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Abstract
Weshow that for every A ⊆ {0, 1}n , there exists a polytope P ⊆ Rn with P∩{0, 1}n =
A and extension complexity O(2n/2), and that there exists an A ⊆ {0, 1}n such that
the extension complexity of any P with P ∩ {0, 1}n = A must be at least 2n(1−o(1))/3.
We also remark that the extension complexity of any 0/1-polytope in Rn is at most
O(2n/n) and pose the problem whether the upper bound can be improved to O(2cn),
for c < 1.
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1 Introduction

Apolytope P ⊆ Rn withmany facets can often be expressed as a projection of a higher-
dimensional polytope Q ⊆ Rm with much fewer facets. This is especially significant
in the context of linear programming: instead of optimizing a linear function over P ,
it is more efficient to optimize over Q. Extension complexity of P is defined as the
smallest k so that P is an affine image of a polytopewith k facets. Extension complexity
has been studied in the seminal paper of Yannakakis [25], Fiorini et al. [10], Rothvoß
[22], and others. In [22], Rothvoß has shown that there exist 0/1-polytopes in Rn with
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extension complexity 2n(1−o(1))/2; in fact, a random polytope has this property. Our
paper originated with the question whether the bound of Rothvoß is tight.

Problem 1.1 Can every 0/1-polytope P be expressed as a projection of a polytope
with O(2cn) facets, for a constant c < 1?

Note that P itself can have many more than 2n facets [5]. Extension complexity,
however, can be bounded by the number of vertices and hence the trivial upper bound
is 2n . In Problem 1.1, wewant to knowwhich of the bounds, 2n/2 vs. 2n , is closer to the
truth. This is reminiscent of a similar problem inR2. In [10], Fiorini et al. have shown
that there exist polygons in R2 with k vertices and extension complexity !(

√
k).

Quite surprisingly, Shitov [23] has shown that every k-vertex polygon has extension
complexity O(k2/3). Furthermore, there is an O(k1/2) upper bound for several natural
classes of polygons [19].

Problem 1.1 is related to a similar question about graphs. Given an n-vertex graph,
let PG ⊆ Rn be the convex hull of characteristic vectors of its edges. An explicit
description of PG in terms of inequalities is known [17, 20], and it is especially simple
in the case of bipartite graphs. The trivial upper bound on xc(PG) is O(n2). We point
out that any improvement on this trivial bound gives an improvement on extension
complexity of 0/1-polytopes. This reduction is similar to the so-called graph complex-
ity (see [16, 21]) where an n variate Boolean function is interpreted as defining a graph
on exponentially many vertices. Extension complexity of PG has been investigated
by Fiorini et al. in [8], where a non-trivial upper bound O(n2/log n) was presented
(cf. [3]). This translates to a modest contribution to Problem 1.1: P is a projection of
a polytope with O(2n/n) facets. The latter bound has also been obtained by Averkov
et al. in [4].

We mainly focus on a relaxation of Problem 1.1. Given A ⊆ {0, 1}n , a polytope
P ⊆ Rn will be called separating for A if P∩{0, 1}n = A. In other words, P separates
Boolean points in A from those outside of A. The smallest separating polytope is
conv(A) itself. Extension complexity of separating polytopes has several connections
with computational complexity, as extensively discussed in [12]. Here we show that
every A ⊆ {0, 1}n has a separating polytope with extension complexity O(2n/2). This
is achieved by the aforementioned reduction to graphs, and by showing that the set
of edges of G has a separating polytope of linear size. This quantitatively matches
the lower bound of Rothvoß—except that the assumptions are different. There are
infinitely many separating polytopes other than conv(A) itself and so the lower bound
is not applicable. In [13], a lower bound of 2!(n) on extension complexity of separating
polytopes has been given. The constant in the exponent hinges on known bounds on
quantifier elimination and it is not hard to see that the proof from [13] gives 2n(1−o(1))/5.
We will improve this bound to 2n(1−o(1))/3 using a more geometrical argument.

Organization of the paper. In Sect. 2 we give basic definitions and state the main
result (Theorem 2.1). In Sect. 3 we give examples of bounds on the number of facets of
separating polytopes. In Sect. 4 we prove the upper bound (Theorem 4.2) and discuss
the connection with graph complexity. Finally, in Sect. 5 we prove the lower bound
(Theorem 5.7).
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2 TheMain Result

A polytope P ⊆ Rn is the convex hull of a finite set of points in Rn . It can also be
viewed as a bounded set defined by a finite number of linear constraints. The extension
complexity of a polytope P , xc(P), is the smallest k so that there exists a polytope
Q ⊆ Rm with k facets and an affine map π : Rm → Rn such that P = π(Q).
Given A ⊆ {0, 1}n , its separation complexity, sep(A), is the minimum xc(P) over all
polytopes P ⊆ Rn with

P ∩ {0, 1}n = A;

such a P is called a separating polytope for A. We provide non-trivial upper and lower
bounds on sep(A):

Theorem 2.1 (i) For every A ⊆ {0, 1}n, sep(A) ≤ O(2n/2).
(ii) There exists A ⊆ {0, 1}n with sep(A) ≥ 2n(1−o(1))/3.

Remark 2.2 In [12, 13], separation complexity is defined slightly differently with P
allowed to be an unbounded polyhedron. This is just a cosmetic detail—we can inter-
sect P with [0, 1]n (or a simplex containing it) which increases its complexity by an
additive term of O(n).

As observed in [12, 25], a Boolean circuit of size s which accepts precisely the inputs
from A gives a separating polytope for A with extension complexity O(s+ n). Hence
an upper bound of O(2n/n) on sep(A) can be obtained from known upper bounds
on Boolean circuit size due to Lupanov (see [15, Sect. 1.4.1]). The upper bound from
Theorem 2.1 is more intimately related to a result of Dančík [7] who has obtained
an O(2n/2) upper bound for depth three circuits with unbounded fan-in ∧,∨-gates.
Our proof is virtually the same though it does not seem to follow from Dančík’s result
in a black box fashion. A lower bound of 2!(n) on separation complexity has been
obtained in [13]. The estimate presented in Theorem 2.1 is quantitatively stronger.

3 Simple Bounds on the Number of Facets

Wefirst give some elementary bounds on the number of facets of separating polytopes.
This is mainly to contrast it both with extension complexity and the number of facets
of 0/1-polytopes. These results1 have been previously obtained by Jeroslow [14], and
we include them for completeness.

Proposition 3.1 Every A ⊆ {0, 1}n has a separating polytope with at most 2n facets.

Proof For x ∈ Rn and σ ∈ {0, 1}n , define

hσ (x) :=
n∑

i=1

xi (1 − σi )+ (1 − xi )σi .

1 In fact, Jeroslow obtains the tight estimate 2n−1 in Proposition 3.1 while allowing the separating poly-
hedron to be unbounded.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Discrete & Computational Geometry (2023) 70:268–278 271

If x isBoolean, hσ (x) is theHammingdistance between x andσ . Define P ⊆ Rn by the
constraints hσ (x) ≥ 1 for every σ ∈ {0, 1}n \ A. Then indeed P∩ {0, 1}n = A. P may
be possibly unbounded. This can be remedied by adding the constraints hσ (x) ≥ 0,
σ ∈ A. +,
Let ODDn ⊆ {0, 1}n be the set of Boolean strings with odd number of ones.

Proposition 3.2 If n ≥ 2, every separating polytope forODDn has at least 2n−1 facets.

Proof Let H be a closed half-space
{
x ∈ Rn : ∑

i ai xi ≥ b
}
. We claim the following:

ifODDn ⊆ H then H̄ := Rn \H contains at most one even string σ ∈ {0, 1}n \ODDn .
To see this, assume an even σ is contained in H̄ . Without loss of generality, we can
assume that σ is the zero vector; otherwise apply an affine map that flips 0 and 1 for
the 1-coordinates of σ . Since σ /∈ H , we must have b > 0. Since every unit vector is
in ODDn ⊆ H , we have ai ≥ b for every i . This means that {0, 1}n \ {σ } ⊆ H and no
other even string can be in H̄ .

If n = 2, the statement of the proposition is clear. Let n ≥ 3 and assume that
P is a separating polytope for ODDn with r facets. Then P = ⋂r

i=1 Hi where Hi
are closed half-spaces. (This is because P is full-dimensional for n ≥ 3). We have
ODDn ⊆ Hi for every i , and every even σ is contained in at least one H̄i . Since
|{0, 1}n \ ODDn| = 2n−1, this gives r ≥ 2n−1. +,
By the result of Bárány [5], A can have 2!(n log n) facets—hence Proposition 3.1 shows
that a separating polytope for A can have much fewer facets than conv(A). The convex
hull of ODDn , also known as the parity polytope, has extension complexity O(n)
(see [6]), and it is trivially a separating polytope for ODDn—hence Proposition 3.2
shows that taking extensions into a higher dimension can be exponentially powerful.
It also shows that the O(2n/2) upper bound from Theorem 2.1 cannot be achieved
simply by counting the facets of the separating polytope.

4 The Upper Bound

We now prove the upper bound from Theorem 2.1. Let Bn
2 ⊆ {0, 1}n be the set of

Boolean vectors of Hamming weight two (i.e., with exactly two ones). For a natural
number n, [n] will denote the set {1, . . . , n}.
Lemma 4.1 Let H ⊆ Bn

2 . Then there exists a polytope RH ⊆ [0, 1]n ⊆ Rn with at
most 2n facets such that RH ∩ {0, 1}n = H.

Proof It is convenient to view H as representing edges of a graph with vertex set [n].
Namely, i -= j are adjacent iff ei + e j ∈ H , where ei is the i-th unit vector. Given
i ∈ [n], let N (i) be the set of vertices adjacent with i . Let RH be defined by the
following constraints: 0 ≤ xi for i ∈ [n] and

∑

i∈[n]
xi = 2, (1)

∑

j∈N (i)

x j ≥ xi , i ∈ [n]. (2)
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There are 2n inequalities. It is easy to see they imply xi ≤ 1 for every i ∈ [n] and so
RH ⊆ [0, 1]n . Given ei + e j ∈ H , the constraints defining RH are satisfied and so
H ⊆ RH . Ifσ ∈ {0, 1}n\RH then eitherσ /∈ Bn

2 , and thenσ falsifies (1), orσ = ei+e j
with j /∈ N (i), and then σ falsifies xi ≤ ∑

k∈N (i) xk . Hence RH ∩ {0, 1}n = H . +,

Theorem 4.2 Let A ⊆ {0, 1}n. Then there exists a polytope P ⊆ [0, 1]n with xc(P) =
O(2n/2) and P ∩ {0, 1}n = A.

Proof Without loss of generality, assume that n is even and N := 2n/2. Assume
A ⊆ {0, 1}[n] and partition [n] into two equal parts X1 and X2. Let F1 := {0, 1}X1 and
F2 := {0, 1}X2 . Hence every σ ∈ {0, 1}[n] can be uniquely written as σ = σ1∪σ2 with
σ1 ∈ F1, σ2 ∈ F2. We identify R2N with RF1∪F2 , so that the coordinates are indexed
by elements of F1 ∪ F2. The standard unit vectors are eσ1 , eσ2 , σ1 ∈ F1, σ2 ∈ F2. Let
H ⊆ B2N

2 be defined as

H := {eσ1 + eσ2 : σ1 ∪ σ2 ∈ A}.

Let RH be the polytope from the previous lemma. We want to express P in terms
of RH . Let T ⊆ R2N be the intersection of [0, 1]2N with the hyperplanes

∑

σ1∈F1
xσ1 = 1,

∑

σ2∈F2
xσ2 = 1. (3)

Let π : R2N → Rn be the linear map so that for every σ1 ∈ F1, σ2 ∈ F2, π(eσ1) =
σ1 ∪ 0 and π(eσ2) = 0 ∪ σ2 (where 0 is the zero vector in F2 and F1, respectively).
This guarantees

π (eσ1 + eσ2) = σ1 ∪ σ2.

Moreover, for every σ ∈ {0, 1}n with σ = σ1∪σ2, eσ1+eσ2 is the unique vector x ∈ T
with π(x) = σ . For if π(x) = σ , we have

∑
β∈F1 xββ = σ1 and

∑
β∈F1 xβ = 1,

0 ≤ xβ ≤ 1, by (3). In other words, x gives a convex combination of σ1 in terms of the
Boolean vectors in F1 which is easily seen to be unique. (Similarly for σ2). Finally,
let P := π(RH ∩ T ). Then xc(P) ≤ 2N . Given σ ∈ {0, 1}n , we have σ ∈ P iff
eσ1 + eσ2 ∈ RH . By the definition of H , this is equivalent to σ ∈ A. Hence indeed
P ∩ {0, 1}n = A. +,

4.1 Graphs and Problem 1.1

Given a (simple undirected) graph G with vertex set [n], let PG ⊆ Rn be the convex
hull of characteristic vectors of edges in G:

PG = conv ({ei + e j : i -= j are adjacent in G}).

Note that PG has atmost
(n
2

)
vertices and so xc(PG) is at most quadratic. Fiorini et al. in

[8] have given an improved bound xc(PG) ≤ O(n2/log n) for any graph. It is however
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not known whether xc(PG) ≤ O(nc) for some constant c < 2. We summarize the
connection between this problem and Problem 1.1 as follows2:

Proposition 4.3 Let A ⊆ {0, 1}n. Then xc(conv (A)) ≤ O(2n/n). Moreover, assume
that for every bipartite graph G on 2m vertices (with the parts of equal size), xc(PG) ≤
O(mc), where c ≤ 2 is an absolute constant. Then xc(A) ≤ O(2cn/2)

Proof This is analogous to the proof of Theorem 4.2. The set H corresponds to a bipar-
tite graphG on 2N vertices with N = 2n/2. The projectionπ maps vertices of PG ⊆ T
to Boolean vectors in Rn . Hence π(PG) = conv(A) and xc(conv(A)) ≤ xc(PG).
From [8, Lem. 3.4] we know xc(PG) ≤ O(N 2/log N ) which gives xc(conv(A)) ≤
O(2n/n); the “moreover” part is similar. +,
An explicit description of PG in terms of linear inequalities can be found in [17, 20].
Apart from the general constraints

∑
xi = 2, 0 ≤ xi , every inequality

∑
i∈S xi ≤ 1

is valid whenever S is an independent set. In the case of bipartite G, this indeed gives
a complete description of PG . This also means that PG can have exponentially many
facets—in particular, the polytope from Lemma 4.1 must be strictly larger than PG
for some G.

The lemma can be somewhat strengthened when considering independent sets of
size 2. Let QG be the polyhedron defined by the constraints xi + x j ≤ 1 for every
i -= j not adjacent in G. Clearly, PG ⊆ QG and they contain the same set of Boolean
vectors of Hamming weight two (i.e., the edges of G).

Remark 4.4 Let G be a bipartite n-vertex graph. Then there exists a polytope R′
G with

O(n) facets with PG ⊆ R′
G ⊆ QG .

Proof Let L and R be the parts of G with L ∪ R = [n]. Then R′
G defined by the

following constraints has the desired properties: 0 ≤ xi for i ∈ [n],
∑

i∈L
xi = 1,

∑

i∈R

xi = 1, and xi +
∑

j∈R\N (i)

x j ≤ 1, i ∈ L. +,

Using the machinery of non-negative rank factorizations of slack matrices (see, e.g.,
[9, 22, 25]), the quantity xc(PG) can be captured by the nonnegative rank of an
explicit matrix EISG : its rows are indexed by edges e of G, columns by independent
sets S. The entry corresponding to e and S equals 1, if e and S are disjoint, and 0
otherwise. This matrix is intimately related to the famous Clique vs Independent Set
problem of Yannakakis [25]; see also [11]. If G is bipartite, xc(PG) corresponds to
the non-negative rank of EISG . An interesting submatrix of EISG is the ENEG matrix
obtained by restricting the columns to independent sets of size two (i.e., non-edges).
A similar matrix has been considered in [18] from the point of view of communication
complexity. Since ENEG can have size O(n2)×O(n2), onemay perhaps hope to obtain
quadratic lower bounds on xc(PG) using the non-negative rank of ENEG . We note that
this is impossible.3

2 The first part of the statement can also be found in [4].
3 This could also be concluded from Remark 4.4.
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Remark 4.5 If G is a bipartite n-vertex graph, ENEG can be written as a sum of O(n)
0/1-matrices. For a non-bipartite G, the bound is O (n log n).

Proof LetG be a bipartite graph on vertices L∪R. Let E be the set of edges ofG and Ē
the set of non-edges.Given % ∈ L , r ∈ R, define the following sets A%, Br ,C% ⊆ E×Ē
of edge/non-edge pairs.

– A% consists of pairs with e = {%1, r1}, ē = {%, r2} with % -= %1 ∈ L , r1, r2 ∈ R,
and r1 ∈ N (%).

– Br consists of pairs e = {%1, r}, ē = {v1, v2}, where either v1 -= v2 ∈ R \ {r}, or
v1 ∈ L , v2 ∈ R \ {r}, and v1 /∈ N (r).

– C% are the pairs {%, r1}, {%1, %2} with %1 -= %2 ∈ L \ {%}.
It is easy to see that the sets form a partition of the set of disjoint edge/non-edge pairs.
Moreover, each of the sets is a product set (of the form C ×C ′ with C ⊆ E,C ′ ⊆ Ē).
Identifying a subset of E × Ē with the 0/1-matrix representing its characteristic
function, we can thus write

ENEG =
∑

%

A% +
∑

r

Br +
∑

%

C%,

where the summands are 0/1-matrices of rank one. A general n-vertex graph can be
expressed as an edge-disjoint union of a bipartite graph and two graphs with 1n/22
vertices, and we can proceed by induction. +,

5 The Lower Bound

Our proof of the lower bound from Theorem 2.1 usesWarren’s estimate on the number
of sign patterns of a polynomialmap, andAlon’s bound on the number of combinatorial
types of polytopes. We overview these results first.

For b ∈ R define

sgn(b) =






1, b > 0,
0, b = 0,
−1, b < 0.

For a sequence f = 〈 f1(y1, . . . , yp), . . . , fs(y1, . . . , yp)〉 of real functions, b ∈ Rp,
let sgn( f (b)) := 〈sgn( f1(b)), . . . , sgn( fs(b))〉 ∈ {−1, 0,+1}s , which we call the
sign-pattern of f at b. A result of Warren and its extension by Alon gives a bound on
the number of sign patterns when fi are polynomials of degree at most d.

Theorem 5.1 (Warren [24], Alon [2]) Let f be a sequence of s polynomials of degree
at most d ≥ 1 in the same set of p variables with 2s ≥ p. Then |{sgn( f (b)) :
b ∈ Rp}| ≤ (8eds/p)p.

Given a polytope P , the face lattice of P , L(P), is the poset of the faces of P ordered
by inclusion (including ∅ and P itself). It is naturally equipped with join and meet
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operations, hence it is a lattice. See, e.g., [26] for details. The lattice-isomorphism
equivalence class of L(P) captures the combinatorial type of P .

Theorem 5.2 (Alon [1]) The number of non-isomorphic face lattices arising from
polytopes with r vertices is at most 2r

3(1+o(1)).

By duality, this implies:

Corollary 5.3 The number of non-isomorphic face lattices arising from polytopes with
r facets is at most 2r

3(1+o(1)).

We now proceed to prove the lower bound from Theorem 2.1. We call a set S ⊆ Rn

full-dimensional if no hyperplane in Rn contains S. Note that if A is full-dimensional
then so is any separating P for A.

Lemma 5.4 There are at least 22
n(1−o(1)) full-dimensional subsets of {0, 1}n.

Proof If A contains 0 and the n unit vectors, it is full-dimensional. There are 22
n−n−1

such A’s. +,
Lemma 5.5 For every m ≥ n there are polynomials f1, . . . , fs in mn variables such
that

– s = O(mn+1), each fi has degree at most n and has at most 2O(n log n) non-zero
coefficients,

– for every V ∈ Rm×n viewed as m points inRn, if conv (V ) is full-dimensional then
the set conv (V )∩{0, 1}n is uniquely determinedby 〈sgn( f1(V )), . . . , sgn( fs(V ))〉.

Proof We will construct a set of polynomials such that for any V = {v1, . . . , vm},
we can determine conv(V ) ∩ {0, 1}n by evaluating the signs of these polynomials
on V . The idea is as follows. For every set V ′ of n points from V , we can compute the
unique hyperplane H passing through V ′ (if such a unique hyperplane exists). If all
points in V lie in the same closed half-space determined by H , then conv(V ) ∩ H is
a facet of conv(V ). Let us call such closed half-space good. Then, given σ ∈ {0, 1}n ,
we can determine whether σ ∈ conv(V ) by checking whether it appears in all good
half-spaces.

We now formally define our set of polynomials. Given S ∈
([m]
n

)
and V ∈ Rm×n ,

let VS be the set of vectors {vi : i ∈ S}. We start by constructing the following
polynomials/sets of polynomials. They take VS as input, but we hide the dependence.

(i) aS,1, . . . aS,n are polynomials of degree n − 1 such that VS is affinely indepen-
dent iff some aS,i is non-zero,

(ii) bS is a polynomial of degree n such that whenever VS is affinely independent
then HS(V ) :=

{
x ∈ Rn : ∑

i aS,i xi = bS
}
is the unique hyperplane passing

through VS ,
(iii) FS is a set of m − n polynomials of degree n such that if VS is affinely inde-

pendent, then conv(V ) ∩ HS(V ) is a facet of conv(V ) iff all polynomials in
FS are all non-positive or all non-negative.

Parts (i) and (ii) are an exercise in linear algebra. FS is obtained by evaluating the
hyperplane equation from (ii) on all points from V \ VS—the hyperplane defines a
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facet if all points in V lie on the same side. Let F be the set of polynomials containing
FS, aS,1, . . . , aS,n and

∑

i

aS,iσi − bS,

for every S ∈
([m]
n

)
and σ ∈ {0, 1}n . Then conv(V )∩{0, 1}n is uniquely determined by

the signs of polynomials in F . Thenumber of polynomials is (2n+n+1+(m−n))
(m
n

)
≤

(2n + m + 1)mn/n! ≤ O(mn+1) and their degrees are at most n. The bound on the
number of non-zero coefficients follows by noting that each polynomial depends on
O(n2) variables. +,

Before proceeding to the next lemma, let us make some comments about rational
functions. Given a p-variate rational function f = g/h with g, h coprime polynomials
and h -= 0, define its degree as the maximum of the degrees of g and h. Thus f defines
a partial function : Rp → R. Warren’s estimate can be extended to rational functions
as follows. Given a rational map f = 〈 f1, . . . , fs〉 from Rp to Rs with each fi of
degree at most d ≥ 1, we have

|{sgn( f (b)) : b ∈ Rp, f (b) is defined}| ≤ (cds)p, (4)

where c > 0 is an absolute constant. This follows from Theorem 5.1 by considering
signs of numerators and denominators separately.4

Furthermore,we need the following estimate on the degree of composition. Suppose
that f (x1, . . . , xm) is a polynomial of degree d1 with k non-zero coefficients and
g1, . . . , gm are rational functions of degree at most d2. Then it is easy to see that the
degree of f (g1, . . . , gm) is at most kd1d2.

Lemma 5.6 Let L be a face lattice of a d-dimensional polytope with r ≥ d facets.
Assume d ≥ n and let SL be the set of A ⊆ {0, 1}n such that A is full-dimensional and
there exists a polytope Q in Rd with combinatorial type L such that the projection of
Q on the first n coordinates is separating for A. Then |SL | ≤ 2O(nr3).

Proof Consider a polytope Q in Rd with face lattice L . Since Q is full-dimensional,
we can write it as {y ∈ Rd : By ≤ b} where b ∈ Rr , B ∈ Rr×d . Hence Q can
be described using p := (r + 1)d ≤ O(r2) constants z = 〈B, b〉. Let U be the
vertices of Q. Then |U | ≤ 2r . Every vertex is the unique intersection of d hyperplanes
defining facets of the polytope. Furthermore, the lattice L specifies for each vertex,
which facets it is contained in and, moreover, which d of them have the desired unique
intersection (see, e.g., [26]). For each vertex u ∈ U , canonically pick d such facets.
Then u is the unique solution to a system of d linear equations, and its coordinates
can be seen as rational functions of z. More exactly, using Cramer’s rule, we can write
u(z) = u0(z)−1〈u1(z), . . . , ud(z)〉, where u0, . . . , ud have degree d. Note that u0(z)
is non-zero whenever the polytope described by z is indeed of type L .

4 We also have no assumption on p since the number of sign patterns can be trivially bounded by 3p .
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Project Q on the first n coordinates to obtain P ⊆ Rn . We want to specify which
elements of the Boolean cube are contained in P . Let V be the projection of the
vertices of Q so that P = conv(V ). Assume that P is full-dimensional (otherwise
it cannot contain a full-dimensional A). Lemma 5.5 gives us a set of polynomials
f1(V ), . . . , fs(V ) whose sign pattern determines P ∩ {0, 1}n . We also have s ≤
O(|U |n+1) ≤ 2O(rn), and each fi has degree at most n and it has 2O(n log n) non-zero
coefficients. The coordinates of vertices of V are degree d rational functions of z, hence
fi (V (z)) is a rational function of z of degree at most d ′ ≤ dn2O(n log n) ≤ r2O(n log n).
By (4), the number of sign patterns of 〈 f1(V (z)), . . . , fs(V (z))〉 can be bounded by
(c′sd ′)p. Since s ≤ 2O(rn), p ≤ O(r2), d ′ ≤ r2O(n log n), and n ≤ r , the bound can
be written as 2O(r3n). This gives the desired estimate on |SL |. +,

Theorem 5.7 There exists A ∈ {0, 1}n such that sep (A) ≥ 2n(1−o(1))/3.

Proof Let A be the set of full-dimensional subsets A ⊆ {0, 1}n . Let r ≥ n be such
that every A ∈ A has separation complexity at most r . Without loss of generality,
assume that this is exhibited by a full-dimensional polytope Q ⊆ Rd with r facets
such that the projection of Q on the first n coordinates is a separating polytope for A,
and n ≤ d ≤ r . We then have

|A| ≤ |L| ·max
L∈L

|SL |,

where L is the set of combinatorial types of polytopes with r facets. By Lemma 5.6,
|SL | ≤ 2O(nr3). By Corollary 5.3, we have |L| ≤ 2r

3(1+o(1)). Therefore |A| ≤ 2cnr
3

(for some constant c and n sufficiently large). By Lemma 5.4, we must have 2cnr
3 ≥

22
n(1−o(1)) and thus r ≥ 2n(1−o(1))/3. +,
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