On the integrability of transitive Lie algebroids

Daniel Beltiță Institute of Mathematics of the Romanian Academy ***

Joint work with Fernand Pelletier (Université Savoie Mont Blanc)

Prague-Hradec Kralove Seminar Cohomology in algebra, geometry, physics and statistics

Online, 19.02.2025

1/18

- Lie theory for groupoids
- **Q**-manifolds in the sense of R. Barre
- Generalized integration of transitive Lie algebroids

Lie groupoids

groupoid = associative partial multiplication on a set ("of arrows") \mathcal{G} :

- set of unit elements ("objects") M
- ▶ object inclusion map $\mathbf{1} \colon M \hookrightarrow \mathcal{G}$, $x \mapsto \mathbf{1}_x$
- target/source maps $m{t}, m{s} \colon \mathcal{G} o M$
- ▶ set of composable pairs $\mathcal{G} * \mathcal{G} := \{(\gamma_1, \gamma_2) \in \mathcal{G} \times \mathcal{G} \mid \boldsymbol{s}(\gamma_1) = \boldsymbol{t}(\gamma_2)\}$
- ▶ multiplication map $\mathbf{m} : \mathcal{G} * \mathcal{G} \to \mathcal{G}$, $(\gamma_1, \gamma_2) \mapsto \gamma_1 \cdot \gamma_2$
- ▶ inversion map $\iota : \mathcal{G} \to \mathcal{G}$
- The groupoid should be denoted $\mathcal{G} \stackrel{r}{\rightrightarrows} M$ but we keep it simple: $\mathcal{G} \rightrightarrows M$.

Lie groupoid: \mathcal{G} , M smooth manifolds; t, s submersions; 1, m smooth ($\Rightarrow \mathcal{G} * \mathcal{G} \subseteq \mathcal{G} \times \mathcal{G}$ submanifold, ι smooth, $\mathbf{1}_M \subseteq \mathcal{G}$ submanifold)

locally trivial Lie groupoid: (t, s): $\mathcal{G} \to M \times M$ surjective submersion

Example: the gauge groupoid of a principal bundle

For every principal bundle $P \leftarrow P \times G$ one has $\begin{array}{c} q \\ \downarrow \\ M \end{array}$ the gauge groupoid $\mathcal{G} := \mathfrak{gauge}(P) \rightrightarrows P/G$ where

 $\mathfrak{gauge}(P) := \{P_y \xleftarrow{\gamma} P_x \mid \gamma \text{ is a } G\text{-equivariant diffeomorphism}; x, y \in M\}$

and $P_x := q^{-1}(x) \in P/G$ for all $x \in M$, with its structural maps

- ▶ object inclusion map $\mathbf{1} \colon M \to \mathcal{G}$, $\mathbf{1}_{x} \mapsto \mathrm{id}_{P_{x}}$
- ► target/source maps $\boldsymbol{t}, \boldsymbol{s} \colon \mathcal{G} \to M$, $\boldsymbol{t}(\gamma) = P_y$, $\boldsymbol{s}(\gamma) = P_x$
- ▶ multiplication map $\mathbf{m} : \mathcal{G} * \mathcal{G} \to \mathcal{G}$, $(\gamma, \zeta) \mapsto \gamma \circ \zeta$ if $P_x \xleftarrow{\zeta} P_z$
- inversion map $\iota \colon \mathcal{G} o \mathcal{G}$, $\gamma \mapsto \gamma^{-1}$

We write $gauge(P) \rightrightarrows M$ via the identification $P/G \equiv M$, $P_x \leftrightarrow x$.

Lie algebroids

Lie algebroid: commutative diagram of vector bundles $A \xrightarrow{a} TM$

with a Lie bracket on $\Gamma(A)$ satisfying:

• $[X, \varphi Y] = (\mathbf{a}X)(\varphi)Y + \varphi[X, Y]$ for all $X, Y \in \Gamma(A), \varphi \in \mathcal{C}^{\infty}(M)$. The *anchor* **a** gives a Lie algebra morphism $\Gamma(A) \to \Gamma(TM) =: \mathcal{X}(M)$. The Lie algebroid is transitive if **a** is (fiberwise) surjective.

Ex.: For a Lie groupoid $\mathcal{G} \rightrightarrows M$, its Lie algebroid $\mathcal{AG} \rightarrow M$ is given by the pullback of vector bundles $\mathcal{AG} \longrightarrow \operatorname{Ker}(\mathcal{Ts}) \subseteq \mathcal{TG}$

hence $(\mathcal{AG})_x = \mathcal{T}_{\mathbf{1}_x}(\mathbf{s}^{-1}(x))$ and $\mathbf{a}_x = \mathcal{T}_{\mathbf{1}_x}(\mathbf{t}|_{\mathbf{s}^{-1}(x)}) \colon (\mathcal{AG})_x \to \mathcal{T}_x \mathcal{M}$. The Lie bracket is defined via an embedding $\Gamma(\mathcal{A}) \hookrightarrow \mathcal{X}(\mathcal{G}), X \mapsto \overrightarrow{X}$.

 $\begin{array}{c}
\downarrow \\
M = 1 \\
\downarrow \\
\end{array}$

Non-integrable transitive Lie algebroid

 $\text{Lie algebroid } A \to M \text{ is integrable} \Leftrightarrow (\exists \text{ Lie groupoid } \mathcal{G} \rightrightarrows M) \ A \simeq \mathcal{AG}$

Example:

- M smooth manifold
- ► $\omega \in \Omega^2(M)$, $d\omega = 0$, with its group of periods $\operatorname{Per}(\omega) \subseteq \mathbb{R}$

$$\blacktriangleright A := TM \oplus (M \times \mathbb{R}) \to M$$

• **a**: $A \rightarrow TM$

► $\Gamma(A) := \mathcal{X}(M) \oplus \mathcal{C}^{\infty}(M)$ with the Lie bracket

$$[(X,f),(Y,g)]_{\omega}:=([X,Y],X(f)-Y(g)+\omega(X,Y))$$

for $X, Y \in \mathcal{X}(M)$, $f, g \in \mathcal{C}^{\infty}(M)$

 \rightsquigarrow Lie algebroid $A_\omega \to M$

 A_{ω} integrable $\Leftrightarrow \operatorname{Per}(\omega) \subseteq \mathbb{R}$ closed subgroup $\Leftrightarrow (\exists r \in \mathbb{R}) \ \operatorname{Per}(\omega) = r\mathbb{Z}$

Q-manifolds in the sense of R. Barre (1973)

A **Q**-chart is a mapping $\pi: M \to S$, where *M* is a smooth manifold, satisfying:

- If $x, x' \in M$ with $\pi(x) = \pi(x')$, there are open sets $U, U' \subseteq M$ with $x \in U, x' \in U'$, and a diffeomorphism $h: U \to U'$ with h(x) = x' and $\pi(h(z)) = \pi(z)$ for all $z \in U$.
- For every smooth manifold T and any smooth maps $f, h: T \to M$ with $\pi \circ f = \pi \circ h$, the set $\{t \in T \mid f(t) = h(t)\}$ is open in T.

If π is surjective then it is called a **Q**-atlas. Two **Q**-charts $\pi_j: M_j \to S$, j = 1, 2, are *equivalent* if their disjoint union $\pi_1 \sqcup \pi_2: M_1 \sqcup M_2 \to S$ is again a **Q**-chart. A **Q**-manifold is a set *S* together with an equivalence class of **Q**-atlases.

A mapping $f: S_1 \to S_2$ is **Q**-smooth if it has smooth lifts: for $s_j \in S_j$, j = 1, 2, with $f(s_1) = s_2$ there exist **Q**-charts $\pi_j: M_j \to S_j$, a smooth mapping $\widehat{f}: M_1 \to M_2$, and points $m_j \in M_j$, j = 1, 2, with $\widehat{f}(m_1) = m_2$, $\pi_j(m_j) = s_j$ for j = 1, 2, and $f \circ \pi_1 = \pi_2 \circ \widehat{f}$.

Q-groups in the sense of R. Barre (1973)

A Q-group is a Q-manifold endowed with a group structure whose corresponding group operation and inversion are Q-smooth maps.

Example 1: \mathbb{R}/\mathbb{Q} is a Q-group with the Q-atlas $\mathbb{R}\to\mathbb{R}/\mathbb{Q}$

Example 2: *G* Lie group with a normal immersed subgroup $N \hookrightarrow G$ $\implies G/N$ is a **Q**-group with the **Q**-submersion $\pi : G \to G/N$ The **Q**-submersion π is a **Q**-atlas iff *N* is *pseudo-discrete*, i.e., if $f \in C^{\infty}(\mathbb{R}, G)$ and $f(\mathbb{R}) \subseteq N$ the *f* is necessarily constant.

Note: There exist <u>connected</u>, pseudo-discrete subgroups of \mathbb{R}^n if $n \ge 2$.

Q-principal bundles

Let G be a **Q**-group and N be a smooth manifold. A **Q**-principal bundle over N with structure group G is a **Q**-manifold P endowed with a free right **Q**-smooth action

$$P \times G \rightarrow P$$
, $(p,g) \mapsto pg$,

and a **Q**-smooth mapping $\beta \colon P \to N$ satisfying:

- For every $p \in P$ we have $\beta^{-1}(\beta(p)) = pG$.
- For every point n ∈ N there exist an open neighborhood U ⊆ N and a G-equivariant Q-diffeomorphism ψ for which the diagram

is commutative, where pr_1 is the first Cartesian projection.

Atiyah sequence of a **Q**-principal bundle

Let $\beta: P \to N$ be a **Q**-principal bundle with structural **Q**-group *G*. One has the commutative diagram

Also $\mathbf{a}_P : \mathfrak{Atinah}(P) \to TN$, $a_P(vG) := (T\beta)(v)$, is well defined. Finally, $\iota_P : P \times_{\mathrm{Ad}_G} \mathfrak{g} \to \mathfrak{Atinah}(P)$ via the tangent map of $P \times G \to P$.

Atiyah sequence of a **Q**-principal bundle (2)

Let $\beta: P \to N$ be a **Q**-principal bundle with structural **Q**-group *G*. The set $\mathfrak{Atinah}(P) = (TP)/G$ is a smooth manifold satisfying:

- **(**) The quotient map q_{TP} : $TP \rightarrow \mathfrak{Atinah}(P)$ is a **Q**-submersion.
- **(D)** The map $\mathfrak{A}(\beta)$: $\mathfrak{Atinah}(P) \to N$ is a smooth vector bundle.
- We have the short exact sequence of smooth vector bundles

$$0 \longrightarrow P \times_{\mathrm{Ad}_G} \mathfrak{g} \xrightarrow{\iota_P} \mathfrak{Atinah}(P) \xrightarrow{\mathbf{a}_P} TN \longrightarrow 0.$$

The smooth vector bundle $\mathfrak{Atinah}(P)$ has the structure of a transitive Lie algebroid with its anchor map $a_P : \mathfrak{Atinah}(P) \to TN$.

Integration of abstract Atiyah sequences

An abstract Atiyah sequence is a short exact sequence of Lie algebroids $L \rightarrow \overset{\mathbf{j}}{\longrightarrow} A \xrightarrow{\mathbf{a}} TN$ where A is a transitive Lie algebroid with its anchor $\mathbf{a}: A \rightarrow TN$ and L is a Lie algebra bundle over the manifold N. If $L' \rightarrow \overset{\mathbf{j}'}{\longrightarrow} A' \xrightarrow{\mathbf{a}'} TN$ is another abstract Atiyah sequence over N, then a morphism of these abstract Atiyah sequences consists of two morphisms of Lie algebroids $\psi: L \rightarrow L'$ and $\varphi: A \rightarrow A'$ satisfying $\varphi \circ \mathbf{j} = \mathbf{j}' \circ \psi$.

Theorem

Every abstract Atiyah sequence over a connected, 2nd countable, smooth manifold is isomorphic to the Atiyah sequence of some **Q**-principal bundle.

Q-groupoids

A **Q**-groupoid is a groupoid $\mathcal{G} \rightrightarrows M$ satisfying:

- G is a Q-manifold and M is a smooth manifold.
- ▶ The maps $s: G \to M$, $\iota: G \to G$, and $1: M \to G$ are **Q**-smooth.
- The map $\boldsymbol{s}: \mathcal{G} \to M$ is a **Q**-submersion.
- ▶ The multiplication $\mathbf{m} : \mathcal{G} * \mathcal{G} \to \mathcal{G}$ is **Q**-smooth.

A **Q**-groupoid morphism between $\mathcal{G} \rightrightarrows M$ and $\mathcal{H} \rightrightarrows N$ is a groupoid morphism $\Phi: \mathcal{G} \rightarrow \mathcal{H}$ over $\phi: M \rightarrow N$ for which Φ is a **Q**-smooth map. (Since ϕ is the composition of the maps $M \stackrel{1}{\rightarrow} \mathcal{G} \stackrel{\Phi}{\rightarrow} \mathcal{H} \stackrel{s}{\rightarrow} N$, it follows that ϕ is a smooth map.)

 \gtrless **1**: $M \rightarrow G$ is a **Q**-immersion but it may not be a '**Q**-embedding'.

E.g., if G is a **Q**-group, then the singleton subset $\{1\} \subseteq G$ is an embedded **Q**-submanifold if and only if G is a Lie group.

Lie functor for locally trivial **Q**-groupoids

The Lie algebroid of a **Q**-groupoid is defined just as for Lie groupoids. For a morphism of **Q**-groupoids $\Phi: \mathcal{G} \to \mathcal{H}$ we have the commutative diagram

where $\mathcal{A}\Phi$ is a Lie algebroid morphism at least if \mathcal{G}, \mathcal{H} are locally trivial.

Gauge groupoid of a **Q**-principal bundle

Theorem

If G is a **Q**-group and $\beta: P \to M$ is a **Q**-principal bundle with structure group G, then $gauge(P) \rightrightarrows M$ is a locally trivial **Q**-groupoid. There exist a locally trivial Lie groupoid $\widetilde{\mathcal{G}} \rightrightarrows \widetilde{M}$ and a **Q**-groupoid morphism $\pi_{\mathcal{G}}: \widetilde{\mathcal{G}} \to gauge(P)$ which is a **Q**-atlas.

Theorem

Every locally trivial \mathbf{Q} -groupoid is isomorphic to the gauge groupoid of a \mathbf{Q} -principal bundle.

Ehresmann isomorphism for a principal bundle P(M, G)If $\mathcal{G} := \mathfrak{gauge}(P) = (P \times P)/G \Rightarrow M$, there is the *Ehresmann* isomorphism of Lie algebroids $\mathfrak{Ehr}(P) : (TP)/G \xrightarrow{\sim} \mathcal{AG}$. In fact, the quotient map $\Psi : P \times P \to (P \times P)/G$ gives the commutative diagram

$$\begin{array}{ccc} TP & \stackrel{E}{\longrightarrow} (TP) \times P \xrightarrow{\partial_1 \Psi} T^s \mathcal{G} \\ \downarrow & \downarrow & \downarrow \\ P & \stackrel{\bullet}{\longrightarrow} P \times P \xrightarrow{\Psi} \mathcal{G} \end{array}$$

Here $\mathbf{1}: P \to P \times P$, $p \mapsto (p, p)$, and $E: TP \to (TP) \times P$, E(v) := (v, p)if $v \in T_p P$. The pair $((\partial_1 \Psi) \circ E, \Psi \circ \mathbf{1})$ is a fiberwise isomorphism onto the Lie algebroid $\mathcal{AG} \to \mathbf{1}_{\mathcal{G}} \simeq P/G$. Since $\Psi(pg, qg) = \Psi(p, q)$ for all $p, q \in P$ and $g \in G$, we obtain

The extended Ehresmann isomorphism

For \mathbb{PB} the category of **Q**-principal bundles, \mathbb{LA} the category of transitive Lie algebroids, \mathbb{LG} the category of locally trivial **Q**-groupoids, we have

- gauge: $\mathbb{PB} \to \mathbb{LG}$, gauge $(P) = (P \times P)/G$
- ▶ $\mathfrak{Lie}: \mathbb{LG} \to \mathbb{LA}$, $\mathfrak{Lie}(\mathcal{G}) := \mathcal{AG}$, is the Lie functor
- $\mathfrak{Atinah}: \mathbb{PB} \to \mathbb{LA}, \mathfrak{Atinah}(P) := (TP)/G.$

(Here P is a **Q**-principal bundle with its structure group G.)

Theorem

There is an isomorphism of functors $\mathfrak{Ehr}:\mathfrak{Atinah} \to \mathfrak{Lie} \circ \mathfrak{gauge}$ that agrees with the Ehresmann isomorphism for principal bundles.

Daniel Beltiță (IMAR)

Integrability of transitive Lie algebroids

Generalized integration of transitive Lie algebroids

Corollary

Every transitive Lie algebroid over a connected, second countable, smooth manifold is isomorphic to the Lie algebroid of some locally trivial \mathbf{Q} -groupoid.

Proof. Let $q: A \rightarrow N$ be an arbitrary transitive Lie algebroid with its anchor $\mathbf{a}: A \rightarrow TN$.

Step 1: Integrate the abstract Atiyah sequence $L \xrightarrow{j} A \xrightarrow{a} TN$ to a principal **Q**-groupoid $\beta : P \rightarrow N$.

Step 2: Via the extended Ehresmann isomorphism, the Lie algebroid $q: A \to N$ is then isomorphic to the Lie algebroid of $gauge(P) \rightrightarrows M$.