
Non-uniform computational models

Lecture 1

• Definition of complexity classes P , NP , coNP , Σp
k, Π

p
k and the polynomial

hierarchy PH.

Proof sketch:

Theorem 1. If P = NP then P = PH. If Σp
k = Πp

k then Σp
k = PH.

• Definition of a Boolean circuit in de Morgan basis ∧,∨,¬.

• Circuit computes a Boolean function f : {0, 1}n → {0, 1}m. Size = num-
ber of gates. Depth = length of a longest directed path.

• Definition of P/poly = languages computed by Boolean circuits of a poly-
nomial size.

Exercise: PARITYn has a Boolean circuit of size O(n) and depth O(log n).

Proof sketch:

Theorem 2. P ⊆ P/poly.

P/poly is uncountable and hence:

P/poly ̸⊆ P .

Lecture 2

Proof sketch:

Theorem 3 (Karp-Lipton). If NP ⊆ P/poly then PH = Σp
2.

The key ingredient is self-reducibility of SAT.

Theorem 4 (Shannon). There exists a Boolean function f : {0, 1}n → {0, 1}
which requires a circuit of size Ω( 2

n

n ).

Theorem 5. Every Boolean function can be computed by a circuit of size at
most O( 2

n

n ).
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• Definition of Boolean formula in basis ∧,∨,¬.

• By de Morgan rules, negations can be moved to leaves.

• L(f) := minimum number of leaves in a formula computing f . D(f):=
minimum depth of a formula/circuit computing f (counting ∧,∨-gates on
a path)

• L(f) captures total number of gates up to a constant factor.

L(f) ≤ 2D(f)

Lemma 6. Given a binary tree T with s ≥ 2 leaves, there exists a node v such
that the subtree rooted at v has sv leaves with

s/3 < sv ≤ 2s/3 .

Theorem 7. D(f) ≤ O(logL(f)).

Lecture 3

Khrapchenko lower bound

Exercise: PARITYn has a (¬,∧,∨)-formula with n2 leaves if n is a power of
two. In general, L(PARITYn) ≤ O(n2).

Theorem 8 (Khrapchenko). For every n, L(PARITYn) ≥ n2

• R = A×B ⊆ {0, 1}×{0, 1}n is a monochromatic rectangle if ai = 1, bi = 0
for every (a, b) ∈ R, or vice versa.

• Rf = f−1(0)× f−10

Lemma 9. If L(f) = s then Rf can be partitioned into s monochromatic rect-
angles.

• H := {(a, b) ∈ {0, 1}×{0, 1}n : a and b have Hamming distance 1.}

S ⊆ {0, 1}×{0, 1}n , µ(S) :=
|H ∩ S|2

|S|
.

Lemma 10. (i). If R is a monochromatic rectangle then µ(R) ≤ 1.

(ii). If S1, S2 are disjoint subsets of {0, 1}×{0, 1}n then µ(S1 ∪ S2) ≤ µ(S1) +
µ(S2).

Corollary 11. µ(Rf ) ≤ L(f).
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Nechiporuk lower bound

• Formulas with arbitrary (binary) gates.

• f(X,Y ) a Boolean function in disjoint sets of variablesX,Y . X-subfunction
of f is obtained by setting variables in Y to 0 or 1. SubX(f)= the set of
all X-subfunctions of f .

Lemma 12. Assume that f has a formula (with arbitrary binary gates) in which
the variables from X appear sx times. Then |SubX(f)| ≤ 24sx .

n = 2k−1k. a1, . . . , a2k−1 ∈ {0, 1}k,

EDMn(a1, . . . , a2k−1) = 1 iff all ai are distinct.

Theorem 13 (Nechiporuk). EDMn requires formula with arbitrary gates of size
Ω(n2/ log2 n).

• Note: the bound can be improved to Ω(n2/ log n) by choosing n and k
more carefully.

Lecture 4

• AC0 circuits - a constant depth d and unbounded ¬,∧,∨ gates. Size=
number of ∧,∨ gates.

• AC0 = languages decidable by by poly-size AC0 circuits of a constant
depth.

Exercise:

(i). PARITYn has a depth-two circuit of size 2n−1 + 1, which is tight. This is
both for DNF and CNF representation.

(ii). PARITYn can be computed by depth-d circuit of size 2O(n1/(d−1)) for every
d ≥ 2.

Without proof:

Theorem 14 (Hastad). PARITYn requires AC0 circuits of size 2Ω(n1/(d−1)).
Hence, PARITYn ̸∈ AC0.

MODm,n(x1, . . . , xn) = 1 if
∑

xi ̸= 0modm

= 0 , otherwise.

• AC0[m] circuits - in addition, unbounded MODm gates.

• AC0[m] = languages decidable by poly-size AC0[m] circuits of a constant
depth.

Theorem 15 (Razborov-Smolensky). PARITYn requires AC0[3] circuits of size

2Ω(n1/2d)). Hence, PARITYn ̸∈ AC0[3].
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Finite fields interlude

Fq - a field with q elements.

• A q-element field exists iff q is a power of a prime number p. The field
then has characteristic p (i.e., sum of p ones is zero).

• All finite fields of the same size are isomorphic.

Fermat’s Little Theorem
ap = amod p, if p is a prime. Hence, ap = a for every a ∈ Fp, and ap−1 ∈ {0, 1}.

Fact:

(i). Every f : Fn
q → F can be uniquely represented as a polynomial with

coefficients from Fq in which every variable has degree at most q − 1.

(ii). Every f : {0, 1}n → {0, 1} can be uniquely represented as a multilinear
polynomial with coefficients from Fq (this holds also over infinite fields).

Lecture 5

Proof of Theorem 15.

Lemma 16. Assume that f : {0, 1}n → {0, 1} has an AC[3]0-circuit of depth

d and size s. Then for every k ≥ 2, there exists a proper polynomial f̂ F3

over F3 which has a) degree at most ≤ (2k)d, and b) agrees with f on at least
(1− s

2k
)-fraction of inputs (and c) maps {0, 1}n to {0, 1}).

Lemma 17. Any polynomial over F3 of degree at most
√
n agrees with PARITYn

on at most 0.99-fraction of inputs.

Generalizations:

• MODp,n is not in AC0[q] whenever p, q are distinct primes.

• MAJORITYn is not in AC0[q] whenever q is a prime.

Open problem:

• superpolynomial lower bound on bounded-depth circuits with MOD6 gates,
or circuits using both MOD3 and MOD2 gates.

Other classes:

• ACC0 (bounded-depth circuits with arbitrary MOD gates), TC0 (thresh-
old gates = majority gates).

AC0 ⊆ ACC0 ⊆ TC0
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Lecture 6

• Definition of branching program and decision trees. Size=number of ver-
tices.

Exercise. PARITYn has a BP of a linear size (and width 2).

Exercise. Branching programs lie between circuits and formulas:

(i). CircuitSize(f) ≤ O(BPsize(f),

(ii). BPsize(f) ≤ L(f).

Constant-width branching programs

• Definition of layered branching program. Length=number of layers (except
the source). Width= maximum size of a layer.

Exercise. Branching programs of length ℓ and a constant width have a
circuit of depth O(log ℓ) (and hence a formula of size polynomial in ℓ).

Barrington’s theorem

Puzzle: Hang a picture using two nails so that the picture falls down whenever
a nail is removed.

• S5= group of permutations on a five element set.

• Definition of a program over S5 of length ℓ that σ-computes a Boolean
function; e ̸= σ ∈ S5.

• A program over S5 of length ℓ gives a branching program of length ℓ.

Lemma 18. (i). If σ is a cyclic permutation then so is σ−1.

(ii). If σ1, σ2 are cyclic permutations then there exists a permutation τ with
σ2 = τστ−1.

(iii). There exist cyclic permutations α, β ∈ S5 such that αβα−1β−1 is cyclic.

Lemma 19. Assume σ1, σ2 are cyclic. If P1 σ1-computes f then there exists a
program of the same length that σ2-computes f .

Theorem 20 (Barrington). If f has a Boolean circuit of depth d (counting
∧,∨,¬) then it has an S5-program of length at most 4d.

Corollary 21. (i). If f has a Boolean circuit of depth d then it has a width-5
branching program of length at most 4d

(ii). Languages decided by polynomial size formulas = languages decidable by
width-5 branching programs of polynomial size.
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Lecture 7

• Monotone Boolean functions, circuits and formulas. L+, C+= monotone
formula resp. circuit size.

• Majority, threshold functions, MATCHINGn, BipMATCHINGn, CLIQUEk
n.

Exercise. MAJORITYn has a monotone circuit of a polynomial size and a
monotone formula of a quasipolynomial (nO(logn)) size.

Note. Theorem 7 holds also for monotone formula size and depth.

Theorem 22 (Valiant). MAJORITYn has a monotone formula of a polynomial
size.

Lecture 8

• Definition of a monotone slice function.

Theorem 23 (Berkowitz). Let f be an n-variate slice function. Then L+(f) ≤
L(f)poly(n) and C+(f) ≤ CircuitSize(f) + poly(n).

Some monotone lower bounds without proof:

• BipMATCHINGn requires monotone circuit size nΩ(logn) and monotone
formula size 2Ω(n) (Razborov, Raz-Wigderson).

• If k ≤
√
n, CLIQUEk

n requires monotone circuit of size nΩ(
√
k) (Razborov,

Alon-Boppana).

• There exists a function with a poly-size circuit but no subexponential
monotone circuit (Tardos).

A superpolynomial lower bound on monotone formula size

• A bipartite graph with vertices U ∪ V is k-separated if for every disjoint
a, a′ ⊆ U of size k there exists v ∈ V connected to every element of a but
no element of a′.

• Paley graph is k-separated with |U |, |V | = n and k ∼ log n.

• A is the collection of sets a0∪a1 with a0 ⊆ U of size k and a1 ⊆ V = {v ∈
V ; v connected to every u ∈ a0}.

fG :=
∨
a∈A

∧
w∈a

xw .
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Theorem 24. Gal-Pudlak If G is k-separated then L+(fG) ≥
(
n
k

)
.

For Paley graph, this gives L+(fG) ≥ nΩ(logn).

Exercise: The disjointness matrices Dn and Dn,k have full rank.

A monotone analogy of Lemma 26:

Lemma 25. If L+(f) = s then Rf can be partitioned into s (+)-monochromatic
rectangles.

Lemma 26. If M is a f−1(0)× f−1(1) matrix then

L+(f) ≥
rk(M)

maxR rk(MR)
,

where the maximum is taken over (+)-monochromatic rectangles.
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