
A subquadratic upper bound on Hurwitz’s

problem and related non-commutative

polynomials∗

Pavel Hrubeš †
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Abstract

For every n, we construct a sum-of-squares identity

(

n∑
i=1

x2
i )(

n∑
j=1

y2
j ) =

s∑
k=1

f2
k ,

where fk are bilinear forms with complex coefficients and s = O(n1.62).
Previously, such a construction was known with s = O(n2/ logn). The
same bound holds over any field of positive characteristic.

As an application to complexity of non-commutative computation, we
show that the polynomial IDn =

∑
i,j∈[n] xiyjxiyj in 2n non-commuting

variables can be computed by a non-commutative arithmetic circuit of size
O(n1.96). This holds over any field of characteristic different from two.
The same bound applies to non-commutative versions of the elementary
symmetric polynomial of degree four and the rectangular permanent of a
4× n matrix.

1 Introduction

The problem of Hurwitz [14] asks for which integers n,m, s does there exist a
sum-of-squares identity

(x21 + · · ·+ x2n)(y
2
1 + · · ·+ y2m) = f21 + · · ·+ f2s , (1)

where f1, . . . , fs are bilinear forms in x and y with complex coefficients. His-
torically, the problem was motivated by existence of non-trivial identities with
n = m = s. Starting with the obvious x21y

2
1 = (x1y1)

2, the first remarkable
identity is

(x21 + x22)(y
2
1 + y22) = (x1y1 − x2y2)

2 + (x1y2 + x2y1)
2 .

∗The first set of results has appeared in [10] and was accepted to CCC’24.
†Institute of Mathematics of ASCR, pahrubes@gmail.com. This work was supported by

Czech Science Foundation GAČR grant 19-27871X.
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It can be interpreted as asserting multiplicativity of the norm on complex num-
bers. Euler’s 4-square identity is an example with n,m, s = 4 which has later
been interpreted as multiplicativity of the norm on quaternions. The final one
is an 8-square identity which arises in connection to the algebra of octonions.

A classical result of Hurwitz [14] shows that these are the only cases: an
identity (1) exists with m, s = n iff n ∈ {1, 2, 4, 8}. An extension of this result
is given by Hurwitz-Radon theorem [18]: an identity (1) exists with s = n iff
m ≤ ρ(n), where ρ(n) is the Hurwitz-Radon number. The value of ρ(n) is
known exactly. For every n, ρ(n) ≤ n and equality is achieved only in the cases
n ∈ {1, 2, 4, 8}. Asymptotically, ρ(n) lies between 2 log2 n and 2 log2 n + 2 if n
is a power of 2. As shown in [19], Hurwitz-Radon theorem remains valid over
any field of characteristic different from two. Hurwitz’s problem is an intriguing
question with connections to several branches of mathematics. We recommend
D. Shapiro’s monograph [20] on this subject.

Let σ(n) denote the smallest s such that an identity (1) with m = n exists.
While Hurwitz-Radon theorem solves the case s = n exactly, even the asymp-
totic behavior of σ(n) is not known. Elementary bounds1 are n ≤ σ(n) ≤ n2.
Hurwitz’s theorem implies that the first inequality is strict if n is sufficiently
large. Using Hurwitz-Radon theorem, the upper bound can be improved to

σ(n) ≤ O(n2/ log n) .

As far as we are aware, this was the best asymptotic upper bound previously
known. In this paper, we will improve it to a truly subquadratic bound

σ(n) ≤ O(n1.62) . (2)

A specific motivation for this problem comes from arithmetic circuit com-
plexity. In [11], Wigderson, Yehudayoff and the current author related the
sum-of-squares problem with the complexity of non-commutative computations.
Non-commutative arithmetic circuit is a model for computing polynomials whose
variables do not multiplicatively commute. Since the seminal paper of Nisan
[17], it has been an open problem to give a superpolynomial lower bound on
circuit size in this model. In [11], it has been shown that a superlinear lower
bound on σ(n) of the form Ω(n1+ϵ), ϵ > 0, translates to an exponential circuit
lower bound in the non-commutative setting. More specifically, such a lower
bound on σ implies an Ω(n1+ϵ) lower bound for the degree four polynomial

IDn =
∑

i,j∈[n]

xiyjxiyj ,

which in turn can be lifted to an exponential lower bound for an explicit poly-
nomial of degree n. Hence, providing asymptotic lower bounds on Hurwitz’s
problem can be seen as a concrete approach towards answering Nisan’s ques-
tion. A more general, and hence less concrete, result of this flavor was given

1The former is obtained by substituting (1, 0, . . . , 0) for the y variables, the latter by writing
(
∑

x2
i )(

∑
j y

2
j ) =

∑
i,j(xiyj)

2.
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by Carmosino et al. in [4]. In an attempt to implement the sum-of-squares
approach, the authors from [11] also gave an Ω(n6/5) lower bound under the
assumption that the identity (1) involves integer coefficients only [12].

In view of previously known bounds on σ, it was conceivable that IDn re-
quires non-commutative arithmetic circuit of size n2−o(1). However, we will use
the upper bound (2) to construct a circuit for IDn of a subquadratic size. The
same applies to related polynomials such as the non-commutative elementary
symmetric polynomial S4,n or the rectangular permanent of a 4×n matrix. The
latter polynomials have been previously studied by Arvind et al. [1], see also
[22]. The circuit bound we obtain for IDn is quantitatively weaker than (2).
This is partly because the construction uses matrix multiplication as an ingre-
dient. To determine the complexity of matrix multiplication is a fundamental
open problem in its own right. We will use bounds on rectangular matrix mul-
tiplication provided by le Gall and Urrutia [5] where this exciting problem is
discussed further.

The upper bounds presented here go against the lower bound approach of
[11]. Since the bounds are superlinear, they do not immediately frustrate the
approach, but rather dampen its optimism.

2 Main results

Let F be a field. Define σF(n,m) as the smallest s such that there exist
bilienear2f1, . . . , fs ∈ F[x1, . . . , xn, y1, . . . ym] satisfying (1). Furthermore, let
σF(n) := σF(n, n).

Theorem 1. Let F be a field containing a square root of −1 or a field of positive
characteristic. Then σF(n) ≤ O(nc) where c < 1.62.

This will be proved in Section 4. This implies that over any field, we can
write (see Section 5.1)

(

n∑
i=1

x2i )(

n∑
i=1

y2i ) = f21 + · · ·+ f2s − (f2s+1 + · · ·+ f22s) ,

with s ≤ O(nc) and f1, . . . , f2s bilinear.

Remark 2. If the field has characteristic two, Theorem 1 is trivial. Since
(
∑

i x
2
i )(

∑
j y

2
j ) = (

∑
i,j xiyj)

2, we have σF(n,m) = 1.

We will give an application to complexity of non-commutative polynomi-
als. A non-commutative polynomial over F is a formal sum of products of
variables and field elements. We assume that the variables do not multiplica-
tively commute, whereas they commute additively, and with elements of F. A
non-commutative arithmetic circuit is a standard model for computing such

2Namely, of the form
∑

i,j ai,jxiyj .
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polynomials. A non-commutative circuit ψ can be defined as a directed acyclic
graph as follows. Nodes (or gates) of in-degree zero are labelled by either a
variable or a field element in F. All the other nodes have in-degree two and they
are labelled by either + or ×. The two edges going into a gate labelled by × are
labelled by left and right to indicate the order of multiplication. Every node in
ψ computes a non-commutative polynomial in the obvious way. We say that ψ
computes a polynomial f if there is a gate in ψ computing f . As the size of ψ,
we take the number of its vertices.

The identity polynomial is a polynomial in 2n non-commuting variables

IDn =
∑

i,j∈[n]

xiyjxiyj .

It can trivially be computed by a non-commutative circuit of a quadratic size.
We also consider non-commutative versions of the elementary symmetric poly-
nomial Sk,n and the rectangular permanent of a k × n matrix

Sk,n =
∑

(i1,...,ik)

xi1 · · ·xik , permk,n =
∑

(i1,...,ik)

x1,i1 · · ·xk,ik ,

where the sums range over ordered k-tuples (i1, . . . , ik) where i1, . . . , ik are pair-
wise distinct elements of [n].

Theorem 3. Over a field of characteristic different from two, IDn, S4,n and
perm4,n can be computed by a non-commutative circuit of size O(nc) where c <
1.96.

Theorem 3 will be proved as Theorem 25 and Corollary 27 in Section 6.

Remark 4. The division of variables in IDn into two parts is a cosmetic detail
intended to match the format of Hurwitz’s problem. The non-commutative com-
plexity of

∑
i,j xixjxixj, IDn, and

∑
i,j xiyjziuj differ by a constant factor only

(cf. [11]). What is crucial is the order of multiplication: both
∑

i,j xixiyjyj and∑
i,j xiyjyjxi have a non-commutative circuit of a linear size.

Notation Given vectors u, v ∈ Fn, ⟨u, v⟩ :=
∑n

i=1 uivi is their inner product.

For a set S,
(
S
k

)
denotes the set of k-element subsets of S and

(
S
≤k

)
the set of

subsets with at most k elements.
(

n
≤k

)
:=

∑k
i=0

(
n
i

)
. [n] is the set {1, . . . , n}.

3 Hurwitz-Radon conditions

In this section, we give some well-known properties of σ that we will need later.
The definition immediately implies thet σF(n,m) is symmetric, subadditive,

and monotone:

σF(n,m) = σF(m,n) ,

σF(n,m1 +m2) ≤ σF(n,m1) + σF(n,m2) ,

σF(n,m) ≤ σF(n,m
′) , m ≤ m′ . (3)
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The following lemma gives a characterization of σ in terms of Hurwitz-Radon
conditions (4). A proof can be found, e.g., in [20], but we present it for com-
pleteness.

Lemma 5. Let F be a field of characteristic different from two. Then σF(n,m)
equals the smallest s such that there exist matrices H1, . . . ,Hm ∈ Fn×s satisfying

HiH
t
i = In ,

HiH
t
j +HjH

t
i = 0 , i ̸= j ,

(4)

for every i, j ∈ [m].

Proof. Let f1, . . . , fs be bilinear polynomials in variables x1, . . . , xn and y1, . . . , ym.
Then the vector f̄ = (f1, . . . , fs) can be written as

f̄ =

n∑
i=1

x̄Hiyi ,

where x̄ = (x1, . . . , xn) and Hi ∈ Fn×s. Hence

s∑
k=1

f2k = f̄ f̄ t =
∑
i

y2i x̄HiH
t
i x̄

t +
∑
i<j

yiyj x̄(HiH
t
j +HjH

t
i )x̄

t .

If the matrices satisfy (4), this equals
∑

i y
2
i x̄Inx̄

t = (y21 + · · · + y2m)(x21 +
· · · + x2n), which gives a sum-of-squares identity with s squares. Conversely, if
(y21 + · · ·+ y2m)(x21 + · · ·+ x2n) =

∑
f2k , we must have x̄HiH

t
i x̄

t = x21 + · · ·+ x2n
and x̄(HiH

t
j +HjH

t
i )x̄

t = 0. In characteristic different from 2, this is possible
only if the conditions (4) are satisfied.

Given a natural number of the form n = 2ka where a is odd, the Hurwitz-
Radon number is defined as

ρ(n) =


2k + 1 , if k = 0

2k , if k = 1

2k , if k = 2

2k + 2 , if k = 3

mod 4

Observe that
2 log2 n ≤ ρ(n) ≤ 2 log2(n) + 2 ,

whenever n is a power of two.
Square matrices A1, A2 anticommute if A1A2 = −A2A1. A family of square

matrices A1, . . . , At will be called anticommuting if Ai, Aj anticommute for
every i ̸= j.

The following lemma is a key ingredient in the proof of Hurwitz-Radon
theorem. A self-contained construction can be found in [6].
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Lemma 6. For every n, there exists an anticommuting family of t = ρ(n)− 1
integer matrices e1, . . . , et ∈ Zn×n which are orthonormal and antisymmetric
(i.e., eie

t
i = In and ei = −eti).

Remark 7. A straightforward construction (see, e.g., [9]) gives an anticommut-
ing family of t = 2 log2 n+ 1 integer matrices e1, . . . , et ∈ Zn×n with e2i = ±In
whenever n is a power of two. With minor modifications, these matrices could
be used in the subsequent construction instead.

4 The construction

Let e1, . . . , et be a set of square matrices. Given A = {i1, . . . , ik} ⊆ [t] with

i1 < · · · < ik, let eA :=
∏k

j=1 eij .

Lemma 8. Let e1, . . . , et be a set of anticommuting matrices. If A,B ⊆ [t]
have even size (resp. odd size) then eA, eB anticommute assuming |A ∩ B| is
odd (resp. even).

Proof. Since ei anticommutes with every ej , j ̸= i, but commutes with itself,
we obtain

eAei = (−1)|A\{i}|eieA .

This implies that
eAeB = (−1)qeBeA ,

where q = |A| · |B| − |A ∩ B|. Hence if A,B are even (resp. odd) and their
intersection is odd (resp. even), q is odd and eA, eB anticommute.

Given integers 0 ≤ k ≤ t, a (k, t)-parity representation of dimension s over

a field F is a map ξ :
(
[t]
k

)
→ Fs such that for every A,B ∈

(
[t]
k

)
⟨ξ(A), ξ(A)⟩ = 1 ,

⟨ξ(A), ξ(B)⟩ = 0 , if A ̸= B and (|A ∩B| = kmod 2) .
(5)

Lemma 9. Let 0 ≤ k ≤ t. Over C, there exists a (k, t)-parity representation of
dimension

(
t

≤⌊k/2⌋
)
.

More generally, assume that F is a field of characteristic different from two
containing a subfield F′ such that every element of F′ is a sum of r squares in
F. Then there exists a (k, t)-parity representation of dimension r

(
t

≤⌊k/2⌋
)
.

We will first prove the lemma over C, the latter part will be shown in Section
4.1.

Proof of Lemma 9 over C. Let 0 ≤ k ≤ t be given and d := ⌊k/2⌋.
For a ∈ {0, 1}t, let |a| be the number of ones in a. Recall that a polynomial

is multilinear, if every variable in it has individual degree at most one. We first
observe:
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Claim 10. There exists a multilinear polynomial f ∈ Q[x1, . . . , xt] of degree at
most d such that for every a ∈ {0, 1}t

f(a) =

{
1 , if |a| = k

0 , if |a| < k and (|a| = kmod 2) .
(6)

Proof of Claim. Consider the polynomial

g(x1, . . . , xt) := c
∏

0≤i<k, i=kmod 2

(

t∑
j=1

xj − i) .

Then g has degree d and we can choose c ∈ Q so that g satisfies (6). Since we
care about inputs from {0, 1}t, g can be rewritten as a multilinear polynomial
f of degree at most d.

Since f is multilinear, we can write it as

f(x1, . . . , xt) =
∑

C∈( [t]
≤d)

αC

∏
i∈C

xi ,

where αC are rational coefficients. Identifying a subset A of [t] with its charac-
teristic vector in {0, 1}t, we have

f(A) =
∑
C⊆A

αC .

Let s :=
(

t
≤d

)
. Given A ∈

(
[t]
k

)
, let ξ(A) ∈ Cs be the vector whose coordinates

are indexed by subsets C ∈
(
[t]
≤d

)
such that

ξ(A)C =

{
(αC)

1/2 , if C ⊆ A

0 , if C ̸⊆ A .

This guarantees

⟨ξ(A), ξ(B)⟩ =
∑
C

ξ(A)Cξ(B)C =
∑

C⊆A∩B

αC = f(A ∩B) .

Hence conditions (6) translate to the desired properties of the map ξ.

Combining Lemma 8 and 9, we obtain the following bound on σ:

Theorem 11. Let n be a non-negative integer. Let 0 ≤ k ≤ ρ(n) − 1 and

m :=
(
ρ(n)−1

k

)
. Then

σC(n,m) ≤ n ·
(
ρ(n)− 1

≤ ⌊k/2⌋

)
.

If F is as in the assumption of Lemma 9 then

σF(n,m) ≤ rn ·
(
ρ(n)− 1

≤ ⌊k/2⌋

)
.
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Proof. Let n, k,m be as in the assumption. Let e1, . . . , et be the matrices from
Lemma 6 with t = ρ(n) − 1. Let ξ be the (k, t)-parity representation given by

Lemma 9. For A ∈
(
[t]
k

)
, let

HA := eA ⊗ ξ(A) ,

where eA is defined as in Lemma 8, ξ(A) is viewed as a row vector, and ⊗ is
the Kronecker (tensor) product.

Note that each HA has dimension n× (ns) where s is the dimension of the
parity representation, and there are m =

(
t
k

)
such matrices HA. By Lemma

5, it is sufficient to show that the system of matrices HA, A ∈
(
[t]
k

)
, satisfies

Hurwitz-Radon conditions (4).
We have

HAH
t
B = (eAe

t
B)⊗ (ξ(A)ξ(B)t) = ⟨ξ(A), ξ(B)⟩ · eAetB .

Since every ei is orthonormal, we have eAe
t
A = In. (5) gives ⟨ξ(A), ξ(A)⟩ = 1

and hence
HAH

t
A = In .

If A ̸= B then

HAH
t
B +HBH

t
A = ⟨ξ(A), ξ(B)⟩ · (eAetB + eBe

t
A) . (7)

If |A ∩B| = kmod 2 then ⟨ξ(A), ξ(B)⟩ = 0 by (5) and hence (7) equals zero. If
|A ∩ B| ≠ kmod 2 then eAe

t
B + eBe

t
A = 0. This is because eAeB = −eBeA by

Lemma 8 and that, since ei are antisymmetric, eA, eB are either both symmetric
or both antisymmetric. Therefore (7) equals zero for every A ̸= B ∈

(
[t]
k

)
.

Remark 12. (i). If −1 is a sum of r squares over F then every element of F is
a sum of r+1 squares. This follows by noting a = (a+1

2 )2−(a−1
2 )2. Hence

if F contains a square root of −1, as in the case of Gaussian rationals Q(i),
every element of F is a sum of 2 squares.

(ii). It follows from Lagrange’s four-square theorem that every element of Fp

is a sum of four squares. Furthermore, every element of Fp has a square
root in Fp2

Theorem 1 is an application of Theorem 11.

Proof of Theorem 1. Let F be field containing a square root of −1 or a field of
a positive characteristic p. If p = 2, the statement of the theorem is trivial.
Otherwise, due to Remark 12, we can apply Theorem 11 with r = 4.

Assume first that n is a power of 16. This gives ρ(n) = 2 log2(n) + 1. Let
k be the smallest integer with n ≤

(
2 log2 n

k

)
=: m. From the previous theorem

and monotonicity of σ (cf. (3)), we obtain

σF(n) ≤ σF(n,m) ≤ 4ns ,
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where s :=
(2 log2 n
≤⌊k/2⌋

)
.

We have k = 2(α + ϵn) log2 n where α ∈ (0, 12 ) is such that H(α) = 1/2 (H
is the binary entropy function) and ϵn → 0 as n approaches infinity. We also
have

s ≤ 22H(α+ϵn
2 ) log2 n = n2H(α

2 )+ϵ′n ,

where ϵ′n → 0. Hence

σF(n) ≤ 4n1+2H(α
2 )+ϵ′n .

The numerical value of α is 0.11 . . . which leads to σF(n) ≤ 4n1.615+ϵ′n ≤
O(n1.616).

If n is not a power of 16, take n′ with n < n′ < 16n which is. By monotonicity
of σ, we have σF(n) ≤ σF(n

′).

4.1 The general case of Lemma 9

We now prove the remaining case of Lemma 9. The first objective is to reprove
Claim 10 in positive characteristic.

Given non-negative integers n̄ = (n1, . . . , nd) let B(n̄) be the d × d matrix
{B(n̄)i,j}i,j∈[d] with

B(n̄)i,j =

(
nj
i− 1

)
.

We assume that
(
n
k

)
= 0 whenever n < k; this guarantees

(
n
k

)
= n(n−1)···(n−k+1)

k! .

Lemma 13. If n̄ = (r, r + 2, . . . , r + 2(d− 1)) for some non-negative integer r

then det(B(n̄)) = 2(
d
2).

Proof. We claim that

det(B(n̄)) = (

d−1∏
i=1

i!)−1 det(V (n̄)) ,

where V (n̄) is the Vandermonde matrix with entries V (n̄)i,j = ni−1
j . To see

this, multiply every i-th row of B(n̄) by (i− 1)! to obtain matrix B′(n̄) with

det(B′(n̄)) = (

d−1∏
i=1

i!) det(B(n̄)) .

An i-th row ri of B
′(n̄) is of the form (ni−1

1 +gi(n1), . . . , n
i
d+gi(nd)) where gi is

a polynomial of degree < (i−1). This means that ri equals the i-th row of V (n̄)
plus a suitable linear of combination of the preceding rows of V (n̄). Therefore,
det(B′(n̄)) = det(V (n̄)).

Given n̄ as in the assumption, we obtain

det(V (n̄)) =
∏

1≤j1<j2≤d

(nj2 − nj1) =
∏

1≤j1<j2≤d

(2j2 − 2j1)

= 2(
d
2)

∏
1≤j1<j2≤d

(j2 − j1) = 2(
d
2)

d−1∏
i=1

i! .
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This shows that det(B(n̄)) = 2(
d
2).

Lemma 14. Let p be an odd prime. Given 0 ≤ k ≤ t, there exists a multilinear
polynomial f ∈ Fp[x1, . . . , xt] of degree at most d = ⌊k/2⌋ such that for every
a ∈ {0, 1}t

f(a) =

{
1 , if |a| = k

0 , if |a| < k and (|a| = kmod 2) .

Proof. We look for f of the form f =
∑d

j=0 cjSj,t where Sj,t is the elementary

symmetric polynomial Sj,t =
∑

|A|=j

∏
i∈A xi. Given a ∈ {0, 1}t,

f(a) =

d∑
j=0

cj

(
|a|
j

)
mod p .

We are therefore looking for a solution of the linear system

B(n̄) (c0 . . . , cd)
t
= (0, . . . , 0, 1)

t
,

where n̄ = (0, 2, . . . , 2d), if k is even, and n̄ = (1, 3, . . . , 2d+ 1), if k is odd. By
the previous lemma, B(n̄) is invertible over Fp and such a solution exists.

Proof of Lemma 9. Let F be a field of characteristic p ̸= 2 containing a subfield
F′ such that every element of F′ is a sum of r squares in F. If p = 0, F′ contains
Q and if p > 2, F′ contains Fp. Let f be the polynomial given by Claim 10 or
Lemma 14 with coefficients from F′. Since every element of F′ is a sum of r
squares in F, we can write

f(x1, . . . , xt) =
∑
C∈C

aC
∏
i∈C

xi ,

where C is a multiset of s ≤ r
(

t
≤d

)
subsets of [t], and aC ∈ F′ has a square root

a
1
2

C in F. For A ∈
(
[t]
k

)
, let ξ(A) ∈ Fs be a vector whose coordinates are indexed

by elements C of C so that

ξ(A)C =

{
a

1
2

C , if C ⊆ A

0 , if C ̸⊆ A .

This gives a (k, t)-parity representation over F.

4.2 Comments

An improvement on the dimension of parity representation in Lemma 9, if possi-
ble, will lead to an improvement in Theorem 1. However, this dimension cannot
be too small:
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Remark 15. If k is even, every (k, t)-parity representation must have dimen-

sion at least s =
(⌊t/2⌋

k/2

)
over any field. This is because there exists a family A of

k-element subsets of [t] whose pairwise intersection is even, and |A| = s . The
map ξ must assign linearly independent vectors to elements of A. Similarly for
k odd.

On the other hand, Lemma 9 can sometimes be improved.
(

t
≤⌊k/2⌋

)
can be

replaced with
(

t
≤⌊t−k/2⌋

)
which gives a smaller bound if if k > t/2. This is be-

cause we can work with complements of A ∈
(
[t]
k

)
instead. Another improvement

is possible in odd characteristic for specific choices of k:

Remark 16. If p is odd and k = 2pℓ − 1, there is a (k, t)-parity representation
of dimension

(
t

⌊k/2⌋
)
over Fp. It follows from Lucas’ theorem that in this case,

f in Lemma 14 can be taken simply as the elementary symmetric polynomial of
degree ⌊k/2⌋. This polynomial has only

(
t

⌊k/2⌋
)
monomials.

The notion of (k, t)-parity representation can be restated in the language of
orthonormal representations of graphs of Lovász [16]. Given a graph G with
vertex set V , its orthonormal representation is a map ξ(V ) :→ Fs such that for
every u, v ∈ V

⟨ξ(u), ξ(u)⟩ = 1 ,

⟨ξ(u), ξ(v)⟩ = 0 , if u ̸= v are not adjacent in G.

In this language, (k, t)-parity representation is an orthonormal representation
of the following combinatorial Knesser-type graph Gk,t: vertices of Gk,t are k-
element subsets of [t]. There is an edge between u and v iff |u ∩ v| ≠ kmod 2.
Orthogonal representations of related graphs have been studied by Haviv in
[8, 7].

5 Modifications and extensions

5.1 A sum of bilinear products

Theorem 1 implies:

Theorem 17. Over any field, there exists s ≤ O(n1.62) and bilinear f1, . . . , f2s
such that

(

n∑
i=1

x2i )(

n∑
i=1

y2i ) = f21 + · · ·+ f2s − (f2s+1 + · · ·+ f22s) . (8)

Proof. If F contains a square root of −1, Theorem 1 applies. Otherwise consider
the field extension F∗ = F[

√
−1]. Then we can express (

∑n
i=1 x

2
i )(

∑n
i=1 y

2
i ) as

f21 +· · ·+f2s over F∗. Writing fk = gk+
√
−1hk where gk and hk have coefficients

in F gives (
∑n

i=1 x
2
i )(

∑n
i=1 y

2
i ) =

∑s
k=1(g

2
k − h2k).

11



From the point of view of arithmetic complexity, it is more natural to con-
sider identities of the form

(x21 + · · ·+ x2n)(y
2
1 + · · ·+ y2n) = f1f

′
1 + · · ·+ fsf

′
s , (9)

where f1, . . . , fs and f ′1, . . . , f
′
s are bilinear forms. This is because a non-

commutative circuit computing IDn leads to an identity of this form. This
quantity is referred to as bilinear complexity in [11]. An upper bound on s in
(9) can be inferred from Theorem 17. A direct proof was presented in [10].

Remark 18. In characteristic different from two, we have ff ′ =
(

f+f ′

2

)2

−(
f−f ′

2

)2

, which allows to rewrite (9) as (8). In turn, we can express (8) as a

sum of squares provided −1 is a sum of squares in F. We conclude that, first,
Theorem 17 implies Theorem 1 and, second, it is sufficient to consider the more
general bilinear identities (9).

5.2 A tensor product construction

We now outline an alternative construction of non-trivial sum-of-squares iden-
tities. While it gives different types of identities, it does not seem to give better
bounds asymptotically.

Instead of the products of anticommuting matrices eA, one can take the
tensor product of matrices satisfying Hurwitz-Radon conditions (4). Namely,
given such matrices H1, . . . ,Hm ∈ Fn×s, and a ∈ [m]ℓ, let

Ha := Ha1
⊗Ha2

· · · ⊗Haℓ
.

Observe that every Ha satisfies HaH
t
a = Inℓ and that

HaH
t
b +HbH

t
a = 0 ,

whenever a and b have odd Hamming distance (i.e., they differ in an odd number
of coordinates). As in Lemma 9, we can find a map ξ : [m]ℓ → Cs with
s ≤ (4m)ℓ/2 such that

⟨ξ(a), ξ(a)⟩ = 1 ,

⟨ξ(a), ξ(b)⟩ = 0 , if a ̸= b have even Hamming distance.

This gives for every ℓ

σC(n
ℓ,mℓ) ≤ σC(n,m)ℓ(4m)ℓ/2

For example, starting with σC(8, 8) = 8, we have

σC(8
ℓ, 8ℓ) ≤ 811ℓ/6 .

12



6 Non-commutative complexity of related poly-
nomials

In this section, we prove Theorem 3. The main component is a construction of
a subquadratic circuit for IDn (Theorem 25). The upper bound for S4,n and
perm4,n follows by reduction to IDn (Corollary 27).

Commutative and non-commutative arithmetic circuits In Section 2,
we introduced non-commutative arithmetic circuits. Given non-commutative
polynomials f1, . . . , fm over a field F, we will denote size(nc)F (f1, . . . , fm) the size
of a smallest non-commutative arithmetic circuit over F simultaneously com-
puting f1, . . . , fm, namely, such that every fi is computed by some gate in the
circuit. A commutative arithmetic circuit is the more common model for com-
puting polynomials in the commutative ring F[x1, . . . , xn]. It is defined similarly
as non-commutative arithmetic circuit, except that the order of multiplication

is irrelevant. The commutative complexity will be denoted size
(c)
F . Given a

non-commutative polynomial f , let f (c) be the same polynomial f in which the
variables are viewed as commutative. This means

size
(c)
F (f (c)) ≤ size

(nc)
F (f) .

We will drop the subscript F if the field is arbitrary or clear from the context.

Proof outline of Theorem 3 for IDn We first show that in order to bound
the non-commutative complexity of IDn, it is sufficient to construct a commu-
tative sum-of-squares identity (1) with few squares such that the bilinear forms
f1, . . . , fs can be simultaneously computed by a small arithmetic circuit. This
is the content of Lemma 22. The proof is a more elaborate version of a similar
argument in [11].

In the ideal world, we would proceed to show that the bilinear forms con-
structed in Theorem 1 are indeed computable by a circuit of subquadratic size.
A related question is to estimate the tensor rank of an associated tensor (which
amounts to counting the number of non-scalar multiplications in a circuit). The
tensor obtained in Theorem 1 is simple enough to describe but we do not know
how to bound its rank. The construction from Section 5.2 is easier to analyze.
A conditional upper bound on tensor rank can be obtained assuming Strassen’s
asymptotic rank conjecture [21], but it is unclear how to obtain it uncondition-
ally.

Fortunately, this issue can be avoided completely by using Theorem 1 in a
black-box fashion. Suppose that we can write (

∑n
i=1 x

2
i )(

∑n
i=1 y

2
i ) as

∑s
j=1 fj(x̄, ȳ)

2

where fj(x̄, ȳ) have some unknown complexity. Introducing m copies of the y
variables we obtain a new sum-of-squares identity

(

n∑
i=1

x2i )(
∑

i∈[n],t∈[m]

y2i,t) =
∑

j∈[s],t∈[m]

fj(x̄, ȳt)
2 .
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This is wasteful in terms of the number of squares but less so in terms of their
complexity. Computing m copies of f1(x̄, ȳ), . . . , fs(x̄, ȳ) can be done efficiently
using fast matrix multiplication. If m is large enough, the complexity of the
initial polynomials is irrelevant and the resulting complexity is determined by
matrix multiplication only. This argument gives a worse upper bound for IDn

than the previous bound on σ(n), but still a subquadratic one. The connection
with matrix multiplication is further discussed in Section 6.3

6.1 Some facts about bilinear forms

We now overview some basic facts about bilinear forms. The one non-trivial
ingredient is a result of Baur and Strassen [2] on computing partial derivatives
of a polynomial. We will need the following simple version of their result:

Lemma 19. [Baur-Strassen] Let f1, . . . , fr be (commutative) polynomials not

depending on variables z1, . . . , zr. Then size(c)(f1, . . . , fr) ≤ O(size(c)(
∑r

i=1 fizi)).

In the non-commutative setting, a bilinear form in variables x̄ = (x1, . . . , xn)
and ȳ = (y1, . . . , ym) will be taken as a polynomial of the form

∑
i,j ai,jxiyj .

Lemma 20. Let f1, . . . , fr be non-commutative bilinear forms and f :=
∑r

k=1 fkzk.
Then

size(nc)(f1, . . . , fr) ≤ O(size(c)(f
(c)
1 , . . . , f (c)r )) ,

size(nc)(f) ≤ O(size(c)(f (c)) .

Proof. Given a commutative circuit Ψ computing f
(c)
1 , . . . , f

(c)
r , we can, by in-

creasing its size by a constant factor, assume that it is homogeneous. That is,
every gate computes a homogeneous polynomial of degree at most two (this is a
standard construction, see, e.g. [3, 15]). Given a linear function h in variables
x̄, ȳ, we can write h = hX +hY where hX and hY depend on variables x̄ only or
ȳ only, respectively. In the circuit Ψ, we can first split every gate v computing
a linear function h into two gates vX , vY computing hX and hY . Second, a
product gate v · v′ computing a product of linear functions can be replaced by
the non-commutative product vX · v′Y + v′X · vY .

If f has a commutative arithmetic circuit of size s then f1, . . . , fr can be
simultaneously computed by a commutative circuit of size O(s) by Lemma
19 and hence by a non-commutative circuit of linear size as well. This gives
size(nc)(f) ≤ O(r + s). Without loss of generality, we can assume that all fk’s
are non-zero so that r ≤ s which gives the required bound.

Remark 21. The lemma implies that the non-commutative complexities of∑
i,j,k

ai,j,kxiyjzk , and
∑
i,j,k

ai,j,kxizkyj

differ by a constant factor only.
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6.2 From sum-of-squares to a circuit for IDn

Let γF(n,m) denote the smallest k such that there exist bilinear f1, . . . , fs which
satisfy the commutative identity (1) and can be simultaneously computed by a
commutative arithmetic circuit of size k.

Lemma 22. Let F be a field of characteristic different from. Let F∗ be the small-

est field extension of F containing a square root of −1. Then size
(nc)
F (IDn,m) =

O(γF∗(n,m)).

Proof. We will assume that F contains a square root of −1 so that F∗ = F.
If this is not the case, we can view an element of F⋆ = F[

√
−1] as a pair of

elements of F and simulate a computation over F⋆ in F (cf. [13]). This gives
γF(n,m) ≤ O(γF∗(n,m)).

Let f =
∑

i,j ai,jxiyj be a commutative bilinear form and z a new variable.
Define the following non-commutative polynomials

fxy :=
∑
i,j

ai,jxiyj , f
yx :=

∑
i,j

ai,jyjxi ,

f ⋆ z :=
∑
i,j

ai,jxizyj , f [2] :=
1

2
(fxyfxy + f ⋆ fyx) .

f [2] mimics the commutative polynomial f2 in the following sense:

Claim. Given i, i′ ∈ [n] and j, j′ ∈ [m], let c(i, j, i′, j′) and c̄(i, j, i′, j′) denote
the coefficient of xiyjxi′yj′ in f2 and f [2], respectively. Then c̄(i, j, i′, j′) =
λ(i, j, i′, j′)c(i, j, i′, j′), where

λ(i, j, i′, j′) =


1 , if i = i′, j = j′ ,
1
2 , if i = i′, j ̸= j′ , or vice versa,
1
4 , if i ̸= i′ , j ̸= j′ .

Proof of the claim. By definition of f [2], the coefficient of xiyjxi′yj′ in f
[2] is

c̄(i, j, i′, j′) =
1

2
(ai,jai′,j′ + ai,j′ai′,j) . (10)

On the other hand, considering possible ways of factoring xiyjxi′yj′ into bilinear
monomials, its coefficient in f2 equals

c(i, j, i′, j′) =


a2i,j , if i = i′, j = j′

2ai,jai,j′ , if i = i′, j ̸= j′

2ai′,jai′,j , if i ̸= i′, j = j′

2(ai,jai′,j′ + ai,j′ai′,j) , if i ̸= i′ , j ̸= j′

.

Comparing this with (10) gives the required statement.
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Suppose that γF(n,m) = r. We can then write

(
∑
i∈[n]

x2i )(
∑
j∈[m]

y2j ) =
∑
k∈[s]

akf
2
k ,

where f1, . . . , fs are distinct commutative bilinear forms with size(c)(f1, . . . , fs) =

r and a1, . . . , as ∈ F. Since ID(c)
n,m, when viewed as a commutative polynomial,

equals (
∑

i x
2
i )(

∑
y2j ), the above Claim shows that

IDn,m =
∑
k∈[s]

akf
[2]
k .

We now estimate the complexity of
∑s

k=1 akf
[2]
k . Introducing new variables

z1, . . . , zs, let G be the polynomial

G(z1, . . . , zs) :=
∑
k∈[s]

akfk ⋆ zk .

Viewed as a commutative polynomial, G(c) equals
∑

k∈[s] akfkzk. Since f1, . . . , fs

can be simultaneously computed by a circuit of size r, G(c) has a commutative
circuit of size linear in r. By Lemma 20, the same holds for the non-commutative
polynomial G. Writing∑

k∈[s]

akf
[2]
k =

∑
k∈[s]

1

2
(akf

xy
k fxyk +G(fyx1 , . . . , fyxs )) .

gives a circuit of size O(r).

Remark 23. The opposite inequality γF∗(n,m) ≤ O(size
(nc)
F (IDn,m)) also holds.

Proof sketch. Let ψ be a non-commutative circuit computing IDn. As shown
in [11], we can assume it has the following additional structure: it is homo-
geneous and every gate computing a degree-two polynomial computes either a
non-commutative bilinear form in x̄ and ȳ, or a bilinear form in ȳ and x̄. We
now view ψ as a commutative circuit computing (

∑
i x

2
i )(

∑
j y

2
j ) with the addi-

tional property that every degree-two gate computes a bilinear form. For every
degree-two gate v computing fv, introduce a new variable zv. For every product
gate w = u · v with v computing a polynomial of degree 2 and u of degree ≥ 1,
replace w with u · zv. Let F be the polynomial computed by this new circuit.
F is multilinear in the variables zv and

(
∑
i

x2i )(
∑
j

y2j ) =
∑
v

fv∂zvF .

The bilinear forms fv are simultaneously computed by the circuit ψ itself. ∂zvF
have a small circuit using Lemma 20. The polynomials ∂zvF are not necessar-
ily bilinear but their “bilinear parts” can be efficiently computed. This gives
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(
∑

i x
2
i )(

∑
j y

2
j ) =

∑
v fvf

′
v where fv, f

′
v are bilinear and can be simultaneously

computed by a commutative circuit of size O(size
(nc)
F (IDn)). Finally,

∑
v fvf

′
v

can be converted to a sum-of-squares identity over F∗ as in Remark 18.

Let ω(r) be the exponent of rectangular matrix multiplication capturing the
complexity of multiplying n × nr matrix by an nr × n matrix. It is the least
(infimum) value such that the matrix product can be computed by a (commu-
tative) arithmetic circuit of size O(nω(r)+ϵ) for every ϵ > 0. We will use the
estimates on ω(r) as given by le Gall and Urrutia [5].

Lemma 24. Let r ≥ 2 be an integer and δ ≥ 0. Let Q(x̄, ȳ) be a set of O(n1+δ)
bilinear forms in (commuting) variables x̄ = (x1, . . . , xn), ȳ = (y1, . . . , yn). Let
ȳ1, . . . , ȳm be distinct copies of ȳ with m := nr. Then Q(x̄, ȳ1), . . . , Q(x̄, ȳm)
can be simultaneously computed by an arithmetic circuit of size nω(r)+δ+o(1).

Proof. Splitting Q(x̄, ȳ) into O(nδ) sets of size n, it is sufficient to prove the
statement for Q(x̄, ȳ) consisting of n bilinear forms f1(x̄, ȳ), . . . , fn(x̄, ȳ). Let f
be the trilinear polynomial

∑n
k=1 fkzk in variables x̄, ȳ and z̄. Introduce new

variables yi,t, zt,i, t ∈ [m], i ∈ [n]. If f =
∑

i,j,k∈[n] ai,j,kxiyjzk, let

f⋆ :=
∑

i,j,k∈[n]

ai,j,kxi
∑
t∈[m]

yj,tzt,k .

This guarantees that

f⋆ =
∑

k∈[n],t∈[m]

fk(x̄, ȳt)zt,k .

By Lemma 20, it is sufficient to estimate the complexity of f⋆. The polynomials∑
t∈[m] yj,tzt,k, i, k ∈ [n], can be simultaneously computed in size O(nω(r)+ϵ).

Each of the n2 linear functions
∑

k∈[n] ai,j,kxk, i, j ∈ [n], can be computed by

a circuit of size O(n). Hence the complexity of f⋆ is O(nω(r)+ϵ + n3). If r ≥ 2
then ω(r) ≥ 3 and the cubic term can be omitted.

Theorem 25. Over a field of characteristic different from two, size(nc)(IDn) ≤
O(nc) with c < 1.96.

Proof. Using Lemma 22, it is enough to estimate γF(n, n) under the assumption
that F contains a square root of −1. By Theorem 1, we can write

(

n∑
i=1

x2i )(

n∑
i=1

y2i ) =

s∑
j=1

fj(x̄, ȳ)
2 ,

with s = O(n1+δ) and δ < 0.616. Introducing m = n3 copies of the ȳ variables
we obtain a new sum-of-squares identity

(

n∑
i=1

x2i )(
∑

i∈[n],t∈[m]

y2i,t) =
∑

j∈[s],t∈[m]

fj(x̄, ȳt)
2 .
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From the previous lemma, we obtain, for every ϵ > 0,

γF(n, n
4) = O(nω(3)+δ+ϵ) .

Duplicating the x̄ variables n3 times gives γF(n
4, n4) ≤ n3γF(n, n

4). Hence,
γF(n

4, n4) = O(n3+ω(3)+δ+ϵ) and

γF(n, n) ≤ n
3+ω(3)+δ

4 +o(1) .

In [5], it is shown that ω(3) < 4.1997 which gives γF(n, n) = O(n1.954).

6.3 Comments

The numerical value of the exponent in Theorem 25 can be slightly improved.
First, we can analyze the complexity of the bilinear forms constructed in Theo-
rem 1 and, second, use asymmetric bounds on σ(n, nk) for a suitable k. However,
these improvements are too minuscule to justify the more complicated proof.

The complexity of matrix multiplication enters the picture quite naturally.
Consider Euler’s four-square identity

(x21 + · · ·+ x24)(y
2
1 + · · ·+ y24) = f21 + · · ·+ f24 .

Here, the bilinear map f = (f1, . . . , f4) can be interpreted as computing the
product of two quaternions so that

(x1 + x2i+ x3j + x4k)(y1 + y2i+ y3j + y4k) = f1 + f2i+ f3j + f4k ,

where i, j, k satisfy the familiar properties i2, j2, k2 = −1, k = ij = −ji. The
basis elements 1, i, j, k can be represented in terms of 2 × 2 complex matrices
1C, iC, jC, kC. These are linearly independent and form a basis of the space
of 2 × 2 complex matrices. This means that over C, the number of non-scalar
multiplications required to compute the map f is exactly the same as the number
of non-scalar multiplications needed to multiply two 2× 2 matrices.

A similar connection holds between the complexity of multiplying two 2n×2n

matrices and the complexity of multiplication in the second Clifford algebra
CL2n+1. An element of CLm is of the form

∑
A xAeA where i) A ranges over even

subsets of [m], and ii) if i1 < · · · < ik, e{i1,...,ik} = ei1ei2 · · · eik where e1, . . . , em
satisfy e2i = 1 and eiej = −ejei whenever i ̸= j. Hence, CL2 corresponds to
C and CL3 to quaternions. An alternative way of obtaining a subquadratic
sum-of-squares identity is as follows: in the first step, compute the product of
two elements of CLm by means of a bilinear map f . This gives a sum-of-squares
identity for m ≤ 3 but no longer works for a larger m. In the second step, tweak
the map f by using the parity representation as in Theorem 11. In terms of the
arithmetic complexity of the resulting map, already the first step is equivalent
to matrix multiplication.
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6.4 An application to elementary symmetric polynomials

Recall the non-commutative polynomials Sk,n and permk,n from Section 2. As
follows from Theorem 7.1 in [11], they have almost the same complexity:

size(nc)(Sk,n) ≤ size(nc)(permk,n) ≤ O(k3size(nc)(Sk,n)) . (11)

This means that we can focus just on the polynomial Sk,n.

Proposition 26. Over any field, size(nc)(S2,n, S3,n) ≤ O(n) and size(nc)(S4,n) ≤
O(size(nc)(IDn)).

Proof. Let pk :=
∑n

i=1 x
k
i . Omitting the subscript n in Sk,n,

S2 = p21 − p2 ,

giving a circuit of a linear size for S2. We can write

S3 = p1S2 − p2p1 −
∑
i

xip1xi + 2p3 .

Note that
∑
xip1xi has a linear-sized circuit: we can first compute

∑
xizxi and

then substitute p1 for z. This gives a linear circuit for S3.
Let ID∗ :=

∑
i,j∈[n] xixjxixj . Hence, ID∗ is obtained by identifying yi with

xi, i ∈ [n], in IDn. We can write

S4 = p1S3 −
∑
i,j,k

x2ixjxk −
∑
i,j,k

xixjxixk −
∑
i,j,k

xixjxkxi ,

where i, j, k range ever distinct elements of [n]. The complexity of p1S3 is linear.
We claim that the other summands have either a linear circuit size, or are easily
computable from ID∗. We can write∑

i,j,k

x2ixjxk = p2S2 − p3p1 −
∑
i

x2i p1xi + 2p4 ,∑
i,j,k

xixjxkxi =
∑
i

xiS2xi −
∑
i

x2i p1xi −
∑
i

xip1x
2
i + 2p4 .

giving a circuit of size O(n). Similarly,∑
i,j,k

xixjxixk =
∑
i

xip1xip1 − ID∗ −
∑
i

xip1x
2
i − p3p1 + 2p4 .

and the complexity is bounded by size(nc)(ID∗) +O(n).

Corollary 27. Assume that the underlying field has characteristic different
from two. There exists a constant c < 1.96 such that size(nc)(S4,n) = O(nc) and

size(nc)(Sk,n) = O(nk−4+c) for every fixed k ≥ 4. Similarly for permk,n.
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Proof. If k = 4, the bound on Sk,n follows from Proposition 26 and Theorem
25. For k > 4, the identity

Sk,n(x1, . . . , xn) =

n∑
i=1

xiSk−1,n−1(x1, . . . , xi−1, xi+1, . . . , xn)

gives size(nc)(Sk,n) ≤ O(size(nc)(nk−4S4,n)). The part for perm4,n follows from
(11).

Remark 28. A non-commutative polynomial f(x1, . . . , xn) is symmetric if
f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn) holds for every permutation σ of [n]. As

in Proposition 26, it can be show that size(nc)(f) ≤ O(size(nc)(ID∗)) holds for
any non-commutative symmetric n-variate polynomial of degree four. In other
words,

∑
i,j∈[n] xixjxixj is a symmetric polynomial of degree four with the

largest non-commutative complexity.

7 Open problems

Let Event denote the set of even-sized subsets of [t]. A map ξ : Event → Fs will
be called a t-parity representation of dimension s if for every A,B ∈ Event

⟨ξ(A), ξ(A)⟩ = 1 ,

⟨ξ(A), ξ(B)⟩ = 0 , if A ̸= B and |A ∩B| is even.

Problem 1. Over C, does there exist a t-parity representation of dimension
2(0.5+o(1))t?

If this were the case, we could improve the bound of Theorem 1 to σC(n, n) ≤
n1.5+o(1). A more surprising consequence would be that

σC(n, n
2) ≤ n2+o(1) .

The constant 0.5 in Problem 1 cannot be improved: since there exists a family of
2⌊t/2⌋ subsets of [t] with pairwise even intersection, every t-parity representation
must have dimension at least 2⌊t/2⌋ (cf. Remark 15). On the other hand,
Lemma 9 implies that there exists a t-parity representation of dimension at
most 2(H(0.25)+o(1))t < 20.82t.

Our results do not apply to sum-of-squares composition formulas over the
real numbers. Since R is one of the most natural choices of the underlying field,
it is desirable to extend the construction in this direction. This motivates the
following:

Problem 2. Over R, does there exist a t-parity representation of dimension
O(2t(1−ϵ)) with ϵ > 0?

While the sum-of-squares problem trivializes in a field of characteristic two,
the construction of a subquadratic circuit for IDn does not work in this case.

Problem 3. Over a field of characteristic two, can IDn be computed by a non-
commutative circuit of size O(n2−ϵ) with ϵ > 0?
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[10] P. Hrubeš. A subquadratic upper bound on sum-of-squares composition
formulas. ECCC, 2024.
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