l \in \mathbb{N}$ and the choice of $\alpha = \eta(x)$ and $\beta = \eta(y)$ in the beginning of (IV) guarantees that

$$
\Theta({l}) \leq \mathfrak{d}_{m_l}(x(m_l), y(n_l)) + \frac{1}{2^{m_l-2}} \to 0.
$$

Hence, Θ is a tall lsc submeasure.

(b) Let $x, y \in 2^{\mathbb{N}}$ such that $(x, y) \in E_{\Theta}$ and put $X = \{l \in \mathbb{N} : x(l) \neq y(n)\}\$. Then we have that $\lim_{l\to\infty} \Theta(X \setminus l) = 0$ by the definition of E_{Θ} . Define $x_l(j) = y(j)$ for every $j < l$ and $x_l(j) = x(j)$ for every $j \geq l$ for every $l \in \mathbb{N}$. We have $(x_l, x) \in \mathbb{E}_0$ for every $l \in \mathbb{N}$ and $x_l \rightarrow y$. The definition of Γ easily implies that

$$
\left(\widetilde{\Gamma}(x_l), \widetilde{\Gamma}(x)\right) \in \mathbb{E}_0^T
$$

14 JAN GREB´IK

and $\widetilde{\Gamma}(x_l) \to \widetilde{\Gamma}(y)$. Let $l \leq r \leq s \in \mathbb{N}$. We have that $\{j \in \mathbb{N} : x_r(j) \neq x_s(j)\}$ $X \cap \{r, \ldots, s-1\} \subseteq X \setminus l$ and by the definition of Θ that

$$
\mathbf{d}_{\phi}\left(\widetilde{\Gamma}(x_r),\widetilde{\Gamma}(x_s)\right)\leq \Theta(X\cap\{r,\ldots,s-1\})\leq \Theta(X\setminus l).
$$

This shows that $\{\widetilde{\Gamma}(x_l)\}_{l\in\mathbb{N}}$ is a \mathbf{d}_{ϕ} -Cauchy sequence. By (4) in the definition of Borel pseudometric we find $l \in \mathbb{N}$ such that

$$
\mathbf{d}_{\phi}\left(\widetilde{\Gamma}(x_l),\widetilde{\Gamma}(y)\right)<\+\infty
$$

and, in particular, $(\tilde{\Gamma}(x_l), \tilde{\Gamma}(y)) \in F_{\mathbf{d}_{\phi}}$. This gives $(\tilde{\Gamma}(x), \tilde{\Gamma}(y)) \in F_{\mathbf{d}_{\phi}}$ because $(\tilde{\Gamma}(x_l), \tilde{\Gamma}(x_l)) \in$ $\mathbb{E}_0^T \subseteq F_{\mathbf{d}_{\phi}}$ and the proof is finished.

7. Remarks and Question

Our main result follows immediately from the following statement.

Theorem 7.1. Let G be a tsi Polish group, X be a Polish G-space such that E_G^X is Borel and A be a Σ^1_1 subset of X. Then exactly on of the following holds

- (1) there is a Borel G-invariant set $B \subseteq X$ such that $A \subseteq B$ and $E_G^X \upharpoonright B \times B$ is classifiable by countable structures,
- (2) there is $E \in \mathcal{B}$ on a Polish space Y and a continuous map $\zeta : Y \to A$ that is a reduction from E to E_G^X .

Moreover, (1) is equivalent to

(1)' there is a Borel G-invariant set $B \subseteq X$ such that $A \subseteq B$ and B satisfies property $(IC).$

Proof. Apply Theorem [2.2.](#page-3-2) Note that (A) implies $(1)'$ by Corollary [3.4](#page-5-1) and $(1)'$ implies (1) by Theorem [3.5.](#page-6-0)

On the other hand (B) implies by the proof of Theorem [6.1](#page-10-0) that there is $E \in \mathcal{B}$ on Y and a continuous map $\zeta: Y \to X$ that is a reduction from E to E_G^X . Note that ζ is of the form $\phi \circ \widetilde{\Gamma}$ or $\phi \circ \eta$ where ϕ is given by Lemma [6.2](#page-10-1) and satisfies rng(ϕ) \subseteq rng(φ) $\subseteq A$. This shows that $\zeta: Y \to A$ and (2) follows.

Finally observe that (1) implies $\neg(B)$ by Theorem [5.2](#page-9-1) and consequently (1) implies (1)'. That completes the proof.

It is a very interesting question if the base in (2) can be smaller.

Question 7.2. Let C be the collection of meager equivalence relations E_{Θ} and $E_{\mathcal{Z}}$ where Θ runs over all tall lsc submeasures and $\mathcal Z$ over non-trivial sequences of finite metric spaces. Is it enough to take C instead of B in Theorem [7.1](#page-13-0) (2) ?

Maybe mention Hjorth's summable ideal dichotomy.

Next, we sketch another application of our approach.

Theorem 7.3. Let G be a tsi Polish group, X a Polish G-space such that E_G^X is Borel and F an equivalence relation on a Polish space Y that is classifiable by countable structures. Suppose that $\varphi: Y \to X$ is a Borel map that is a reduction from F to E_G^X . Then there is a Borel G-invariant set $B \subseteq X$ such that $\varphi(Y) \subseteq B$ and $E_G^X \restriction B \times B$ is classifiable by countable structures.

Proof Sketch. Put $A = \varphi(Y)$ an apply Theorem [7.1.](#page-13-0) We show that we get (1). Define \mathbf{d}_{φ} on Y as in Proposition [4.2.](#page-7-0) Then \mathbf{d}_{φ} is a Borel pseudometric and $F_{\mathbf{d}_{\varphi}} = F$ since φ is a reduction. In another words, we pull back the metric structure from G on any F -orbit via the reduction φ , see Proposition [4.2.](#page-7-0)

Define $\mathcal{H}_{k,m}^{\mathbf{d}_{\varphi}}$ on Y as

$$
\overline{y} \in \mathcal{H}_{k,m}^{\mathbf{d}_{\varphi}} \Leftrightarrow \ \forall i < (l(\overline{y}) - 1) \ \mathbf{d}_{\varphi} \left(\overline{y}_i, \overline{y}_{i+1} \right) < \frac{1}{2^m} \ \wedge \mathbf{d}_{\varphi} \left(\mathfrak{s}(\overline{y}), \mathfrak{t}(\overline{y}) \right) > \frac{1}{2^k}.
$$

Then one can verify that $\{\mathcal{H}_{k,l}^{d_{\varphi}}\}_{k,l\in\mathbb{N}}$ is a Borel sequence of dihypergraphs on Y and a version of Theorem [2.2](#page-3-2) applies.

If we get a version of (A) we compose the $\mathcal{H}_{k,m}^{\mathbf{d}_{\varphi}}$ -independent sets with φ and obtain $\mathcal{H}_{k,m}$ -independent subsets of X that cover A, hence Theorem [3.5](#page-6-0) applies.

In the case of a version of (B) we get a map $\zeta : [T] \to Y$ that satisfies all the properties of a version of (B). Note that $\varphi \circ \zeta$ is as in B of Theorem [2.2.](#page-3-2) Applying Theorem [6.1](#page-10-0) we obtain a refinement of $\varphi \circ \zeta \circ \eta$ that is a reduction from E to E_G^X for some $E \in \mathcal{B}$. However, $\zeta \circ \eta$ is a reduction from E to F and that is a contradiction.

8. Proof of Lemma [6.2](#page-10-1)

Before we prove Lemma [6.2](#page-10-1) we introduce some auxiliary notion and technical results. Let T be a finitely uniformly branching tree. Let $(A, \alpha) \in [N]^N \times [T]$ where $[N]^N$ denotes the set of all infinite subsets of N. Then we define $T_{(A,\alpha)} \subseteq T$ as

$$
s \in T_{(A,\alpha)} \iff \forall n \notin A \ s(n) = \alpha(n)
$$

and denote as $[T_{(A,\alpha)}]$ the branches of $T_{(A,\alpha)}$. Note that $[T_{(A,\alpha)}]$ is closed in [T].

Write $\{n_l\}_{l\in\mathbb{N}} = A$ for the increasing enumeration of A. Then there is a unique finitely uniformly branching tree $S = S_{(A,\alpha)}$ and a unique map $e_{(A,\alpha)} : S \to T_{(A,\alpha)}$ that satisfy

- $l_l^S = l_{n_l}^T$ for every $l \in \mathbb{N}$,
- $|e_{(A,\alpha)}(s)| = n_{|s|}$
- $e_{(A,\alpha)}(s)(n_l) = s(l)$ for every $l < |s|$,
- $e_{(A,\alpha)}(s)(j) = \alpha(j)$ for every $j < n_{|s|}$ such that $j \notin A$.

It is easy to verify that $e_{(A,\alpha)}$ extends to a unique continuous homeomorphism

$$
\widetilde{e}_{(A,\alpha)} : [S] \to [T_{(A,\alpha)}]
$$

that is a reduction from \mathbb{G}_s^S to $\mathbb{G}_{e_{(A,\alpha)}(s)}^T$ for every $s \in S$. This is because if $s(l) = t(l)$, then we have $e_{(A,\alpha)}(s)(j) = e_{(A,\alpha)}(t)(j)$ for every $n_l \leq j < n_{l+1}$.

Lemma 8.1. Let $\{T_r\}_{r\in\mathbb{N}}$ be a sequence of finitely uniformly branching trees, $(A_r, \alpha_r) \in$ $[N]^{\mathbb{N}} \times [T_r]$ be such that $A_r \cap r + 1 = r + 1$ for every $r \in \mathbb{N}$ and $S_{(A_r, \alpha_r)} = T_{r+1}$ for every $r \in \mathbb{N}$. Then there is a finitely uniformly branching tree S and a sequence of continuous maps $\{\psi_{r,\infty}: [S] \to [T_r]\}_{r \in \mathbb{N}}$ such that

- (1) $l_r^S = l_r^{T_{r'}}$ for every $r \le r' \in \mathbb{N}$,
- (2) for every $s \in S \cap \mathbb{N}^r$ and $x \in [S_s]$ there is $y \in [(T_r)_s]$ such that $\widetilde{\psi}_{r,\infty}(t^{\frown}x) = t^{\frown}y$ whenever $t \in S \cap \mathbb{N}^r$ for every $r \in \mathbb{N}$,
- (3) $\widetilde{\psi}_{r,\infty} = \widetilde{e}_{(A_r,\alpha_r)} \circ \widetilde{\psi}_{r+1,\infty},$
- (4) $\widetilde{\psi}_{r,\infty}$ is a reduction from \mathbb{G}_s^S to $\mathbb{G}_s^{T_r}$ for every $s \in T_r \cap \mathbb{N}^r$.

Proof. Observe that if $r \leq r' \in \mathbb{N}$, then $l_r^{T_{r'}} = l_r^{T_r}$ and define $l_r^S = l_r^{T_r}$. This defines S and (1) is satisfied.

For $s \in S \cap \mathbb{N}^r$ we define $\psi_{r',\infty}(s) = s$ for every $r \leq r' \in \mathbb{N}$ and inductively $\psi_{r',\infty}(s) =$ $e_{(A_r,\alpha_r)} \circ \psi_{r'+1,\infty}$ for every $0 \leq r' < r$. Then we have $\psi_{r,\infty} = e_{(A_r,\alpha_r)} \circ \psi_{r+1,\infty}$ for every $r \in \mathbb{N}$ and if $s \subseteq t \in S$, then $\psi_{r,\infty}(s) \subseteq \psi_{r,\infty}(t)$ for every $r \in \mathbb{N}$.

Define

$$
\widetilde{\psi}_{r,\infty}(x) = \bigcup_{l \in \mathbb{N}} \psi_{r,\infty}(x \restriction l)
$$

for every $x \in [S]$ and $r \in \mathbb{N}$. We have

$$
\widetilde{\psi}_{r,\infty}(x) = \bigcup_{l \in \mathbb{N}} \psi_{r,\infty}(x \restriction l) = \bigcup_{l \in \mathbb{N}} e_{(A_r,\alpha_r)} \circ \psi_{r+1,\infty}(x \restriction l) =
$$
\n
$$
= \widetilde{e}_{(A_r,\alpha_r)} \left(\bigcup_{l \in \mathbb{N}} \psi_{r+1,\infty}(x \restriction l) \right) = \widetilde{\psi}_{r+1,\infty}(x)
$$

for every $x \in [S]$ and that shows (3).

Note that (1) and (2) imply (4) and therefore it remains to show (2). Let $s \in S \cap \mathbb{N}^r$ and $x \in [S_s]$. Put $y \in [(T_r)_s]$ such that

$$
\widetilde{\psi}_{r,\infty}(s^\frown x)=s^\frown y.
$$

Let $t \in S \cap \mathbb{N}^r$ and $r < l \in \mathbb{N}$. It is clearly enough to show that $\psi_{r,\infty}(s^T x \restriction l)(j) =$ $\psi_{r,\infty}(t^{\frown}x \restriction l)(j)$ for every $r \leq j < l$.

We show inductively that $\psi_{r',\infty}(s^x \restriction l)(j) = \psi_{r',\infty}(t^x \restriction l)(j)$ for every $r \leq j < l$ where $r \leq r' \leq l$. By the definition we have

$$
\psi_{l,\infty}(s^\frown x\restriction l)(j)=(s^\frown x\restriction l)(j)=(t^\frown x\restriction l)(j)=\psi_{l,\infty}(t^\frown x\restriction l)(j)
$$

for every $r \leq j < l$. Suppose that it holds for $r' + 1$ where $r \leq r' < l$. Fix an enumeration ${m_p}_{p \in \mathbb{N}}$ of $A_{r'}$. Then for every $r \leq j \leq l$ there is $p \in \mathbb{N}$ such that $r \leq p \leq l$ and $m_p \leq j < m_{p+1}$. This is because $A_{r'} \cap r + 1 = r + 1$. If $m_p = j$, then we have

$$
\psi_{r',\infty}(s^\frown x\upharpoonright l)(j) = (e_{(A_{r'},\alpha_{r'})}\circ\psi_{r'+1,\infty}(s^\frown x\upharpoonright l))(m_p) = \psi_{r'+1,\infty}(s^\frown x\upharpoonright l)(p) =
$$

$$
= \psi_{r'+1,\infty}(t^\frown x\upharpoonright l)(p) = (e_{(A_{r'},\alpha_{r'})}\circ\psi_{r'+1,\infty}(t^\frown x\upharpoonright l))(m_p) = \psi_{r',\infty}(t^\frown x\upharpoonright l)(j)
$$

from the inductive assumption. If $m_p < j$, then

$$
\psi_{r',\infty}(s^\frown x \upharpoonright l)(j) = (e_{(A_{r'},\alpha_{r'})} \circ \psi_{r'+1,\infty}(s^\frown x \upharpoonright l))(j) = \alpha_{r'}(j) =
$$

$$
= (e_{(A_{r'},\alpha_{r'})} \circ \psi_{r'+1,\infty}(t^\frown x \upharpoonright l))(j) = \psi_{r',\infty}(t^\frown x \upharpoonright l)(j)
$$

and the proof is finished. \square

Lemma 8.2. Let T be a finitely uniformly branching tree, $A \in [\mathbb{N}]^{\mathbb{N}}$, $\mathbf{m} \in \mathbb{N}$, $\mathbf{p} \in T \cap \mathbb{N}^{\mathbf{m}}$, ${X_r}_{r \in \mathbb{N}}$ be a sequence of subsets of $[T]$ with the Baire property such that $\bigcup_{r \in \mathbb{N}} X_r = [T]$ and $\{s_n\}_{n\in\mathcal{A}}\subseteq T$ be dense in T and $|s_n|=n$. Then there is $(A,\alpha)\in[\mathbb{N}]^{\mathbb{N}}\times[T]$ such that, if we put $S = S_{(A,\alpha)}$, we have

- (1) $A \cap m = m$,
- (2) for every $s \in S \cap \mathbb{N}^m$ there is $r \in \mathbb{N}$ such that $s \cap [S_s] \subseteq (\widetilde{e}_{(A,\alpha)})^{-1}(X_r)$,
(3) $s_0 \in S \cdot \exists n \in A$ $e_{(A,\alpha)}(n) = s$ is dense in S
- (3) $\{v \in S : \exists n \in A \ e_{(A,\alpha)}(v) = s_n\}$ is dense in S,
- (4) there is $n \in \mathcal{A}$ such that $\mathbf{p} \sqsubseteq e_{(A,\alpha)}(\mathbf{p}) = s_n$.

Proof. Let $\{p_l\}_{l \in \mathbb{N}}$ be an enumeration of T such that $|\{l \in \mathbb{N} : s = p_l\}| = \aleph_0$ for every $s \in T$. The construction proceeds by induction on $l \in \mathbb{N}$. Namely, in every step we construct $t_l \in \mathbb{N}^{\leq \mathbb{N}}, n_l \in \mathbb{N}, \alpha_l \in T$ and $S_l \subseteq T$ such that $n_l = |\alpha_l|$,

$$
\alpha_l = \mathbf{p}^\frown t_0{}^\frown (0) \hat{}^\frown t_1{}^\frown (0) \hat{}^\frown \dots \hat{}^\frown (0) \hat{}^\frown t_l
$$

and

$$
S_l = \{ s \in T : |s| = n_l + 1 \ \land \ \forall \mathbf{m} \leq j < n_l \ (\forall l' \leq l \ j \neq n_{l'} \ \ \Rightarrow s(j) = \alpha_l(j)) \}.
$$

In the end we put $\alpha = \bigcup_{l \in \mathbb{N}} \alpha_l$ and $A = \mathbf{m} \cup \{n_l\}_{l \in \mathbb{N}}$.

(I) $l = 0$. Let $\{u_i\}_{i \in N_0}$ be an enumeration of $\{s \in T : |s| = m\}$. Define inductively $v_i \in \mathbb{N}^{\leq \mathbb{N}}$ such that

- $u_i \frown v_i \in T$ for every $i < N_0$,
- $v_i \sqsubseteq v_{i+1}$ for every $i < N_0 1$,
- for every $i < N_0$ there is $r(i) \in \mathbb{N}$ such that $X_{r(i)}$ is comeager in $u_i \cap v_i \cap [T_{u_i \cap v_i}]$.

This can be achieved by [\[8,](#page-21-7) Proposition 8.26]. Write $v = v_{N_0-1}$ and use the density of $\{s_n\}_{n\in\mathcal{A}}$ to find $n \in \mathbb{N}$ such that $\mathbf{p}^\frown v \sqsubseteq s_n$. Let $t_0 \in \mathbb{N}^{< \mathbb{N}}$ be such that $\alpha_0 = \mathbf{p}^\frown t_0 = s_n$ and $n_0 = |\mathbf{p} \hat{ } \hat{} t_0|.$

Define

$$
X = \bigcup_{i < N_0} u_i \cap t_0 \cap [T_{u_i \cap t_0}] \cap X_{r(i)}.
$$

Note that X is comeager in $u_i^t_i^t_0$ [$T_{u_i^t_i^t_0}$] for every $i < N_0$. Let $\{\mathcal{O}_l\}_{l \in \mathbb{N}}$ be a decreasing collection of open subsets of [T] such that $\mathcal{O}_0 = [T]$, $\bigcap_l \mathcal{O}_l \subseteq X$ and \mathcal{O}_l is dense in $u_i^{\frown} t_0^{\frown} [T_{u_i \frown t_0}]$ for every $i \in N_0$.

(II) $l \mapsto l + 1$. Suppose that we have ${n_m}_{m \leq l}$, ${\alpha_m}_{m \in l}$, ${S_m}_{m \leq l}$ and ${t_m}_{m \leq l}$ that satisfies

- (a) $|\alpha_m| = n_m$ and $\alpha_m = \mathbf{p}^t_0 \hat{}(0) \hat{} \dots \hat{}(0) \hat{} t_m$ for every $m \leq l$,
- (b) $u^{\frown}[T_u] \subseteq \mathcal{O}_l$ for every $u \in S_l$,

(c) if $m < l$ and $p_m \sqsubseteq u$ for some $u \in S_m$, then there is $n \in \mathcal{A}$ such that $|s_n| =$ $n_{m+1} = n$, $p_m \sqsubseteq u \sqsubseteq s_n$ and $s_n(j) = \alpha_{m+1}(j)$ for every $j < n_{m+1}$ such that $j \notin \mathbf{m} \cup \{n_r\}_{r \leq m+1}$.

Note that if $l = 0$, then (a) - (c) are satisfied. Next we show how to find $t_{l+1} \in 2^{\lt N}$, α_{l+1} and $n_{l+1} \in \mathbb{N}$ such that (a)–(c) holds.

Let $\{u_i\}_{i\leq N_l}$ be an enumeration of S_l . Construct inductively $\{v_i\}_{i\leq N_l}$ such that

- $u_i^v_i \in T$ for every $i < N_l$,
- $v_i \sqsubseteq v_{i+1}$ for every $i < N_l 1$,
- $u_i^{\frown} v_i^{\frown} [T_{u_i \frown v_i}] \subseteq \mathcal{O}_{l+1}$ for every $i < N_l$.

This can be done because for every $i < N_l$ there is $u \in T$ such that $u \cap t_0 \subseteq u_i$ by the definition of S_l and we have \mathcal{O}_{l+1} is dense in $u^{\frown}t_0$ ^{\frown}[$T_u\rightarrow t_0$]. Put $v = v_{N_l-1}$. If p_l satisfies the assumption of (c), then pick $i < N_l$ such that $p_l \subseteq u_i$. Otherwise pick any $i < N_l$. It follows from the density of $\{s_n\}_{n\in\mathcal{A}}$ that there is $n \in \mathbb{N}$ such that $u_i \cap v \subseteq s_n$. Define $t_{l+1} \in \mathbb{N}^{\leq \mathbb{N}}$ such that $u_i \hat{t}_{l+1} = s_n$, $\alpha_{l+1} = \alpha_l \hat{t}_{l+1}$ and $n_{l+1} = |u_i \hat{t}_{l+1}|$.

It is easy to see that we have (a). Let $u \in S_{l+1}$, then there is $i < N_l$ such that $u_i \subseteq u$. Moreover, we have $u_i^{\frown} v_i \sqsubseteq u$ by the definition of t_{l+1} and S_{l+1} . We have

$$
u^{\frown}[T_u] \sqsubseteq u_i^{\frown} v_i^{\frown}[T_{u_i^{\frown} v_i}] \subseteq \mathcal{O}_{l+1}
$$

and that shows (b). Item (c) follows directly from the construction.

(III). Let $A = m \cup \{n_l\}_{l \in \mathbb{N}}$ and $\alpha = \bigcup_{l \in \mathbb{N}} \alpha_l$. Property (1) is trivial. Let $s \in S \cap \mathbb{N}^m$. It is easy to see that $e_{(A,\alpha)}(s) = s^{\frown} t_0$ and that gives

$$
\widetilde{e}_{(A,\alpha)}(s^{\frown}[S_s]) \subseteq s^{\frown} t_0^{\frown}[T_{s^{\frown} t_0}].
$$

By the definition in (I) there is $r \in \mathbb{N}$ such that

$$
X \cap s^t_0 \cap [T_{s^t_0}] \subseteq X_r.
$$

Let $c \in [T_s]$ and $l \in \mathbb{N}$ Then we have

$$
e_{(A,\alpha)}(s^-(c \upharpoonright l)) \sqsubseteq s^{\frown} t_0^{\frown} c(0)^t_1^{\frown} \dots^{\frown} c(l-1)^t_t^{\frown} c(l) \in S_l
$$

$$
s^{\frown} t_0^{\frown} c(0)^t_1^{\frown} \dots^{\frown} c(l-1)^t_t^{\frown} c(l) \sqsubseteq e_{(A,\alpha)}(s^{\frown} (c \upharpoonright l+1))
$$

and using (b) from the inductive assumption

$$
\widetilde{e}_{(A,\alpha)}(s^c c) \in e_{(A,\alpha)}(s^c c \upharpoonright l+1))^\frown [T_{e_{(A,\alpha)}(s^c c \upharpoonright l+1))}] \subseteq \mathcal{O}_l.
$$

Therefore

$$
\widetilde{e}_{(A,\alpha)}(s^c c) \in s^t_0 \cap [T_{s^t_0}] \cap \bigcap_{l \in \mathbb{N}} \mathcal{O}_l \subseteq X_r
$$

and that shows (2).

Let $s \in T \cap \mathbb{N}^m$ and $u \in \mathbb{N}^{< \mathbb{N}}$ such that $s^\frown u \in S$. Find $l \in \mathbb{N}$ such that $|p_l| \leq n_l$ and

$$
p_l = e_{(A,\alpha)}(s^\frown u) = s^\frown t_0^\frown \dots^\frown u(|u|-1)^\frown t_{|u|}.
$$

It follows that there is $w \in S_l$ such that $p_l \subseteq w$ and by (c) in (II) we have $n \in A$ such that $|s_n| = n_{l+1} = n$, $p_l \sqsubseteq s_n$. It is easy to see from the construction that

$$
s_n = s^\frown t_0^\frown \dots^\frown s_n(n_l)^\frown t_{l+1} = w^\frown t_{l+1}.
$$

Put

$$
v = s^\frown s_n(n_0)^\frown \dots^\frown s_n(n_l).
$$

Then we have $v \in S$, $e_{(A,\alpha)}(v) = s_n$ and $s^\alpha u \sqsubseteq v$ because $e_{(A,\alpha)}(s^\alpha u) = p_l \sqsubseteq s_n = e_{(A,\alpha)}(v)$. This shows (3).

Finally, we have $\mathbf{p} \sqsubseteq e_{(A,\alpha)}(\mathbf{p}) = \mathbf{p} \cap t_0 = s_n$ where $n \in \mathcal{A}$ by the construction in (I). \square *Proof of Lemma [6.2.](#page-10-1)* Let ${g_a}_{a\in\mathbb{N}}$ be a dense subset of G. The construction proceeds by induction on $r \in \mathbb{N}$. Let $\{p_r\}_{r \in \mathbb{N}}$ be an enumeration of $\mathbb{N}^{\leq \mathbb{N}}$ such that $\left|\{r \in \mathbb{N} : p_r = \mathbb{N}\}\right|$ $s\}| = \aleph_0$ for every $s \in \mathbb{N}^{< \mathbb{N}}$. We construct a sequence of finitely uniformly branching trees $\{T_r\}_{r\in\mathbb{N}}$ together with $(A_r, \alpha_r) \in [\mathbb{N}]^{\mathbb{N}} \times [T_r]$ such that $S_{(A_r, \alpha_r)} = T_{r+1}$ for every $r \in \mathbb{N}$, ${A^r}_{r \in \mathbb{N}} \subseteq [\mathbb{N}]^{\mathbb{N}}, \{s_n^r\}_{n \in A^r} \subseteq T_r$ for every $r \in \mathbb{N}$ and $\{\varphi_r : [T_r] \to X\}_{r \in \mathbb{N}}$ such that the following holds

- (1) $A_r \cap r + 1 = r + 1$ for every $r \in \mathbb{N}$,
- (2) $\varphi_r = \varphi \circ \widetilde{e}_{(A_0, \alpha_0)} \circ \dots \widetilde{e}_{(A_{r-1}, \alpha_{r-1})}$ is a homomorphism from $\mathbb{E}_0^{T_r}$ to E_G^X for every $r \in \mathbb{N}$
(where in the case $r = 0$ we put $(a_0 = a)$) (where in the case $r = 0$ we put $\varphi_0 = \varphi$),
- (3) $r \in \mathcal{A}^r$ for every $r \in \mathbb{N}$,
- (4) $\{s_n^r\}_{n \in \mathcal{A}^r}$ is a dense subset of T_r such that $|s_n^r| = n$ and φ_r is a homomorphism from $\mathbb{G}_{s_n^r}^{T_r}$ to $\mathcal{H}_{\mathbf{k},n}$ for every $r, n \in \mathbb{N}$,
- (5) if $p_r \in T_r$ is such that $|p_r| \leq r$, then $p_r \subseteq s_{r+1}^{r+1}$ (where $p_r \in T_{r+1}$ by (1)),
- (6) for every $s \in T_r$ such that $|s| = r$ there is $g^{s,r} \in G$ such that for every $c \in s^{\frown}[(T_r)_s]$ there is $g_c^{s,r} \in G$ such that we have

$$
|d(g^{s,r}, 1_G) - \mathbf{d}_{\varphi_r}(s_r^r c, s^c)| < \frac{1}{2^{r+2}},
$$

$$
g_c^{s,r} \cdot \varphi_r(s_r^r c) = \varphi_r(s^c)
$$

$$
d(g^{s,r}, g_c^{s,r}) < \frac{1}{2^{r+2}}
$$

for every $r \in \mathbb{N}$.

If $r = 0$, then we put $T_0 = T'$, $\mathcal{A} = \mathbb{N}$, $s_m^0 = s'_m$ for every $m \in \mathbb{N}$ and $\varphi_0 = \varphi'$. Conditions (1) and (5) are empty, (2) – (4) are satisfied by **(B)** Theorem [2.2](#page-3-2) and for (6) it is enough to take $g^{\emptyset,0} = g_c^{\emptyset,0} = 1_G$ for every $c \in [T_0]$.

In the inductive step $r \mapsto r+1$ we construct (A_r, α_r) , \mathcal{A}^{r+1} , $\{s_n^{r+1}\}_{n\in\mathbb{N}}$ and φ_{r+1} such that (1) – (6) holds.

 $\mathbf{r} \mapsto \mathbf{r} + \mathbf{1}$. We use Lemma [8.2](#page-16-0) with $T = T_r$, $\mathcal{A} = \mathcal{A}^r$, $\mathbf{m} = r + 1$, $\{s_n^r\}_{n \in \mathcal{A}}$, $p_r \sqsubseteq \mathbf{p} \in$ $T_r \cap \mathbb{N}^m$ if $p_r \in T_r \cap \mathbb{N}^m$ otherwise we put $\mathbf{p} = (0,\ldots,0) \in \mathbb{N}^m$ and $\{X_q\}_{q \in \mathbb{N}^{N_r}}$ where $N_r = \{s \in T_r : |s| = r + 1\}$ and

• if $s \in N_r$ and $s \neq \mathbf{p}$, then $s^{\frown} x \in X_q$ for every $q \in \mathbb{N}^{N_r}$ and $x \in [(T_r)_s]$,

• if $x \in [(T_r)_p]$, then $p^x \in X_q$ if and only if

$$
\forall s \in N_r \left(\exists g_x^s \in G \ d(g_x^s, g_{q(s)}) < \frac{1}{2^{r+2}} \land g_x^s \cdot \varphi_r(\mathbf{p}^\frown x) = \varphi_r(s^\frown x) \right) \land \land |d(g_{q(s)}, 1_G) - \mathbf{d}_{\varphi_r}(s^\frown x, \mathbf{p}^\frown x)| < \frac{1}{2^{r+2}}.
$$

It is easy to see that the first line in the second item defines Σ_1^1 set and it follows from Proposition [4.2](#page-7-0) that the second line defines Borel set. Altogether, X_q is Σ_1^1 subset of $[T_r]$ for every $q \in \mathbb{N}^{N_r}$ and $[T_r] = \bigcup_{q \in \mathbb{N}^{N_r}} X_q$.

Lemma [8.2](#page-16-0) produces $(A_r, \alpha_r) \in [\mathbb{N}]^{\mathbb{N}} \times [T_r]$. Define $T_{r+1} = S_{(A_r, \alpha_r)}$, $\varphi_{r+1} = \varphi_r \circ \tilde{e}_{(A_r, \alpha_r)}$,

$$
\mathcal{A}^{r+1} = \{ |v| \in T_{r+1} : \exists n \in \mathcal{A}^r \ s_n^r = e_{(A_r, \alpha_r)}(v) \}
$$

and $\{s_n^{r+1}\}_{n \in \mathcal{A}^{r+1}}$ be any enumeration of $e_{(A)}^{-1}$ $\binom{-1}{(A_r,\alpha_r)}(\{s_n^r\}_{n\in\mathcal{A}^r})$ that satisfies $|s_n^{r+1}| = n$ for every $n \in \mathbb{N}$.

It is easy to see that (1) and (2) hold. Note that $p = s_{r+1}^{r+1} \in T_{r+1}$ because by Lemma [8.2](#page-16-0) (4) we have $\mathbf{p} \subseteq e_{(A_r,\alpha_r)}(\mathbf{p}) = s_n^r$ for some $n \in \mathcal{A}^r$. This shows (3) and (5) follows from $p_r \subseteq \mathbf{p}$. First part of item (4) follows from Lemma [8.2](#page-16-0) (3). Second part follows from the inductive hypothesis and definition of $\{s_n^{r+1}\}_{n\in\mathbb{N}}$. Namely, for every $n \in \mathcal{A}^{r+1}$ there is $n' \in \mathcal{A}^r$ such that $e_{(A_r,\alpha_r)}(s_n^{r+1}) = s_n^r$. Note that $n \leq n'$. Then we have that φ_r is a homomorphism from $\mathbb{G}_{s_{n'}^{r}}^{T_r}$ to $\mathcal{H}_{\mathbf{k},n'}$ and $\widetilde{e}_{(A_r,\alpha_r)}$ is a reduction from $\mathbb{G}_{s_{n'}^{T+1}}^{T_{r+1}}$ s_n^{r+1} to $\mathbb{G}_{s_{n'}^r}^{T_r}$. This shows that φ_{r+1} is a homomorphism from $\mathbb{G}_{s_{n'}^{r+1}}^{T_{r+1}}$ $\mathcal{H}_{\mathbf{k},n'}^{I_{r+1}}$ to $\mathcal{H}_{\mathbf{k},n'} \subseteq \mathcal{H}_{\mathbf{k},n}$ because $n \leq n^{\prime}$.

It remains to show (6). Recall that $\mathbf{p} = s_{r+1}^{r+1}$. It follows from Lemma [8.2](#page-16-0) (2) that there is $q \in \mathbb{N}^{N_r}$ such that $\mathbf{p} \cap [(T_{r+1})_{\mathbf{p}}] \subseteq \widetilde{e}_{(A_r)}^{-1}$
Take are $\in [(T_{r+1})]$. But the definition $\zeta^{-1}_{(A_r,\alpha_r)}(X_q)$. Let $s \in T_{r+1}$ and define $g^{s,r+1} = g_{q(s)} \in G$. Take any $c \in [(T_{r+1})_s]$. By the definition of $\widetilde{e}_{(A_r,\alpha_r)}$ we find $d \in [(T_r)_s] = [(T_r)_p]$ such that

 $\widetilde{e}_{(A_r,\alpha_r)}(s^c c) = s^c d \& \widetilde{e}_{(A_r,\alpha_r)}(\mathbf{p}^c c) = \mathbf{p}^c d.$

Since $\mathbf{p} \cap d \in X_q$ we find $g_c^{s,r+1} = g_d^s \in G$ such that

$$
d(g_c^{s,r+1}, g_{s,r+1}) = d(g_d^s, g_{q(s)}) < \frac{1}{2^{r+2}}
$$
\n
$$
|d(g_{s,r+1}, 1_G) - d_{\varphi_{r+1}}(s^\frown c, \mathbf{p}^\frown c)| = |d(g_{q(s)}, 1_G) - d_{\varphi_r}(s^\frown d, \mathbf{p}^\frown d)| < \frac{1}{2^{r+2}}
$$
\n
$$
g_c^{s,r+1} \cdot \varphi_{r+1}(\mathbf{p}^\frown c) = g_d^s \cdot \varphi_r \circ \tilde{e}_{(A_r, \alpha_r)}(\mathbf{p}^\frown c) = \varphi_r \circ \tilde{e}_{(A_r, \alpha_r)}(s^\frown c) = \varphi_{r+1}(s^\frown c)
$$
\ndefinition of X . That shows (6) on the range f is finitely.

by the definition of X_q . That shows (6) an the proof is finished.

Constructing ϕ . Lemma [8.1](#page-15-0) gives a finitely uniformly branching tree T and a sequence of continuous maps $\left\{ \widetilde{\psi}_{r,\infty} : [T] \to [T_r] \right\}$. Define $\phi = \varphi_r \circ \psi_{r,\infty}$ for some, or equivalently (by Lemma [8.2](#page-16-0) (3)) any, $r \in \mathbb{N}$. Note that ϕ is a continuous map and $\phi = \varphi \circ \zeta$ where $\zeta = \psi_{0,\infty}$.

Define $\{s_r\}_{r \in \mathbb{N}} = \{s_r^r\}_{r \in \mathbb{N}}$. It follows from (1) and Lemma [8.1](#page-15-0) (1) that $s_r^r = s_r \in T$ for every $r \in \mathbb{N}$ and $|s_r| = r$. By (4) and Lemma [8.1](#page-15-0) (4) we have that φ is a homomorphism from $\mathbb{G}_{s_r}^T$ to $\mathcal{H}_{\mathbf{k},r}$ for every $r \in \mathbb{N}$. Let $s \in T$. Then there is $r \geq |s|$ such that $p_r = s$. It follows by (5) that $s = p_r \subseteq s_{r+1} = s_{r+1}^{r+1}$ and consequently that $\{s_r\}_{r \in \mathbb{N}}$ is dense in T.

It remains to show that \mathbf{d}_{φ} is uniform. Let $s \in T \cap \mathbb{N}_r$ and $x, y \in [T_s]$. It follows from Lemma [8.1](#page-15-0) (2) that there is $c, d \in [(T_r)_s]$ such that

$$
\widetilde{\psi}_{r,\infty}(t^{\frown}x) = t^{\frown}c \ \wedge \widetilde{\psi}_{r,\infty}(t^{\frown}y) = t^{\frown}d
$$

whenever $t \in T \cap \mathbb{N}^r$. Let $t = s_r$ and $g^{s,r}, g_c^{s,r}, g_d^{s,r} \in G$ be as in (6). Then we have

$$
\begin{aligned} |\mathbf{d}_{\varphi}(s_r^\frown x, s^\frown x) - \mathbf{d}_{\varphi}(s_r^\frown y, s^\frown y)| &= |\mathbf{d}_{\varphi_r}(s_r^r^\frown c, s^\frown c) - \mathbf{d}_{\varphi_r}(s_r^r^\frown d, s^\frown d)| \le \\ &\le |\mathbf{d}_{\varphi_r}(s_r^r^\frown c, s^\frown c) - d(g^{s,r}, 1_G)| + |d(g^{s,r}, 1_G) - \mathbf{d}_{\varphi_r}(s_r^r^\frown d, s^\frown d)| \le \frac{1}{2^{r+1}} \end{aligned}
$$

and consequently

$$
|\mathbf{d}_{\varphi}(t^\frown x, s^\frown x) - \mathbf{d}_{\varphi}(t^\frown y, s^\frown y)| \le \frac{1}{2^r}
$$

for any $t \in T \cap \mathbb{N}^r$.

Pick any $g, h \in G$ such that $g \cdot \varphi(s^\frown x) = \varphi(s^\frown y)$ and $h \cdot \varphi(s_r^\frown x) = \varphi(s_r^\frown y)$ if they exist. Then we have

$$
(g_d^{s,r})^{-1} \cdot g \cdot g_c^{s,r} \cdot \varphi(s_r^\frown x) = (g_d^{s,r})^{-1} \cdot g \cdot g_c^{s,r} \cdot \varphi_r(s_r^\frown c) = \varphi_r(s_r^\frown d) = \varphi(s_r^\frown y)
$$

$$
g_d^{s,r} \cdot h \cdot (g_c^{s,r})^{-1} \cdot \varphi(s^\frown x) = g_d^{s,r} \cdot h \cdot (g_c^{s,r})^{-1} \cdot \varphi_r(s^\frown c) = \varphi_r(s^\frown d) = \varphi(s^\frown y)
$$

by (6) . The invariance of d gives

$$
d((g_d^{s,r})^{-1} \cdot g \cdot g_c^{s,r}, 1_G) = d(g, g_d^{s,r} \cdot (g_c^{s,r})^{-1}) \leq d(g, 1_G) + d(g_d^{s,r}, g_c^{s,r}) \leq d(g, 1_G) + \frac{1}{2^{r+1}}
$$

where the last inequality follows from

$$
d(g_d^{s,r}, g_c^{s,r}) \le d(g_d^{s,r}, g^{s,r}) + d(g^{s,r}, g_c^{s,r}).
$$

Similarly

$$
d(g_d^{s,r} \cdot h \cdot (g_c^{s,r})^{-1}, 1_G) \le d(h, 1_G) + \frac{1}{2^{r+1}}.
$$

This implies

$$
|\mathbf{d}_{\varphi}(s^\frown x, s^\frown y) - \mathbf{d}_{\varphi}(s_r^\frown x, s_r^\frown y)| \le \frac{1}{2^{r+1}}
$$

and consequently

$$
|\mathbf{d}_{\varphi}(s^\frown x, s^\frown y) - \mathbf{d}_{\varphi}(t^\frown x, t^\frown y)| \le \frac{1}{2^r}
$$

for any $t \in T \cap \mathbb{N}^r$. If such $g, h \in G$ do not exist, then we have

$$
\mathbf{d}_{\varphi}(s^\frown x,s^\frown y)=\mathbf{d}_{\varphi}(t^\frown x,t^\frown y)=+\infty
$$

and trivially

$$
|\mathbf{d}_{\varphi}(s^\frown x, s^\frown y) - \mathbf{d}_{\varphi}(t^\frown x, t^\frown y)| \le \frac{1}{2^r}.
$$

This finishes the proof.

22 JAN GREB´IK

REFERENCES

- [1] H. Becker, A. S. Kechris. The descriptive set theory of Polish group actions. London Mathematical Society Lecture Note Series, 232. Cambridge University Press, Cambridge, 1996.
- [2] S. Gao. Invariant Descriptive Set Theory. Pure and Applied Mathematics, 293. Taylor & Francis Group, 2009. ISBN-13: 978-1-58488-793-5.
- [3] J. Grebík. Definable graphs. *PhD thesis*, Charles University, Prague, 2019.
- [4] J. Grebík. Dichotomy for tsi Polish groups II: \mathbb{E}_3 -dichotomy. preprint.
- [5] G. Hjorth, A. S. Kechris. Recent developments in the theory of Borel reducibility. Fund. Math. 170 (1–2), 21–52, 2001.
- [6] V. Kanovei. Borel equivalence relations. Structure and classification. University Lecture Series, 44. American Mathematical Society, Providence, RI, 2008. ISBN 978-0-8218-4453-3.
- [7] A. S. Kechris. Actions of Polish groups and classification problems. Analysis and logic (Mons, 1997), 115–187, London Math. Soc. Lecture Note Ser., 262, Cambridge Univ. Press, Cambridge, 2002.
- [8] A. S. Kechris. Classical Descriptive Set Theory. Springer-Verlag, 1994.
- [9] A. S. Kechris, S. Solecki, S. Todorcevic. Borel chromatic number. Adv. Math. 141, 1–44, 1999.
- [10] B. D. Miller. Lacunary sets for actions of tsi groups. preprint.
- [11] B. D. Miller. Lecture notes: Descriptive set theory http://www.logic.univie.ac.at/ millerb45/descriptivesettheory.pdf.
- [12] B. D. Miller. The graph-theoretic approach to descriptive set theory. Bull. Symbolic Logic 18 (4),554– 575,2012.