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Introduction

I Definitions

I Statements

I Some Results



Unoriented Bordism Ring

The unoriented bordism ring, denoted by Ω∗, is a fundamental
concept in differential topology that classifies manifolds up to
bordism.
Two closed n-dimensional manifolds M and N are said to be
bordant if their disjoint union M t N is the boundary of an
(n + 1)-dimensional manifold W , i.e., ∂W = M t N.
The unoriented bordism ring Ω∗ is a graded ring formed by the
equivalence classes of closed manifolds under the unoriented
bordism relation.



I The addition of two bordism classes [M] and [N] is given by
the disjoint union of representative manifolds:

[M] + [N] = [M t N]

I The multiplication of two bordism classes [M] and [N] is given
by the Cartesian product of representative manifolds:

[M] · [N] = [M × N]

I The grading of the ring is given by the dimension of the
manifolds:

Ω∗ =
∞⊕
n=0

Ωn



Thom’s Theorem

A crucial result by René Thom describes the structure of the
unoriented bordism ring, connecting it to the homotopy groups of
the Thom spectrum MO:

Ω∗ ∼= π∗(MO)

This connection allows us to use tools from stable homotopy
theory to study the unoriented bordism ring.



Thom Spectrum MO

The Thom spectrum MO is constructed from a sequence of Thom
spaces of universal vector bundles. Here’s a more detailed
explanation:
Grassmannian Manifolds and Universal Vector Bundles

I Let O(n) denote the orthogonal group of rank n.

I The Grassmannian manifold BO(n) is the classifying space for
real vector bundles of rank n. In simpler terms, it’s a space
such that vector bundles of rank n over any space X are
classified by maps from X to BO(n).

I Over BO(n), there exists a universal vector bundle γn of rank
n.



Thom Space

I Given a vector bundle E → B, its Thom space Th(E ) is
constructed by taking the one-point compactification of each
fiber of E and then collapsing the base space B to a single
point.

I For the universal vector bundle γn → BO(n), its Thom space
is denoted as MO(n) = Th(γn).



I The Thom spectrum MO is a sequence of spaces
{MO(n)}n≥0 together with structure maps.

I The structure maps are defined using the inclusions
O(n) ↪→ O(n + 1), which induce maps between the
Grassmannians and the Thom spaces.

I Specifically, the Thom spectrum MO is defined as follows:
I The n-th space in the spectrum is MO(n).
I The structure maps are maps ΣMO(n)→ MO(n + 1), where

Σ denotes the suspension. These maps are induced by adding
a trivial line bundle to γn.

In essence, the Thom spectrum MO is a sequence of Thom spaces
of universal vector bundles, assembled in a way that captures the
stable information about real vector bundles. It plays a crucial role
in Thom’s theorem, which relates the homotopy groups of MO to
the unoriented cobordism ring.



Pontryagin-Thom Construction

The Pontryagin-Thom construction, often referred to as the
Pontryagin map, is a fundamental concept in differential topology
that establishes a connection between framed submanifolds and
homotopy theory.
A framed submanifold is a submanifold M embedded in a
Euclidean space RN with a trivialization of its normal bundle
ν(M). This means that there exists a consistent choice of a basis
for the vectors perpendicular to M at each point.



The Pontryagin-Thom construction provides a way to associate a
map from the sphere SN to the Thom space of the normal bundle
to a framed submanifold M in RN .

1. Given a framed submanifold M ⊂ RN , we define a map
SN → SN/

(
SN \ U

)
→ Th(ν(M)), where U is a tubular

neighborhood of M in SN .

2. Conversely, given a map SN → Th(ν(M)), we can construct a
framed submanifold M as the preimage of a regular value.

I The construction bridges the gap between the geometric world
of framed submanifolds and the algebraic world of homotopy
theory.

I It plays a crucial role in Thom’s theorem, relating bordism
groups to homotopy groups of Thom spaces.



Thom’s Theorem on Unoriented Bordism

Thom’s theorem provides a complete algebraic description of the
unoriented bordism ring, Ω∗.
Thom’s theorem states that the unoriented bordism ring Ω∗ is
isomorphic to a polynomial ring over the field Z/2, with generators
in degrees that are not of the form 2k − 1, i.e.,



Ω∗ ∼= Z/2[x2, x4, x5, x6, x8, x9, . . .]

where:

I Z/2 is the field with two elements.

I xi represents a generator in dimension i .

I The indices i run through all positive integers that are not of
the form 2k − 1 (i.e., 1, 3, 7, 15, . . . are excluded).

I Polynomial Ring. Every unoriented bordism class can be
uniquely expressed as a sum of products of these generators.

I Generators. The generators xi correspond to specific
manifolds that serve as the ”building blocks” for all other
unoriented manifolds.

I Z/2 Coefficients. Each generator appears either 0 or 1 times
in a given bordism class.

I Excluded Dimensions. Dimensions of the form 2k − 1 are
excluded, reflecting the structure of Ω∗ and its connection to
Adams operations.



Becker-Gottlieb Transfer Map
The Becker-Gottlieb transfer is a map in stable homotopy theory
associated with a fibration. For a fibration p : E → B with
compact, smooth fiber F , the Becker-Gottlieb transfer is a map

τ : B+ → E+

in the stable homotopy category. Here, X+ denotes the suspension
spectrum of a space X .
Suspension Spectrum Given a pointed topological space X , the
suspension spectrum of X , ( also denoted by Σ∞X ), is a spectrum
constructed as follows:

I The n-th space in the spectrum is the n-fold reduced
suspension of X , denoted by ΣnX .

I The structure maps are the identity maps Σ(ΣnX )→ Σn+1X .

In other words, the suspension spectrum of X is the sequence of
spaces

X ,ΣX ,Σ2X ,Σ3X , . . .

where each space is the suspension of the previous one.



Double Coset Formula for Compact Lie Groups

Let G be a compact Lie group, and let H and K be closed
subgroups of G . The double coset formula describes the
relationship between the transfer maps associated with these
subgroups. The formula is given by:

(pK .G )∗ ◦ (trH,G ) =∑
g∈K\G/H

χ(Xg )(trK∩gHg−1,K ) ◦ (pK∩g−1Hg ,g−1Hg )∗ ◦ (cg )∗

where:



I The sum is taken over the double cosets KgH of G with
respect to K and H.

I Xg is the orbit type manifold component corresponding to the
double coset representative g .

I χ(Xg ) is the internal Euler characteristic of the orbit type
manifold component Xg , given by
χ(Xg ) = χ(Xg )− χ(Xg \ Xg ), where Xg is the closure of Xg .

I cg : BH → B(gHg−1) is the map induced by conjugation by
g .

I pK∩gHg−1,K : B(K ∩ gHg−1)→ BK and
pK∩g−1Hg : B(K ∩ g−1Hg)→ Bg−1Hg are the maps induced
by the inclusions.



Example: G = S3, K = H = S1

Let G = S3 = {q ∈ H | |q| = 1}, where H is the set of
quaternions. Let K = H = S1 = {e iθ | θ ∈ [0, 2π)} ⊂ S3.
The double coset decomposition is given by:

S3 =
⊔

g∈S1\S3/S1

S1gS1

where the union is over a set of representatives of the double
cosets.
For S3 and S1, the double cosets S1gS1 can be parameterized by a
single angle φ ∈ [0, π/2]. Thus, we can write:

S3 =
⋃

0≤φ≤π/2

S1(cos(φ) + j sin(φ))S1



Let’s consider the orbit type manifold components and their
internal Euler characteristics:

I The double coset space S1\S3/S1 is parameterized by
φ ∈ [0, π/2]. We consider the cases φ = 0, φ = π/2, and
0 < φ < π/2 separately.

I For each g = cos(φ) + j sin(φ), the intersection S1 ∩ gS1g−1

is:



I If φ = 0, then g = 1, and S1 ∩ gS1g−1 = S1 ∩ S1 = S1. The
orbit type manifold component is a point, and the internal
Euler characteristic χ(Xg ) = 1.

I If φ = π/2, then g = j , and gS1g−1 = jS1j−1 = S1. Thus,
S1 ∩ gS1g−1 = S1 ∩ S1 = S1. The orbit type manifold
component is a point, and the internal Euler characteristic
χ(Xg ) = 1.

I If 0 < φ < π/2, then S1 ∩ g0g−1 = 0. The orbit type
manifold component is an interval, and the internal Euler
characteristic χ(Xg ) = −1. This component gives zero.



So the double coset formula in this example becomes:

(pS1,S3)∗ ◦ (trS1,S3) = 2 · (trS1,S1) ◦ (pS1,S1)∗.

Thus for a ∈ h∗(BS1)

(pS1,S3)∗ ◦ (trS1,S3)(a) = 2a



Complex Cobordism

I Complex cobordism deals with manifolds with a ”stable
almost complex structure.”

I Cobordism classifies manifolds with stably complex tangent
bundles up to equivalence. Two manifolds are cobordant if
their disjoint union is the boundary of a higher-dimensional
manifold.

I An almost complex structure on a real, even-dimensional
manifold M is a linear transformation J of the tangent bundle
TM such that J² = -Id, where Id is the identity
transformation. Essentially, it’s a way to define ”multiplication
by i” (the imaginary unit) on the tangent spaces of the
manifold. However, not all almost complex structures arise
from complex coordinate systems. If they do, the structure is
called a complex structure.



MU Complex Cobordism Spectrum
I The spectrum representing complex cobordism.

I Encodes information about complex manifolds.

Formal Group Laws

I Connection between complex cobordism and formal group
laws.

I Quillen’s theorem: The coefficient ring of MU is isomorphic to
Lazard’s universal ring.

I The formal group law of complex cobordism is the ”universal”
formal group law.

The structure of the complex cobordism ring MU∗ is
well-understood. It is a polynomial algebra over Z with generators
in even degrees.
Theorem (Structure of MU∗):

MU∗ ∼= Z[x2, x4, x6, . . . ]

where x2i are generators in degree 2i .



Quaternionic( or Symplectic) Cobordism MSp

I Classifies manifolds with a stable almost quaternionic
structure.

I Its coefficient ring, MSp∗, is where the difficulty explodes.

I While real and complex cobordism benefit from relatively
simple algebraic structures and powerful tools, quaternionic
cobordism is hampered by its intricate, non-polynomial
structure with torsion and the lack of straightforward
computational methods. This makes explicit calculations of
MSp∗ far more difficult and, in many ways, still a major
challenge in algebraic topology.



Why is MSp so Hard?

I Lack of a Simple Algebraic Structure. The regularity that
makes MO∗ and MU∗ computable simply doesn’t exist for
MSp∗. The presence of torsion and the non-polynomial nature
of the ring make calculations extremely difficult.

I Complicated Formal Group Laws. The connection to formal
group laws, which is so powerful in the complex case, becomes
much more intricate in the quaternionic case. The relevant
algebraic structures are far more challenging to work with.



Low dimensional torsion part of the symplectic bordism

Definition
The Ray classes [9] φi ∈ MSp8i−3 are indecomposable torsion
elements of order two in symplectic bordism ring. φi arise from the
expansion of Euler (Conner-Floyd symplectic Pontryagin) class

e((η1 − R)⊗R (ζ −H)) = s
∑
i≥1

θie
i (ζ)

in MSp4(S1 ∧BSp(1)), where s is the generator of MSp1(S1) = Z,
η1 → S1 is the non-trivial real line bundle, ζ → BSP(1) is the
canonical Sp(1) bundle and e is Euler class. The notation

θ2i = φi

is used in the literature because θ2i+1 = 0, for i > 1 by Roush [10].
We relabel θ1 := φ0.



Low dimensional free generators

Let ζ → HP∞ be the canonical quaternionic line bundle, and ζi be
the pullback by the projection on i-th factor

HP∞ × HP∞ × HP∞ → HP∞.

Define elements aijk by the Pontryagin classes

P1(ζ1 ⊗C ζ2 ⊗C ζ3) =
∑
ijk

aijkx
iy jzk .



Symplectic bordism in Low dimensions
In low dimensions MSp∗ was calculated by Ray [9]. In terms of φi
and aijk above (see more details in [3]) we have the following
picture in low dimensions

n MSpn generators

0 Z 1

1 0 φ0

2 Z2 φ20

3 0

4 Z a011

5 Z2 φ1,

6 Z2 φ0φ1

7 0

8 Z⊕ Z a012, a111



I By Vershinin [12] [Calculation of the symplectic cobordism
ring in dimensions up to 32 and the nontriviality of the
majority of ternary products of N. Ray’s elements] the classes
φi play an essential role in the torsion of the symplectic
cobordism ring, i.e., most ternary products φiφjφk 6= 0.

I By Ray and Gorbounov [7, 8] one has φ0φiφj = 0 and
φ2i+3
i = 0.



Our main results

Our one observation [3] is that multiplication by the elements φi ,
i > 0, carries most of the low-dimensional generators from the free
part of MSp4n to the ideal generated by the elements φ0 and φ1.
In particular, one has

Theorem
For i ≥ 0
i) φia110 = φia012 = φia022 = φia014 = 0;

ii) φia111 and φia122 belong to the ideal φ0MSp∗;

iii) φia211 belong to the ideal φ0MSp∗ + φ1MSp∗.



Products of Ray’s classes

Theorem
i) All fourfold products of the Ray classes φiφjφkφl are zero;

ii) All double products φiφj are restricted to zero in self-conjugate
cobordism.



Motivation

I We revise the proof of main Theorem 3 as follows. In [2] the
arguments of Remark 1.11, Lemma 1.12, and the proof of
Proposition 1, (1.1) and (1.2), case m = 5 are inherited from
the references and don’t seem to be true. Still, these
statements seem to be the consequences of Theorem 3.1 in
[5]. However, all these points are used to derive the proof of
Proposition 1 of [2], which we cover in Section 3. To do this,
we first carry out some calculations with transfer in symplectic
cobordism by using only double coset formula of [6]. For the
reader’s convenience, in Section 4 we briefly recall the proof of
Theorem 3 by pointing to the sequence of necessary
propositions of [2].



Idea
Significance
Statement of the Theorem
Interpretation

Consider the bundle of classifying spaces

p : BS1 → BS3

defined by inclusion of a circle S1 = U(1) = Spin(2) in 3-sphere
S3 = Sp(1) = Spin(3).
For complex oriented cohomology theories h∗ (including complex
cobordism MU∗) p∗ is monomorphism, which in terms of the Euler
classes x and y of canonical bundles ζ → BS3, ξ → BU(1)
operates as ζ → ξ ⊕ ξ̄, i.e. we have monomorphism

p∗ : h∗(BSpin(3))→ h∗(BSpin(2)),

h∗[[x ]]→ h∗[[y ]], x → y ȳ .



Good question

What if h∗ is the symplectic cobordism MSp∗? is p∗ mono?

Still MSp∗(BS3) = MSp∗[[x ]],

but MSp∗(BS1) 6= MSp∗[[y ȳ ]].



The answer is no and immediate interest is the Kernel of p∗ in
symplectic cobordism.
K -theory hintes as follows. Consider the real line bundle θ → S1

and consider the quaternionic line bundle

θ ⊗R ζ → S1 × BS3.

Applying p∗ we have over S1 × BS1

θ ⊗R (ξ ⊕ ξ̄) =

(1× p)∗(θ ⊗R ζ) = θ ⊗R (r(ξ)⊗R C)

(r(ξ)⊗R (θ ⊗R C) = r(ξ)⊗R C
= ξ ⊕ ξ̄.
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