Non-uniform computational models

Lecture 1

e Definition of complexity classes P, NP, coN P, 3¢, II} and the polynomial
hierarchy PH.

Proof sketch:
Theorem 1. If P= NP then P=PH. If¥! = Hi then Ei = PH.

e Definition of a Boolean circuit in de Morgan basis A, V, —.

e Circuit computes a Boolean function f : {0,1}" — {0,1}™. Size = num-
ber of gates. Depth = length of a longest directed path.

e Definition of P/poly = languages computed by Boolean circuits of a poly-
nomial size.

Exercise: PARITY,, has a Boolean circuit of size O(n) and depth O(logn).

Proof sketch:
Theorem 2. P C P/poly.

P /poly is uncountable and hence:

P/poly  P.

Lecture 2

Proof sketch:
Theorem 3 (Karp-Lipton). If NP C P/poly then PH = ¥5.
The key ingredient is self-reducibility of SAT.

Theorem 4 (Shannon). There exists a Boolean function f : {0,1}" — {0,1}
which requires a circuit of size Q(%-).

Theorem 5. FEvery Boolean function can be computed by a circuit of size at
most O(%").



Definition of Boolean formula in basis A, V, —.

By de Morgan rules, negations can be moved to leaves.

e L(f) := minimum number of leaves in a formula computing f. D(f):=
minimum depth of a formula/circuit computing f (counting A, V-gates on
a path)

L(f) captures total number of gates up to a constant factor.

L(f) < 2P0

Lemma 6. Given a binary tree T with s > 2 leaves, there exists a node v such
that the subtree rooted at v has s, leaves with

$/3 < sy, <2s/3.

Theorem 7. D(f) < O(log L(f)).

Lecture 3

Khrapchenko lower bound

Exercise: PARITY,, has a (-, A, V)-formula with n? leaves if n is a power of
two. In general, L(PARITY,,) < O(n?).

Theorem 8 (Khrapchenko). For every n, L(PARITY,,) > n?

e R=AxB C {0,1}*{0,1}" is a monochromatic rectangle if a; = 1, b, =0
for every (a,b) € R, or vice versa.

e Ry = f71(0) x f710

Lemma 9. If L(f) = s then Ry can be partitioned into s monochromatic rect-
angles.

o H:={(a,b) € {0,1}*{0,1}" : a and b have Hamming distance 1.}
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Lemma 10. (i). If R is a monochromatic rectangle then u(R) < 1.

(i1). If S1,S2 are disjoint subsets of {0,1}*{0,1}" then pu(S1 U S2) < pu(S1) +
p(S2).

Corollary 11. u(Ry) < L(f).



Nechiporuk lower bound
e Formulas with arbitrary (binary) gates.

e f(X,Y) aBoolean function in disjoint sets of variables X, Y. X -subfunction
of f is obtained by setting variables in Y to 0 or 1. Subx (f)= the set of
all X-subfunctions of f.

Lemma 12. Assume that f has a formula (with arbitrary binary gates) in which
the variables from X appear s, times. Then |Subx (f)| < 2%=.

n =21k ay,... a1 € {0, 1},

EDM,,(aq,...,as:-1) =1 iff all a; are distinct.

Theorem 13 (Nechiporuk). EDM,, requires formula with arbitrary gates of size
Q(n?/log®n).

e Note: the bound can be improved to Q(n?/logn) by choosing n and k
more carefully.

Lecture 4
o AC) circuits - a constant depth d and unbounded —, A,V gates. Size=
number of A,V gates.

e ACy = languages decidable by by poly-size ACy circuits of a constant
depth.

Exercise:
(i). PARITY,, has a depth-two circuit of size 2"~1 + 1, which is tight. This is
both for DNF and CNF representation.

(#). PARITY,, can be computed by depth-d circuit of size 20" 7Y for every
d>2.
Without proof:

Theorem 14 (Hastad). PARITY,, requires ACy circuits of size 9(nt/ (4=

Hence, PARITY,, & AC).

MOD,, n(21,...,2,) = 1if in#Omodm
= 0, otherwise.
o ACy[m] circuits - in addition, unbounded MOD,,, gates.

o ACy[m] = languages decidable by poly-size ACy[m] circuits of a constant
depth.

Theorem 15 (Razborov-Smolensky). PARITY,, requires ACy[3] circuits of size
22(n"*)  Hence, PARITY, ¢ ACy[3].



Finite fields interlude
F, - a field with ¢ elements.

o A g-element field exists iff ¢ is a power of a prime number p. The field
then has characteristic p (i.e., sum of p ones is zero).

e All finite fields of the same size are isomorphic.

Fermat’s Little Theorem
aP? = amodp, if p is a prime. Hence, a” = a for every a € F,, and a?~t € {0,1}.

Fact:

(i). Every f : Fy — F can be uniquely represented as a polynomial with
coefficients from F, in which every variable has degree at most ¢ — 1.

(é). Every f : {0,1}" — {0,1} can be uniquely represented as a multilinear
polynomial with coefficients from F, (this holds also over infinite fields).

Lecture 5

Proof of Theorem [I5

Lemma 16. Assume that f : {0,1}" — {0,1} has an AC[3]o-circuit of depth
d and size s. Then for every k > 2, there exists a proper polynomial f Fs

over F3 which has a) degree at most < (2k)?, and b) agrees with f on at least
(1 — 5% )-fraction of inputs (and c) maps {0,1}" to {0,1}).

Lemma 17. Any polynomial over Fs of degree at most \/n agrees with PARITY,,
on at most 0.99-fraction of inputs.

Generalizations:

e MOD,,,, is not in ACy[g] whenever p, ¢ are distinct primes.
e MAJORITY,, is not in ACy[g] whenever ¢ is a prime.
Open problem:

e superpolynomial lower bound on bounded-depth circuits with MODg gates,
or circuits using both MOD3 and MOD, gates.

Other classes:

e ACCy (bounded-depth circuits with arbitrary MOD gates), TCy (thresh-
old gates = majority gates).

ACy C ACCy CTCy



Lecture 6

e Definition of branching program and decision trees. Size=number of ver-
tices.

Exercise. PARITY,, has a BP of a linear size (and width 2).

Exercise. Branching programs lie between circuits and formulas:
(7). CircuitSize(f) < O(BPsize(f),
(é). BPsize(f) < L(f).

Constant-width branching programs

e Definition of layered branching program. Length=number of layers (except
the source). Width= maximum size of a layer.

Exercise. Branching programs of length ¢ and a constant width have a
circuit of depth O(log¥¢) (and hence a formula of size polynomial in £).

Barrington’s theorem

Puzzle: Hang a picture using two nails so that the picture falls down whenever
a nail is removed.

e S;= group of permutations on a five element set.

e Definition of a program over S5 of length ¢ that o-computes a Boolean
function; e # o € S5.

e A program over S5 of length ¢ gives a branching program of length ¢.

Lemma 18. (i). If o is a cyclic permutation then so is o~ *.

(ii). If 01,09 are cyclic permutations then there exists a permutation T with
-1
Oy =TOT .

(iii). There exist cyclic permutations o, 3 € S5 such that afa~tB~! is cyclic.

Lemma 19. Assume 01,09 are cyclic. If Py o1-computes f then there exists a
program of the same length that oo-computes f.

Theorem 20 (Barrington). If f has a Boolean circuit of depth d (counting
A, V, =) then it has an S5-program of length at most 4.

Corollary 21. (i). If f has a Boolean circuit of depth d then it has a width-5
branching program of length at most 4%

(i1). Languages decided by polynomial size formulas = languages decidable by
width-5 branching programs of polynomial size.



Lecture 7

e Monotone Boolean functions, circuits and formulas. Ly, ;= monotone
formula resp. circuit size.

e Majority, threshold functions, MATCHING,,, BipMATCHING,,, CLIQUEfV

Exercise. MAJORITY,, has a monotone circuit of a polynomial size and a
monotone formula of a quasipolynomial (n®{°&™)) size.

Note. Theorem [7|holds also for monotone formula size and depth.

Theorem 22 (Valiant). MAJORITY,, has a monotone formula of a polynomial
size.

Lecture 8
e Definition of a monotone slice function.

Theorem 23 (Berkowitz). Let f be an n-variate slice function. Then Ly (f) <
L(f)poly(n) and C4(f) < CircuitSize(f) + poly(n).

Some monotone lower bounds without proof:

o BipMATCHING,, requires monotone circuit size n°g7) and monotone
formula size 2" (Razborov, Raz-Wigderson).

e If k < \/n, CLIQUEF requires monotone circuit of size n(VE) (Razborov,
Alon-Boppana).

e There exists a function with a poly-size circuit but no subexponential
monotone circuit (Tardos).
A superpolynomial lower bound on monotone formula size

e A bipartite graph with vertices U U V' is k-separated if for every disjoint
a,a’ C U of size k there exists v € V connected to every element of a but
no element of a'.

e Paley graph is k-separated with |U|, |V | =n and k ~ logn.

e A is the collection of sets agUa; with ag C U of size kand a; CV ={v €
V';v connected to every u € ag}.
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Theorem 24. Gal-Pudlak If G is k-separated then L (fg) > ().

For Paley graph, this gives L (fg) > n2(og™),

Exercise: The disjointness matrices D,, and D, ;, have full rank.

A monotone analogy of Lemma

Lemma 25. If L (f) = s then Ry can be partitioned into s (+)-monochromatic
rectangles.

Lemma 26. If M is a f~(0) x f=1(1) matriz then

k(M)

L+(f) > maxp 'I"k(MR) y

where the mazimum is taken over (+)-monochromatic rectangles.



