
Conference Cosmology on Small Scales 2020
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Abstract: This article proposes a unified theory framework encompassing
a discrete topological interpretation of physical forces, wave functions, and the
nature of space and time. It provides novel explanations for the collapse of
wave functions, quantum entanglement, and offers insights into the origins of
quantum probabilities. This article also explains the nature of mass, Higgs
field, and suggests a path for unifying quantum mechanics and gravity. El-
ementary particles are represented as defects in discrete elastic topological
spaces. Quantum numbers are explained as geometric and topological in-
variants of the discrete graph. Entangled particles are directly connected to
each other through a puncture in discrete space, separated by a distance of one
Planck length. Wave functions are explained as mechanical stress waves within
elastic discrete space. Wave-particle duality is explained as discrete topolog-
ical defects causing extended distributed stress within elastic space lattice.
The results of the double-slit experiment are interpreted as wave functions
maximizing the probability of rupture in high-stress areas of discrete space
with obvious analogies to solid state mechanics. Black holes and Big Bang are
explained as phase transitions in the discrete space graph structure. Connec-
tion to string theory is discussed. Experimental verification of the theory is
proposed.
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1. Introduction

A large portion of the work in theoretical physics currently focuses more on the
mathematical formulas rather than the underlying conceptual framework. It has
long been accepted that the conceptual foundation of quantum mechanics is not as
consistent and appealing as the elegant framework of general relativity. For instance,
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as was pointed out by Landau and Lifshitz, see [1], although quantum mechanics de-
scribes quantum phenomena, the concept of a “measurement,” which is fundamental
to quantum mechanics, is a classical idea, which is a foundational inconsistency. It
has also proved very difficult to unify gravity with quantum mechanics. The lack of
coherence and consistency in quantum mechanics is partially due to the fact that,
while general relativity was developed solely by Einstein based on a powerful physical
insight, quantum mechanics was developed piece-wise by multiple physicists based
more on mathematical formulae than on underlying physical principles and insights.

Although mathematics is a crucial tool for expressing and developing ideas in
theoretical physics, it is not the only approach. For example, the original scientific
articles written by Michael Faraday contained little to no math but, nevertheless,
introduced novel and useful physical concepts of magnetic fields and the behavior of
magnetic field lines that later were developed into part of a powerful mathematical
framework by James Maxwell. Einstein’s “happiest thought” was the physical equiv-
alence principle. Even Feynman diagrams were and are popular due to their simple
and intuitive geometric interpretation. While physics has progressed tremendously
since Faraday and Einstein, their physical insight-based approach, which expresses
ideas in geometric or topological terms, remains valid and provides a fruitful foun-
dation on which to develop the mathematical framework.

In this paper, I propose several concepts and insights that may lay out a founda-
tion of a unified theory of all fundamental physical forces, which unifies gravity with
quantum mechanics. While the ideas described here are not presented in a rigorous
mathematical framework, I hope they can provide a foundation for one.

2. Conceptual foundation of the theory: basic postulates and assumptions

Since the theory presented here is essentially geometric in nature and Euclidian
geometry is based on axioms, I have similarly formulated the basic assumptions of
the theory as a set of postulates.1

Postulate 1 (Discreteness): Space is discrete and composed of the underlying ele-
mentary units. The resulting discrete structure can be geometrically represented as
a graph, network, or lattice (see Figure 1). The graph does not exist in space; rather,
the graph itself is space.

Physical Justification: The existence of fundamental constants ’Planck dis-
tance’ and ’Planck time’, combined with the fact that most of the physical quantities
in a bound system on a quantum scale, such as energy, momentum, etc., come in
discrete units (quants) suggest that space and time may likewise be discrete. This
concept is supported by multiple researchers in the field of quantum gravity, such as

1Why Postulates? Hilbert’s 6th problem calls for creating an axiomatic system of theoretical
physics. If one believes that our universe can be described as a discrete graph with rule-based
operations defined on it, as proposed in this article, then perhaps the 6th Hilbert’s problem starts
to look as potentially solvable.
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Figure 1: Examples of graphs and lattices, some of which may be used to model space
structure in different Universes. (a): A well-connected graph, no regular structure,
distance can be defined, can be mapped to “wrinkled 2D” space. Unlikely to cor-
respond to any real Universe because of irregularity. (b): A well-connected lattice
with 3 dimensions, regular symmetry structure for discrete translations and rota-
tions, distance easily defined. Resembles our current Universe in many but likely
not all aspects. (c): Weakly connected graph, no regular structure, distance may be
defined. This graph is highly unlikely to represent any real Universe because it is way
too simple and small. (d): Well-connected graph, 2 dimensions, regular triangular
symmetry structure for discrete translations and rotations, distance easily defined.
Does not match our Universe because the number of dimensions is too small.

Lee Smolin and Roger Penrose, see [2, 3, 4]. I assume that all of the graph’s edges
are on the order of one Plank length in size.2

Postulate 2 (Emergence of space): Space, as we know it, is an emergent phe-
nomenon that resulted from the underlying elementary units connecting together in
a graph with certain geometric and topological structure and properties. The local

2While referring to elements of the space graph, I will use the words “arc” and “edge” inter-
changeably; I will also use the words “node” and “vertex” interchangeably. I will also use the words
“graph” and “lattice” interchangeably.”
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structure and properties of the space graph may vary between different universes or
even between different parts of the same universe. They may also change within
the same Universe over time. Space graph structure is the cause of concepts of lo-
cality, distance, dimensionality, smoothness, regularity, and symmetry; they are all
emergent properties of the graph.

Physical Justification: The Big Bang was a violent dynamic process, during
the course of which space appeared to be created, and time appeared to come into
existence. Therefore, any truly fundamental theory must explain the nature and
dynamic of space-time creation, particularly on the quantum scale (Planck length
scale). A fundamental theory also has to explain what space is and what time is.
As argued by Lee Smolin and Roger Penrose, it is not sufficient to merely assume
spacetime as a background, like most physics theories do, see [2, 4].

It appears likely that the spatial structure and properties inside a black hole are
different from the spatial structure and properties outside of it. Nothing can escape
from inside a black hole, and no object can move away from the center of a black
hole while inside the event horizon, but outside of a black hole a physical object can
move in any direction. This suggests different symmetry properties and dynamics of
space inside and outside of a black hole, representing a phase transition of the space’
microscopic structure on the Planck scale. Likely, the same principle applies to the
Big Bang, especially if one assumes, as has been proposed by multiple authors, that
the Big Bang was what emerged on the other side of a black hole, or that Big Bang
is a “black hole played backward”, see [5, 6, 7, 8, 9, 10, 11, 12]. For these reasons,
the properties and structure of space must be a changing, evolving phenomenon.
This approach is inspired by multiple quantum gravity theories given by Lee Smolin,
Roger Penrose, and others, see [2, 4].

The emergence of space is similar to how Lego blocks may be used to build a toy
house or an airplane. If the elementary units had been connected differently, we could
have ended up with a different number of dimensions in our universe, or perhaps with
no dimensions, no symmetry, no regularity, or no locality at all (see Figure 2).

General relativity says that the curvature of space is controlled by mass and is
changing over time and space. I propose to take it further and say that not only does
space curvature change, but the discrete structure, symmetry, and dimensionality of
space also change, and they do so on both a quantum (Planck length) and macro
scale. At the moment, I make no assumptions about the specific structure and group
symmetry of the space graph on a Planck scale in our universe but will discuss that
important issue in more detail below.3

3It is possible that Figure 2 (a) corresponds to the state of the universe just before the Big
Bang, representing a higher degree of symmetry and a compact fully connected and tightly packed
space, and perhaps snapping of one edge caused the Big Bang to unravel, similar to the proposal by
Cumrun Vafa and Robert Brandenberger for an ensemble of tightly wound strings some of which
have later annihilated and caused the Big Bang to unravel, see [13].
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Figure 2: More examples of graphs, some of which may be used to model different
Universes. (a): Everything is connected with everything. This type of graph may
represent our Universe just before Big Bang, because it is highly symmetrical, pos-
sibly causing unification of fundamental forces due to high symmetry. (b): Highly
irregular disconnected graph. That graph likely does not represent any physical
universe due to its extreme irregularity, small size, and the presence of completely
disconnected areas. (c): This is a 3D unfolding of a 4D cube. This graph probably
does not map to any physical Universe, but it illustrates a concept of how a sur-
face (3D) in high-dimensional space (4D) may be projected into a lower-dimensional
space (3D).

Postulate 3 (Elementary particles, space defects, and quantum numbers): All el-
ementary particles in our universe are topological defects in the underlying space
lattice. Each distinct type of topological defect corresponds to a specific type of ele-
mentary particle (i.e., a defect of a certain topological structure represents an elec-
tron; a different type of defect represents a graviton, etc.) (see Figure 3).

Corollary: I further assert that all of the quantum numbers currently utilized
in quantum physics are, in fact, geometric and topological characteristics of defects
in the space graph that correspond to the particle or system being considered. This
goes to the heart of the origin of quanta and discreteness in quantum mechanics,
electric charge and spin, flavor quantum numbers, and other fundamental constants
and quantum variables.

Clarification: Since it only makes sense to speak about “defects” if the under-
lying graph itself has certain regularity, I therefore have to assume that the space
graph is indeed regular in a certain sense at least over short distances. While I do not
claim to know the exact structure of that regularity, I will discuss several possibilities
below which will be a focus of further research.

Physical Justification: The discrete lattice approach has been used very pro-
ductively in solid state physics to describe material structure and various geometric
defects and perturbations in a crystalline lattice, such as edge and screw dislocations
in metals, point defects, holes, phonons, etc. It is appealing to describe various quan-
tum numbers associated with elementary particles simply as topological invariants
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(a) (b)

(c)

Figure 3: Topological defects representing elementary particles, and their interac-
tions. (a): Examples of two topological defects on a regular lattice. The defects
represent two different possible types of elementary particles. (b): 2D examples of
“edge dislocations” representing possible elementary particles. The drawing also il-
lustrates elastic stress within the graph introduced by defects (see Postulate 5 below
for details). Edge dislocations also frequently occur in solid state crystals in 3D in
our world. (c): 2D example of two “edge dislocations” of opposite signs representing
a particle and an antiparticle. The drawing also illustrates elastic/mechanical stress
in the graph caused by those defects (see Postulate 5). In this configuration the
stress would cause the dislocations to attract to each other and annihilate. Such
interactions indeed occur in solid state crystals in our world in 3D, especially in
metals.

and/or graph invariants of specific types of defects in the underlying lattice. It is
even more appealing that this proposal reduces the complexity and the number of
assumptions in the theory. In the existing theories, space and particles are postu-
lated and considered separately. In the proposed framework, particles are just an
emergent property of the space itself.

By the way of analogy, consider what happens when two opposite but aligned
edge dislocations meet in metal (see Figure 3 (c)). Dislocations can move around, as
indicated by the arrows in Figure 3 (c). When the top dislocation meets the fully
aligned bottom dislocation, they annihilate, elastic stress in the underlying lattice is
released, and phonons (vibrations of the lattice) are produced.4

I propose that this is exactly what happens when elementary particles annihilate
in our universe. I also propose that this exactly represents the difference between
particles and antiparticles. They are geometrically and topologically opposites of
each other (in relation to the undisturbed space graph state) and can therefore geo-
metrically and topologically annihilate each other within the space graph structure.
In fact, this also explains the CP symmetry.

This also raises an interesting possibility that perhaps strings are one-dimensional

4That process is known in metallurgy and solid state physics as annealing.
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dislocations in the underlying structure of the space graph, or more generalized ver-
sions of dislocations (possibly including branes, etc.). Perhaps, a screw-like dis-
location of the space graph represents one type of string, an edge-like dislocation
represents another type, and so on. If true, then perhaps the much sought-after
M-theory of strings is actually a generalized theory of various types of extended
topological defects within the space graph (for another interpretation of M-theory,
please see the Interpretation of Strings section below).

Quantum numbers discussion: If elementary particles are indeed topological
defects in a discrete graph structure of space, interpreting particles’ internal quantum
numbers (electric charge, absolute spin, etc.) as topological invariants of such defects
appears to be a natural consequence. As to exactly how to map a specific quantum
number to the geometric properties of the space graph defect, while I do not have
a complete answer, I can provide a few illustrations. Consider, for instance, a regular
space graph, where each node has exactly K arcs connected to it. In that scenario,
one of possible quantum numbers for a space graph defect may be the difference
between the actual number of the arcs connected to the “defective” node and K.
Alternatively, a quantum number may be the difference between the actual number
of arcs within an elementary space graph cell representing the graph defect and the
number of arcs within a “normal” space graph cell that contains no defects. Yet
another quantum number may indicate the differences between the actual and the
baseline number of nodes within an elementary cell. That example may refer to
scalar quantum number such as electric charge, for example. The illustration in
Figure 7 indicates that static electric field and electric charge may correspond to
a topological defect of having either an interstitial node or a vacancy, representing
the electric charges of opposite signs. See more detailed description of that below.
Yet more complex quantum numbers would emerge when one considers the geometric
aspects of the relationship between the defect and the local geometry of the graph.
I would then perhaps expect vector-like quantities to emerge, such as spin, etc.

Postulate 4 (Non-locality or quasi-locality). Any elementary unit A may potentially
be directly connected by an arc to any other elementary unit B (subject to certain
conservation rules), no matter how many steps along the arcs of the regular space
graph lattice separate the units A and B. See Figure 4.

Physical Justification: These connections beautifully explain quantum entan-
glement, as well as other quantum phenomena that appear to violate the concept of
locality. I assert that the nature of quantum entanglement is exactly represented in
Figure 4 (c). The paradox of entangled particles is explained here simply by assuming
that entangled particles are directly connected with each other and that the distance
between them is one Planck length no matter how far they appear from each other.
Therefore, the “spooky action at a distance” that bothered Einstein so much can be
explained as a local action! See detailed discussion below regarding that important
insight.
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(a)

(b) (c)

Figure 4: Direct spatial links of one Planck length between seemingly distant nodes
on a regular lattice/graph. These images illustrate the nature of quantum entangle-
ment. (a), (b): Direct links between seemingly distant nodes are depicted. This is
a Riemann space puncture on discrete lattice/graph. (c): This image illustrates and
explains the true nature of entangled particles. Two topological defects representing
elementary particles are directly connected by a direct spatial link of one Planck
length. This explains “spooky action at a distance”, Bell theorem, and other non-
local paradoxes of quantum mechanics. Seemingly non-local action becomes local
due to a presence of direct spatial link, equivalent of Riemann surface puncture on
a lattice.

Postulate 5 (Lattice distortion, elastic stress, and the wave function): Any topolog-
ical defect (elementary particle) in the space lattice results in long-range distortions
and mechanical stress in the lattice. This distributed stress is mathematically repre-
sented by the wave function as described by the Schrödinger equation.

Physical Justification: This is similar to the way dislocations, point defects,
and other defects in crystals result in long-range distortions and a mechanical (elas-
tic) stress field that both diminish gradually with distance. The physical nature of
the wave function is the degree of mechanical stress in the space lattice/graph. See
Figure 5 and Figure 6 for illustrations of mechanical stress fields of linear defects,
and Figure 7 for illustrations of stress fields of point defects. Since the graph itself
is space (as opposed to “existing in space”), when I speak about “stress,” I mean
stress in the force and energy sense. Formally, stress is a number that is assigned
to each arc (and/or possibly to each node) of the graph. I assume that stress values
are determined by the lattice configuration, just like they are in solid state physics.
Our working hypothesis is that the quantitative nature of that stress is elastic, caus-
ing harmonic oscillators to appear in many equations of modern theoretical physics
on the quantum level. If strings are indeed contours on the graph, this would also
explain the elastic nature of strings.

Stress fields, illustrated in Figure 7, resemble corresponding electric fields of pos-
itive and negative electric charges. It is plausible that they indeed represent the
nature and origin of positive and negative electric charges (an extra node causing
compression, a missing node causing tension). If so, that would also explain why
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Figure 5: Edge dislocation (top right) and screw dislocation (bottom right) that
occur in crystals, especially metals. Image on the left illustrates elastic stress field
of an edge dislocation, explaining how topological defects in elastic structures may
cause elastic stress force field to come into existence. I propose that similar mecha-
nism is responsible for the existence of elementary particles and fundamental forces
in our Universe: particles are topological defects in the elastic space lattice. These
defects cause elastic stress fields of various configurations. Those stress fields man-
ifest themselves as four fundamental forces in our world. Images on the right illus-
trate two different types of linear dislocations (defects) in solid crystals. Perhaps
those linear defects explain the nature of strings in string theories. Image credit:
http://academic.uprm.edu/pcaceres/Courses/MechMet/MET-4A.pdf

electric charges of the opposite sign would attract each other and why charges of the
same sign would repel.

This postulate provides a compelling explanation of the nature of the wave func-
tion, and, in particular, wave function collapse and wave-particle duality. Wave-
particle duality is resolved by associating the particle part of the duality with the
corresponding discrete topological defect, and the wave part with the resulting spa-
tially distributed wave-like elastic stress. It also follows Einstein’s tradition of lit-
erally interpreting any fundamental mathematical quantity in physics equations, in-
cluding the wave function, as physically existing. This approach is also similar to
pilot-wave theory of de Broglie and Bohm. The geometric interpretation proposed
here is self-consistent: if an elementary particle is a topological defect in the regular
elastic structure of space, such a defect must cause elastic stress in the lattice! In this
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Figure 6: Mechanical stress field components (xx and yy) of an edge dislocation
in a crystal. The bottom image has an uncanny resemblance to certain electron
orbitals of a hydrogen atom. That resemblance may be suggesting that the
proposed theory is on the right track: I propose that wave function is a degree
of elastic stress caused by geometric defects in discrete space lattice. Since the
stress field of a simple linear dislocation depicted here resembles electron’s wave
function near a simple atom, that gives us a confirmation that the proposed
framework can indeed produce solutions that resemble our Universe. Image credit:
https://www.slideshare.net/vamsikrishna393950/stress-fields-around-

dislocation.

representation, the particle and the wave characteristics of an elementary particle
are intrinsically and unavoidably coupled with each other, as confirmed by numerous
experiments.
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Figure 7: Elastic stress fields of point defects in crystals. They resemble the
fields of positive and negative electric charges, and they interact with each other
similarly: stress fields would cause an interstitial atom to be attracted to a va-
cancy, just like a positive charge would attract to an electric charge. An intersti-
tial atom and a vacancy may also annihilate. These images therefore may illus-
trate a true nature of electrically charged particles and their oppositely charged
antiparticles within the space lattice. Left: Stress field of an interstitial atom in
a crystal. Right: Stress field of a vacancy in a crystal. Image credit/copyright:
https://www.sciencedirect.com/topics/chemistry/crystal-displacement

Furthermore, sometimes high mechanical stress (or a high gradient of stress) may
force a particular arc (edge) to snap and form a connection with a different node,
resulting in a change in the local configuration of the graph, local energy decrease
and stress relaxation, and an increase in entropy. This would explain the paradox of
the dual slit experiment. See below for a detailed discussion of that insight.

2.1. Additional postulates (dynamic)

Postulate 6 (Nature of time). An elementary unit of local time (Planck time) cor-
responds to one elementary unit of change in the underlying graph.

Clarification: One of the simplest units of change is a switch of an end of
a graph’s arc from node A to node B (see Figure 8 (a)). Time is always a local
phenomenon, just as in special and general relativity.

Other possible elementary switches may include the breaking of an arc (Fig-
ure 8 (b)) or the appearance of a new arc (Figure 8 (c)), subject to appropriate
conservation laws (see more on conservation laws below). In fact, an elementary
switch operation (Figure 8 (a)) can be represented as a superposition of the elemen-
tary operations (Figure 8 (b)) and (Figure 8 (c)), as illustrated in Figure 8. This is
equivalent to the annihilation operator (a−) (result depicted in Figure 8 (b)) and
the creation operator (a+) (Figure 8 (c)), which are commonly utilized in quantum
mechanics. Another possible elementary unit of change is an appearance of a new
node or the disappearance of an existing one, or, perhaps more likely, a pairwise
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(a)

Figure 8: Elementary switch operations on space graph, representing local passage
of time. Local time is defined as the number of elementary switch operations (“clock
ticks”) on the space lattice. (a): One-step elementary switch operation within the
space lattice (also one local clock tick). (b), (c): Results of an ‘arc annihilation’
operation (b) and ‘arc creation’ operation (c), that in combination result in one
elementary switch operation (a) (one local clock tick).

combination of both, if an appropriate nodes number conservation law applies (see
more on that below).5

Physical Justification: This is a natural interpretation of time given the first
five postulates. Time is generally thought of as a measure of change, and, if space
is discrete at Planck’s scale, then the smallest possible unit of time must correspond
to the smallest possible unit of change in that graph (lattice).

Since on macro scale in the classical limit the time advances smoothly and uni-
formly, and since according to Postulate 6 local time is a count of local elementary
switches, we have to assume that the underlying space graph is constantly undergoing
a sequence of elementary switches in every location throughout its structure. Since
we also assert that elementary particles are geometric defects in the space graph,
it follows that therefore virtual particles will be constantly created and annihilated

5The pairwise option (arc plus arc hole, or extra node plus node hole) may also describe the
pairs of virtual particles and antiparticles that are known to spontaneously flicker in and out of
existence in a vacuum.
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by those elementary switch operations, producing vacuum fluctuations of vacuum
energy, and creating quantum foam that was first proposed by John Wheeler et al.,
see [14]. Therefore, the passage of time, quantum foam, and creation and annihila-
tion of virtual particles are all caused by and/or refer to the same underlying physical
phenomena: ongoing elementary switch operations occurring throughout the space
graph. One can think of them as discrete oscillators or clocks operating in every
point of the discrete space graph.6

Postulate 7 (Quantum probabilities). The probabilities inherent in quantum me-
chanics result from the elastic stress and the underlying discrete structural symmetry
of the space lattice.

Physical Justification: The arcs (units) of the space graph with a high amount
of stress concentrated in them are more likely to snap or change structure, producing
a corresponding increase of entropy due to achieving a more uniform state. By the
way of analogy, this is similar to bending an irregularly shaped stick by holding it
at both ends and applying force. The stick may break in any location, but it is most
likely to break in the area with the highest stress. This explains why the probability
of finding a particle in a specific location is proportional to the square of wave func-
tion amplitude. This is also somewhat similar to how a metal structure with large
number of defects (for instance, created during the process of rapid transition from
liquid to solid phase) gradually relaxes the internal mechanical stress by recombin-
ing and annihilating the defects, particularly when heated, a process that is called
“annealing” in metallurgy and solid state physics.

Also, when a unit of change travels along a certain path and encounters a split
in the graph (say, left or right), the probability of the unit taking the next step
is a function of the symmetry of the split, as well as of local elastic stress in the
lattice/graph. If the graph is perfectly symmetrical and the stress of each possible
path is equal, a particle will be equally likely to propagate along any of the arcs. If
the graph is not symmetrical and the energy/stress is different along each arc, the
particle is less likely to propagate along the arc with highest stress/energy, possibly
following the Boltzmann equation or similar (see Figure 9).

One of the most appealing aspect of this approach is that it provides an explana-
tion of the double-slit experiment (see discussion of that important subject below).

There is another consideration with regards to the elastic stress and expanding
Universe. If the Big Bang was indeed what emerged on the other side of a black
hole and if the space graph is elastic, it is easy to imagine that the space graph was
squished through the bottleneck of a black hole singularity under tremendous stress,
similar to a spring compressed to an absolute maximum. After traveling through
the black hole bottleneck and emerging on the other end as the Big Bang, the highly

6It is also likely that the elementary switch operations described here are topological generaliza-
tions of the cellular automata operations, as described by Stephen Wolfram and others in various
publications, see e.g. [15].
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Figure 9: Illustration of solving currents flow equations on infinite conducting lattice
based on symmetry considerations. Similar approach may be applicable for calcu-
lating elementary particles paths’ and measurement probabilities on the space graph
(lattice) based on symmetry structure and elastic stress within each arc. In this anal-
ogy electric resistance within the conducting network is analogous to elastic stress
in the space graph; symmetry considerations would apply equally to the conducting
network and to the space lattice. (a): Problem setting: calculate the entire lattice’
electric resistance for the depicted configuration. (b): Lattice symmetry results in
inflow current I splitting equally into I/4 currents in each of the four adjacent arcs.
(c): Outflow currents are also symmetrical, each of them equal to I/4. (d): Due
to Kirchhoff’s laws, configuration in (a) is equal to a superposition of (b) and (c).
Therefore the current from point A to point B must be equal to I/4 + I/4 = I/2.
Hence, total resistance is R/2.

compressed space graph would very rapidly unwind and expand (likely changing its
symmetry in the process), resulting in something very similar to inflation, see [18].

Postulate 8 (Nature of mass): The mass of an elementary particle is a measure of
the energy added to the lattice (due to the increased elastic stress of the lattice) that
results from introducing the corresponding topological defect.

Physical Justification: Given Einstein’s equation,

E = mc2, (1)

and the assertion that elementary particles are topological defects in an elastic space
graph, this appears to be a natural definition of mass.

Corollary: I further propose that the reason for the existence of inertial mass is
the elastic resistance of the space lattice against the movement of mass (represented
as topological defects in the lattice). This resistance is otherwise known as the Higgs
field.
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Physical Justification: Let us consider the implications for inertial mass. In
the case of a linear non-rotational movement in an arbitrary direction, once you
consider the sequence and the set of all elementary graph operations that must
occur in order for a body to move in that direction, it becomes clear that in order
to execute that movement the space graph has to bend elastically. The same is true
for a rotational movement at an arbitrary angle. Since the graph is discrete, for an
approximately round flat disc of radius R the minimal angle it can rotate at is:

Φ = Lp/R, (2)

where Lp is the Planck length and Lp << R. However, if one tries rotating the entire
disk at that angle, points that are closer to the disc’s center (at a smaller distance
r from the center) cannot rotate at that angle, since the Planck length is fixed and
finite; the smallest angle they can rotate at would be:

Θ = Lp/r. (3)

Since Φ 6= Θ, either the space graph, the disk, or both have to bend elastically in
order to execute such rotation, with the elastic stress and resistance producing the
inertial mass effect. The same is true for an arbitrary angle rotation, following the
same logic.

Therefore, the concept of mass arises naturally from the elastic properties, sym-
metry, and structure of the space lattice (graph). This interpretation of inertial
mass is similar if not identical to the definition of the Higgs field and Higgs boson.
Within the framework of the Standard Model, elementary (not composite) particles
that have mass (except neutrinos) acquire that mass in the process of interacting
with a Higgs boson, a process that some physicists have likened to a person trying
to move through a crowded room full of people, see [19].

In the framework proposed in this article, essentially the Higgs field is the elastic
lattice of space, and the Higgs boson is the elastic distortion of that lattice. Particles
acquire mass due to the elastic distortion of the space lattice: the lattice has to bend
for a topological defect to come into existence, and the lattice has to bend again for
a particle (topological defect) to move around. This is the origin of mass.

Interestingly, since the space graph is elastic and discrete, there has to be a min-
imum amount of force that results in movement, because, for anything to move, it
has to overcome the adjacent elastic energy barrier. A weaker force than that will
not have enough strength to cause an elementary space graph switch, and, therefore,
the particle would not move.

For gravitational mass the reasoning is also straightforward: topological defect
in elastic space lattice forces the lattice to curve, resulting in gravitational force.

A traditional interpretation of general relativity is that “mass tells space how to
curve, and space tells mass how to move”, see [20]. In the proposed framework, our
interpretation is: mass is nothing but discrete curved (distorted) space! A curved

151



(distorted) space lattice IS mass! This is a deep and simple concept, which satisfies
the rule of Occam’s razor – entities should not be multiplied unnecessarily.

Furthermore, in our framework, all known physical forces (e.g., weak, strong,
electromagnetic, gravitational) have exactly the same source: the elasticity of the
underlying space graph. This is how I propose to achieve unification.7

Zero mass particles consideration: What about the particles that have zero
rest mass such as photons and gluons? Our working hypothesis is that they repre-
sent defects that cannot topologically be static, since this would result in a graph
configuration that is topologically prohibited. It is perhaps similar to a falling stack
of dominoes with each falling domino knocking over the next one, creating an ever-
spreading dynamic wave.

2.2. Additional postulate needed: conservation laws

It appears that appropriate discrete conservation postulates have to be defined
on the graph.8 Since I do not know the exact functional form of these conservation
postulates, I will refrain from formulating them as a definite list. However, I would
like to propose several possible candidates (for an isolated system):9

• The total number of arcs of the graph may be conserved.

• The total number of nodes of the graph may be conserved.

• A discrete generalized version of the energy stress momentum tensor may be
conserved.

• The total information content of an isolated system is conserved.

3. Discussion

3.1. Guiding considerations of the proposed theory

The following guiding principles and considerations have been a driving force
for me in the development of this theory. In my view, any variable that occurs in
valid equations of theoretical physics must have a very specific and tangible physical
meaning and should be taken literally whenever possible. For example, Planck has

7The observable difference between the four fundamental forces results from specific local ge-
ometries of the space graph and specific local defects (particles) involved. But, as the symmetry of
the space graph increases (perhaps inside a black hole or at the beginning of the Big Bang), at the
highest symmetry state, all four forces will merge into one.

8A plausible alternative to conservation postulates would be to explicitly list all allowable oper-
ations on the graph in the style of generalized cellular automata. If an appropriate set of allowed
operations is chosen, the conservation laws would be a result of the collective properties of this set
of allowable operations. This is a logical duality.

9In a continuous space, Noether’s theorem, see [21] relates symmetries to conservation laws.
There already exists a number of published papers on expanding Noether’s theorem to discrete
lattices, including but not limited to an article by Wendlandt and Marsden [22]. Those approaches
may help derive exact conservation laws and space lattice symmetries for discrete models of the
Universe such as our proposed framework.
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originally considered his quants a mere calculational trick rather than physically
existing objects. Einstein instead took them literally as physical objects and, in
doing so, laid down the foundation of quantum mechanics, as well as explained the
photoelectric effect.

Conventional interpretation of Schrödinger’s equation and the wave function is
that the square of the amplitude of the wave function is a probability density. In my
view, probability is not a tangible physical quantity; even less so is the square root of
a probability density. Therefore, conventional interpretation of quantum mechanics
misrepresents the true nature of the wave function. Assuming that Schrödinger’s
equation is correct, at least to a high degree of approximation in continuous space
limit, I therefore must treat the wave function as a representation of a physical
object. In the proposed theory described in this article, the wave function has a very
specific physical interpretation. It is a measure of mechanical/elastic stress caused
by distortion in the underlying space graph. Unlike the square root of probability,
stress and distortion have straightforward physical meanings.

Furthermore, Schrödinger’s equation and the wave function incorporate com-
plex numbers in the formulas, without necessarily explaining what complex num-
bers physically mean. But what is the physical meaning of a complex number? In
mathematics, complex numbers are interpreted through introducing an additional
dimension (i), together with appropriate commutation, addition, and multiplication
rules. Therefore, if Schrödinger’s equation is to be taken seriously as it should, the
presence of complex numbers in these equations indicates that our Universe has an
additional dimension described by the imaginary part of the wave function. This
dimension must physically exist with slightly different commutation, addition, and
multiplication rules (as compared to real numbers) that follow the algebra of complex
numbers.

Another hint that this interpretation is on the right track is the Kaluza-Klein
theory, see [23]. Although the theory was eventually discarded, the fact that Kaluza
was able to derive both Maxwell’s equations and the equations of general relativity
from a single unified framework by assuming the existence of a fourth dimension
that is bound in a tight circle is deeply profound, as well as puzzling and mysterious.
I do not believe that this was a mere coincidence. Even if Kaluza’s formulas did not
correctly account for all of observable physics, he must have been at least partially
on the right track, and it may be quite worthwhile to try to reproduce the Kaluza-
Klein theory on the discrete space graph framework proposed in this article. It
appears plausible that our Universe may indeed have 4 discrete spatial dimensions,
with the fourth dimension corresponding to the imaginary part of the wave function
and bound in a circle as proposed by Kaluza-Klein.

Another argument along the same lines is the explanation of the quantum tun-
neling effect. If one assumes extra spatial dimensions (as described in the paragraph
above) or non-local links as described in Postulate 4, the tunneling effect explanation
becomes clear. Instead of going through the energy barrier, a tunneling particle goes
around the barrier (see details below).
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The presence of Planck distance and Planck time in the equations of theoreti-
cal physics suggests that the Universe may be discrete at its most basic level. If
so, a discrete graph appears to be a natural framework for modeling the Universe.
General relativity must be correct on the macroscopic level because of its profound
elegance and consistent experimental confirmation. If so, a discrete version of general
relativity would be a space graph with dimensions that fit our observations, and an
elementary unit of space curvature would be an elementary local discrete topological
distortion of that space graph.

3.2. Qualitative explanation of important physical phenomena

In this section, I propose and discuss a qualitative explanation of important
physical phenomena, concepts, and equations utilizing the framework of the space
graph described in this article.

3.2.1. Wave function nature and wave-particle dualism

The dual wave-particle nature of elementary particles is explained as follows.
The physical meaning of a wave function corresponds to a degree of elastic stress in
the underlying space lattice. The elastic stress field created in the space lattice by
a topological defect that IS an elementary particle (see Postulates 4 and 5 above) is
responsible for the wave-like properties of a particle, while the topological defect at
the core of the particle is responsible for its particle-like properties. Stress and distor-
tion waves, caused by topological defects (elementary particles), propagate through
the lattice in a distributed manner analogous to mechanical stress waves, which can
produce wave interference effects, while the topological defect (the center and ‘heart’
of an elementary particle) has a specific location within the graph/lattice and be-
haves like a particle. Because a topological defect causes an associated distributed
elastic stress field (wave) to exist, wave-like and particle-like properties of elementary
particles are always coupled with each other.

3.2.2. Quantum entanglement

Entangled particles are simply connected through a direct graph link as illustrated
in the Figure 4 (c). This completely resolves the apparent non-locality and Bell
Theorem contradictions.

The so-called “spooky action at a distance” that troubled Einstein so much is
simply explained by the fact that entangled particles are directly connected by a
graph’s arc (a discrete quantum version of the Riemann fold puncture). Even though
the entangled particles appear to be far away from each other, the presence of a direct
spatial link between them on the order of one Planck length (see path 1 in Figure
10) enables their respective states to affect each other instantaneously or almost
instantaneously. Therefore, quantum entanglement is not an ‘action at a distance’;
it is, in fact, a local action due to the presence of an arc (one Planck length in
size) that directly connects the entangled particles. This also explains the non-local
paradoxes of Bell’s theorem.
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Figure 10: Propagation of signal between entangled particles can follow “fast &
direct” 1-Planck-length path. It should take 1 Planck time interval for the signal to
propagate between entangled particles following the short path. Interference between
the waves traveling through the short path and long path is also possible, although
unlikely for most configurations due to the vast differences in distance ratios between
a short path and long path. The changes might also propagate instantaneously
between A and B due to topological conservation laws on the lattice.

3.2.3. Wave function collapse

The collapse of the wave function is the process of topological transformation
or breaking of the topological defect/knot representing an elementary particle. The
local stress produced by the topological defect disappears because the knot/defect
snaps, releasing the elastic stress through rearrangement of the connections (arcs/
edges) between the graph’s nodes. Therefore, the wave-like long-range stress in
the space lattice also relaxes to zero either through the propagation of stress waves
(which are presumably spreading at the speed of light in our universe) or through
discrete Riemann puncture of the graph. During this process, the information rep-
resented by the knot leaks into the environment, following conservation laws. In this
context, information is an irreducible quantitative description of the space graph
geometry/topology and dynamics, essentially a digital encoding of the graph config-
uration in the sense of information theory and Shannon’s formula, see [24].

A snap in the space graph would most likely occur in the location of the highest
stress (with the highest probability), but it might also occur in less stressed areas of
the graph (albeit with a lower probability). The probability of a snap in a particular
location is proportional to the square of the amplitude of the elastic stress in that lo-
cation, which is why the probability density of finding a particle in a specific location
classically is proportional to the square of the amplitude of the wave function.

3.2.4. Degrees of freedom in a multi-particle system

One of the strange aspects of quantum mechanics is why the number of degrees
of freedom in a multi-particle quantum system grows exponentially faster than the
number of particles, rather than always being proportional to the number of particles
(as it would in a classical system). In the proposed framework, the answer for this
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(a) (b)

Figure 11: Degrees of freedom in classical and quantum systems. (a): The number
of degrees of freedom in a classical system is proportional to the number of particles.
(b): The number of degrees of freedom in a quantum system is a tensor product of
the degrees of freedom of individual particles due to the possibility of entanglement
between particles. Entanglement is explained as direct spatial links of one Planck
length between the particles on the space graph.

is straightforward. The extra degrees of freedom describe the presence (or absence)
of direct spatial links between the particles (see Postulate 2 and 3 and Figure 11).

Furthermore, for a system of N quantum particles, the reason why the number
of degrees of freedom grows geometrically rather than as N2 is that the degrees of
freedom describe the configuration space (a tensor product), where the degrees of
freedom multiply rather than add. The reason for why the configuration space is
a tensor product is inherently in the possibility of direct spatial links between the
particles, meaning entanglement features. This point is well illustrated in the article
by T-D Bradley, which says: “The tensor product captures all ways that basic things
can interact with each other.” See [25].

3.2.5. Pathway to the unification of four fundamental forces

The approach presented here asserts that all four known fundamental physical
forces are interpreted as four different types of elastic stress patterns caused by
different types of topological defects within a discrete space graph, as described
above. The exact details of geometry and topology of those four distortion types
have yet to be discovered, as well as the local symmetry structure of the proposed
space graph, and the structure of specific topological defects representing elementary
particles in our Universe. This will be a challenging area of further research for us.

3.2.6. The Big Bang

In the framework of the proposed space graph theory, the Big Bang is interpreted
as a phase transition of the space graph.

Current theories suggest that the four fundamental forces exist as a result of
a series of stepwise breaks in symmetry. Using a similar approach, I assume that
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Figure 12: Step-wise symmetry breaking on two small graphs. (b) may indeed re-
semble the discrete symmetry breaking process that our Universe went through right
after the Big Bang, although it appears more likely that our Universe microscopic
symmetry incorporates tetrahedral rather than cubic symmetry (see discussion be-
low).

initially the proposed space graph at the moment of the Big Bang stage was highly
symmetric, resulting in the unification of all four fundamental forces. Presumably,
the graph then went through three sequential phase transitions with each transition
resulting in less symmetry and producing a new split between the previously unified
fundamental forces. After three subsequent breaks in symmetry, the Universe ended
up with the four fundamental forces as we know them today.

Figure 12 illustrates two possible scenarios of symmetry breaking on small graphs
with each transition resulting in a lower symmetry state. The end state in Fig-
ure 12 (b) may be mapped to the three-dimensional structure of a cube which re-
sembles the three-dimensional space of our universe. I do not mean to assert that
the actual symmetry groups of our universe are exactly represented by these images;
I merely wanted to illustrate the concept of symmetry breaking of the space graph.
In fact, our best guess of the true symmetry of our Universe is that it contains
a triangular symmetry as a subsystem, as proposed below in this paper.

3.2.7. Black holes

Similar to the Big Bang (see above), within the proposed framework of the space
graph, black holes represent a specific topological phase state of the space graph that
is different and distinct from “normal” space.
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It has been suggested by multiple researchers that the Big Bang is what emerged
on the other side of a black hole. If we also assume that complete time reversal
symmetry plays out in that scenario, since the Big Bang underwent three subsequent
breaks in symmetry, I propose that inside a black hole three subsequent symmetry
unifications take place step-wise as one gets closer to the center.

3.2.8. Interactions between elementary particles

Topological defects of the space graph (elementary particles) may recombine,
sometimes resulting in new particles or in annihilation (see Postulate 4 and Figure 3),
subject to conservation laws (Postulate 7), while preserving certain geometric and
topological invariants of the space graph (e.g., the sum of the quantum numbers of
particles for each distinct type of quantum number).

In addition to the local transformations that occur when particles meet and
transform through a rearrangement of arcs and/or nodes in the space graph (trans-
mutation), particles may also affect each other at a distance (but not instantaneously,
unless directly connected by an arc, as all interactions should move no faster than
the speed of light), resulting in scattering or attraction. The mechanics of this in-
teraction is through the elastic stress field of the space graph. This is very similar
to how defects in crystalline matter (for example, dislocations in metals) attract or
repel each other through the mechanical stress field that they induce within the space
lattice.

3.2.9. Quantum tunneling

In the quantum tunneling effect, a particle is assumed to go through the energy
barrier. In our framework, I propose that the particle actually goes around the bar-
rier. The process of ‘going around’ may either happen step-wise alongside (around)
the energy barrier or in one long jump of one Planck length around the barrier (see
Figure 13 for a graphical illustration).

3.2.10. Interpretation of strings theories

The Big Bang was a highly dynamic process, producing our Universe as a conse-
quence. Furthermore, it had been known for a while that our Universe is expanding,
and it has been recently proven that the expansion is accelerating, see [26, 27]. These
findings suggest that there exists a physical process responsible for the creation of
space. Therefore, any truly fundamental physical theory must explain how space is
created and cannot merely assume that space is just a background. For this reason,
string theories in any form are unlikely to be the final answer because they take
space for granted as a background. This point has been previously emphasized by
many quantum gravity researchers, including Lee Smolin and others, see [28].

There exist two distinct possibilities as to how to interpret strings within the
framework of the proposed space graph. At the moment, I am not taking a definite
position on which one of these two possibilities is actualized in our Universe; this
will be an area of further research. The possibilities are:
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Figure 13: Explanation of quantum tunneling effect: particle goes around the energy
barrier into the fourth dimension.

Option 1: Strings can be interpreted as discrete imaginary contours (either open
or closed) or branes on the underlying discrete space graph. They do not correspond
to any physically existing objects, aside from the fact that those imaginary contours
can be arbitrarily chosen within the space graph and follow the edges of the space
graph. As such, strings are a made-up construct similar to the discrete elements
approach utilized in civil engineering models of stress analysis. (Figure 14) offers
a visual illustration.

Even if strings are imaginary objects, they may still offer calculational benefits.
First, they encode the topology and geometry of the space graph as they have to
follow the graph’s surface. Second, because they are extended objects, they may help
avoid singularities in our calculations, just like in the calculus of complex numbers,
where one can calculate an integral over a singularity by following a closed contour
path integral around the singularity. Third, as strings are usually thought of as
elastic objects, they might also be utilized to represent the elastic properties of the
underlying space graph for computational purposes.

There is yet another interesting take on the M-theory of strings along these same
lines. One can consider all contours on the space graph to be strings, which have
elastic properties as described above (and as described by equations from popular
string theories). Any connected contour or line one draws on the space graph along
the edges can be considered a string. Therefore, the entire space graph can be viewed
as being interwoven from a set of strings. Perhaps this is the ultimate description
and explanation of the M-theory of strings.
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(a) (b)

Figure 14: Plausible interpretation of strings: imaginary contours on the discrete
space lattice. One open string and one closed string are shown here on an irregular
space lattice A and a regular space lattice B.

Option 2: Alternatively, another possibility is that strings could also be in-
terpreted as physically existing extended topological defects within the underlying
discrete space graph, similar to linear dislocations in crystals (see Figure 5). In this
case, the energy of a dislocation would be (at least to a first order of approximation)
proportional to its length, which is similar to some of the energy equations derived
from string theory.

3.2.11. Quarks

For a one-dimensional dislocation in solid state physics, its energy is generally
proportional to its length. It appears plausible to suggest that quarks are topological
defects that must be connected for geometrical and topological reasons by a one-
dimensional space graph dislocation. This would explain why it is so hard to separate
quarks and why the energy of such a system would grow linearly with distance.

3.2.12. Magnetic monopoles

Perhaps the reason that no one has ever observed magnetic monopoles is that the
corresponding topological defect structure would require adding an infinite amount
of mechanical stress energy to the space lattice if one tries to calculate an integral
over the entire lattice.

3.2.13. Screw dislocations

The geometric structure of a screw dislocation has a certain resemblance to an
electromagnetic wave (see Figure 15). Further research will explore whether that
resemblance is merely superficial or whether there is indeed a deeper physical con-
nection, perhaps an identity, between screw dislocations in the space graph and
electromagnetic waves.
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Figure 15: Screw dislocation in a regular 3D lattice has an uncanny resemblance to
an electromagnetic wave. Image credit:
http://www.crpp-bordeaux.cnrs.fr/spip.php?article1324&lang=en

3.2.14. Singularities

Since I am proposing a discrete spatial structure with a certain minimum unit
of length (Plank length), I expect that no singularities would be predicted by our
theory, not even in the center of a black hole. This is analogous to how singularities
disappear in string theory as a result of a non-zero string length. Singularities seem
to arise when one allows the size of a physical object to become zero or makes other
unrealistic “absolute” assumptions, such as absolutely hard objects, etc. Einstein
postulated that nothing moves faster than light in a vacuum. Similarly, I assert
that nothing can get smaller than the Planck length, which I believe will eliminate
singularities.

3.2.15. Calculation of a Black Hole’s entropy

Since I assert that the Planck length is the minimum size allowed in the Universe
(being the size of an elementary arc of the space graph) and that the space lattice has
a regular structure, the number of elementary objects one can fit on the surface of the
event horizon of a black hole is proportional to the surface area of the event horizon
divided by the square of Planck length. Objects inside a black hole cannot contribute
to its entropy because they are not in thermodynamic relationship with the space
outside the event horizon and cannot interact with it. Therefore, only the objects
on the surface of the event horizon can contribute to its entropy (see Figure 16), and
therefore black hole entropy must be proportional to its surface area. This reasoning
is practically identical to the one published by Carlo Rovelli in 1996, see [29].10

The entropy of a black hole can also be calculated using other approaches, as
demonstrated by Stephen Hawking, Jacob Beckenstein, and others, see [30]. How-
ever, within the framework proposed in this paper, the number of elementary space
graph nodes on the event horizon of a black hole should depend on the local symme-

10Special thanks to Ian Smith for suggesting the entropy of a black hole as a calculation target.
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Figure 16: Qualitative calculation of a black hole entropy. (a): That transposition
operation is physically prohibited since nothing can escape a black hole, and therefore
it should not count towards black hole entropy. (b): Objects inside black hole
are not in thermodynamic equilibrium with the objects outside of black hole, and
therefore this transposition should not count towards black hole entropy. (c): Only
transpositions between the objects located right on the event horizon should count
towards black hole entropy. Since Planck length and Plank area are finite, and the
smallest physically existing object should have a cross-section on the order of one
square Planck length, therefore total black hole entropy must be proportional to its
surface and be a function of how many elementary Planck areas can fit on the surface
of the event horizon.

try group and the geometry of the graph, because different local symmetries would
result in different packing densities. Hawking has shown that the proportionality co-
efficient in the black hole entropy formula is 1/4, see [31]. Further work will focus on
calculating the precise local symmetry of the space graph from that proportionality
coefficient proposed by Hawking, Beckenstein, and others, which I hope will help to
determine the true symmetry structure of the space graph on the event horizon of
a black hole and may also provide ideas as to how to extrapolate the structure and
symmetry of the space graph away from the surface of the event horizon and into
our “normal” space outside of a black hole.

3.2.16. Interpretation of the double-slit experiment

Feynman once wrote that all the mystery and strangeness of quantum mechanics
boils down to the double-slit experiment, see [32]. Within the space graph framework,
the double-slit experiment is explained as follows.

A particle’s center (topological defect of the space graph) goes through either
one slit or another. However, the expanded space graph elastic stress field caused by
the defect is distributed and wave-like in nature. This stress field, being essentially
a wave, goes through both slits and creates the interference pattern. However, when
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it is time for the particle to hit the screen, that collision impact forces the wave-
particle configuration to “decide” what specific arc in the space graph should break in
order to release the elastic stress in the space lattice. Analogous to static mechanics,
where a material is most likely to break in the area of greatest stress, the arc of
the space graph that is most likely to break and reconfigure will be the one that
is under the most stress (see Postulate 5 above). The stress is the largest in the
areas, where the space graph elastic stress field wave interfered with itself in a way
that increased the stress (areas where the constructive interference of the wave is the
largest). Therefore, the particle dots will cover the screen most densely in the areas
that exactly match the experimentally observed interference pattern.

Once an arc is broken in a specific location, the particle will materialize in that
location, but, since quantum numbers and topological and geometric invariants of
the graph must be conserved, as suggested above in section “Conservation Postulate
Needed,” this would cause the topological defect at the heart of the elementary
particle to “untie” and cease to exist in all other possible locations. My guess is that
the specific mechanism for doing so would most likely be a discrete Riemann fold
puncture forming a direct connection between the area, where the arc broke and the
‘previous’ heart of the original topological defect (particle). Another possibility is
that this ‘defect untie’ process would spread through regular space at the speed of
light.

If, in the double-slit experiment, one could measure which specific slit the particle
traveled through, it would destroy the phase coherence within the wave, and the in-
terference pattern would not emerge on the screen, as seen in numerous experiments.

I also suggest that the difference between experimental “weak measurements” and
“strong measurements” of quantum systems is the following: strong measurements
involve breaking (rearranging) the space graph; weak measurements do not cause
any space graph rearrangements but they do cause elastic stress fields to interact
and affect each other and to convey a certain amount of information in the process
of doing so.

3.3. Open questions and future research areas

3.3.1. Space graph geometry

What is the structure and symmetry of the space graph and exactly what type
of defect corresponds to each known elementary particle? This is an open question.
I would like to mention several possibilities, which are all areas of further research.

One plausible option is that the local space graph symmetry group is triangular-
based, or that it includes triangular symmetry as a sub-system,11 since this is the
simplest discrete symmetry group that can produce an area (triangular) and volume
(tetrahedron). It is also one that is the easiest to form statistically in a super-
dynamic and chaotic process, such as the Big Bang or the collapse of a black hole.

11Special thanks to Vladimir Mikhalev for collaborating on that insight, as well as on the discus-
sion of rotational symmetry.
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If the probability of an arc or a node in a space graph to be available for forming
a bond or a cell in a certain local symmetry configuration is less than 1, then the
probability of finding three such objects to form a triangular cell must be greater
than for a quadratic, hexagonal or other cell type (assuming that the underlying
probabilities are at least partially independent). Once a triangular cell is formed,
other cells are likely to condense on it in the same triangular geometry, similar to
the crystallization process in solid state physics. Therefore, a triangular symmetry
group appears to be a natural guess.

It is well known that the regular tetrahedron cannot tile 3D Euclidean space fully.
However, in the framework of this theory, the space graph does not exist in space,
but rather it creates and defines space. Therefore full tiling considerations may not
necessarily apply here.

In case if we consider the ability to fully tile 3D space a desirable property then we
can also consider various tetrahedral and hexagonal crystal symmetries as possible
candidates.

It is also quite plausible that the actual structure of discrete space graph may
resemble a quasicrystal rather that a crystal (more on that below).

There is experimental evidence suggesting that the space lattice symmetry group
may indeed contain triangular symmetry at least as a sub-system. The electric charge
of an electron is a multiple of 3 electric charges of the d quark. In the framework of the
proposed theory, an electric charge is a local geometrical/topological characteristic
of the space lattice and its defects. If those characteristics differ by exactly a factor
of 3, this is a good indication that indeed the symmetry of the space lattice and its
defects contains triangular symmetry! 1213

Additional arguments in favor of the symmetry group that incorporates both
triangular symmetry and mirror symmetry is the structure of the Standard Model:
it contains three families of matter particles, as well as a mapping between electron-
muon-tau and corresponding neutrinos, and a similar dual mapping within quarks
family. Therefore both triangular symmetry and mirror symmetry are likely to be
subsystems of the total discrete space graph symmetry group.

It is also very important to try to guess correctly the number of dimensions in
the spatial graph representing our Universe. That would also establish a base for
considering the geometry and topology of defects representing elementary particles.
I do not know the true answer in regards to the number of dimensions, but my

12In this example, the color and flavors of quarks would naturally be interpreted as certain
geometrical and topological characteristics of the space lattice defects that correspond to quarks.
The same is true for gluons.

13It is important to note that some quantum numbers of elementary particles, specifically spin,
differ from each other by a factor of two for certain particles (quarks and leptons have spin 1/2,
photon, gluon, W± and Z0 bosons have spin 1). This must also be a consequence of the space
lattice symmetry and particle geometry within the graph. That may indicate a mirror symmetry,
and, in combination with the multiple of 3 for electric charge, as discussed above, a full tetrahedral,
a hexagonal or chiral-tetrahedral symmetry for the space lattice and space lattice defects.
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best guess is that it is 4-dimensional (not considering time, I mean only spatial
dimensions here), with the 4th dimension representing imaginary numbers axis and
rolled in a circle. There are two reasons for my guess: (1) imaginary component of
wave function in Schrödinger’s equation; and (2) Kaluza-Klein theory equations.

Another intriguing, although probably less likely possibility is some higher di-
mensional generalized form of Penrose tiling or variant tiling.

It also appears plausible, as suggested above, that fermions should be represented
by the types of geometric defects that allow only one particle of its kind to occupy
a particular location (more than one particle in any one location would presumably
result in configurations that are logically impossible or prohibited within the space
graph). Bosons, on the other hand, can be represented by the types of defects
that allow a limitless number of particles in any one location, without violating
any conservation laws or resulting in any geometric configurations that are logically
prohibited by the nature of the space graph.

These questions can be further explored either by analytical approaches or by
brute force computation methods on sufficiently powerful computers.

3.3.2. The paradox of rotational symmetry

This issue has caused me a lot of concern in relation to the proposed space graph
theory. If the space structure is discrete, how can that be reconciled with the fact
that, at least on the classical level in our Universe, we observe seemingly continuous
rotational symmetry consistent with SO(3) group?14

Some possible explanations may include but are not limited to the following:

(1) Perhaps, on the smallest scale, rotation is discrete, but, on macro scales, rotations
get ‘averaged’ to a practically continuous SO(3) rotation as a result of quasi-random
irregularities in the lattice structure, space grain boundaries between the adjacent
small areas of fixed orientation, and/or the elasticity of the space lattice. This
is very similar to the small-crystal grain structure in metals, where each grain has
a fixed orientation of the crystal lattice but is oriented randomly (or quasi-randomly)
in relation to its neighboring grains. As a result, the entire metal slab exhibits
continuous rotationally symmetry on a classical scale due to the random orientation
of the grains with respect to each other averaging out uniformly in all directions on
a macroscopic scale. Since the Planck length is so incredibly small, on a macroscopic

14So far, I have primarily discussed the simplest form of a space graph, where all nodes are
identical, aside from a variable number of arcs that may be connected to them. However, following
the solid-state physics analogy, one can also imagine a graph with more than one distinct type of
node, such as a salt crystal, where some nodes represent Na+ and some nodes represent Cl-, as
opposed to a diamond crystal where all nodes are the same. Also, in the simplest case, we may
assume that not only are all nodes identical but also that the number of arcs connected to each
node must be exactly the same. Of course, another possibility is that the number of arcs can
vary between 0 and some fixed integer number. Finally, we must also consider the possibility of a
directed graph with some arcs having a preferred direction, perhaps explaining one-way movement
towards the center of a black hole. I would nevertheless hope that a simple solution would accurately
correspond to our Universe, as often is the case in nature.
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level, the rotations and translations of the space graph may be made to look smooth,
giving the illusion of continuous rather than discrete movement, both translational
and rotational.

(2) Alternatively, the space graph structure may be similar to the structure of amor-
phous metals or water, which have short-range but no long-range order.

(3) Elastic bending of the space graph structure may also play a role, as discussed
above after the Postulate 7, with regards to the nature of inertial mass.15

Some of these assumptions might make good physical sense if one considers how
the space graph could have evolved or came into existence. In solid state physics,
large crystals are rare in nature because arranging elementary nodes (atoms in the
case of solid-state physics) in a perfectly regular solid structure with an infinite
long-range order usually takes a long time and requires ensuring reasonably stable
conditions, such as a fairly fixed temperature, pressure, and chemical composition of
the surrounding media. In nature, crystals typically form either when the temper-
ature drops and a liquid freezes into a solid or through a slow process of chemical
deposition from a concentrated solution. Furthermore, the growth of a crystal typi-
cally starts in a location that has some kind of fluctuation or defect. In most cases
in nature, the solvent in the liquid phase typically contains many small fluctuations
and the walls of the container holding the liquid contain many irregularities. Also,
the temperature usually changes quickly enough in most physical processes that in-
volve crystals. As a result, a large number of small crystals typically start to form
almost simultaneously in multiple locations and in random or quasi-random orienta-
tions. Once the material completely solidifies, it becomes an ensemble of many small
crystals with random orientations.

In a similar manner, if one assumes that space was created during the Big Bang
and/or perhaps that the Big Bang was what emerged on the other side of a black hole,
all indications are that this would have been a violent and dynamic process. There
are also indications that the Universe rapidly cooled down after the Big Bang. Un-
der these fast-moving and chaotic circumstances, there would not have been enough
time for one infinitely uniform regular space graph crystal to evolve through the
entire space graph. Instead, the Universe should have plausibly ended up with an
extremely large number of small space graph crystals (grains) with different orienta-
tions connected at their boundaries, similar to what happens when liquid iron cools
rapidly and solidifies.

One should be even more confident of this expectation if we consider the random
quantum fluctuations that are an inherent nature of the quantum systems. Quantum
fluctuations must have been present in the early universe, as confirmed by studies of
cosmic microwave background radiation (CMBR). Fluctuations are needed to seed
the origins of multiple crystal grains simultaneously, as seen in solid state physics.

15Einstein arrived at the idea of curved space by considering the geometry of a rapidly rotating
disk, see [33]. Perhaps, we also could derive valuable insights by considering the geometry of
a rotating body within a discrete space.
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Therefore, quantum fluctuations would have likely resulted in multiple crystalline
areas of the space graph growing almost simultaneously in random orientations with
respect to each other. Perhaps a more detailed analysis of CMBR may even contain
clues to the symmetry structure of the space graph. Perhaps the largest visible
universe-size patterns of CMBR is an imprint of the very first elementary graph cell
that has formed during the Big Bang? It would also be worthwhile to examine the
range of all scales in CMBR.

(a)

(b)

(c)

(d)

Figure 17: This image illustrates that when entangled particles stop being entangled,
a new particle must be emitted. (a): represents entangled state: two entangled
particles (topological defects of the lattice) are directly connected by a spatial link
of one Planck length. (b): The entanglement breaks, but assuming that the total
number of arc must be conserved due to a conservation law, another arc should
appear, likely in an adjacent location. That new arc is also a topological defect, and
therefore must represent a newly born emitted particle. (c),(d): The emitted particle
moves further away from the original location. Therefore, the proposed discrete
geometric theory may be verified experimentally by analyzing whether entanglement
breaking results in a new particle emission. If detected, the geometric nature of the
emitted particle would also become clear as it must correspond to one extra arc in
the space graph.
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Finally, if one assumes that the Big Bang was what emerged on the other side of
a black hole, matter would have likely fallen into the black hole in a chaotic, violent
random process, possibly seeding the fluctuations on the other side of the black hole,
which became our Universe.

For all these reasons, the small grain-structure of the space graph may indeed be
plausible. If we assume a sufficiently small size of the grains within the space graph
and a random orientation with respect to each other, we would end up with a Universe
that has a discrete rotational and/or translational symmetry on the Planck length
scale and a continuous SO(3) symmetry on the classical scale, such as we observe in
our Universe.

3.3.3. Experimental verification and predictions of the proposed model

For a physical theory to be credible, it should be verifiable through experimental
means. Within the proposed framework, there is a specific prediction that might be
verified utilizing current experimental methods.

I have suggested that entangled particles are connected through a direct spatial
link of one Planck length (Figure 4 (c)). Consider entangled particles which stop
being entangled. At first, the link between the entangled particles breaks. Since
an arc has just disappeared, assuming that conservation laws preserve the total
number of arcs in a closed system (see the section “Conservation Postulates Needed”
above), an extra arc would appear in a topologically adjacent area and perhaps then
propagate through the space graph (Figure 17). This extra arc would also represent
a topological defect, which, by definition, would be an elementary particle. What
kind of elementary particle would be represented by an extra arc in the space graph?
Since it appears that an extra arc would introduce a relatively light deformation of
the space lattice compared to other possible types of topological defects, the particle
emitted when entanglement breaks should therefore have a small mass. The most
likely candidate would be neutrino (which has a very low but non-zero rest mass).
A less likely possibility would be a photon. More speculative candidates include
dark mass particles, dark energy, or perhaps a graviton. The antiparticles of these
particles are also a possibility.

In summary, a break in entanglement would result in the emission of an ele-
mentary particle. With some ingenuity, the emitted particle may be experimentally
detected.16,17

Another possible experimental verification is the following. Although the Planck
length is much much smaller than anything modern experimental technologies can

16This idea has been suggested by Alexey Solovey in a private discussion.
17The suggestion that termination of entanglement connection results in a new particle being

emitted would only work if the number of arcs is indeed conserved. But since I am unsure on the
exact form of the conservation laws, it is also possible that only the number of nodes is conserved,
but not the number of arcs, similar to well-known situations in atomic matter when the number of
atoms is conserved but not necessarily the number of chemical bonds. If the number of arcs is not
conserved then termination of entanglement would not have to result in particle emission.
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probe directly, we could try to observe the aggregated effects of discrete space compo-
sition on particles that travel over large distances. This has been originally suggested
in a research paper by Rodolpho Gambini and Jorge Pullin, see [37]. We can an-
alyze light (or any radiation) arriving to Earth from far-away galaxies billions of
light-years away. Over such vast distances, there must be a measurable imprint on
that radiation by the structure of space. This signature imprint would be different,
depending on whether space is discrete or continuous. We might even be able to
derive the exact space geometry and local symmetry on the Planck scale from its
imprint on particles of light/radiation traveling over vast distances. We might even
be able to detect whether the structure of the space graph is constant throughout
the observable Universe.

4. Summary and conclusions

(1) This article proposes a unified framework based on a discrete graph model to
explain the nature of space and time, the nature of elementary particles, the origin
of quantum numbers, wave functions, wave-particle duality, wave function collapse,
quantum entanglement, quantum probabilities, degrees of freedom in multi-particle
systems and provides an interpretation of quantum tunneling. This framework also
explains the origin of mass, fundamental forces, Higgs field and Higgs boson.

(2) An illustrative calculation of the entropy of a black hole is interpreted within the
proposed framework.

(3) A new prospective on strings theories and M-theory is proposed in the spirit of
generalized quantum gravity models.

(4) Cosmological implications of the proposed theory, including the Big Bang and
black holes, are explored.

(5) Interpretations of fermions, bosons, and zero rest mass particles are proposed.

(6) Various possibilities for modeling the discrete structure of space are proposed
and discussed.

(7) Ideas for experimental verification of the proposed theory are suggested.

(8) Further areas of research include the dynamics and structure of the space graph,
identifying the structure of specific geometric and topological defects corresponding
to known elementary particles, and elementary operations and conservation laws on
the space graph.
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the Knizhnik-Zamolodchikov equation. I developed most of the ideas presented here
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during the time period 2000–2006. Since 2006 I have privately shared my theory
with a number of physicists as I was looking to add more mathematical rigor to it,
and some of those scientists have since published papers containing similar ideas.
This paper contains much less math than I would have preferred because I have not
worked in the academia since 1991. I have finally decided to publish my theory as is
in the hope to attract colleagues who can help develop this further. Any physicists or
mathematicians interested in collaborating please contact me at ybreek@gmail.com.
Thank you!
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