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Abstract: The problem of flatness of the Universe (i.e., an almost zero
curvature of its three-dimensional space) is one of the major methodological
issues, determining the viability of various cosmological models. In fact, just
the inability to resolve this problem was one of the reasons to reject the old,
“pre-inflationary” cosmological model in the early 1980’s and to replace it by
the inflationary scenario. Here, we outline the corresponding mathematical
formalism and pose a question if flatness of the Universe can be satisfactorily
explained in the “uncertainty-mediated” inflationary model, which was sug-
gested in our recent works [Y.V. Dumin. In: Cosmology on Small Scales 2018,
p. 136; Grav. Cosmol. 25 (2019), 169]? As follows from the respective calcu-
lations, the curvature term in the Friedmann equation becomes insignificant
in the course of time and, therefore, the Universe tends to be flat. From
this point of view, the uncertainty-mediated cosmological model can serve as
a reasonable alternative to the standard (exponential) inflationary scenario.
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1. Introduction

Since the observed three-dimensional space is almost perfectly flat, it is one of
key problems of theoretical cosmology to explain how this flatness developed in the
course of evolution of the Universe. In other words, does a particular cosmological
model predict the flat spatial asymptotics for a sufficiently generic class of initial
conditions?

A change in the cosmological paradigm in the early 1980’s from the old model
with power-like expansion, governed by the ordinary matter and radiation, to the
inflationary scenario, governed by the vacuum energy or Λ-term [1, 2], was caused
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just by the inability of the first-mentioned model to resolve a few conceptual puzzles
of the observed Universe. They were the causal connectivity between the remote
subregions of space–time, a presence of the initial singularity and, in particular,
a surprising flatness of the three-dimensional space. In the next sections, we shall
discuss how the mathematical formalism can or cannot predict such flatness for the
different cosmological models; and special attention will be paid to the uncertainty-
mediated scenario, which was put forward in our recent publications [3, 4].

2. Dynamics of the scale factor in various cosmological models

The commonly-accepted paradigm of the modern cosmology both for the early
and late Universe is based on the Robertson–Walker space–time metric:

ds2 = c2dt2 −R2(t)
[

dr2

1− kr2
+ r2(dθ2 + sin2θ dϕ2)

]

, (1)

whose temporal dynamics is described by the Friedmann equation [5]:

H2 ≡
(

Ṙ

R

)2

=
8πG

3c2
ρ0

(

R

R0

)

−3(1+w)

+
c2

3
Λ − kc2

1

R 2 . (2)

Here, r, θ, and ϕ are the dimensionless spherical coordinates, the coefficient k
equals 1, 0, and −1 for the closed, flat, and open 3D space, respectively; R is the
scale factor of the Universe, H is the Hubble parameter, G is the gravitational con-
stant, c is the speed of light in vacuum, and dot denotes a differentiation with respect
to the time t.

The first term in the right-hand side of formula (2) describes a contribution
of the ordinary matter, whose density is ρ0 at the instant t = 0, when the scale
factor equals R0. The equation-of-state parameter w is equal to 0 for the dust-like
(i.e., non-relativistic) substance and 1/3 for the radiation.

The second term represents a contribution of the vacuum energy or Λ-term, which
is usually assumed to be independent of time. The Λ-term can be either introduced
“by hand” as a new fundamental constant or derived from the underlying theory of
elementary particles; the last-mentioned case being more typical for the models of
the early Universe.

Finally, the third term in equation (2) describes contribution of the spatial cur-
vature into the temporal dynamics of the scale factor.

According to observations, the curvature should be close to zero. So, one possible
option is to set k = 0 a priori. However, this looks not so good from the method-
ological point of view. A much more attractive option would be to construct such
cosmological model where the curvature term becomes insignificant (as compared to
other terms) in the course of time, starting from a generic set of the initial conditions;
so that the approximately flat three-dimensional space is formed “dynamically” in
a self-consistent way. In the subsequent sections, we shall study if such behavior is
possible in various models of the early Universe.
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2.1. The old, “pre-inflationary” model

Although the Λ-term was introduced into the equations of General Relativity
already during its development in the late 1910’s, it was commonly believed till
the early 1980’s that it is absent in the real world. Then, the general Friedmann
equation (2) is reduced to

(

Ṙ

R

)2

=
8πG

3c2
ρ0

(

R

R0

)

−3(1+w)

− kc2
1

R 2 . (3)

If we assume initially that k = 0, then the resulting equation can be easily
integrated and gives

R̃(t) = R0

(

t+ T

T

)
2

3(w+1)

, (4)

where T is the age of the Universe, which is expressed through the previously-used
cosmological parameters as

T =
2

3(w+1)

(

3 c2

8πGρ0

)1/2

. (5)

From here on, solutions obtained under the assumption of zero curvature, k = 0, will
be marked by a tilde.

In fact, it is clear even without the exact temporal dependence of the scale factor
that the curvature term in equation (3) will decrease slower than the first term in the
course of expansion of the Universe. Really, the curvature term decays as 1/R2, while
the first term as 1/R3(1+w), i.e., 1/R3 in the case of non-relativistic matter and 1/R4

in the case of radiation. Therefore, the curvature term will inevitably dominate after
some time, and the flat three-dimensional space cannot be formed dynamically.

2.2. The standard (exponential) inflationary scenario

The main assumption of the inflationary scenario is that the density of ordinary
matter in the early Universe can be ignored, but the Λ-term is of primary importance.
In other words, the general Friedmann equation (2) is reduced to

(

Ṙ

R

)2

=
c2

3
Λ − kc2

1

R 2 . (6)

If the curvature term is initially ignored (k = 0), the integration of (6) is trivial
and results in

R̃(t) = R0 exp

(

c
√
Λ√
3

t

)

, (7)

where Λ = const, and only the increasing solution was taken into account.
Again, it is clear even without the exact temporal dependence of the solution

of the total equation (6) that role of the curvature term will become negligible in

95



the course of time as compared to the first term. Really, the curvature term decays
as 1/R2, while the first term remains constant. So, as distinct from Sec. 2.1, so-
lution R(t) should tend to R̃(t), corresponding to the flat three-dimensional space,
at the sufficiently large time. Just this fact is one of the main advantages of the
inflationary models.

2.3. The uncertainty-mediated inflationary model

Since the physical origin of the Λ-term remains unclear and there should be two
absolutely different Λ-terms in the early Universe and nowadays, it may be reasonable
to consider the cosmological model with a decaying Λ-term. A particular version of
such theory was presented in our recent works [3, 4]. It is based on the qualitative
idea by A. Coe [6] that the vacuum energy might be estimated from the quantum-
mechanical uncertainty relation between the time and energy. Really, as was shown
by L. I. Mandelstam and I. E. Tamm [7], the energy–time uncertainty relation can
be used not only in the context of measurements but also for estimating the long-
term evolution of quantum systems; for more details, see review [8]. Then, Λ-term
appearing in equation (6) should be replaced by the function:

Λ(t) =
4πCUR

c lP

1

t
, (8)

where lP=
√

Gh̄/c3 is the Planck length, and CUR ≥ 1 (abbreviation “UR” means the

uncertainty relation). So, a substitution of (8) into (6) gives the modified Friedmann
equation:

(

Ṙ

R

)2

=
4πCUR

3τ

1

t
− kc2

1

R 2 , (9)

where τ = lP/c =
√

Gh̄/c5 is the Planck time.

Solution of this equation at zero spatial curvature (k = 0) is the “quasi-exponential”
function:

R̃(t) = R0 exp

(

√

16πCUR

3

√

t

τ

)

(10)

if we consider only the increasing branch, i.e., the expanding Universe. Discus-
sion of its physical properties important for cosmology can be found in our pa-
pers [3, 4, 9, 10].

Next, let us return to the general (k 6= 0) Friedmann equation (9). To estimate
the relative contributions of the energetic (first) and curvature (second) terms in the
right-hand side, we can substitute there the simplified solution (10). Since

lim
t→∞

1/t

1/R̃2(t)
= lim

t→∞

R̃2(t)

t
= ∞ (11)
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(as can be easily proved applying the L’Hôpital’s rule two times), one should conclude
that the role of the curvature term will be negligible at large time.1 In other words,
the situation is the same as in the standard (exponential) inflationary scenario.

3. Conclusion

Employing the simple estimates, we have shown that the problem of flatness
was a serious conceptual drawback of the old cosmological model, governed by the
ordinary matter and radiation. On the other hand, the flat three-dimensional space
can be formed dynamically in the standard (exponential) inflationary scenario and—
which is the novel result—in the inflationary model based on the quantum-mechanical
uncertainty relation.

Since it was already shown before that this model resolves also the problem of
causality in the early Universe [9, 10] and avoids the cosmological singularity, it can
serve as a reasonable alternative to other inflationary scenarios considered currently
in the literature, e.g., reviews [11, 12].
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