Non-uniform computational models

Lecture 1

- Definition of complexity classes $P, N P, \operatorname{coN} P, \Sigma_{k}^{p}, \Pi_{k}^{p}$ and the polynomial hierarchy $P H$.

Proof sketch:
Theorem 1. If $P=N P$ then $P=P H$. If $\Sigma_{k}^{p}=\Pi_{k}^{p}$ then $\Sigma_{k}^{p}=P H$.

- Definition of a Boolean circuit in de Morgan basis \wedge, \vee, \neg.
- Circuit computes a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. Size $=$ number of gates. Depth $=$ length of a longest directed path.
- Definition of $P /$ poly $=$ languages computed by Boolean circuits of a polynomial size.

Exercise: PARITY ${ }_{n}$ has a Boolean circuit of size $O(n)$ and depth $O(\log n)$.
Proof sketch:
Theorem 2. $P \subseteq P /$ poly .
$\mathrm{P} /$ poly is uncountable and hence:

$$
P / p o l y \nsubseteq P
$$

Lecture 2

Proof sketch:
Theorem 3 (Karp-Lipton). If $N P \subseteq P /$ poly then $P H=\Sigma_{2}^{p}$.
The key ingredient is self-reducibility of SAT.
Theorem 4 (Shannon). There exists a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ which requires a circuit of size $\Omega\left(\frac{2^{n}}{n}\right)$.
Theorem 5. Every Boolean function can be computed by a circuit of size at most $O\left(\frac{2^{n}}{n}\right)$.

- Definition of Boolean formula in basis \wedge, \vee, \neg.
- By de Morgan rules, negations can be moved to leaves.
- $\mathrm{L}(\mathrm{f}):=$ minimum number of leaves in a formula computing $f . D(f):=$ minimum depth of a formula/circuit computing f (counting \wedge, \vee-gates on a path)
- L(f) captures total number of gates up to a constant factor.

$$
L(f) \leq 2^{D(f)}
$$

Lemma 6. Given a binary tree T with $s \geq 2$ leaves, there exists a node v such that the subtree rooted at v has s_{v} leaves with

$$
s / 3<s_{v} \leq 2 s / 3
$$

Theorem 7. $D(f) \leq O(\log L(f))$.

Lecture 3

Khrapchenko lower bound

Exercise: PARITY_{n} has a (\neg, \wedge, \vee)-formula with n^{2} leaves if n is a power of two. In general, $L\left(\right.$ PARITY $\left._{n}\right) \leq O\left(n^{2}\right)$.

Theorem 8 (Khrapchenko). For every $n, L\left(P A R I T Y_{n}\right) \geq n^{2}$

- $R=A \times B \subseteq\{0,1\}^{\times}\{0,1\}^{n}$ is a monochromatic rectangle if $a_{i}=1, b_{i}=0$ for every $(a, b) \in R$, or vice versa.
- $R_{f}=f^{-1}(0) \times f^{-1} 0$

Lemma 9. If $L(f)=s$ then R_{f} can be partitioned into s monochromatic rectangles.

- $H:=\left\{(a, b) \in\{0,1\}^{\times}\{0,1\}^{n}:\right.$ a and b have Hamming distance 1. $\}$

$$
S \subseteq\{0,1\}^{\times}\{0,1\}^{n}, \mu(S):=\frac{|H \cap S|^{2}}{|S|}
$$

Lemma 10. (i). If R is a monochromatic rectangle then $\mu(R) \leq 1$.
(ii). If S_{1}, S_{2} are disjoint subsets of $\{0,1\}^{\times}\{0,1\}^{n}$ then $\mu\left(S_{1} \cup S_{2}\right) \leq \mu\left(S_{1}\right)+$ $\mu\left(S_{2}\right)$.
Corollary 11. $\mu\left(R_{f}\right) \leq L(f)$.

Nechiporuk lower bound

- Formulas with arbitrary (binary) gates.
- $f(X, Y)$ a Boolean function in disjoint sets of variables X, Y. X-subfunction of f is obtained by setting variables in Y to 0 or 1 . $\operatorname{Sub}_{X}(f)=$ the set of all X-subfunctions of f.

Lemma 12. Assume that f has a formula (with arbitrary binary gates) in which the variables from X appear s_{x} times. Then $\left|S u b_{X}(f)\right| \leq 2^{4 s_{x}}$.
$n=2^{k-1} k . a_{1}, \ldots, a_{2^{k-1}} \in\{0,1\}^{k}$,

$$
\operatorname{EDM}_{n}\left(a_{1}, \ldots, a_{2^{k-1}}\right)=1 \text { iff all } a_{i} \text { are distinct. }
$$

Theorem 13 (Nechiporuk). $E D M_{n}$ requires formula with arbitrary gates of size $\Omega\left(n^{2} / \log ^{2} n\right)$.

- Note: the bound can be improved to $\Omega\left(n^{2} / \log n\right)$ by choosing n and k more carefully.

Lecture 4

- $A C_{0}$ circuits - a constant depth d and unbounded \neg, \wedge, \vee gates. Size $=$ number of \wedge, \vee gates.
- $A C_{0}=$ languages decidable by by poly-size $A C_{0}$ circuits of a constant depth.

Exercise:

(i). PARITY $_{n}$ has a depth-two circuit of size $2^{n-1}+1$, which is tight. This is both for DNF and CNF representation.
(ii). PARITY ${ }_{n}$ can be computed by depth-d circuit of size $2^{O\left(n^{1 /(d-1)}\right)}$ for every $d \geq 2$.

Without proof:
Theorem 14 (Hastad). PARITY Y_{n} requires $A C_{0}$ circuits of size $2^{\Omega\left(n^{1 /(d-1)}\right)}$. Hence, PARITY ${ }_{n} \notin A C_{0}$.

$$
\begin{aligned}
\operatorname{MOD}_{m, n}\left(x_{1}, \ldots, x_{n}\right) & =1 \text { if } \sum x_{i} \neq 0 \bmod m \\
& =0, \text { otherwise } .
\end{aligned}
$$

- $A C_{0}[m]$ circuits - in addition, unbounded MOD_{m} gates.
- $A C_{0}[m]=$ languages decidable by poly-size $A C_{0}[m]$ circuits of a constant depth.

Theorem 15 (Razborov-Smolensky). PARITY $_{n}$ requires $A C_{0}[3]$ circuits of size $2^{\Omega\left(n^{1 / 2 d)}\right)}$. Hence, PARITY $Y_{n} \notin A C_{0}[3]$.

Finite fields interlude

\mathbb{F}_{q} - a field with q elements.

- A q-element field exists iff q is a power of a prime number p. The field then has characteristic p (i.e., sum of p ones is zero).
- All finite fields of the same size are isomorphic.

Fermat's Little Theorem

$a^{p}=a \bmod p$, if p is a prime. Hence, $a^{p}=a$ for every $a \in \mathbb{F}_{p}$, and $a^{p-1} \in\{0,1\}$.

Fact:

(i). Every $f: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}$ can be uniquely represented as a polynomial with coefficients from \mathbb{F}_{q} in which every variable has degree at most $q-1$.
(ii). Every $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be uniquely represented as a multilinear polynomial with coefficients from \mathbb{F}_{q} (this holds also over infinite fields).

Lecture 5

Proof of Theorem 15

Lemma 16. Assume that $f:\{0,1\}^{n} \rightarrow\{0,1\}$ has an $A C[3]_{0}$-circuit of depth d and size s. Then for every $k \geq 2$, there exists a proper polynomial $\widehat{f} \mathbb{F}_{3}$ over \mathbb{F}_{3} which has a) degree at most $\leq(2 k)^{d}$, and b) agrees with f on at least $\left(1-\frac{s}{2^{k}}\right)$-fraction of inputs (and c) maps $\{0,1\}^{n}$ to $\{0,1\}$).
Lemma 17. Any polynomial over \mathbb{F}_{3} of degree at most \sqrt{n} agrees with PARITY ${ }_{n}$ on at most 0.99-fraction of inputs.

Generalizations:

- $\mathrm{MOD}_{p, n}$ is not in $A C_{0}[q]$ whenever p, q are distinct primes.
- MAJORITY n_{n} is not in $A C_{0}[q]$ whenever q is a prime.

Open problem:

- superpolynomial lower bound on bounded-depth circuits with MOD_{6} gates, or circuits using both MOD_{3} and MOD_{2} gates.

Other classes:

- $A C C_{0}$ (bounded-depth circuits with arbitrary MOD gates), $T C_{0}$ (threshold gates $=$ majority gates) .

$$
A C_{0} \subseteq A C C_{0} \subseteq T C_{0}
$$

Lecture 6

- Definition of branching program and decision trees. Size=number of vertices.

Exercise. PARITY ${ }_{n}$ has a BP of a linear size (and width 2).
Exercise. Branching programs lie between circuits and formulas:
(i). CircuitSize $(f) \leq O(\operatorname{BPsize}(f)$,
(ii). BPsize $(f) \leq L(f)$.

Constant-width branching programs

- Definition of layered branching program. Length=number of layers (except the source). Width = maximum size of a layer.

Exercise. Branching programs of length ℓ and a constant width have a circuit of depth $O(\log \ell)$ (and hence a formula of size polynomial in ℓ).

Barrington's theorem

Puzzle: Hang a picture using two nails so that the picture falls down whenever a nail is removed.

- $S_{5}=$ group of permutations on a five element set.
- Definition of a program over S 5 of length ℓ that σ-computes a Boolean function; $e \neq \sigma \in S 5$.
- A program over S 5 of length ℓ gives a branching program of length ℓ.

Lemma 18. (i). If σ is a cyclic permutation then so is σ^{-1}.
(ii). If σ_{1}, σ_{2} are cyclic permutations then there exists a permutation τ with $\sigma_{2}=\tau \sigma \tau^{-1}$.
(iii). There exist cyclic permutations $\alpha, \beta \in S 5$ such that $\alpha \beta \alpha^{-1} \beta^{-1}$ is cyclic.

Lemma 19. Assume σ_{1}, σ_{2} are cyclic. If $P_{1} \sigma_{1}$-computes f then there exists a program of the same length that σ_{2}-computes f.
Theorem 20 (Barrington). If f has a Boolean circuit of depth d (counting $\wedge, \vee, \neg)$ then it has an S5-program of length at most 4^{d}.

Corollary 21. (i). If f has a Boolean circuit of depth d then it has a width-5 branching program of length at most 4^{d}
(ii). Languages decided by polynomial size formulas $=$ languages decidable by width-5 branching programs of polynomial size.

Lecture 7

- Monotone Boolean functions, circuits and formulas. $L_{+}, C_{+}=$monotone formula resp. circuit size.
- Majority, threshold functions, MATCHING $_{n}$, BipMATCHING $_{n}$, CLIQUE $_{n}^{k}$.

Exercise. MAJORITY n_{n} has a monotone circuit of a polynomial size and a monotone formula of a quasipolynomial $\left(n^{O(\log n)}\right)$ size.

Note. Theorem 7 holds also for monotone formula size and depth.
Theorem 22 (Valiant). MAJORITY ${ }_{n}$ has a monotone formula of a polynomial size.

Lecture 8

- Definition of a monotone slice function.

Theorem 23 (Berkowitz). Let f be an n-variate slice function. Then $L_{+}(f) \leq$ $L(f) \operatorname{poly}(n)$ and $C_{+}(f) \leq \operatorname{CircuitSize}(f)+\operatorname{poly}(n)$.

Some monotone lower bounds without proof:

- BipMATCHING ${ }_{n}$ requires monotone circuit size $n^{\Omega(\log n)}$ and monotone formula size $2^{\Omega(n)}$ (Razborov, Raz-Wigderson).
- If $k \leq \sqrt{n}$, CLIQUE $_{n}^{k}$ requires monotone circuit of size $n^{\Omega(\sqrt{k})}$ (Razborov, Alon-Boppana).
- There exists a function with a poly-size circuit but no subexponential monotone circuit (Tardos).

A superpolynomial lower bound on monotone formula size

- A bipartite graph with vertices $U \cup V$ is k-separated if for every disjoint $a, a^{\prime} \subseteq U$ of size k there exists $v \in V$ connected to every element of a but no element of a^{\prime}.
- Paley graph is k-separated with $|U|,|V|=n$ and $k \sim \log n$.
- A is the collection of sets $a_{0} \cup a_{1}$ with $a_{0} \subseteq U$ of size k and $a_{1} \subseteq V=\{v \in$ $V ; v$ connected to every $\left.u \in a_{0}\right\}$.

$$
f_{G}:=\bigvee_{a \in A} \bigwedge_{w \in a} x_{w}
$$

Theorem 24. Gal-Pudlak If G is k-separated then $L_{+}\left(f_{G}\right) \geq\binom{ n}{k}$.
For Paley graph, this gives $L_{+}\left(f_{G}\right) \geq n^{\Omega(\log n)}$.
Exercise: The disjointness matrices D_{n} and $D_{n, k}$ have full rank.
A monotone analogy of Lemma 26
Lemma 25. If $L_{+}(f)=s$ then R_{f} can be partitioned into $s(+)$-monochromatic rectangles.

Lemma 26. If M is a $f^{-1}(0) \times f^{-1}(1)$ matrix then

$$
L_{+}(f) \geq \frac{r k(M)}{\max _{R} r k\left(M_{R}\right)}
$$

where the maximum is taken over (+)-monochromatic rectangles.

