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Abstract

Using double-limit techniques we proof that if a bounded set M of

a Banach space X has the property that, for some ε ≥ 0, M
w∗

⊂ X +

εBX∗∗ (where (·)
w∗

denotes the closure in (X∗∗, w∗)), then conv(M),
the convex hull of M , has the same property with constant 2ε. We give
also some instances where the same constant works. Some applications
to the characterization of subspaces of weakly compactly generated
Banach spaces are also given.

1 Introduction

Krein’s Theorem (see, for example, [Ko, §24.5]) says that the closed convex
hull conv(K) of a compact subset K of a locally convex space X is itself
compact if and only if conv(K) is complete in the Mackey topology (i.e.,
the topology on X of the uniform convergence on absolutely convex and
weak-star compact subsets of X∗). In particular, if X is a Banach space
and K ⊂ X is weakly compact, so it is conv(K) (see, e.g., [FHHPMZ, Thm.
3.58]).

A Banach space X is weakly compactly generated (WCG, in short) if a
linearly dense and weakly compact subset of X exists. Subspaces of WCG
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Banach spaces are not, in general, WCG (the first example of this pathology
was provided by Rosenthal [Ro]). Recently [FMZ] a characterization of sub-
spaces of WCG Banach spaces has been provided in terms of the existence of
a countable family of subsets of the unit ball which are “somehow” weakly
compact. More precisely: a subset K ⊂ X is weakly relatively compact if its
weak closure is weakly compact. This amounts to say that it is bounded and
its w∗−closure in X∗∗ remains in X. So, if K is bounded and not weakly

relatively compact, K
w∗

6⊂ X. How far this closure is from X gives a certain
“quantification” of the phenomenon:

Definition 1 Let X be a Banach space and let M be a bounded subset of X.
Given ε ≥ 0, we say that M is ε−weakly relatively compact (ε−WRK, in

short) if M
w∗

⊂ X + εBX∗∗.

The case ε = 0 is the classical weakly relatively compactness.
The aforesaid characterization reads

Theorem 2 ([FMZ]) A Banach space X is a subspace of a WCG Banach
space if and only if it admits a family {Mn,p; n, p ∈ IN}, of convex symmetric
subsets of BX such that

⋃∞
n=1 Mn,p is dense in BX for every p ∈ IN, and that

Mn,p
w∗

⊂ X + 1
p
BX∗∗ for every n, p ∈ IN.

Surprisingly, the following natural question related to Krein’s Theorem
has not been investigated (up to our knowledge): Assume M ⊂ X is ε−WRK.
Is conv(M) also ε−WRK? (if ε = 0 this is the classical statement of Krein’s
Theorem). Apparently the answer to this question is much more difficult
than expected. In this note we are able to proof , using techniques of double
limits due to Grothendieck and Pták, that it is so in some cases (subspaces
of WCG Banach spaces, or spaces such that the dual does not contain a copy
of ℓ1) and the answer is yes in the general case if a relaxation to 2ε of the
constant is allowed. We do not know if the answer is yes in full generality.
The following is the main result of this note.

Theorem 3 Let (X, ‖ · ‖) be a Banach space. Let M ⊂ X be a bounded
subset of X. Assume that M is ε−WRK for some ε > 0. Then conv(M)
is 2ε−WRK. If X is a subspace of a WCG Banach space, or if X∗ does not
contain a copy of ℓ1, then conv(M) is ε−WRK.
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2 Proofs

Given a Banach space X and an element x∗∗ ∈ X∗∗, the distance d(x∗∗, X)
in the norm from x∗∗ to X is just ‖q(x∗∗)‖, where q : X∗∗ → X∗∗/X is the
canonical quotient mapping. It follows that

d(x∗∗, X) = sup〈x∗∗, BX⊥〉, (1)

where X⊥ ⊂ X∗∗∗ is the subspace of X∗∗∗ orthogonal to X.
Given a dual pair 〈X,Y 〉, denote by µ(X,Y ) the associated Mackey topol-

ogy on X, i.e., the topology on X of the uniform convergence on absolutely
convex and w(Y,X)−compact subsets of Y .

The following elementary proposition relates the distance d(x∗∗, X) to the
values of x∗∗ on neighbourhoods of 0 in BX∗ :

Lemma 4 Let X be a Banach space. Given x∗∗ ∈ X∗∗, let d := d(x∗∗, X).
Then
(i) For every ε > 0, there exists W , a neighbourhood of 0 in (BX∗ , w∗), such
that sup〈x∗∗,W 〉 < d + ε.
(ii) For every absolutely convex and weakly compact subset M of X,

sup〈x∗∗,M◦ ∩ BX∗〉 ≥ d,

where M◦ denotes the polar set of M in X∗.

Proof: (i) Given ε > 0, choose x ∈ X such that d ≤ ‖x∗∗ − x‖ < d + 1
2
ε.

Let W := {x∗ ∈ BX∗ : |〈x, x∗〉| < 1
2
ε}. Let y∗ ∈ W . Then

〈x∗∗, y∗〉 = 〈x∗∗ − x, y∗〉 + 〈x, y∗〉 ≤

≤ ‖x∗∗ − x‖ + 〈x, y∗〉 < d + 1
2
ε + 1

2
ε = d + ε.

(ii) Recall that w(X∗∗∗, X∗∗) and µ(X∗∗∗, X∗∗) are compatible topologies
on X∗∗∗, so

BX∗

µ(X∗∗∗,X∗∗)
= BX∗

w(X∗∗∗,X∗∗)
= BX∗∗∗ . (2)

Obviously, the topology w(X∗∗, X∗∗∗) on X∗∗ (i.e., its weak topology)
induces the topology w(X,X∗) on X (i.e., its weak topology), and then
M is also weakly compact in X∗∗, hence equicontinuous for the topology
µ(X∗∗∗, X∗∗) on X∗∗∗. Given δ > 0, choose, by (1), x⊥ ∈ BX⊥ such that
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〈x∗∗, x⊥〉 > d − δ. By (2) we can find x∗ ∈ BX∗ such that x⊥ − x∗ ∈ {x∗∗∗ ∈
X∗∗∗ : sup〈M,x∗∗∗〉 ≤ 1} (then sup〈M,x⊥−x∗〉 ≤ 1 and so x∗ ∈ M◦ ∩BX∗)
and |〈x∗∗, x∗ − x⊥〉| < δ. It follows that

〈x∗∗, x∗〉 = 〈x∗∗, x⊥〉 + 〈x∗∗, x∗ − x⊥〉 > d − δ − δ = d − 2δ,

so, as δ > 0 is arbitrary, sup〈x∗∗,M◦ ∩ BX∗〉 ≥ d.

Remark 1: The result in Lemma 4 is closely connected to [DGZ, III.2.3],
where the behaviour of an element x∗∗ ∈ X∗∗ as a function from (BX∗ , w∗)
onto IR is investigated.

The use of double limits in the study of compactness is implicit in the
approach of Eberlein [Eb] and explicit in Grothendieck (see, for example,
[Gr]). The following concept relaxes the usual double limit condition.

Definition 5 Let M be a bounded set of a Banach space X, and let S be a
bounded subset of X∗. We say that M ε−interchanges limits with S if for
any two sequences (xn) in M and (x∗

m) in S such that the following limits
exist,

lim
n

lim
m
〈xn, x

∗
m〉, lim

m
lim

n
〈xn, x

∗
m〉,

then
| lim

n
lim
m
〈xn, x

∗
m〉 − lim

m
lim

n
〈xn, x

∗
m〉| ≤ ε.

In this case we shall write
M§ε§S.

Proposition 6 Let M be a bounded set and ε ≥ 0 some number. Then we
have
(i) If M is ε−WRK then M§2ε§BX∗.
(ii) If M§ε§BX∗ then M is ε−WRK.

Proof: (i) Let (xn) and (x∗
m) be sequences in M and BX∗ , respectively,

such that both limits

lim
n

lim
m
〈xn, x

∗
m〉, lim

m
lim

n
〈xn, x

∗
m〉

exist. Let x∗∗ ∈ M
w∗

be a w∗−cluster point of (xn). Then

lim
n
〈xn, x

∗
m〉 = 〈x∗∗, x∗

m〉, ∀m.
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Fix δ > 0. We can find x ∈ X such that ‖x∗∗ − x‖ ≤ ε + δ. Choose a
subsequence of (x∗

m) (denoted again by (x∗
m)) such that limm〈x, x∗

m〉 exists.
Let x∗ ∈ X∗ be a w∗−cluster point of (x∗

m). We get

lim
m
〈xn, x

∗
m〉 = 〈xn, x

∗〉, ∀n,

lim
n

lim
m
〈xn, x

∗
m〉 = lim

n
〈xn, x

∗〉 = 〈x∗∗, x∗〉,

and then

| lim
n

lim
m
〈xn, x

∗
m〉 − lim

m
lim

n
〈xn, x

∗
m〉| = | lim

n
〈xn, x

∗〉 − lim
m
〈x∗∗, x∗

m〉| =

= |〈x∗∗, x∗〉 − limm〈x
∗∗, x∗

m〉| = | limm〈x
∗∗, x∗ − x∗

m〉| ≤

≤ | limm〈x, x∗ − x∗
m〉| + 2(ε + δ) = 2(ε + δ).

As δ > 0 is arbitrary, we get the conclusion.

(ii) Assume now M§ε§BX∗ . Let x∗∗ ∈ M
w∗

and let d := d(x∗∗, X). We
shall define inductively two sequences, (xn) in M and (x∗

m) in BX∗ : choose
x1 ∈ M . Define N(x1; 1) := {x∗ ∈ BX∗ ; |〈x1, x

∗〉| < 1}, a neighbourhood of
0 in (BX∗ , w∗). By Lemma 4 we can find x∗

1 ∈ N(x1; 1) such that

d − 1 ≤ 〈x∗∗, x∗
1〉 < d + 1.

Choose now x2 ∈ M such that |〈x∗∗−x2, x
∗
1〉| < 1/2. Define N(x1, x2; 1/2) :=

{x∗ ∈ BX∗ ; |〈xi, x
∗〉| < 1/2, i = 1, 2}, a neighbourhood of 0 in (BX∗ , w∗).

Find x∗
2 ∈ N(x1, x2; 1/2) such that d − 1/2 ≤ 〈x∗∗, x∗

2〉 < d + 1/2. Continue
in this way. We get (xn) and (x∗

m) such that

xn ∈ M, x∗
m ∈ BX∗ , ∀n,m,

|〈x∗∗ − xn, x
∗
m〉| <

1

n
, m = 1, 2, . . . , n,

|〈xn, x
∗
m〉| <

1

m
, n = 1, 2, . . . ,m,

d −
1

m
≤ 〈x∗∗, x∗

m〉 < d +
1

m
, m = 1, 2, . . .

We get

lim
n
〈xn, x

∗
m〉 = 〈x∗∗, x∗

m〉, ∀m,

lim
m

lim
n
〈xn, x

∗
m〉 = lim

m
〈x∗∗, x∗

m〉 = d,

lim
m
〈xn, x

∗
m〉 = 0, ∀n,

lim
n

lim
m
〈xn, x

∗
m〉 = 0,
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so
| lim

m
lim

n
〈xn, x

∗
m〉 − lim

n
lim
m
〈xn, x

∗
m〉| = d ≤ ε.

Remark 2: The case ε = 0 gives the Grothendieck’s characterization of
relatively weak compatness (see [Gr]).

Remark 3: In Proposition 6, (i) cannot be improved, even for separable
Banach spaces. In fact, the following is true:

Proposition 7 In every separable Banach space X which contains an iso-
morphic copy of ℓ1 there exists an equivalent norm such that, in this norm,
BX is (obviously) 1-WRK although BX§ε§BX∗ is false for every 0 < ε < 2.

In order to see this we need some preliminary facts:
Given x∗∗ ∈ X∗∗, the following function on (BX∗ , w∗) is introduced in

[DGZ, III.2, p.105]: x̂∗∗ : BX∗ → IR is the infimum of the real continuous
functions on (BX∗ , w∗) which are greater or equal than x∗∗. The following
proposition gives two alternative description of x̂∗∗:

Proposition 8 Let X be a Banach space. Then, given x∗∗ ∈ X∗∗,
(i)

x̂∗∗(x∗) = lim
N∈N (x∗

0
)
{sup〈x∗∗, N〉}, ∀x∗ ∈ BX∗ , (3)

where N (x∗
0) denotes the filter of neighborhoods of x∗ in (BX∗ , w∗).

(ii) [DGZ, III.2.3]

x̂∗∗(x∗) = inf{〈x, x∗〉 + ‖x∗∗ − x‖; x ∈ X}, ∀x∗ ∈ BX∗ . (4)

Proof of (i): Let x∗
0 ∈ BX∗ . Choose ε > 0; there exists a continuous

function f : (BX∗ , w∗) → IR such that f ≥ x∗∗ on BX∗ and

〈x∗∗, x∗
0〉 ≤ x̂∗∗(x∗

0) ≤ f(x∗
0) < x̂∗∗(x∗

0) + ε.

Let N(x∗
0) be an open neighbourhood of x∗

0 in (BX∗ , w∗) such that

f(x∗
0) − ε < f(x∗) < f(x∗

0) + ε, ∀x∗ ∈ N(x∗
0).

Then

〈x∗∗, x∗〉 ≤ f(x∗) < f(x∗
0) + ε < x̂∗∗(x∗

0) + 2ε, ∀x∗ ∈ N(x∗
0),
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hence
sup〈x∗∗, N(x∗

0)〉 ≤ x̂∗∗(x∗
0) + 2ε.

The family {sup〈x∗∗, N〉; N ∈ N (x∗
0)} is a bounded decreasing net and

then converges. We get

lim
N∈N (x∗

0
)
sup〈x∗∗, N〉 ≤ x̂∗∗(x∗

0) + 2ε.

To get a lower bound, let’s consider an arbitrary neighbourhood N(x∗
0) of x∗

0

in (BX∗ , w∗) and assume

〈x∗∗, x∗〉 ≤ x̂∗∗(x∗
0) − ε, ∀x∗ ∈ N(x∗

0).

Tietze’s Theorem allows us to define a continuous function g : (BX∗ , w∗) → IR
such that

g(x∗
0) = x̂∗∗(x∗

0) − ε,

x̂∗∗(x∗
0) − ε ≤ g(x∗) ≤ ‖x∗∗‖, ∀x∗ ∈ BX∗

g(x∗) = ‖x∗∗‖, ∀x∗ ∈ BX∗ \ N(x∗
0).

It follows that g ≥ x∗∗ and g(x∗
0) < x̂∗∗

0 (x∗
0), a contradiction. Therefore, we

can find x∗ ∈ N(x∗
0) such that

x̂∗∗
0 (x∗

0) − ε < 〈x∗∗, x∗〉,

and then
x̂∗∗

0 (x∗
0) − ε < sup〈x∗∗, N(x∗

0)〉.

We finally get

x̂∗∗
0 (x∗

0) − ε < lim
N∈N (x∗

0
)
{sup〈x∗∗, N〉} ≤ x̂∗∗

0 (x∗
0) + 2ε.

As ε was arbitrary we get the conclusion.

Let X be a Banach space. A norm ‖ · ‖ on X is said to be octahedral
(see, for example, [DGZ, III.2]) if for every finite dimensional subspace F of
X and every η > 0, there exists y ∈ SX such that for every x ∈ F , we have

‖x + y‖ ≥ (1 − η)(‖x‖ + 1).

By [DGZ, Lemma III.2.2], if there exists x∗∗ ∈ X∗∗\{0} such that ‖x∗∗+x‖ =
‖x∗∗‖+‖x‖ for every x ∈ X, then ‖·‖ is octahedral. The converse implication
is true if X is separable ([GK]). The following proposition characterizes such
elements x∗∗ in X∗∗:
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Proposition 9 Let X be a Banach space, x∗∗ ∈ SX∗∗. The following asser-
tions are equivalent:
(i) ‖x∗∗ + x‖ = ‖x∗∗‖ + ‖x‖ for every x ∈ X.
(ii) x̂∗∗(x∗) = 1, for every x∗ ∈ BX∗.
(iii) For every 0 < δ < 1, S(x∗∗; δ) is dense in (BX∗ , w∗), where

S(x∗∗; δ) := {x∗ ∈ BX∗ ; 〈x∗∗, x∗〉 > 1 − δ}.

(iv) For every α ∈] − 1, 1[, K(x∗∗; α) is dense in (BX∗ , w∗), where

K(x∗∗; δ) := {x∗ ∈ BX∗ ; 〈x∗∗, x∗〉 = α}.

Proof: The equivalence between (i) and (ii) is proved in [DGZ, III.2.4].
(ii) ⇒ (iii): Let x∗

0 ∈ BX∗ . Let N1(x
∗
0) be a neighbourhood of x∗

0 in
(BX∗ , w∗). By Proposition 8, given 0 < δ < 1 we can find N2(x

∗
0) ⊂ N1(x

∗
0),

a neighbourhood of x∗
0 in (BX∗ , w∗), such that sup〈x∗∗, N2(x

∗
0)〉 ≥ 1. Choose

x∗ ∈ N2(x
∗
0) such that 〈x∗∗, x∗〉 > 1 − δ. Then x∗ ∈ S(x∗∗; δ) ∩ N1(x

∗
0). It

follows that S(x∗∗; δ) is dense in (BX∗ , w∗).
(iii) ⇒ (ii) follows from Proposition 8 and (iv) ⇒ (iii) is obvious.
(iii) ⇒ (iv): If (iii) is true, so it is (i). It follows that −x∗∗ also satisfies

(i) and then (iii). Let O be a non-empty open convex subset of (BX∗ , w∗).
Then, given α ∈] − 1, 1[, choose δ ∈]0, 1 − |α|[ and let x∗

1 ∈ S(x∗∗; δ) ∩ O,
x∗

2 ∈ O such that 〈x∗∗, x∗
2〉 < −1 + δ. Then there exists x∗

3 ∈ [x∗
1, x

∗
2] (the

linear segment connecting x∗
1 and x∗

2) such that 〈x∗∗, x∗
3〉 = α and x∗

3 ∈ O.

Proof of Proposition 7: Fix 0 < ε < 2. By [DGZ, Thm. III.2.5],
there exists an octahedral equivalent norm |‖ · |‖ on X (in the rest of the
proof we shall refer only to this norm on X). Then, by [GK], there exists
x∗∗ ∈ SX∗∗ such that |‖x∗∗ + x|‖ = |‖x∗∗|‖ + |‖x|‖ for every x ∈ X. Choose
0 < δ < (2 − ε)/2. By Proposition 9, given x∗ ∈ −S(x∗∗; δ) we can find a
sequence (x∗

m) (as (BX∗ , w∗) is metrizable) in S(x∗∗; δ) such that x∗
m → x∗ in

the w∗−topology. By a diagonal procedure we can choose a sequence (xn) in
BX such that xn → x∗∗ on the set {x∗, x∗

m; m ∈ IN}. Then we have

| lim
n

lim
m
〈xn, x

∗
m〉 − lim

m
lim

n
〈xn, x

∗
m〉| =

| limn〈xn, x
∗〉 − limm〈x

∗∗, x∗
m〉| = |〈x∗∗, x∗〉 − limm〈x

∗∗, x∗
m〉| =

= | limm〈x
∗∗, (x∗ − x∗

m)〉| > 2 − 2δ > ε.

and the assertion is proved.
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The proof of the following theorem is a quantitative modification of the
proof of Krein’s Theorem devised by Pták using his combinatorial lemma in
conjunction with the Grothendieck’s double limit criterion (see, for example,
[Pt], [Ko, §24.5] or [BHO]). We need the following definitions: C(IN) := {λ :
IN → [0, 1] : supp λ finite , λ(IN) = 1}, where supp λ denotes the support
of λ , i.e., the set {n ∈ IN : λ(n) 6= 0}, and λ(B) :=

∑

n∈B λ(n) for any
B ⊂ IN . Let G be a family of finite subsets of IN . Given B ⊂ IN , let

C(B) := {λ ∈ C(IN) : supp λ ⊂ B}.

Given γ > 0, let C(B,G, γ) := {λ ∈ C(B) : λ(G) < γ, ∀G ∈ G}. Pták’s
Combinatorial Lemma reads:

Lemma 10 (Pták[Pt]) The two following conditions on G are equivalent:

1. There exists a strictly increasing sequence A1 ⊂ A2 ⊂ . . . of finite
subsets of IN and a sequence (Gn) in G with An ⊂ Gn for all n.

2. There exists an infinite subset B ⊂ IN and an γ > 0 such that

C(B,G, γ) = ∅.

Theorem 11 Let (X, ‖ · ‖) be a Banach space. Let M ⊂ X be a bounded
subset of X. Assume that M§ε§BX∗ for some ε ≥ 0. Then conv(M)§ε§BX∗.

Proof: Assume ‖x‖ ≤ µ for all x ∈ M and some µ > 0. Choose ε > 0 and
0 < β < ε. Select now δ > 0 and γ > 0 such that β + 2γµ < ε − δ. Suppose
that there exists a sequence (xn) in conv(M) and a sequence (x∗

m) in BX∗

such that
| lim

n
lim
m
〈xn, x

∗
m〉 − lim

m
lim

n
〈xn, x

∗
m〉| = ε > 0.

Let x∗
0 ∈ BX∗ be a cluster point of (x∗

m) in (BX∗ , w∗). Let T ⊂ M be a
countable set such that {xn : n ∈ IN} ⊂ conv(T ) and choose a subsequence
(denoted again by (x∗

m)) such that x∗
m → x∗

0 on the set T . Then, for some
σ ∈ {−1, 1},

σ(lim
n
〈xn, x

∗
0〉 − lim

m
lim

n
〈xn, x

∗
m〉) = ε.

By suppressing a finite number of indices, we may assume

σ(lim
n
〈xn, x

∗
0〉 − lim

n
〈xn, x

∗
m〉) = σ lim

n
〈xn, x

∗
0 − x∗

m〉 > ε − δ, ∀m.
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Define
Γ(t) := {m ∈ IN : |〈t, x∗

0 − x∗
m〉| ≥ β}, t ∈ T.

Those are finite subsets of IN . Let

G := {Γ(t) : t ∈ T}.

Assume C(IN,G, γ) 6= ∅ and choose λ ∈ C(IN,G, γ). It follows that

λ(Γ(t)) < γ, ∀t ∈ T.

Form
x∗ :=

∑

k∈IN

λ(k)(x∗
0 − x∗

k) ∈ 2BX∗ .

Given t ∈ T ,

|〈t, x∗〉| =

∣

∣

∣

∣

∣

∣

∑

k∈IN

λ(k)〈t, x∗
0 − x∗

k〉

∣

∣

∣

∣

∣

∣

≤

≤
∑

Γ(t) λ(k)|〈t, x∗
0 − x∗

k〉| +
∑

IN\Γ(t) λ(k)|〈t, x∗
0 − x∗

k〉| < 2γµ + β.

It follows that |〈xn, x
∗〉| ≤ 2γµ + β, ∀n. Then

2γµ + β ≥ lim
n

|〈xn, x
∗〉| =

= |
∑

k∈IN λ(k) limn〈xn, x
∗
0 − x∗

k〉| = σ
∑

k∈IN λ(k) limn〈xn, x
∗
0 − x∗

k〉 > ε − δ,

a contradiction.
Assume then C(IN,G, γ) = ∅. Then, by Lemma 10 we can find Ap :=

{m1,m2, . . . ,mp} ⊂ IN and tp ∈ T such that

Ap ⊂ Γ(tp), ∀p ∈ IN,

i.e., |〈tp, x
∗
0 − x∗

mk
〉| ≥ β, k = 1, 2, . . . , p. Choose a subsequence of (tn)

(denoted again by (tn)) such that there exists limn〈tn, x
∗
0 − x∗

mk
〉, for any k.

Then we get

lim
n

lim
k
〈tn, x

∗
mk

〉 = lim
n
〈tn, x

∗
0〉,

| lim
n
〈tn, x

∗
0〉 − lim

k
lim

n
〈tn, x

∗
mk

〉| = lim
k

lim
n

|〈tn, x
∗
0 − x∗

mk
〉| ≥ β,

so

| lim
n

lim
k
〈tn, x

∗
mk

〉 − lim
k

lim
n
〈tn, x

∗
mk

〉| ≥ β. (5)
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As β satisfies 0 < β < ε and it is otherwise arbitrary, we get the conclu-
sion.

Proof of Theorem 3: The general case follows from Proposition 6 and
Theorem 11. In order to prove the WCG case, the following modification of
Proposition 6 is needed:

Proposition 12 Let M be a bounded set and let ε > 0. Then we have
(i) If M is ε−WRK then M§ε§(x∗

n), where (x∗
n) is any w∗−null sequence in

BX∗.
(ii) If X is WCG and M§ε§(x∗

n) for any w∗−null sequence in BX∗ then M
is ε−WRK.

Proof: (i) follows directly from the proof of (i) in Proposition 6. To establish
(ii) here modify the proof of (ii) in the same proposition in the following way:
Let M ⊂ X be a linearly dense absolutely convex and weakly compact subset
of X; change

Np := N(x1, x2, . . . , xp; 1/p) := {x∗ ∈ BX∗ ; |〈xi, x
∗〉| < 1/p, i = 1, 2, . . . , p}

to

Np := N(x1, x2, . . . , xp, K, 1/p) :=

:= {x∗ ∈ BX∗ ; |〈xi, x
∗〉| < 1/p, i = 1, 2, . . . , p, sup |〈K,x∗〉| < 1/p},

where K ⊂ X is a linearly dense absolutely convex and weakly compact
subset of X. It is enough now to observe that the sequence (x∗

m) constructed
there is w∗−null. This proves the WCG case.

If X is a subspace of a WCG Banach space Z, first observe that we can
define a sequence (Mn,p)

∞
p,n=1 of subsets of BX such that BX = ∪∞

n=1Mn,p, p =
1, 2, . . ., and each Mn,p is (1/p)−WRK: just write

Mn,p :=

(

nK +
1

p
BZ∗∗

)

∩ BX ,

where K is an absolutely convex weakly compact and linearly dense subset
of Z (see [FMZ]) Now, the following modification of (ii) in Lemma 4 is easy
to prove (we refer to the notations there): Let M be an absolutely convex
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and weakly compact subset of X∗∗. Assume that M ⊂ X + εBX∗∗ for some
ε > 0. Then, given x∗∗ ∈ X∗∗,

sup〈x∗∗,M◦ ∩ BX∗〉 ≥
d

1 + 3ε

Now, enumerate the family (Mn,p)
∞
n,p=1 using an one-to-one and onto map-

ping j : IN → IN × IN such that i → ‖j(i)‖1 is increasing and use the
resulting sequence in the inductive construction of (x∗

m) in Proposition 6,
(ii) modified as in the WCG case above.

Remark 4: Our conjecture is that, in general, the property of being
ε−WRK is preserved when passing to convex hulls. Our approach does not
produce this much. The following theorem gives another setting in which the
constant is preserved.

Theorem 13 Let X be a Banach space. If X∗ does not contains a copy of ℓ1

and M ⊂ X is a ε−WRK for some ε > 0, then conv(M) is again ε−WRK.

Proof: Let C := conv(M)
w∗

, a w∗−compact convex subset of X∗∗. It is well
known (see, for example, [Di, p.215]) that

C = conv(Ext C)
‖·‖

,

where Ext C denotes the set of extreme points of C. By Milman’s Theorem

(see, for example, [Ko, §25.1.7]), Ext C ⊂ M
w∗

. As {x∗∗ ∈ X∗∗ : d(x∗∗, X) ≤
ε} is ‖ · ‖−closed, where d denotes the distance in the norm, this proves that
conv(M) is ε−WRK.

Remark 5: After Theorem 3 the requirement that sets Mn,p in Theorem
2 should be convex and symmetric can be avoided.

The following Theorem is, of course, more restrictive than Theorem 3,
as it is stated only for separable Banach spaces and gives four times the
constant. However, the technique of the proof is completely different, as it
uses Simons inequality (see, for example, [FHHPMZ, Lemma 3.47]) instead
of double limits. It has the slight advantage that it estimates the distance

from x∗∗ ∈ conv(M)
w∗

to conv(M
w∗

)
‖·‖

.

Theorem 14 Let X be a separable Banach space. Let M ⊂ X be a bounded
subset of X and assume that M is ε−WRK for some ε ≥ 0. Then conv(M)
is 4ε−WRK.

12



Proof: Let x∗∗
0 ∈ convw∗

(M) and let d be the distance from x∗∗ to conv‖·‖(M
w∗

).
Find x∗∗∗

0 ∈ SX∗∗∗ such that

s + d := sup〈conv‖·‖(M
w∗

), x∗∗∗
0 〉 + d = 〈x∗∗

0 , x∗∗∗
0 〉.

Given x∗∗ ∈ M
w∗

, find p(x∗∗) ∈ X such that ‖x∗∗ − p(x∗∗)‖ ≤ ε. We get

p[M
w∗

] ⊂ X and, as X is separable, there exists a countable ‖·‖−dense subset

N ⊂ p[M
w∗

]. We can find a sequence (x∗
n) in BX∗ such that x∗

n → x∗∗∗
0 on

points in N ∪ {x∗∗
0 }. In particular,

〈x∗∗
0 , x∗

n〉 → 〈x∗∗
0 , x∗∗∗

0 〉 = s + d.

Fix δ > 0. We can assume 〈x∗∗
0 , x∗

n〉 ≥ s + d − δ, for all n ∈ IN . Let

S := {x∗ ∈ BX∗ : 〈x∗∗
0 , x∗〉 ≥ s + d − δ},

a ‖ · ‖−closed non-empty convex section of BX∗ . M
w∗

is a boundary of the
set convw∗

(M) for the Banach space X∗. From now on we shall work in the

Banach space (l∞(M
w∗

), ‖ ·‖∞). In this space S is a superconvex subset, and

(x∗
n) a sequence in S. Let u := lim sup x∗

n. Given x∗∗ ∈ M
w∗

,

〈x∗∗, x∗
n〉 = 〈p(x∗∗), x∗

n〉 + 〈x∗∗ − p(x∗∗), x∗
n〉 =

= 〈v, x∗
n〉 + 〈p(x∗∗) − v, x∗

n〉 + 〈x∗∗ − p(x∗∗), x∗
n〉,

where v ∈ N and ‖p(x∗∗) − v‖ < δ. Moreover

〈v, x∗
n〉 → 〈v, x∗∗∗

0 〉 = 〈x∗∗, x∗∗∗
0 〉 + 〈v − x∗∗, x∗∗∗

0 〉,

and ‖v − x∗∗‖ < ε + δ. It follows that

u(x∗∗) ≤ s + 2ε + 2δ.

As δ > 0 is arbitrary, supu(M
w∗

) ≤ s + 2ε. Apply now Simons inequality to

(xn) and M
w∗

. We get

s + 2ε ≥ sup u(M
w∗

) ≥ inf{sup x∗(M
w∗

) : x∗ ∈ S} =

inf{sup x∗[convw∗

(M)] : x∗ ∈ S} ≥ inf{〈x∗∗
0 , x∗〉 : x∗ ∈ S} ≥ s + d − δ.

It follows that 2ε ≥ d − δ. As δ > 0 was arbitrary, 2ε ≥ d and we get

‖ · ‖ − dist
(

x∗∗
0 , conv‖·‖(M

w∗

)
)

≤ 2ε.

This implies that conv(M) is 4ε−WRK.
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