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1. Introduction

General relativity (GR) is viewed as an incomplete theory because of its nonrenor-
malizability and, to a lesser extent, because of observable and experimental astro-
physical issues difficult to explain with the Λ Cold Dark Matter (ΛCDM) paradigm
such as the H0 tension and nondetection of Dark Matter (DM). Additionally, there
are the core-cusp, satellite galaxy distribution and abundance, and “too big to fail”
problems when trying to model galaxies within the ΛCDM framework. Such short-
comings have led to various modified gravity theories.

The spin connection (ωµab) formulation of GR used to handle fermions in curved
spacetime allows an additional aspect on the incompleteness of GR – failure to include
the entire group of proper Lorentz transformations. The spin connection formula-
tion is derived from local Lorentz transformations acting on physical fields and the
vierbein (e µ

a ) used to describe spacetime. These Lorentz transformations (Lorentz
rotations, λ) are the familiar spatial rotations and boosts from special relativity
which form a group of proper, continuous transformations. However, the discrete
transformation consisting of parity and time reversal together, PT, is also a proper
transformation. Therefore, it would seem interesting to include local PT transforma-
tions as a natural physical extension of GR. The use of vierbein in the spin connection
formalism accommodates a local PT transformation [1–4], whereas it is unclear how
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to do so in the more well-known formulation of GR based on the metric tensor, gµν ,
and Levi-Civita connection, Γρµν .

Further motivation to extend GR along these lines is that PT is part of the dis-
crete Charge Conjugation-Parity-Time Reversal (CPT) symmetry. The CPT sym-
metry is interesting for several reasons:

1) PT is not a universal symmetry whereas CPT is a universal symmetry.

2) The CPT symmetry has been verified experimentally and requires no extra
dimensions.

3) CPT is born from the successful (i.e., renormalizable) union of special relativity
with quantum theory.

The last point suggests that the CPT symmetry is a “bridge” between quantum
theory and relativity and should be made a local symmetry included with local
Lorentz rotations in order to construct an extension of GR which would be necessary
in any approach to quantum gravity.

2. The transformations

At first glance it may not appear possible to gauge CPT, because there are no
important continuously varying parameters involved with the CPT transformation.
Also, locality would seem to be a problem. Except for an infinitesimal neighborhood
around the origin of a Minkowski manifold, PT is not a local transformation.1

We examine the CPT transformation at the origin of an inertial reference frame in
order to overcome the above obstacles. The effect of the global CPT transformation
at the origin of a Minkowski spacetime coordinate system is to flip the coordinate
axes and transform a Dirac wavefunction2, ψ : ψ → iγ5ψ. If a nontrivial spacetime

analog of the charge conjugation operation exists, then we would have to include
its effect. We assume no such operation exists, in other words, we assume there is
no such thing as an “antispacetime” distinct from spacetime. An attempt to find
a nontrivial “antispacetime” operation can be found in [1].

In order to extend this concept to a pseudo-Riemannian spacetime manifold, we
introduce a vierbein field eµa , where µ represents the manifold coordinates and a rep-
resents the local inertial frame coordinates. By viewing a vierbein at a given point xµ
as tiny coordinate axes with its origin centered at xµ, we define a local CPT transfor-
mation at that point by eµa → −eµa (the coordinate axes flip), and ψ(xµ) → iγ5ψ(xµ).
In the spirit of gauge theories, we define local CPT transformations as applying
these “origin transformations” to the vierbein and wavefunctions at arbitrarily cho-
sen points on the manifold.

The choice of where we want to perform a local CPT transformation will play the
role of the continuous, arbitrary parameters appearing in gauge theories. In order to

1This section is revised from the version found in [3] in order to improve clarity, hopefully.
2We use the Bjorken-Drell conventions except for σab, σab = 1

4
[γa, γb].

85



make this concept precise, we introduce a real differentiable function f , defined over
the entire manifold to be used as the argument of step functions Θ. In the arbitrary
regions where we choose to perform the local CPT transformations, we set f > 0
so that Θ[f ] = 1. In the arbitrary regions where we choose not to perform local
CPT transformations, we set f < 0 so that Θ[−f ] = 1. The boundaries between
regions where local CPT is carried out and where it is not are given by f = 0 with
the convention that Θ[f ] = 0 if f ≤ 0. By setting f < 0 everywhere, we retrieve
the original action. By setting f > 0 everywhere in flat spacetime, one obtains the
globally CPT transformed action.

We emphasize that f is not a physical field. The Θ are parameters which define
when the local CPT transformations are carried out (or not). The Θ are just like the
phases, φ, used in the gauging of U(1) except that there are only two choices regarding
the CPT symmetry instead of the continuum of choices for φ to be used in the U(1)
symmetry operation eiφ. To make the U(1) operation local, one makes φ an arbitrary

function of spacetime subject only to the condition that φ is differentiable. Similarly,
the function f is introduced in order to make the arbitrary choice of carrying out
local CPT (f > 0) or not (f < 0) at the points of interest. The function f plays the
same role as replacing a constant φ by φ(x) in gauging U(1). The only restriction
placed on f is that it be differentiable so that ∂µΘ[±f ] = ±δ[f ]∂µf makes sense
(δ being the Dirac delta functional). The function f must disappear in the field

equations and any physical predictions.

Because we are utilizing the proper spacetime transformation PT, it would be
prudent to see if the metric spin connection, ωµab, alone could accommodate local
CPT transformations. So, we also include local, proper Lorentz rotations wherever
f > 0. The local Lorentz rotations, λ(xµ), are denoted by Λba and Λψ for the
vierbein and Dirac wavefunction respectively. In effect, we are gauging the CPTλ
transformation3 of the Dirac field to induce the gauging of the full group of proper
spacetime Lorentz transformations.

Putting all of the above together, we have the following local CPTλ transforma-
tions:

e µa → Θ [−f ] e µa −Θ [f ] e µb Λ
b

a ,

ψ → Θ [−f ]ψ +Θ [f ] iγ5Λψψ,

ψ → Θ [−f ]ψ +Θ [f ] iψγ5Λψ,

ωµab → Θ [−f ]ωµab +Θ [f ] ω̃µab + δ [f ] Θ [−f ] ςµab + δ [f ] Θ [f ] ς̃µab,

where the metric spin connection is

ωµab =
1

2
eνa (∂µebν − ∂νebµ)−

1

2
eνb (∂µeaν − ∂νeaµ)−

1

2
eρae

σ
b (∂ρerσ − ∂σerρ) e

r
µ

3In the author’s previous work this has been called CPTΛ, where Λ denotes proper Lorentz
rotations and has nothing to do with a cosmological constant.
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and ω̃µab is the transformation of ωµab under CPTλ which satisfies

ω̃µabσ
ab = ΛψωµabΛψ − 2 (∂µΛψ) Λψ.

The ςµab, ς̃µab are boundary terms arising from the differentiation of the vierbein
transformations in the metric spin connection. Explicit expressions for ω̃µab, ςµab, ς̃µab
are found in [3]. The volume element, |e| d4x, transforms as

|e| d4x→ (Θ [−f ] + Θ [f ]) |e| d4x.

Clearly, these transformations are well defined in curved spacetime.

3. Introduction of the gauge field Xµ

We take the action integral as the fundamental starting point, because delta
functionals need to be in a definite integral in order to have meaning. Also, the
action allows us to use variational principles from which we can deduce [3]:

1) The rules on how to handle the various products containing Θ [±f ], δ [f ] ∂µf .

2) The nontrivial, nonvanishing variation of the curved spacetime Dirac action
under local CPTλ and the inability of the metric spin connection to compensate
for this. Hence, the requirement of introducing the new minimally coupled
gauge field, Xµ.

3) The structure of and transformation of Xµ. By using the above transfor-
mations in the Dirac action in curved spacetime, one obtains the gauge co-
variant derivative Dµψ = ∂µψ + 1

2
ωµabσ

abψ + βXµψ, where β is the cou-
pling constant associated with Xµ. The structure of Xµ is determined to be
Xµ = xµII + xµ5γ

5 + xµabσ
ab, where the xµ(··· ) are the dynamical field compo-

nents. The transformation of Xµ is determined to be:

Xµ → Θ [−f ]Xµ +Θ [f ] ΛψXµΛψ +Θ [−f ] δ [f ]Yµ +Θ [f ] δ [f ] Ỹµ,

where

Yµ =β−1

[
∂µf

(
I− iγ5Λψ

)
−

1

2
ςµabσ

ab

]
,

Ỹµ =β−1

[
∂µf

(
−I− iγ5Λψ

)
−

1

2
ς̃µabσ

ab

]
.

Subsequent calculations using variational principles become complicated and dif-
ficult, for example, the proof that Xµ is massless [3]. So, the easier and more fa-
miliar “operator” approach found in [4] makes calculations easier and avoids some
subtle issues regarding the variational approach. The usual machinery of gauge the-
ories can be used. As examples, the proof that Xµ is massless becomes trivial, and
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Dµ → UDµU
−1. This approach begins with rewriting the transformation of ψ as

ψ → Uψ, where U = Θ [−f ] I + Θ [f ] iγ5Λψ. From this, one immediately obtains:

U−1 =Θ [−f ] I−Θ [f ] iγ5Λψ,

∂µU =Θ [f ] iγ5∂µΛψ + δ [f ] ∂µf
(
iγ5Λψ − I

)
,

and

(∂µU)U
−1 =Θ [f ] (∂µΛψ) Λψ +Θ [−f ] δ [f ] ∂µf

(
iγ5Λψ − I

)

+Θ [f ] δ [f ] ∂µf
(
I + iγ5Λψ

)
.

We denote the local CPTλ transformation by the customary U even though the
transformation is not unitary. Unitarity is not necessary in making gauge theories.
For example, λ is not unitary and is used to derive the metric spin connection formu-
lation of GR as a gauge theory. For future reference, we also note that the presence
or absence of a conservation law associated with a global symmetry transformation
has no relevance to constructing the ensuing gauge theory. Again, returning to λ,
we note that there are no conservation laws associated with global boosts.

We emphasize that Xµ is required in order to construct an expanded action which
is well-behaved under local CPTλ. It is important to note that Xµ, its structure, and
its transformation properties are not introduced ad-hoc. Rather, Xµ and its trans-
formation properties are derived [1–4] from the requirement of constructing a Dirac
action in curved spacetime which is well-behaved under local CPTλ transformations.

4. The Lagrangian

Once the transformation of Xµ is determined, then we can construct a La-
grangian density comprised of the expanded Dirac Lagrangian, free-field Lagrangian
for Xµ, and a density containing the Einstein-Hilbert term of GR, κR, where κ =
(−16πGN)

−1. The total Lagrangian must satisfy the following requirements [1–4]:

1) gauge covariance under local CPTλ transformations,

2) absence of any Dirac delta functionals, δ [. . . ], in the Lagrangian under local
CPTλ transformations,

3) terms containing xµab which are not solely constrained to appear within the
combination

(
1
2
ωµab + βxµab

)
σab, and

4) some components of Xµ appearing in both types of free-field Lagrangians used
in GR and the standard model (SM).

The first requirement is obvious. The second prevents pathological variations of
the expanded action under local CPTλ transformations. The third ensures that xµab
has physical significance and is not just a fancy way to ignore the delta functionals
appearing in the transformation of ωµab. The fourth reflects that CPT arises from
both GR and SM. We also note that the minimal coupling term acting on matter,
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(
1
2
ωµab + βxµab

)
σabψ, implies replacing κR by κRXω, where κRXω is the modified

Einstein-Hilbert curvature term formed by replacing the metric spin connection ωµab
in R by ωµab + 2βxµab. We obtain [4] for the Hermitian action S:

S =

∫ {
i

2
eµaψγ

a

(
∂µψ +

1

2
ωµbcσ

bcψ + βXµψ

)
−mψψ

}
|e| d4x

−

∫ {
i

2
e µ
a

(
∂µψ −

1

2
ωµbcψσ

bc + βψγ0X†
µγ

0

)
γaψ

}
|e| d4x

+

∫ {
1

4
Tr

(
HµνH

µν†
)
+
κ

2

(
RXω +R†

Xω

)}
|e| d4x,

where the term

Hµν =
β

2

(
ωµab

[
σab, Xν

]
− ωνab

[
σab, Xµ

])
+ β2 [Xµ, Xν ] + β (∂µXν − ∂νXµ)

reflects the quantum (SM) contribution to the origin of the CPT symmetry. The
other symbols are the familiar Dirac terms. We note that a mass term for Xµ,
mTr

(
XµX

µ†
)
, is not gauge covariant and not allowed [1–4].

The Euler-Lagrange variation of S with respect to xµab and e
µ
a , respectively, gives

the following two important equations: the xµab field equation,

4βDν (∂
νxµcd − ∂µxνcd) Tr

[(
σab

)†
σcd

]

+ 2β
{
(ωνrs + 2βx∗νrs) (∂

νxµcd − ∂µxνcd)Tr
[[
σab, σrs

]†
σcd

]}

+ 2βDν (2βx
ν
cdx

µ
rs + ωνcdx

µ
rs + ωµrsx

ν
cd)Tr

[(
σab

)† [
σcd, σrs

]]

−
{
β (ωνcd + 2βx∗νcd) (2βx

µ
mkx

ν
rs + ωµmkx

ν
rs + ωνrsx

µ
mk) Tr

[[
σab, σcd

]† [
σmk, σrs

]]}

+ 8κηbc (eaµenρ − enµeaρ)
(
ωρcn + 2βx∗ρcn

)

+ 8κηac
(
ebµenρ − enµebρ

) (
ωρnc + 2βx∗ρnc

)

=4iψσabγµψ + 8κDν

(
eaνebµ − eaµebν

)
,

and the modified GR equation,

1

2

{(
Rµν
Xω +Rµν†

Xω

)
−

1

2
gµν

(
RXω +R†

Xω

)}
=

1

2κ
T µν ,

where

T µν =
gµν

4
Tr

(
HρσH

ρσ†
)
+

i

2

[(
Dµψ

)
γνψ − ψγνDµψ

]

+ gµν
[
i

2

(
ψγρDρψ −

(
Dρψ

)
γρψ

)
−mψψ

]
.
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5. The Baryonic Tully-Fisher Law

We argue that the force arising from the xµab components4 follows an inverse
square law for the following three reasons:

(1) xµab affects matter (i.e., the Dirac spinor, ψ) in the exact same manner as ωµab,
since their only interaction with matter in S appears as the

(
1
2
ωµab + βxµab

)
σabψ

term.

(2) xµab is massless.

(3) The free-field term for xµab is contained in RXω +R†
Xω and Tr

(
HµνH

µν†
)
both

of which produce inverse square fields in GR and SM. An inverse square law
allows us to use Gauss’s law in the derivation of the Baryonic Tully-Fisher law
(BTFL) [5].

We now argue that neutrinos are the source for the galactic scale force aris-
ing from xµab. First, by comparison with the second-order formalism definition of
the metric spin connection, we notice that the terms in the xµab field equations
with coefficient κ create a new metric spin connection when replacing ωµab with
ωµab+2βxµab. This interpretation is reinforced when taking the Palatini variation of
the Lagrangian with respect to ωµab and seeing the same terms (with 2βxµab replaced
by β

(
xµab + x∗µab

)
) appearing with coefficient κ. From the second-order formalism

definition of the metric spin connection, these terms will cancel out. This allows
us to linearize (i.e., weak field approximation) the xµab field equations with respect
to ωµab, xµab and focus on the remaining source term, 4iψσabγµψ. Usually, this term
will vanish [3], because of the random spin and momentum orientations of fermions
in bulk matter. However, because of the fixed neutrino chirality, this term will not
vanish for the neutrinos seen by an observer looking at a point neutrino source such
as a star. So, we treat stars as point sources of this 4iψσabγµψ term which is propor-
tional to the neutrino luminosity, Iν . For a spiral galaxy the total neutrino flux will
vanish at the center, so we expect no net force from the xµab potential there. As we
move towards the edge of the galaxy, the net neutrino flux starts to point outwards
and increases as we move away from the center. Hence the force due to xµab will
increase along the way, and we avoid the core-cusp problem associated with the dark
matter interpretation.

Because of the resemblance of the linearized xµab field equation to electrodynamics
and the expected inverse square behavior of the new force, we expect a weak field
limit of the xµab force to be of the Newtonian form −kQν/r

2, where k is the effective
coupling constant, Qν is the source (“charge”) term expected to be proportional to Iν ,
and we have assumed an attractive force. So, the total field, F (r) for a point source
(or leading order term of an extended object such as a spiral galaxy) of mass M
and Iν would be [3]

F (r) = −
GNM

r2
−
kQν

r2
.

4the physical implications of the xµI and xµ5 components are not considered in this paper

90



Because the neutrinos are ultrarelativistic, we would expect that the total Qν con-
tained within r is given by Qν = Iνr/c. So, using Gauss’s law, we have

F (r) = −
GNM

r2
−
kIν
cr
.

As r → ∞, we see that

F (r) → −
kIν
cr
.

Therefore, the rotation curve, v (r), flattens out at large r when

kIν
cr

=
v2

r
, or v =

(
kIν
c

) 1

2

.

Presumably, the MOND regime (aM) is reached where the gravitational force is equal
to the gauge CPT force instead of a modification to Newton’s second law:

GNM

r2
=
kIν
cr

= aM .

To obtain the slope of the BTFL, we have to be careful. First, we assume that
the mass, M , of the galaxy is dominated by hydrogen and ignore the small amount
of other elements. Then, we realize that because a small fraction of the H nuclei in
the galaxy are undergoing fusion and emitting neutrinos, we have Iν ∝ M . Unfor-
tunately, this gives the asymptotic rotational speed to be v ∝ M

1

2 from above and

the wrong slope of the BTFL. To obtain the (Iν)
1

2 source dependence (instead of Iν)
required for the correct slope, we examine the behavior of the modified GR equation
at the edge of a spiral galaxy. We use the weak field (linearized) version of modified
GR because of the dearth of matter and the small acceleration (the deep MOND
regime if one prefers) implying weak ωµab and xµab. Therefore, we neglect the term
(2κ)−1 T µν , because it is quadratic in the fields and because of the small value of
(2κ)−1. Next, we split the terms Rµν

Xω+R
µν†
Xω and RXω+R

†
Xω into 2Rµν +Rµν

X +Rµν†
X

and 2R + RX + R†
X , where R

µν , R are the usual curvature terms formed from the
metric spin connection of the Einstein-Hilbert GR (“standard metric spin connec-
tion”), and Rµν

X , RX are comprised of identical curvature terms with ωµab replaced
by 2βxµab and additional terms containing products of xµabωνcd which are quadratic
and therefore dropped. We use the standard metric spin connection as the basis
for physical interpretation for a couple of reasons. First, the proof of covariance
under local CPTλ [3, 4] used the standard metric spin connection of GR. Second,
this allows for the standard GR interpretation of the linearized modified GR equa-
tion by moving everything containing Rµν

X , RX , and their complex conjugates to the
RHS thereby enabling us to interpret the RHS as an effective energy-momentum
tensor source term, Υµν : Rµν −

1
2
gµνR = Υµν . The direct (i.e., enhanced without

the “middleman” of Tµν) effect of xµab acting on spacetime by replacing ωµab with
ωµab+2βxµab is reflected by the absence of a κ−1 factor multiplying Υµν . Importantly,
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the linearized Υµν ∼ (TXµν)
1

2 , where TXµν are the xµab containing terms of Tµν . So,
we take this as a cue to replace the source term Iν of the Newtonian form of the

weak field gauge CPT force by (Iν)
1

2 in order to reflect the behavior of Υµν . This

accounts for the origin of the (Iν)
1

2 dependence, hence the correct slope of the BTFL.
We could also speculate that because everything is being interpreted in the standard
GR framework, the new force is indeed attractive (instead of assuming it) and that
light is also bent by the new force. There is no need for either dark matter or MOND.

Because the new force is sourced by neutrinos, we can comment on a few physical
phenomena. First, we see that the predictions of GR near black holes remain valid,
since there is no neutrino emission from the black holes. Second, there is no conflict
with the Bullet Cluster, because the sources of neutrino emission are centered in the
stellar medium instead of the lagging gaseous medium. Finally, it is interesting to
compare the uncertainty in GN with the variation of the square root of solar neutrino
flux received at the Earth’s surface between noon and midnight because the total
force on the earth is due to the sun’s gravity as well as the xµab component being
interpreted as a gravitational effect.
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