
SMOOTHING OF BUMP FUNCTIONS

PETR HÁJEK AND MICHAL JOHANIS

Abstract. Let X be a separable Banach space with a Schauder basis, admitting a continuous bump which depends
locally on finitely many coordinates. Then X admits also a C∞-smooth bump which depends locally on finitely many
coordinates.

1. Introduction

In the present paper we investigate the properties of separable Banach spaces admitting bump functions depending
locally on finitely many coordinates (LFC). The first use of the LFC notion for a function was the construction of C∞-
smooth and LFC renorming of c0, due to Kuiper, which appeared in [BF]. The LFC notion was explicitly introduced
and investigated in the paper [PWZ] of Pechanec, Whitfield and Zizler. In their work the authors have proved that
every Banach space admitting a LFC bump is saturated with copies of c0, providing in some sense a converse to
Kuiper’s result. Not surprisingly, it turns out that the LFC notion is closely related to the class of polyhedral spaces,
introduced by Klee [K] and thoroughly investigated by many authors (see [JL, Chapter 15] for results and references).
Indeed, prior to [PWZ], Fonf [F1] has proved that every polyhedral Banach space is saturated with copies of c0. Later,
it was independently proved in [F2] and [Haj1] that every separable polyhedral Banach space admits an equivalent
LFC norm. Using the last result Fonf’s result is a corollary of [PWZ]. The notion of LFC has been exploited (at least
implicitly) in a number of papers, in order to obtain very smooth bump functions, norms and partitions of unity on
non-separable Banach spaces, see e.g. [To], [Ta], [DGZ1], [GPWZ], [GTWZ], [FZ], [Hay1], [Hay2], [Hay3], [S1], [S2],
[Haj1], [Haj2], [Haj3], and the book [DGZ]. In fact, it seems to be the only general approach to these problems. The
reason is simple; it is relatively easy to check the (higher) differentiability properties of functions of several variables,
while for functions defined on a Banach space it is very hard.

For separable spaces, one of the main known results is that a separable Banach space is isomorphic to a polyhedral
space if and only if it admits a LFC renorming (resp. C∞-smooth and LFC renorming) ([Haj1]). This smoothing up
result is however obtained by using the boundary of a Banach space, rather than through some direct smoothing
procedure. There is a variety of open questions, well known among the workers in the area, concerning the existence
and possible smoothing of general non-convex LFC functions. In our note we are going to address the following one:
Suppose a Banach space X admits a LFC bump. Does X admit a C∞-smooth bump (norm)?

To this end, we develop some basic theory of LFC functions on separable Banach spaces.
The main result of this paper is that a separable Banach space with a Schauder basis has a C∞-smooth and LFC

bump function whenever it has a continuous LFC bump. This seems to be the first relatively general result in this
direction. We establish some additional properties of such bumps, with an eye on the future developments.

We refer to [FHHMPZ], [LT] and [JL] for background material and results.

2. Preliminaries

We use a standard Banach space notation. If {ei} is a Schauder basis of a Banach space, we denote by {e∗i } its
biorthogonal functionals. Pn are the canonical projections associated with the basis {ei}, P ∗n are the operators adjoint
to Pn, i.e. the canonical projections associated with the basis {e∗i }. U(x, δ) denotes an open ball centered at x with
radius δ. By X# we denote an algebraic dual to a vector space X.

The notion of a function, defined on a Banach space with a Schauder basis, which is locally dependent on finitely
many coordinates was introduced in [PWZ]. The following definition is a slight generalisation which was used by many
authors.

Definition 1. Let X be a topological vector space, Ω ⊂ X an open subset, E be an arbitrary set, M ⊂ X# and
g : Ω → E. We say that g depends only on M on a set U ⊂ Ω if g(x) = g(y) whenever x, y ∈ U are such that
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f(x) = f(y) for all f ∈ M . We say that g depends locally on finitely many coordinates from M (LFC-M for short)
if for each x ∈ Ω there are a neighbourhood U ⊂ Ω of x and a finite subset F ⊂ M such that g depends only on F on
U . We say that g depends locally on finitely many coordinates (LFC for short) if it is LFC-X∗.

We may equivalently say that g depends only on {f1, . . . , fn} ⊂ X# on U ⊂ Ω if there exist a mapping G : Rn → E
such that g(x) = G(f1(x), . . . , fn(x)) for all x ∈ U . Notice, that if g : Ω → E is LFC and h : E → F is any mapping,
then also h ◦ g is LFC.

The canonical example of a non-trivial LFC function is the sup norm on c0, which is LFC-{e∗i } away from the
origin. Indeed, take any x = (xi) ∈ c0, x 6= 0. Let n ∈ N be such that |xi| < ‖x‖∞ /2 for i > n. Then ‖·‖∞ depends
only on {e∗1, . . . , e∗n} on U(x, ‖x‖∞ /4).

A norm on a normed space is said to be LFC, if it is LFC away from the origin. Recall that a bump function (or
bump) on a topological vector space X is a function b : X → R with a bounded non-empty support.

The following theorem from [J] (see also [FZ]) shows that an existence of a LFC bump has a deep impact on the
structure of the space.

Theorem 2. Let X be a Banach space, M ⊂ X∗ and X admits an arbitrary LFC-M bump function. Then span M =
X∗.

Let X be a Banach lattice. We say that a function f : X → R is a lattice function if it satisfies either f(x) ≤ f(y)
whenever |x| ≤ |y|, or f(x) ≥ f(y) whenever |x| ≤ |y|. Recall that a Banach space X with an unconditional basis {ei}
has a natural lattice structure defined by

∑
aiei ≥ 0 if and only if ai ≥ 0 for all i ∈ N. The same holds for `∞.

The next (somewhat technical) lemmata (Lemma 3 and Lemma 5) will be useful later when dealing with lattice
functions. The first one, the general formulation of which may seem out-of-place here, is taken from [J]. For the sake
of completeness we include its proof.

If X is a topological vector space, let us recall, that a set-valued mapping ψ : X → 2X is called a cusco mapping if
for each x ∈ X, ψ(x) is a non-empty compact convex subset of X and for each open set U in X, {x ∈ X; ψ(x) ⊂ U}
is open.

Lemma 3. Let X be a locally convex space, E be an arbitrary set and g : X → E be a LFC-M mapping for some
M ⊂ X#. Further, let ψ : X → 2X be a cusco mapping with the following property: For any finite F ⊂ M , if x, y ∈ X
are such that f(x) = f(y) for all f ∈ F , then for each w ∈ ψ(x) there is z ∈ ψ(y) such that f(w) = f(z) for all f ∈ F .
Then the mapping G : X → 2E, G(x) = g(ψ(x)), is LFC-M .

For the proof we first need to know when it is possible to join together some of the neighbourhoods in the definition
of LFC:

Lemma 4. Let X be a topological vector space, E be an arbitrary set, g : X → E and M ⊂ X#. Let Uα ⊂ X, α ∈ I
be open sets such that U =

⋃
α∈I Uα is convex and g depends only on M on each Uα, α ∈ I. Then g depends only on

M on the whole of U .

Proof. Pick any x, y ∈ U such that f(x) = f(y) for all f ∈ M . Since U is convex, the line segment [x, y] ⊂ U . Since
[x, y] is compact, there is a finite covering U1, . . . , Un ∈ {Uα}α∈I of [x, y]. Since [x, y] is connected, without loss of
generality we may assume that x ∈ U1, y ∈ Un and there are xi ∈ Ui ∩Ui+1 ∩ [x, y] for i = 1, . . . , n− 1. As xi ∈ [x, y],
we have f(x) = f(y) = f(xi) for all f ∈ M and i = 1, . . . , n− 1. Therefore g(x) = g(x1) = · · · = g(xn−1) = g(y).

ut
Proof of Lemma 3. Let x0 ∈ X. We can find a finite covering of the compact ψ(x0) by open sets Ui, i = 1, . . . , n, so
that g depends only on a finite set Fi ⊂ M on Ui. Let W be a convex neighbourhood of zero such that ψ(x0)+W ⊂ ⋃

Ui

and put U = ψ(x0) + W and F =
⋃

Fi. As U is convex and U ⊂ ⋃
Ui, by Lemma 4, g depends only on F on U .

Suppose V ⊂ X is a neighbourhood of x0 such that ψ(V ) ⊂ U . Let x, y ∈ V are such that f(x) = f(y) for all
f ∈ F . Choose w′ ∈ G(x) and find w ∈ ψ(x) for which g(w) = w′. Then, by the assumption on ψ, there is z ∈ ψ(y)
such that f(w) = f(z) for all f ∈ F . But we have also w ∈ ψ(x) ⊂ U and z ∈ ψ(y) ⊂ U and hence g(w) = g(z).
Therefore w′ ∈ G(y) and by the symmetry we can conclude that G(x) = G(y).

ut
Lemma 5. Let f : R→ R be an even function that is non-decreasing on [0,∞) and let ϕ : R→ R be an even function
with bounded support that is non-increasing on [0,∞). Then (f ∗ ϕ)(x) =

∫
R f(x − t)ϕ(t) dt is an even function that

is non-decreasing on [0,∞).

Proof. Note that f ∗ ϕ is well defined as f and ϕ are bounded on bounded sets.
Obviously, (f ∗ ϕ)(−x) =

∫
R f(−x− t)ϕ(t) dt =

∫
R f(x + t)ϕ(t) dt =

∫
R f(x− t)ϕ(t) dt = (f ∗ ϕ)(x), using first the

fact that f is even, then the fact that ϕ is even.
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Now pick any 0 ≤ x < y < ∞. The function ψ(t) = ϕ(y−x
2 − t) − ϕ(x−y

2 − t) is an odd function (this is obvious),
such that ψ(t) ≥ 0 for t ≥ 0. Indeed, either we have 0 ≥ y−x

2 − t ≥ x−y
2 − t, or 0 < y−x

2 − t ≤ t − x−y
2 and in both

cases we use the properties of ϕ. Similarly we get that the function t 7→ f
(

x+y
2 + t

)− f
(

x+y
2 − t

)
is non-negative for

t ≥ 0. Therefore,

(f ∗ ϕ)(y)− (f ∗ ϕ)(x) =
∫

R

f(t)(ϕ(y − t)− ϕ(x− t)) dt =
∫

R

f
(

x+y
2 + t

)
ψ(t) dt

=
∫

(−∞,0)

f
(

x+y
2 + t

)
ψ(t) dt +

∫

(0,∞)

f
(

x+y
2 + t

)
ψ(t) dt

= −
∫

(0,∞)

f
(

x+y
2 − t

)
ψ(t) dt +

∫

(0,∞)

f
(

x+y
2 + t

)
ψ(t) dt

=
∫

(0,∞)

(
f

(
x+y

2 + t
)− f

(
x+y

2 − t
))

ψ(t) dt ≥ 0.

ut

3. Spaces with Schauder Bases

The word “coordinate” in the term LFC originates of course from spaces with bases, where LFC was first defined
using the coordinate functionals. In order to apply the LFC techniques to spaces without a Schauder basis, the notion
had to be obviously generalised using arbitrary functionals from the dual. However, as we will show in this section, the
generalisation does not substantially increase the supply of LFC functions on Banach spaces with a Schauder basis,
and we can always in addition assume that the given LFC function in fact depends on the coordinate functionals.
This fact is not only interesting in itself; it is the main tool for smoothing up LFC bumps on separable spaces with
basis.

We begin with a simple related result for Markushevich bases:

Theorem 6. Let E be a set, X be a separable Banach space and g : X → E be a LFC mapping. Then there is
a Markushevich basis {xi, x

∗
i } ⊂ X ×X∗ such that g is LFC-{x∗i }.

Proof. By the Lindelöf property of X we can choose a countable {fi} ⊂ X∗ such that g is LFC-{fi}. Find a countable
{gi} ⊂ X∗ such that it separates points of X and {fi} ⊂ {gj}. Then we can use the Markushevich theorem (see e.g.
[FHHMPZ]) to construct a Markushevich basis {xi, x

∗
i } such that span{x∗i } = span{gi} ⊃ span{fi}.

Now let x ∈ X and U ⊂ X be a neighbourhood of x such that g depends only on M = {f1, . . . , fn} on U . Let
M ⊂ span{x∗1, . . . , x∗m}. Then for any y, z ∈ U such that x∗j (y) = x∗j (z) for all j = 1, . . . , m we have also fi(y) = fi(z)
for any i = 1, . . . , n and hence g(y) = g(z). Thus g depends only on {x∗1, . . . , x∗m} on U .

ut

We would like to establish a similar result for Schauder bases. In this context, shrinking Schauder bases emerge
quite naturally, taking into account Theorem 2 (see also Theorem 12). We will use the following simple fact:

Fact 7. Let X and Y be Banach spaces with equivalent Schauder bases {xi} and {yi} respectively. Then {xi} is
shrinking if and only if {yi} is shrinking.

Proof. Let {xi} be a shrinking basis and T : Y → X be an isomorphism of Y onto X such that Tyi = xi. Then
T ∗ : X∗ → Y ∗ is an isomorphism of X∗ onto Y ∗ such that T ∗x∗i = y∗i and thus

Y ∗ = T ∗(X∗) = T ∗(span{x∗i }) ⊂ T ∗(span{x∗i }) = spanT ∗({x∗i }) = span{y∗i }.
ut

The next result is the main tool used in the sequel for the study of functions locally dependent on finitely many
coordinates on spaces with shrinking Schauder bases.

Lemma 8. Let X be a Banach space with a shrinking Schauder basis {ei}. Let f ∈ X∗, ε > 0 and n ∈ N. Then
there is a (shrinking) Schauder basis {xi} of X and N ∈ N, N > n, such that xi = ei for 1 ≤ i < N , {xi} is
(1 + ε)-equivalent to {ei}, span{xi}m

i=k = span{ei}m
i=k for all 1 ≤ k ≤ n and m ≥ k, x∗i = e∗i if i < n or i ≥ N , and

span{xi; i ≥ N} ⊂ ker f .



SMOOTHING OF BUMP FUNCTIONS 4

Proof. Without loss of generality we may assume that there is a z ∈ span{ei; i ≥ n} for which f(z) = 1. Let us
denote fk = f − P ∗k−1f . As {ei} is shrinking, ‖fk‖ → 0 and hence we can find N ∈ N such that N > max supp z ≥ n
and ‖fN‖ ≤ ε

(2+ε)‖z‖ . Put xi = ei for 1 ≤ i < N and xi = ei−f(ei)z for i ≥ N . For any m1,m2 ∈ N and any sequence
{ai} of scalars we have

∥∥∥∥∥
m2∑

i=m1

aixi

∥∥∥∥∥ =

∥∥∥∥∥
m2∑

i=m1

aiei − z

m2∑

i=max{m1,N}
aif(ei)

∥∥∥∥∥ ≤
∥∥∥∥∥

m2∑

i=m1

aiei

∥∥∥∥∥ +

∥∥∥∥∥zfN

(
m2∑

i=m1

aiei

)∥∥∥∥∥

≤ (
1 + ‖z‖ ‖fN‖

)
∥∥∥∥∥

m2∑

i=m1

aiei

∥∥∥∥∥ ≤
(

1 +
ε

2 + ε

) ∥∥∥∥∥
m2∑

i=m1

aiei

∥∥∥∥∥
and ∥∥∥∥∥

m2∑

i=m1

aixi

∥∥∥∥∥ ≥
∥∥∥∥∥

m2∑

i=m1

aiei

∥∥∥∥∥−
∥∥∥∥∥zfN

(
m2∑

i=m1

aiei

)∥∥∥∥∥ ≥
(

1− ε

2 + ε

) ∥∥∥∥∥
m2∑

i=m1

aiei

∥∥∥∥∥ .

This implies that {xi} is a basic sequence (1 + ε)-equivalent to {ei}. Since z ∈ span{xi; n ≤ i < N}, we have
span{xi}m

i=k = span{ei}m
i=k for all 1 ≤ k ≤ n and m ≥ k, and therefore span{xi} = span{ei}, which implies

that {xi} is a basis of X. Moreover, x∗i (x) =
∑

e∗j (x)x∗i (ej) =
∑

j<N e∗j (x)x∗i (xj) +
∑

j≥N e∗j (x)x∗i (xj + f(ej)z) =∑
e∗j (x)x∗i (xj) + x∗i (z)

∑
j≥N e∗j (x)f(ej) = e∗i (x) if i < n or i ≥ N . Finally, f(xi) = 0 for i ≥ N .

ut
It is perhaps worth noticing that the method used in the previous lemma (and the next theorem) does not rely on

the classical argument of perturbation by the norm-summable sequence. In fact our new basis is “far” away from the
original one.

Theorem 9. Let X be a Banach space with a shrinking Schauder basis {ei}, let {fi} ⊂ X∗ be a countable subset and
ε > 0. Then there is a (shrinking) Schauder basis {xi} of X such that it is (1 + ε)-equivalent to {ei}, span{xi}m

i=1 =
span{ei}m

i=1 for all m ∈ N and span{fi} ⊂ span{x∗i }.
Proof. Choose a sequence of εi > 0 such that

∏
i(1+ εi) ≤ (1+ ε) and put N0 = 1. We apply Lemma 8 to {ei}, f1, ε1

and n = 1. We obtain a basis {x1
i } which is (1+ε1)-equivalent to {ei} and N1 ∈ N such that span{x1

i ; i ≥ N1} ⊂ ker f1.
Moreover, x1

i = ei for i < N1 and span{x1
i }m

i=1 = span{ei}m
i=1 for all m ∈ N.

We proceed by induction. Suppose the basis {xk
i } and Nk ∈ N have already been defined so that {xk

i } is
∏

j≤k(1+εj)-
equivalent to {ei}, xk

i = xk−1
i for i < Nk, span{xk

i }m
i=1 = span{ei}m

i=1 for all m ∈ N and span{xk
i ; i ≥ Nj} ⊂ ker fj

for 1 ≤ j ≤ k. We apply Lemma 8 to {xk
i }, fk+1, εk+1 and n = Nk in order to obtain a basis {xk+1

i } which
is

∏
j≤k+1(1 + εj)-equivalent to {ei} and Nk+1 ∈ N, Nk+1 > Nk, such that span{xk+1

i ; i ≥ Nk+1} ⊂ ker fk+1.
Moreover, xk+1

i = xk
i for i < Nk+1 and span{xk+1

i }m
i=1 = span{xk

i }m
i=1 = span{ei}m

i=1 for all m ∈ N. Since also
span{xk+1

i }m
i=Nj

= span{xk
i }m

i=Nj
for all 1 ≤ j ≤ k and m ≥ Nj , we have span{xk+1

i ; i ≥ Nj} ⊂ ker fj for
1 ≤ j ≤ k + 1.

Clearly, there is a sequence {xi} such that limj→∞ xj
i = xi for all i ∈ N. (This is because the sequence Nk is

increasing and thus xj
i is eventually constant (in j).) It is straightforward to check that span{xi}m

i=1 = span{ei}m
i=1

for all m ∈ N, {xi} is a basis of X which is (1 + ε)-equivalent to {ei} and span{xi; i ≥ Nj} ⊂ ker fj (which means
that fj ∈ span{x∗i ; i < Nj}) for any j ∈ N.

ut
If a Banach space X has a shrinking Schauder basis, using the Lindelöf property of X (as in the proof of Theorem 6)

and Theorem 9 we obtain the following corollary, which allows us to work only with LFC-{e∗i } functions.

Corollary 10. Let E be a set, X be a Banach space with a shrinking Schauder basis {ei}, g : X → E be a LFC
mapping and ε > 0. Then there is a (shrinking) Schauder basis {xi} of X, (1 + ε)-equivalent to {ei}, such that g is
LFC-{x∗i }.

The following lemma seems to be the crucial reason why we need to work with Schauder bases.

Lemma 11. Let X be a Banach space with a Schauder basis {ei} and E be an arbitrary set. Then f : X → E is
LFC-{e∗i } if and only if for each x ∈ X there is δ > 0 and n0 ∈ N such that f(y) = f(Pny) whenever ‖x− y‖ < δ
and n ≥ n0.

Proof. The “if” part is trivial: Pn0y = Pn0z whenever e∗i (y) = e∗i (z) for 1 ≤ i ≤ n0. Thus f(y) = f(Pn0y) = f(Pn0z) =
f(z) if moreover y, z ∈ U(x, δ), which means that f depends only on {e∗1, . . . , e∗n0

} on U(x, δ).
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The “only if” part is also simple. Let K be a basis constant of {ei} and x ∈ X. There is m ∈ N and δ > 0 such that
f(y) = f(z) if y, z ∈ U(x, δ(1 + K)) and e∗i (y) = e∗i (z) for 1 ≤ i ≤ m. Choose n0 ≥ m such that ‖x− Pnx‖ < δ for all
n ≥ n0. Then for any n ≥ n0 and y ∈ X such that ‖x− y‖ < δ we have ‖Pny − x‖ ≤ ‖Pny − Pnx‖ + ‖Pnx− x‖ <
δ(1 + K) and therefore f(y) = f(Pny).

ut

4. Main results

Theorem 12. Let X be a Banach space with a Schauder basis {ei}. The following statements are equivalent:
(i) {ei} is shrinking and X admits a continuous LFC bump.
(ii) X admits a continuous LFC-{e∗i } bump.
(iii) X admits a C∞-smooth LFC-{e∗i } bump.

For the proof of Theorem 12 we will need the following lemma, the basic idea of which is implicitly contained
in [Haj1]. Let ∆ = {δn}∞n=1 be a sequence of positive real numbers. We denote by A∆ an open subset of `∞ such
that x ∈ A∆ if and only if there is nx ∈ N satisfying |x(nx)| − δnx

> supn>nx
|x(n)| + δnx

. For any x ∈ A∆, the set
V ∆

nx
= {y ∈ `∞ : |y(nx)| − δnx

> supn>nx
|y(n)|+ δnx

} ⊂ A∆ is an open neighbourhood of x in `∞.

Lemma 13. Let ε > 0 and a sequence ∆ = {δn}∞n=1, δn > 0 be given. There is a convex lattice 1-Lipschitz function
F : `∞ → R such that ‖x‖∞ ≤ F (x) ≤ ‖x‖∞ + ε for any x ∈ `∞ and F is LFC-{e∗i } and C∞ on A∆. Moreover, for
any x ∈ A∆, F depends only on {e∗i }nx

i=1 on V ∆
nx

, where e∗i are the coordinate functionals on `∞.

Proof. Let ε1 = min{δ1, ε} and εn = min{δn, εn−1} for n > 1. Choose a sequence {ϕn}∞n=1 of C∞-smooth even
functions ϕn : R→ [0,∞) such that supp ϕn ⊂ [−εn, εn], ϕn is non-increasing on [0,∞) and

∫
R ϕn(t) dt = 1. Define a

sequence {Fn}∞n=0 of functions Fn : `∞ → R by the inductive formula

F0(x) = ‖x‖∞ ,

Fn(x) =
∫

R

Fn−1(x + ten)ϕn(t) dt.

It is easily checked that each Fn is convex, 1-Lipschitz and Fn(x)−‖x‖∞ ≤ ε for any x ∈ `∞. To see that Fn is lattice,
pick x, y ∈ `∞, x = (xi), y = (yi), satisfying |y| ≤ |x|. Define g : R→ R by g(u) = Fn−1(y + (u− yn)en). Then

Fn(x)− Fn(y) =
∫

R

(
Fn−1(x + ten)− Fn−1(y + ten)

)
ϕn(t) dt

=
∫

R

(
Fn−1(x + ten)− Fn−1

(
y + (xn − yn + t)en

))
ϕn(t) dt

+
∫

R

(
Fn−1

(
y + (xn − yn + t)en

)− Fn−1(y + ten)
)
ϕn(t) dt

=
∫

R

(
Fn−1(x + ten)− Fn−1

(
y + (xn − yn + t)en

))
ϕn(t) dt + g ∗ ϕn(xn)− g ∗ ϕn(yn) ≥ 0,

because Fn−1(x+ten) ≥ Fn−1(y+(xn−yn+t)en) by the induction hypothesis (notice that x+ten = (x1, . . . , xn−1, xn+
t, xn+1, . . . ) and y + (xn − yn + t)en = (y1, . . . , yn−1, xn + t, yn+1, . . . ), thereby |x + ten| ≥ |y + (xn − yn + t)en| in
the lattice sense), g is an even function non-decreasing on [0,∞) also by the induction hypothesis and we may use
Lemma 5.

Further, by Jensen’s inequality,

Fn(x) =
∫

R

Fn−1(x + ten)ϕn(t) dt ≥ Fn−1

(
x + en

∫

R

tϕn(t) dt

)
= Fn−1(x),

which means that the sequence {Fn} is non-decreasing. Consequently the function F = limn Fn = supn Fn is convex,
lattice, 1-Lipschitz and ‖x‖∞ ≤ F (x) ≤ ‖x‖∞ + ε for any x ∈ `∞.

For any y ∈ `∞ and k ∈ N we have

Fk(y) =

εk∫

−εk

. . .

ε1∫

−ε1

‖y + t1e1 + · · ·+ tkek‖∞ ϕ1(t1) · · ·ϕk(tk) dt1 . . . dtk.
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Fix an arbitrary x ∈ A∆ and pick any y ∈ V ∆
nx

and k > nx. Then

‖y + t1e1 + · · ·+ tkek‖∞ = ‖y + t1e1 + · · ·+ tnx
enx

‖∞ = ‖Pnx
y + t1e1 + · · ·+ tnx

enx
‖∞ ,

as long as |ti| ≤ δnx
for nx ≤ i ≤ k. Since εn ≤ δnx

for n ≥ nx and
∫
R ϕn = 1, it follows that Fk(y) = Fnx

(y) =
Fnx

(Pnx
y). This means that F (y) = Fnx

(Pnx
y) and therefore F is C∞-smooth and depends only on {e∗i }nx

i=1 on V ∆
nx

.
ut

Proof of Theorem 12. (iii)⇒(i) follows from Theorem 2.
(i)⇒(ii) follows from Corollary 10: If g is a continuous LFC bump on X, let {xi} be a basis obtained from

Corollary 10 and T be an isomorphism ei 7→ xi. Then the function g ◦ T is a continuous LFC-{e∗i } bump.
It remains to prove (ii)⇒(iii). Since X admits a continuous LFC-{e∗i } bump, using an affine transformation and

a composition with a suitable function we can produce a continuous LFC-{e∗i } function b : X → [1, 2] such that
b(0) = 1 and b(x) = 2 whenever ‖x‖ ≥ 1. Choose a sequence of real numbers {ηn} decreasing to 1 such that η1 < 1+ 1

4

and a decreasing sequence ∆ = {δn} such that 0 < δn < 1
4 (ηn − ηn+1) and δ1 < 1

8 .
For a fixed n ∈ N, let Tn : Rn → PnX be a canonical isomorphism, i.e. Tn(t1, . . . , tn) = t1e1 + · · · + tnen. Since

b ◦ Tn ∈ C(Rn) and it is constant outside a sufficiently large ball in Rn, using standard finite-dimensional smooth
approximations we can find b̃n ∈ C∞(Rn) such that supRn |̃bn(y) − ηnb(Tny)| < δn. We define bn(x) = b̃n(T−1

n Pnx)
and thus bn ∈ C∞(X) and supX |bn(x)− ηnb(Pnx)| < δn.

Further, let us define Φ: X → `∞ by Φ(x)(n) = bn(x). Pick any x ∈ X. By Lemma 11 there is δ > 0 and nx ∈ N
such that b(y) = b(Pny) whenever ‖x− y‖ < δ and n ≥ nx. Thus for n > m ≥ nx and ‖x− y‖ < δ we have

|Φ(y)(m)| − δm = bm(y)− δm > ηmb(Pmy)− 2δm = ηmb(y)− 2δm > ηm+1b(y) + 2δm

> ηnb(y) + δn + δm = ηnb(Pny) + δn + δm > bn(y) + δm = |Φ(y)(n)|+ δm.

(The second inequality follows from the definition of δm.) It means that |Φ(y)(nx)| − δnx > |Φ(y)(nx + 1)| + δnx =
supn>nx

|Φ(y)(n)|+ δnx . As x ∈ X is arbitrary, these inequalities show that Φ(X) ⊂ A∆ and moreover

Φ(y) ∈ V ∆
nx

whenever ‖x− y‖ < δ. (1)

We now apply Lemma 13 to the sequence ∆ and ε < 1
8 in order to obtain the corresponding function F , and we set

f = F ◦ Φ. The properties of F together with (1) and the fact that bn depends only on {e∗i }n
i=1 imply that f is a

C∞-smooth LFC-{e∗i } function.
Further,

f(0) = F (Φ(0)) ≤ ‖Φ(0)‖∞ + ε = sup
n

bn(0) + ε ≤ sup
n

(
ηnb(0) + δn

)
+ ε = η1 + δ1 + ε < 1 +

1
2
.

On the other hand, if ‖x‖ ≥ 1 we get

f(x) ≥ ‖Φ(x)‖∞ = sup
n

bn(x) ≥ bnx(x) > ηnxb(Pnxx)− δnx = ηnxb(x)− δnx > 2− δ1 > 2− 1
8
.

Therefore f is a separating function on X and we obtain the desired bump by composing f with a suitable smooth
real function.

ut
Theorem 14. Let X be a Banach space with an unconditional Schauder basis {ei}, which admits a continuous LFC
bump. Then X admits a C∞-smooth LFC-{e∗i } lattice bump.

Proof. Since X is c0-saturated ([PWZ]), it does not contain `1 and so by James’s theorem {ei} is shrinking. By
Theorem 12 there is a continuous LFC-{e∗i } bump b on X and without loss of generality we may assume b : X → [0, 1]
and b(0) > 0. We may further assume that the norm ‖·‖ on X is lattice.

First we show that there is a continuous lattice LFC-{e∗i } bump on X. Put g(x) = inf |y|≤|x| b(y). If b(x) = 0 then
also g(x) = 0 and g(0) = b(0) > 0, hence g is a bump function. Further, for any x, y ∈ X such that |y| ≤ |x| we have
g(y) = inf |z|≤|y| b(z) ≥ inf |z|≤|x| b(z) = g(x), thus g is lattice.

For any y ∈ X we denote y(i) = e∗i (y). Define a mapping ψ : X → 2X by ψ(y) = {z ∈ X; |z| ≤ |y|}. Clearly, ψ(y)
is a convex set for any y ∈ X. Furthermore, as {ei} is unconditional, ψ(y) is a compact set for any y ∈ X (consider
the mapping from a compact space

∏
i[− |y(i)| , |y(i)|] into X defined by (t1, t2, . . . ) 7→

∑
tiei).

Now fix an arbitrary x ∈ X. Let us define a projection y 7→ ỹ from X onto ψ(x): For any y ∈ X we put ỹ(i) = y(i)
if |y(i)| ≤ |x(i)|, ỹ(i) = sgn y(i) |x(i)| otherwise. Notice that |ỹ| ≤ |x| and so indeed ỹ ∈ ψ(x). Let z ∈ X. Then
‖y − ỹ‖ ≤ ‖x− z‖ for any y ∈ ψ(z). Indeed, |ỹ(i)− y(i)| =

∣∣sgn y(i) |x(i)| − y(i)
∣∣ =

∣∣|x(i)| − |y(i)|
∣∣ = |y(i)| − |x(i)| ≤

|z(i)| − |x(i)| ≤ |z(i)− x(i)| whenever |y(i)| > |x(i)|. Thus |ỹ − y| ≤ |x− z| and we use the fact that ‖·‖ is lattice.
Let U be a neighbourhood of ψ(x) and δ = dist(ψ(x), X \ U). Suppose z ∈ X, ‖x− z‖ < δ. Then ‖y − ỹ‖ ≤

‖x− z‖ < δ for any y ∈ ψ(z) and hence ψ(z) ⊂ U . This implies that ψ is a cusco mapping.
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Given any ε > 0 we can find a neighbourhood U of ψ(x) and 0 < δ < dist(ψ(x), X \ U) such that |b(y)− b(z)| < ε
whenever y, z ∈ U , ‖y − z‖ < δ. Suppose z ∈ X, ‖x− z‖ < δ. Then, by the previous paragraph, |b(ỹ)− b(y)| < ε.
Therefore, g(z) = infy∈ψ(z) b(y) ≥ infy∈ψ(z) b(ỹ)− ε ≥ infy∈ψ(x) b(y)− ε = g(x)− ε. Similarly, considering a projection
onto ψ(z), we obtain g(x) ≥ g(z)− ε. This shows that g is continuous.

Suppose that for some F ⊂ N we have x(i) = y(i) for all i ∈ F and let w ∈ ψ(x). Define z ∈ X such that z(i) = w(i)
for i ∈ F and z(i) = y(i) otherwise. Then z ∈ ψ(y) and the assumption of Lemma 3 is satisfied. Hence g is LFC-{e∗i }.

We note that the process described above does not preserve smoothness as can be easily seen on a one-dimensional
example.

Finally, we smoothen up the bump g by repeating the proof of Theorem 12. Notice only that the finite-dimensional
smooth approximations can be made lattice similarly as in the proof of Lemma 13, consequently Φ(·)(n) is lattice for
each n ∈ N and since F from Lemma 13 is lattice too, we can conclude that the resulting function f = F ◦Φ is lattice.

ut
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[Haj1] P. Hájek, Smooth Norms That Depend Locally on Finitely Many Coordinates, Proc. Amer. Math. Soc. 123 (1995), no. 12,

3817–3821.
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[Haj3] P. Hájek, Smooth Partitions of Unity on Certain C(K) Spaces, Mathematika 52 (2005), 131–138.
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