Non-uniform computational models

Lecture 1

• Definition of complexity classes P, NP, coNP, Σ_k^p , Π_k^p and the polynomial hierarchy PH.

Proof sketch:

Theorem 1. If P = NP then P = PH. If $\Sigma_k^p = \Pi_k^p$ then $\Sigma_k^p = PH$.

- Definition of a Boolean circuit in de Morgan basis \land, \lor, \neg .
- Circuit computes a Boolean function $f : \{0,1\}^n \to \{0,1\}^m$. Size = number of gates. Depth = length of a longest directed path.
- Definition of *P*/*poly* = languages computed by Boolean circuits of a polynomial size.

Exercise: PARITY_n has a Boolean circuit of size O(n) and depth $O(\log n)$.

Proof sketch:

Theorem 2. $P \subseteq P/poly$.

P/poly is uncountable and hence:

 $P/poly \not\subseteq P$.

Lecture 2

Proof sketch:

Theorem 3 (Karp-Lipton). If $NP \subseteq P/poly$ then $PH = \Sigma_2^p$.

The key ingredient is *self-reducibility* of SAT.

Theorem 4 (Shannon). There exists a Boolean function $f : \{0,1\}^n \to \{0,1\}$ which requires a circuit of size $\Omega(\frac{2^n}{n})$.

Theorem 5. Every Boolean function can be computed by a circuit of size at most $O(\frac{2^n}{n})$.

- Definition of Boolean formula in basis \land, \lor, \neg .
- By de Morgan rules, negations can be moved to leaves.
- L(f) := minimum number of leaves in a formula computing f. D(f):= minimum depth of a formula/circuit computing f (counting \land, \lor -gates on a path)
- L(f) captures total number of gates up to a constant factor.

$$L(f) < 2^{D(f)}$$

Lemma 6. Given a binary tree T with $s \ge 2$ leaves, there exists a node v such that the subtree rooted at v has s_v leaves with

$$s/3 < s_v \le 2s/3$$
.

Theorem 7. $D(f) \leq O(\log L(f))$.

Lecture 3

Khrapchenko lower bound

Exercise: PARITY_n has a (\neg, \land, \lor) -formula with n^2 leaves if n is a power of two. In general, $L(\text{PARITY}_n) \leq O(n^2)$.

Theorem 8 (Khrapchenko). For every n, $L(PARITY_n) \ge n^2$

- $R = A \times B \subseteq \{0, 1\}^{\times} \{0, 1\}^n$ is a monochromatic rectangle if $a_i = 1, b_i = 0$ for every $(a, b) \in R$, or vice versa.
- $R_f = f^{-1}(0) \times f^{-1}0$

Lemma 9. If L(f) = s then R_f can be partitioned into s monochromatic rectangles.

• $H := \{(a, b) \in \{0, 1\}^{\times} \{0, 1\}^n : a \text{ and } b \text{ have Hamming distance } 1.\}$

$$S \subseteq \{0,1\}^{\times} \{0,1\}^n, \ \mu(S) := \frac{|H \cap S|^2}{|S|}.$$

Lemma 10. (i). If R is a monochromatic rectangle then $\mu(R) \leq 1$.

(ii). If S_1, S_2 are disjoint subsets of $\{0, 1\}^{\times} \{0, 1\}^n$ then $\mu(S_1 \cup S_2) \le \mu(S_1) + \mu(S_2)$.

Corollary 11. $\mu(R_f) \leq L(f)$.

Nechiporuk lower bound

- Formulas with arbitrary (binary) gates.
- f(X, Y) a Boolean function in disjoint sets of variables X, Y. X-subfunction of f is obtained by setting variables in Y to 0 or 1. $\operatorname{Sub}_X(f)$ = the set of all X-subfunctions of f.

Lemma 12. Assume that f has a formula (with arbitrary binary gates) in which the variables from X appear s_x times. Then $|Sub_X(f)| \leq 2^{4s_x}$.

$$n = 2^{k-1}k$$
. $a_1, \ldots, a_{2^{k-1}} \in \{0, 1\}^k$

 $EDM_n(a_1,\ldots,a_{2^{k-1}}) = 1$ iff all a_i are distinct.

Theorem 13 (Nechiporuk). EDM_n requires formula with arbitrary gates of size $\Omega(n^2/\log^2 n)$.

• Note: the bound can be improved to $\Omega(n^2/\log n)$ by choosing n and k more carefully.

Lecture 4

- AC_0 circuits a constant depth d and unbounded \neg, \land, \lor gates. Size = number of \land, \lor gates.
- AC_0 = languages decidable by by poly-size AC_0 circuits of a constant depth.

Exercise:

- (i). PARITY_n has a depth-two circuit of size $2^{n-1} + 1$, which is *tight*. This is both for DNF and CNF representation.
- (ii). PARITY_n can be computed by depth-d circuit of size $2^{O(n^{1/(d-1)})}$ for every $d \ge 2$.

Without proof:

Theorem 14 (Hastad). *PARITY_n* requires AC_0 circuits of size $2^{\Omega(n^{1/(d-1)})}$. Hence, *PARITY_n* $\notin AC_0$.

$$MOD_{m,n}(x_1, \dots, x_n) = 1 \text{ if } \sum x_i \neq 0 \mod m$$

= 0, otherwise.

- $AC_0[m]$ circuits in addition, unbounded MOD_m gates.
- $AC_0[m]$ = languages decidable by poly-size $AC_0[m]$ circuits of a constant depth.

Theorem 15 (Razborov-Smolensky). *PARITY_n* requires $AC_0[3]$ circuits of size $2^{\Omega(n^{1/2d})}$. Hence, $PARITY_n \notin AC_0[3]$.

Finite fields interlude

 \mathbb{F}_q - a field with q elements.

- A q-element field exists iff q is a power of a prime number p. The field then has *characteristic* p (i.e., sum of p ones is zero).
- All finite fields of the same size are isomorphic.

Fermat's Little Theorem

 $a^p = a \mod p$, if p is a prime. Hence, $a^p = a$ for every $a \in \mathbb{F}_p$, and $a^{p-1} \in \{0, 1\}$.

Fact:

- (i). Every $f : \mathbb{F}_q^n \to \mathbb{F}$ can be uniquely represented as a polynomial with coefficients from \mathbb{F}_q in which every variable has degree at most q 1.
- (*ii*). Every $f : \{0,1\}^n \to \{0,1\}$ can be uniquely represented as a multilinear polynomial with coefficients from \mathbb{F}_q (this holds also over infinite fields).

Lecture 5

Proof of Theorem 15.

Lemma 16. Assume that $f : \{0,1\}^n \to \{0,1\}$ has an $AC[3]_0$ -circuit of depth d and size s. Then for every $k \geq 2$, there exists a proper polynomial $\widehat{f} \mathbb{F}_3$ over \mathbb{F}_3 which has a) degree at most $\leq (2k)^d$, and b) agrees with f on at least $(1 - \frac{s}{2^k})$ -fraction of inputs (and c) maps $\{0,1\}^n$ to $\{0,1\}$).

Lemma 17. Any polynomial over \mathbb{F}_3 of degree at most \sqrt{n} agrees with $PARITY_n$ on at most 0.99-fraction of inputs.

Generalizations:

- $MOD_{p,n}$ is not in $AC_0[q]$ whenever p, q are distinct primes.
- MAJORITY_n is not in $AC_0[q]$ whenever q is a prime.

Open problem:

• superpolynomial lower bound on bounded-depth circuits with MOD₆ gates, or circuits using both MOD₃ and MOD₂ gates.

Other classes:

• ACC_0 (bounded-depth circuits with arbitrary MOD gates), TC_0 (threshold gates = majority gates).

$$AC_0 \subseteq ACC_0 \subseteq TC_0$$

Lecture 6

• Definition of *branching program* and decision trees. *Size*=number of vertices.

Exercise. PARITY_n has a BP of a linear size (and width 2).

Exercise. Branching programs lie between circuits and formulas:

- (*i*). CircuitSize(f) $\leq O(BPsize(f))$,
- (*ii*). BPsize $(f) \leq L(f)$.

Constant-width branching programs

• Definition of *layered* branching program. *Length*=number of layers (except the source). *Width*= maximum size of a layer.

Exercise. Branching programs of length ℓ and a constant width have a circuit of depth $O(\log \ell)$ (and hence a formula of size polynomial in ℓ).

Barrington's theorem

Puzzle: Hang a picture using two nails so that the picture falls down whenever a nail is removed.

- S_5 = group of permutations on a five element set.
- Definition of a program over S5 of length ℓ that σ -computes a Boolean function; $e \neq \sigma \in S5$.
- A program over S5 of length ℓ gives a branching program of length ℓ .

Lemma 18. (i). If σ is a cyclic permutation then so is σ^{-1} .

- (ii). If σ_1, σ_2 are cyclic permutations then there exists a permutation τ with $\sigma_2 = \tau \sigma \tau^{-1}$.
- (iii). There exist cyclic permutations $\alpha, \beta \in S5$ such that $\alpha\beta\alpha^{-1}\beta^{-1}$ is cyclic.

Lemma 19. Assume σ_1, σ_2 are cyclic. If $P_1 \sigma_1$ -computes f then there exists a program of the same length that σ_2 -computes f.

Theorem 20 (Barrington). If f has a Boolean circuit of depth d (counting \land, \lor, \neg) then it has an S5-program of length at most 4^d .

- **Corollary 21.** (i). If f has a Boolean circuit of depth d then it has a width-5 branching program of length at most 4^d
- (ii). Languages decided by polynomial size formulas = languages decidable by width-5 branching programs of polynomial size.

Lecture 7

- Monotone Boolean functions, circuits and formulas. $L_+, C_+=$ monotone formula resp. circuit size.
- Majority, threshold functions, MATCHING_n, BipMATCHING_n, CLIQUE^k_n.

Exercise. MAJORITY_n has a monotone circuit of a polynomial size and a monotone formula of a quasipolynomial $(n^{O(\log n)})$ size.

Note. Theorem 7 holds also for monotone formula size and depth.

Theorem 22 (Valiant). MAJORITY_n has a monotone formula of a polynomial size.

Lecture 8

• Definition of a monotone *slice function*.

Theorem 23 (Berkowitz). Let f be an n-variate slice function. Then $L_+(f) \leq L(f) \operatorname{poly}(n)$ and $C_+(f) \leq \operatorname{CircuitSize}(f) + \operatorname{poly}(n)$.

Some monotone lower bounds without proof:

- BipMATCHING_n requires monotone circuit size $n^{\Omega(\log n)}$ and monotone formula size $2^{\Omega(n)}$ (Razborov, Raz-Wigderson).
- If $k \leq \sqrt{n}$, CLIQUE^k_n requires monotone circuit of size $n^{\Omega(\sqrt{k})}$ (Razborov, Alon-Boppana).
- There exists a function with a poly-size circuit but no subexponential monotone circuit (Tardos).

A superpolynomial lower bound on monotone formula size

- A bipartite graph with vertices $U \cup V$ is *k*-separated if for every disjoint $a, a' \subseteq U$ of size k there exists $v \in V$ connected to every element of a but no element of a'.
- Paley graph is k-separated with |U|, |V| = n and $k \sim \log n$.
- A is the collection of sets $a_0 \cup a_1$ with $a_0 \subseteq U$ of size k and $a_1 \subseteq V = \{v \in V; v \text{ connected to every } u \in a_0\}.$

$$f_G := \bigvee_{a \in A} \bigwedge_{w \in a} x_w$$

Theorem 24. Gal-Pudlak If G is k-separated then $L_+(f_G) \ge {n \choose k}$.

For Paley graph, this gives $L_+(f_G) \ge n^{\Omega(\log n)}$.

Exercise: The disjointness matrices D_n and $D_{n,k}$ have full rank.

A monotone analogy of Lemma 26:

Lemma 25. If $L_+(f) = s$ then R_f can be partitioned into s (+)-monochromatic rectangles.

Lemma 26. If M is a $f^{-1}(0) \times f^{-1}(1)$ matrix then

$$L_+(f) \ge \frac{rk(M)}{\max_R rk(M_R)},$$

where the maximum is taken over (+)-monochromatic rectangles.