Homological reduction of Poisson structures

Pedro H. Carvalho

University of Hradec Králové

æ

< □ > < □ > < □ > < □ > < □ >

Context

Consider a Poisson manifold (M, π) endowed with a hamiltonian g-action with moment map $J: M \to \mathfrak{g}^*$.

э.

Context

Consider a Poisson manifold (M, π) endowed with a hamiltonian g-action with moment map $J: M \to \mathfrak{g}^*$. Then

BFV in degree zero

Kostant-Sternberg BRST algebra: dg super Poisson algebra whose cohomology in degree zero recovers the Poisson algebra of the reduced space (C_{red}, π_{red}) associated to the level set $\mathcal{C} \coloneqq J^{-1}(0)$, for $0 \in \mathfrak{g}^*$ a regular value.

Context

Consider a Poisson manifold (M, π) endowed with a hamiltonian g-action with moment map $J: M \to \mathfrak{g}^*$. Then

BFV in degree zero

Kostant-Sternberg BRST algebra: dg super Poisson algebra whose cohomology in degree zero recovers the Poisson algebra of the reduced space (C_{red}, π_{red}) associated to the level set $\mathcal{C} := J^{-1}(0)$, for $0 \in \mathfrak{g}^*$ a regular value.

Idea

To study BFV models for the hamiltonian reduction of graded symplectic manifolds of degree one with a view towards homological reduction of Poisson structures.

Poisson structures and their reduction

Poisson manifolds (M, π)

Symplectic $\mathbb{N}Q$ -manifolds of degree one $(\mathcal{M} := \mathcal{T}^*[1]\mathcal{M}, \{\cdot, \cdot\}, X_{\pi} = \{\pi, \cdot\})$

(日) (四) (日) (日) (日)

Poisson structures and their reduction

Poisson manifolds (M, π)

Symplectic $\mathbb{N}Q$ -manifolds of degree one $\left(\mathcal{M} \coloneqq \mathcal{T}^*[1]\mathcal{M}, \{\cdot, \cdot\}, X_{\pi} = \{\pi, \cdot\}\right)$

Reduction of (M, π)

Coisotropic and presymplectic reduction of $(\mathcal{M} := \mathcal{T}^*[1]\mathcal{M}, \{\cdot, \cdot\}, X_{\pi} = \{\pi, \cdot\})$

Pedro H. Carvalho (UHK)

э.

• Following Cattaneo-Zambon graded geometric approach to Poisson reduction:

æ

A generalized hamiltonian setting

• Following Cattaneo-Zambon graded geometric approach to Poisson reduction:

hamiltonian action of $\overline{\mathfrak{g}} \coloneqq \mathfrak{h}[1] \oplus \mathfrak{g}$ on $T^*[1]M$ compatible with $\pi \in C_2^{\infty}(T^*[1]M)$

 $\mathfrak{g}\text{-action on } (M,\pi) \text{ with } J: M \to \mathfrak{h}^* \text{ equivariant} \\ \text{ for } \mathfrak{h} \text{ a } \mathfrak{g}\text{-module}$

(日) (四) (日) (日) (日)

A generalized hamiltonian setting

• Following Cattaneo-Zambon graded geometric approach to Poisson reduction:

hamiltonian action of $\overline{\mathfrak{g}} \coloneqq \mathfrak{h}[1] \oplus \mathfrak{g}$ on $T^*[1]M$ compatible with $\pi \in C_2^{\infty}(T^*[1]M)$

 $\mathfrak{g}\text{-action on } (M,\pi) \text{ with } J: M \to \mathfrak{h}^* \text{ equivariant} \\ \text{ for } \mathfrak{h} \text{ a } \mathfrak{g}\text{-module}$

Theorem (Cattaneo-Zambon)

Let $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action on a Poisson manifold (M, π) , and let $J : M \to \mathfrak{h}^*$ be a \mathfrak{g} -equivariant map, for \mathfrak{h} a \mathfrak{g} -module. Assume that the pair (ψ, J) is regular and compatible with the Poisson structure π . Then the quotient $C_{red} := C/G$ inherits a Poisson structure π_{red} .

A generalized hamiltonian setting

• Following Cattaneo-Zambon graded geometric approach to Poisson reduction:

hamiltonian action of $\overline{\mathfrak{g}} \coloneqq \mathfrak{h}[1] \oplus \mathfrak{g}$ on $T^*[1]M$ compatible with $\pi \in C_2^{\infty}(T^*[1]M)$

 $\mathfrak{g}\text{-action on } (M,\pi) \text{ with } J: M \to \mathfrak{h}^* \text{ equivariant} \\ \text{ for } \mathfrak{h} \text{ a } \mathfrak{g}\text{-module}$

Theorem (Cattaneo-Zambon)

Let $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action on a Poisson manifold (M, π) , and let $J : M \to \mathfrak{h}^*$ be a \mathfrak{g} -equivariant map, for \mathfrak{h} a \mathfrak{g} -module. Assume that the pair (ψ, J) is regular and compatible with the Poisson structure π . Then the quotient $C_{red} := C/G$ inherits a Poisson structure π_{red} .

What is the corresponding homological version of this result?

Pedro H. Carvalho (UHK)

э.

Ξ.

• Marsden-Weinstein theorem: $(J^{-1}(0)/G, \pi_{red})$;

Ξ.

イロン イ団 とく ヨン イヨン

- Marsden-Weinstein theorem: $(J^{-1}(0)/G, \pi_{red})$;
- Let $C := J^{-1}(0)$ and $C_{red} = C/G$.

Ξ.

- Marsden-Weinstein theorem: $(J^{-1}(0)/G, \pi_{red})$;
- Let $C := J^{-1}(0)$ and $C_{red} = C/G$. We have

$$C^{\infty}(C_{red})\cong C^{\infty}(C)^{G}.$$

æ

- Marsden-Weinstein theorem: $(J^{-1}(0)/G, \pi_{red})$;
- Let $C := J^{-1}(0)$ and $C_{red} = C/G$. We have

$$C^{\infty}(C_{red})\cong C^{\infty}(C)^{G}.$$

• $I \subset C^{\infty}(M)$, the vanishing ideal of C, satisfies $\{I, I\} \subset I$.

- Marsden-Weinstein theorem: $(J^{-1}(0)/G, \pi_{red})$;
- Let $C := J^{-1}(0)$ and $C_{red} = C/G$. We have

$$C^{\infty}(C_{red})\cong C^{\infty}(C)^{G}.$$

• $I \subset C^{\infty}(M)$, the vanishing ideal of C, satisfies $\{I, I\} \subset I$. Moreover,

$$C^{\infty}(C) \cong C^{\infty}(M)/I \tag{1}$$

< ロ > < 同 > < 三 > < 三 > 、

- Marsden-Weinstein theorem: $(J^{-1}(0)/G, \pi_{red})$;
- Let $C := J^{-1}(0)$ and $C_{red} = C/G$. We have

$$C^{\infty}(C_{red})\cong C^{\infty}(C)^{G}.$$

• $I \subset C^{\infty}(M)$, the vanishing ideal of C, satisfies $\{I, I\} \subset I$. Moreover,

$$C^{\infty}(C) \cong C^{\infty}(M)/I \tag{1}$$

and

$$(C^{\infty}(M)/I)^{G} \cong N(I)/I, \qquad (2)$$

where

$$N(I) = \{f \in C^{\infty}(M) : \{f, I\} \subset I\}.$$

- Marsden-Weinstein theorem: $(J^{-1}(0)/G, \pi_{red})$;
- Let $C := J^{-1}(0)$ and $C_{red} = C/G$. We have

$$C^{\infty}(C_{red})\cong C^{\infty}(C)^{G}.$$

• $I \subset C^{\infty}(M)$, the vanishing ideal of C, satisfies $\{I, I\} \subset I$. Moreover,

$$C^{\infty}(C) \cong C^{\infty}(M)/I$$
 (1)

and

$$(C^{\infty}(M)/I)^{G} \cong N(I)/I, \qquad (2)$$

where

$$N(I) = \{f \in C^{\infty}(M) : \{f, I\} \subset I\}.$$

A *homological model* for hamiltonian reduction comes out of realizing (1) and (2) homologically.

イロン イ団 とく ヨン イヨン

э.

$$\mathcal{K}^n := \bigoplus_{n=p-q} \mathcal{K}^{p,q}, \ \ ext{for} \ \ \mathcal{K}^{p,q} := \mathcal{C}^\infty(\mathcal{M}) \otimes \bigwedge^p \mathfrak{g}^* \otimes \bigwedge^q \mathfrak{g},$$

Ξ.

$$\mathcal{K}^n := \bigoplus_{n=p-q} \mathcal{K}^{p,q}, \ \ \text{for} \ \ \mathcal{K}^{p,q} := \mathcal{C}^\infty(\mathcal{M}) \otimes \bigwedge^p \mathfrak{g}^* \otimes \bigwedge^q \mathfrak{g},$$

and $\partial_{BRST} = \{Q_g, \cdot\}$, for

$$Q_{\mathfrak{g}} = \mu^*(u^i)u_i^* - \frac{1}{2}c_k^{ij}u_i^*u_j^*u^k, \quad Q_{\mathfrak{g}} \in \mathcal{K}^1, \quad \{Q_{\mathfrak{g}}, Q_{\mathfrak{g}}\} = 0$$

Ξ.

$$\mathcal{K}^n := \bigoplus_{n=p-q} \mathcal{K}^{p,q}, \ \ \text{for} \ \ \mathcal{K}^{p,q} := \mathcal{C}^\infty(\mathcal{M}) \otimes \bigwedge^p \mathfrak{g}^* \otimes \bigwedge^q \mathfrak{g},$$

and $\partial_{BRST} = \{Q_g, \cdot\},$ for

$$Q_{\mathfrak{g}} = \mu^*(u^i)u_i^* - \frac{1}{2}c_k^{ij}u_i^*u_j^*u^k, \quad Q_{\mathfrak{g}} \in \mathcal{K}^1, \quad \{Q_{\mathfrak{g}}, Q_{\mathfrak{g}}\} = 0.$$

Theorem (Kostant-Sternberg, Stasheff)

Let $I \subset C^{\infty}(M)$ be the vanishing ideal of $C \coloneqq \mu^{-1}(0)$.

$$\mathcal{K}^n := \bigoplus_{n=p-q} \mathcal{K}^{p,q}, \ \ \text{for} \ \ \mathcal{K}^{p,q} := \mathcal{C}^\infty(\mathcal{M}) \otimes \bigwedge^p \mathfrak{g}^* \otimes \bigwedge^q \mathfrak{g},$$

and $\partial_{BRST} = \{Q_g, \cdot\},$ for

$$Q_{\mathfrak{g}} = \mu^*(u^i)u_i^* - \frac{1}{2}c_k^{ij}u_i^*u_j^*u^k, \quad Q_{\mathfrak{g}} \in \mathcal{K}^1, \quad \{Q_{\mathfrak{g}}, Q_{\mathfrak{g}}\} = 0.$$

Theorem (Kostant-Sternberg, Stasheff)

Let $I \subset C^{\infty}(M)$ be the vanishing ideal of $C \coloneqq \mu^{-1}(0)$. Then

$$H^0_{\{Q_{\mathfrak{g}},\,\cdot\,\}}\cong N(I)/I$$

$$\mathcal{K}^n := \bigoplus_{n=p-q} \mathcal{K}^{p,q}, \ \ \text{for} \ \ \mathcal{K}^{p,q} := \mathcal{C}^\infty(\mathcal{M}) \otimes \bigwedge^p \mathfrak{g}^* \otimes \bigwedge^q \mathfrak{g},$$

and $\partial_{BRST} = \{Q_g, \cdot\},$ for

$$Q_{\mathfrak{g}} = \mu^*(u^i)u_i^* - \frac{1}{2}c_k^{ij}u_i^*u_j^*u^k, \quad Q_{\mathfrak{g}} \in \mathcal{K}^1, \quad \{Q_{\mathfrak{g}}, Q_{\mathfrak{g}}\} = 0.$$

Theorem (Kostant-Sternberg, Stasheff)

Let $I \subset C^{\infty}(M)$ be the vanishing ideal of $C := \mu^{-1}(0)$. Then

$$H^0_{\{Q_{\mathfrak{g}},\,\cdot\,\}}\cong N(I)/I\cong C^\infty(C_{red}).$$

• Following Cattaneo-Zambon graded geometric approach to Poisson reduction:

hamiltonian action of $\overline{\mathfrak{g}} := \mathfrak{h}[1] \oplus \mathfrak{g}$ on $T^*[1]M$ compatible with $\pi \in C_2^{\infty}(T^*[1]M)$

 \mathfrak{g} -action on (M,π) with $J: M \to \mathfrak{h}^*$ equivariant, for \mathfrak{h} a \mathfrak{g} -module

Theorem (Cattaneo-Zambon)

Let $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action on a Poisson manifold (M, π) , and let $J : M \to \mathfrak{h}^*$ be a \mathfrak{g} -equivariant map, for \mathfrak{h} a \mathfrak{g} -module. Assume that the pair (ψ, J) is regular and compatible with the Poisson structure π . Then the quotient $C_{red} := C/G$ inherits a Poisson structure π_{red} .

• Following Cattaneo-Zambon graded geometric approach to Poisson reduction:

```
hamiltonian action of \overline{\mathfrak{g}} := \mathfrak{h}[1] \oplus \mathfrak{g}
on T^*[1]M compatible with \pi \in C_2^{\infty}(T^*[1]M)
```

```
 \mathfrak{g}\text{-action on } (M,\pi) \text{ with } J: M \to \mathfrak{h}^* \text{ equivariant,} \\ \text{ for } \mathfrak{h} \text{ a } \mathfrak{g}\text{-module}
```

Theorem (Cattaneo-Zambon)

Let $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action on a Poisson manifold (M, π) , and let $J : M \to \mathfrak{h}^*$ be a \mathfrak{g} -equivariant map, for \mathfrak{h} a \mathfrak{g} -module. Assume that the pair (ψ, J) is regular and compatible with the Poisson structure π . Then the quotient $C_{red} := C/G$ inherits a Poisson structure π_{red} .

What is the algebraic structure of the homological model for this reduction scheme?

Pedro H. Carvalho (UHK)

Shifted cotangent bundles

Pedro H. Carvalho (Ul	HK	
-----------------------	----	--

æ

For *M* a smooth manifold, the *shifted cotangent bundle* of *M* is the degree one manifold $\mathcal{M} := T^*[1]M$

Ξ.

For M a smooth manifold, the *shifted cotangent bundle* of M is the degree one manifold $\mathcal{M} := T^*[1]M$ whose sheaf of functions is

$$C^{\infty}(\mathcal{M}) \coloneqq \Gamma(\bigwedge^{\bullet} TM) = \mathfrak{X}^{\bullet}(M).$$

æ

For M a smooth manifold, the *shifted cotangent bundle* of M is the degree one manifold $\mathcal{M} := T^*[1]M$ whose sheaf of functions is

$$C^{\infty}(\mathcal{M}) \coloneqq \Gamma(\bigwedge^{\bullet} TM) = \mathfrak{X}^{\bullet}(M).$$

In local coordinates $(U, x_1, ..., x_n)$ for M, a multivector field $X \in \mathfrak{X}^p(M)$ can be written as

$$X = \sum_{i_1 < \cdots < i_p} a_{i_1 \cdots i_p} \xi_{i_1} \cdots \xi_{i_p}, \quad a_{i_1 \cdots i_p} \in C^{\infty}(M)|_U,$$

where $\xi_{i_j} := \partial_{x_{i_i}}$.

æ

イロン イ団 とく ヨン イヨン

For M a smooth manifold, the *shifted cotangent bundle* of M is the degree one manifold $\mathcal{M} := T^*[1]M$ whose sheaf of functions is

$$C^{\infty}(\mathcal{M}) \coloneqq \Gamma(\bigwedge^{\bullet} TM) = \mathfrak{X}^{\bullet}(M).$$

In local coordinates (U, x_1, \ldots, x_n) for M, a multivector field $X \in \mathfrak{X}^{p}(M)$ can be written as

$$X = \sum_{i_1 < \cdots < i_p} a_{i_1 \cdots i_p} \xi_{i_1} \cdots \xi_{i_p}, \quad a_{i_1 \cdots i_p} \in C^{\infty}(M)|_U,$$

where $\xi_{i_j} := \partial_{x_{i_i}}$.

• $X \in \mathfrak{X}^p(M)$ and $Y \in \mathfrak{X}^q(M)$, the shifted Poisson bracket $\{X, Y\} \in \mathfrak{X}^{p+q-1}(M)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For M a smooth manifold, the *shifted cotangent bundle* of M is the degree one manifold $\mathcal{M} := \mathcal{T}^*[1]M$ whose sheaf of functions is

$$C^{\infty}(\mathcal{M}) \coloneqq \Gamma(\bigwedge^{\bullet} TM) = \mathfrak{X}^{\bullet}(M).$$

In local coordinates (U, x_1, \ldots, x_n) for M, a multivector field $X \in \mathfrak{X}^{p}(M)$ can be written as

$$X = \sum_{i_1 < \cdots < i_p} a_{i_1 \cdots i_p} \xi_{i_1} \cdots \xi_{i_p}, \quad a_{i_1 \cdots i_p} \in C^{\infty}(M)|_U,$$

where $\xi_{i_j} := \partial_{x_{i_j}}$.

• $X \in \mathfrak{X}^{p}(M)$ and $Y \in \mathfrak{X}^{q}(M)$, the shifted Poisson bracket $\{X, Y\} \in \mathfrak{X}^{p+q-1}(M)$ is given, in local coordinates, by

$$\{X,Y\} = \sum_{i} \frac{\partial X}{\partial \xi_{i}} \frac{\partial Y}{\partial x_{i}} - (-1)^{(p-1)(q-1)} \sum_{i} \frac{\partial Y}{\partial \xi_{i}} \frac{\partial X}{\partial x_{i}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Pedro H. Carvalho (UHK)

2

メロト メロト メヨト メヨト

• Let $\overline{\mathfrak{g}} = \mathfrak{h}[1] \oplus \mathfrak{g}$ be a graded Lie algebra concentrated in degrees -1 and 0. An action of $\overline{\mathfrak{g}}$ on \mathcal{M} is a morphism of graded Lie algebras $\Psi : \overline{\mathfrak{g}} \to \mathfrak{X}(\mathcal{M})$.

< □ > < □ > < □ > < □ > < □ >

- Let $\overline{\mathfrak{g}} = \mathfrak{h}[1] \oplus \mathfrak{g}$ be a graded Lie algebra concentrated in degrees -1 and 0. An action of $\overline{\mathfrak{g}}$ on \mathcal{M} is a morphism of graded Lie algebras $\Psi : \overline{\mathfrak{g}} \to \mathfrak{X}(\mathcal{M})$.
- Moment map: a morphism of (odd) Lie algebras $J^{\sharp}:\overline{\mathfrak{g}}[-1] \to C^{\infty}(\mathcal{M})$ such that

$$u_{\mathcal{M}} = \{J_1^{\sharp}(u), \cdot\}$$
 and $v_{\mathcal{M}} = \{J_0^{\sharp}(v), \cdot\},\$

for $u \in \mathfrak{g}$ and $v \in \mathfrak{h}$.

(日) (四) (日) (日) (日)

- Let $\overline{\mathfrak{g}} = \mathfrak{h}[1] \oplus \mathfrak{g}$ be a graded Lie algebra concentrated in degrees -1 and 0. An action of $\overline{\mathfrak{g}}$ on \mathcal{M} is a morphism of graded Lie algebras $\Psi : \overline{\mathfrak{g}} \to \mathfrak{X}(\mathcal{M})$.
- Moment map: a morphism of (odd) Lie algebras $J^{\sharp}:\overline{\mathfrak{g}}[-1] \to C^{\infty}(\mathcal{M})$ such that

$$u_{\mathcal{M}} = \{J_1^{\sharp}(u), \cdot\}$$
 and $v_{\mathcal{M}} = \{J_0^{\sharp}(v), \cdot\},\$

for $u \in \mathfrak{g}$ and $v \in \mathfrak{h}$.

• Dually, we can see a moment map $J^{\sharp} : \overline{\mathfrak{g}}[-1] \to C^{\infty}(\mathcal{M})$ as a map of degree one manifolds $(J, J^{\sharp}) : \mathcal{M} \to (\overline{\mathfrak{g}}[-1])^*$.

< ロ > < 同 > < 三 > < 三 > 、

Hamiltonian reduction of $\mathcal{M} \coloneqq \mathcal{T}^*[1]M$

Constraint submanifold

э.

• The constraint submanifold $\mathcal{C}:=(J,J^{\sharp})^{-1}(0)$ is the defined in terms of its sheaf of vanishing ideals

$$\mathcal{J}=\langle J_0^{\sharp}(v),J_1^{\sharp}(u)\rangle.$$

イロト イヨト イヨト イヨト

Ξ.

 The constraint submanifold C := (J, J[♯])⁻¹(0) is the defined in terms of its sheaf of vanishing ideals

$$\mathcal{J}=\langle J_0^{\sharp}(v),J_1^{\sharp}(u)\rangle.$$

• $J^{\sharp}: \overline{\mathfrak{g}}[-1] \to C^{\infty}(\mathcal{M})$ being a moment map is equivalent to \mathcal{J} being a coisotropic ideal, that is, $\{\mathcal{J}, \mathcal{J}\} \subset \mathcal{J}$.

 The constraint submanifold C := (J, J[♯])⁻¹(0) is the defined in terms of its sheaf of vanishing ideals

$$\mathcal{J}=\langle J_0^{\sharp}(v),J_1^{\sharp}(u)\rangle.$$

• $J^{\sharp}: \overline{\mathfrak{g}}[-1] \to C^{\infty}(\mathcal{M})$ being a moment map is equivalent to \mathcal{J} being a coisotropic ideal, that is, $\{\mathcal{J}, \mathcal{J}\} \subset \mathcal{J}$.

graded
$$\overline{\mathfrak{g}}$$
-action $\Psi : \overline{\mathfrak{g}} \to \mathfrak{X}(\mathcal{M})$
with moment map $J^{\sharp} : \overline{\mathfrak{g}}[-1] \to C^{\infty}(\mathcal{M})$
g-action $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ with
 $J : M \to \mathfrak{h}^*$ equivariant, for \mathfrak{h} a g-module

Geometrically on M : we have the level set C := J⁻¹(0) ⊂ M endowed with the involutive tangent distribution D := (J[#]₁(u))_{u∈g}.

Hamiltonian reduction of $\mathcal{M} \coloneqq \mathcal{T}^*[1]M$

Reduced space

Ξ.

Reduced space

• For

$$N(\mathcal{J}) \coloneqq \{ f \in C^{\infty}(\mathcal{M}) \mid \{ f, \mathcal{J} \} \subset \mathcal{J} \},$$

we have

$$\frac{\mathsf{N}(\mathcal{J})}{\mathcal{J}}\cong\mathsf{C}^\infty(\mathcal{C}_{\mathit{red}}),$$

when \mathcal{C}_{red} exists.

イロト イヨト イヨト イヨト

Reduced space

For

$$N(\mathcal{J}) \coloneqq \{ f \in C^{\infty}(\mathcal{M}) \mid \{ f, \mathcal{J} \} \subset \mathcal{J} \},$$

we have

$$\frac{\mathsf{N}(\mathcal{J})}{\mathcal{J}}\cong\mathsf{C}^\infty(\mathcal{C}_{\mathit{red}}),$$

when C_{red} exists.

Theorem (Cattaneo-Zambon)

Let $J^{\sharp}: \overline{\mathfrak{g}}[-1] \to C^{\infty}(\mathcal{M})$ be a moment map for an infinitesimal action of $\overline{\mathfrak{g}} := \mathfrak{h}[1] \oplus \mathfrak{g}$ on \mathcal{M} . Assume that $0 \in \mathfrak{h}^*$ is a regular value of $J: \mathcal{M} \to \mathfrak{h}^*$ and that the action $\psi := J^{\sharp}|_{\mathfrak{g}}: \mathfrak{g} \to \mathfrak{X}(\mathcal{M})$ on $C := J^{-1}(0)$ integrates to a free and proper action of a Lie group G, that is, assume that the pair (ψ, J) is regular. Then the corresponding degree one reduced space \mathcal{C}_{red} exists and is naturally isomorphic to $T^*[1](C/G)$.

Hamiltonian reduction of $\mathcal{M} \coloneqq \mathcal{T}^*[1]M$

Reducible Poisson structures

э.

12 / 27

• A Poisson structure on M is a bivector $\pi \in \mathfrak{X}^2(M) = C_2^{\infty}(\mathcal{M})$ satisfying $\{\pi, \pi\} = 0$.

Ξ.

イロン イ団 とく ヨン イヨン

A Poisson structure on M is a bivector π ∈ X²(M) = C₂[∞](M) satisfying {π, π} = 0.
Since

$$\mathcal{C}^{\infty}(\mathcal{C}_{red})\cong rac{\mathcal{N}(\mathcal{J})}{\mathcal{J}},$$

 $\pi \in \mathfrak{X}^{2}(M)$ is said to be reducible iff $\pi \in \mathcal{N}(\mathcal{J}).$

э

イロト 不得 トイヨト イヨト

A Poisson structure on M is a bivector π ∈ X²(M) = C₂[∞](M) satisfying {π, π} = 0.
Since

$$C^{\infty}(\mathcal{C}_{red})\cong rac{\mathcal{N}(\mathcal{J})}{\mathcal{J}},$$

 $\pi \in \mathfrak{X}^{2}(M)$ is said to be reducible iff $\pi \in N(\mathcal{J})$. In this case, we have $\pi_{red} \in \mathfrak{X}^{2}(C_{red})$.

æ

A Poisson structure on M is a bivector π ∈ X²(M) = C₂[∞](M) satisfying {π, π} = 0.
Since

$$C^{\infty}(\mathcal{C}_{red})\cong rac{N(\mathcal{J})}{\mathcal{J}},$$

 $\pi \in \mathfrak{X}^{2}(M)$ is said to be reducible iff $\pi \in N(\mathcal{J})$. In this case, we have $\pi_{red} \in \mathfrak{X}^{2}(C_{red})$.

• For $\pi \in \mathfrak{X}^2(M) = C_2^{\infty}(\mathcal{M})$ to induce a Poisson structure on C_{red} it suffices that $\{\pi, \pi\} \in \mathcal{J}$ (weak Poisson – Lyakhovich-Sharapov, quasi-Poisson spaces).

12/27

Hamiltonian reduction of $\mathcal{M} \coloneqq T^*[1]M$

Reducible Poisson structures: non-graded perspective

Ξ.

• In non-graded terms, the condition $\pi \in N(\mathcal{J})$ gives:

2

- In non-graded terms, the condition $\pi \in \mathit{N}(\mathcal{J})$ gives:
 - $C^{\infty}(M)|_{\mathfrak{g}\text{-inv}} \subset C^{\infty}(M)$ is a Poisson subalgebra;
 - $\pi^{\sharp}(Ann(TC)) \subset \mathcal{D} \coloneqq \langle \psi(u) \rangle_{u \in \mathfrak{g}}.$

- In non-graded terms, the condition $\pi \in \mathit{N}(\mathcal{J})$ gives:
 - $C^{\infty}(M)|_{g-inv} \subset C^{\infty}(M)$ is a Poisson subalgebra;
 - $\pi^{\sharp}(Ann(TC)) \subset \mathcal{D} \coloneqq \langle \psi(u) \rangle_{u \in \mathfrak{g}}.$
- The Marsden-Weinstein theorem for the reduction of $\mathcal{M} := T^*[1]M$ implies the following generalized version of the classical Marsden-Weinstein theorem:

- In non-graded terms, the condition $\pi \in \mathit{N}(\mathcal{J})$ gives:
 - $C^{\infty}(M)|_{g-inv} \subset C^{\infty}(M)$ is a Poisson subalgebra;
 - $\pi^{\sharp}(Ann(TC)) \subset \mathcal{D} \coloneqq \langle \psi(u) \rangle_{u \in \mathfrak{g}}.$
- The Marsden-Weinstein theorem for the reduction of $\mathcal{M} := T^*[1]M$ implies the following generalized version of the classical Marsden-Weinstein theorem:

Theorem (Cattaneo-Zambon)

Let $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action on a Poisson manifold (M, π) , and let $J : M \to \mathfrak{h}^*$ be a \mathfrak{g} -equivariant map, for \mathfrak{h} a \mathfrak{g} -module. Assume that the pair (ψ, J) is regular and compatible with the Poisson structure π . Then the quotient $C_{red} := C/G$ inherits a Poisson structure π_{red} .

< ロ > < 同 > < 三 > < 三 > 、

- In non-graded terms, the condition $\pi \in \mathit{N}(\mathcal{J})$ gives:
 - $C^{\infty}(M)|_{\mathfrak{g}\text{-inv}} \subset C^{\infty}(M)$ is a Poisson subalgebra;
 - $\pi^{\sharp}(Ann(TC)) \subset \mathcal{D} \coloneqq \langle \psi(u) \rangle_{u \in \mathfrak{g}}.$
- The Marsden-Weinstein theorem for the reduction of $\mathcal{M} := T^*[1]\mathcal{M}$ implies the following generalized version of the classical Marsden-Weinstein theorem:

Theorem (Cattaneo-Zambon)

Let $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action on a Poisson manifold (M, π) , and let $J : M \to \mathfrak{h}^*$ be a \mathfrak{g} -equivariant map, for \mathfrak{h} a \mathfrak{g} -module. Assume that the pair (ψ, J) is regular and compatible with the Poisson structure π . Then the quotient $C_{red} := C/G$ inherits a Poisson structure π_{red} .

The homological counterpart of this result will be derived from a homological model for the hamiltonian reduction of $(\mathcal{M}, \{\cdot, \cdot\})$.

Pedro H. Carvalho (UHK)

э.

Ξ.

Note K[•] := C[∞](M) ⊗ Λ[•] g^{*} ⊗ Λ[•] g can be seen as the algebra of functions of M × T^{*}g^{*}[-1] and the BRST charge Q_g ∈ K¹ as a function defining the homological vector field ∂_{BRST} := {Q_g, ·}.

Note K[•] := C[∞](M) ⊗ Λ[•] g^{*} ⊗ Λ[•] g can be seen as the algebra of functions of M × T^{*}g^{*}[-1] and the BRST charge Q_g ∈ K¹ as a function defining the homological vector field ∂_{BRST} := {Q_g, ·}.

Take

$$\mathcal{N} := \mathcal{M} \times \mathcal{T}^*[1]\overline{\mathfrak{g}}^*[-1],$$

Note K[•] := C[∞](M) ⊗ Λ[•] g^{*} ⊗ Λ[•] g can be seen as the algebra of functions of M × T^{*}g^{*}[-1] and the BRST charge Q_g ∈ K¹ as a function defining the homological vector field ∂_{BRST} := {Q_g, ·}.

Take

$$\mathcal{N} := \mathcal{M} \times T^*[1]\overline{\mathfrak{g}}^*[-1],$$

in such a way that

$$C^{\infty}(\mathcal{N}) = C^{\infty}(\mathcal{M}) \otimes C^{\infty}(T^{*}[1]\overline{\mathfrak{g}}^{*}[-1]) = C^{\infty}(\mathcal{M}) \otimes S^{\bullet}(\overline{\mathfrak{g}}^{*}[-1]) \otimes S^{\bullet}(\overline{\mathfrak{g}}).$$

Note $C^{\infty}(\mathcal{N})$ is endowed with a natural Poisson bracket $\{\cdot, \cdot\}$ of degree -1.

$$\mathcal{A}^{p,q}\coloneqq \mathcal{C}^\infty(\mathcal{M})\otimes \mathcal{S}^p(\overline{\mathfrak{g}}^*[-1])\otimes \mathcal{S}^q(\overline{\mathfrak{g}})\subseteq \mathcal{C}^\infty(\mathcal{N}).$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ の < ⊙

15 / 27

$$\mathcal{A}^{p,q}\coloneqq \mathcal{C}^\infty(\mathcal{M})\otimes \mathcal{S}^p(\overline{\mathfrak{g}}^*[-1])\otimes \mathcal{S}^q(\overline{\mathfrak{g}})\subseteq \mathcal{C}^\infty(\mathcal{N}).$$

Oefine

$$\mathcal{A}^n := \bigoplus_{n=p-q} \mathcal{A}^{p,q}.$$

$$\mathcal{A}^{p,q}\coloneqq \mathcal{C}^\infty(\mathcal{M})\otimes \mathcal{S}^p(\overline{\mathfrak{g}}^*[-1])\otimes \mathcal{S}^q(\overline{\mathfrak{g}})\subseteq \mathcal{C}^\infty(\mathcal{N}).$$

O Define

$$\mathcal{A}^n := \bigoplus_{n=p-q} \mathcal{A}^{p,q}.$$

In this way, $\mathcal{A}\coloneqq \mathcal{C}^\infty(\mathcal{N})$ becomes bigraded

э.

$$\mathcal{A}^{p,q}\coloneqq \mathcal{C}^\infty(\mathcal{M})\otimes \mathcal{S}^p(\overline{\mathfrak{g}}^*[-1])\otimes \mathcal{S}^q(\overline{\mathfrak{g}})\subseteq \mathcal{C}^\infty(\mathcal{N}).$$

O Define

$$\mathcal{A}^n := \bigoplus_{n=p-q} \mathcal{A}^{p,q}.$$

In this way, $\mathcal{A} \coloneqq C^{\infty}(\mathcal{N})$ becomes bigraded — $\mathcal{A}^{k,\ell}$ denote the subspace of $C^{\infty}(\mathcal{N})$ consisting of functions that have *total ghost number k* and *function degree* ℓ .

Ξ.

$$\mathcal{A}^{p,q}\coloneqq \mathcal{C}^\infty(\mathcal{M})\otimes \mathcal{S}^p(\overline{\mathfrak{g}}^*[-1])\otimes \mathcal{S}^q(\overline{\mathfrak{g}})\subseteq \mathcal{C}^\infty(\mathcal{N}).$$

O Define

$$\mathcal{A}^n := \bigoplus_{n=p-q} \mathcal{A}^{p,q}.$$

In this way, $\mathcal{A} \coloneqq C^{\infty}(\mathcal{N})$ becomes bigraded — $\mathcal{A}^{k,\ell}$ denote the subspace of $C^{\infty}(\mathcal{N})$ consisting of functions that have *total ghost number k* and *function degree* ℓ .

 $\mathcal{A} := \mathcal{C}^{\infty}(\mathcal{N})$ with additional grading by *total ghost number* and the *BFV bracket* $\{\cdot, \cdot\}$.

$$\mathcal{A}^{p,q}\coloneqq \mathcal{C}^\infty(\mathcal{M})\otimes \mathcal{S}^p(\overline{\mathfrak{g}}^*[-1])\otimes \mathcal{S}^q(\overline{\mathfrak{g}})\subseteq \mathcal{C}^\infty(\mathcal{N}).$$

O Define

$$\mathcal{A}^n := \bigoplus_{n=p-q} \mathcal{A}^{p,q}.$$

In this way, $\mathcal{A} \coloneqq C^{\infty}(\mathcal{N})$ becomes bigraded — $\mathcal{A}^{k,\ell}$ denote the subspace of $C^{\infty}(\mathcal{N})$ consisting of functions that have *total ghost number k* and *function degree* ℓ .

 $\mathcal{A} \coloneqq C^{\infty}(\mathcal{N})$ with additional grading by *total ghost number* and the *BFV bracket* $\{\cdot, \cdot\}$.

()The BRST charge: $Q_{\overline{\mathfrak{g}}} \in \mathcal{A}^{1,2}$ given by

イロト 不得 トイヨト イヨト

$$\mathcal{A}^{p,q}\coloneqq \mathcal{C}^\infty(\mathcal{M})\otimes \mathcal{S}^p(\overline{\mathfrak{g}}^*[-1])\otimes \mathcal{S}^q(\overline{\mathfrak{g}})\subseteq \mathcal{C}^\infty(\mathcal{N}).$$

O Define

$$\mathcal{A}^n := \bigoplus_{n=p-q} \mathcal{A}^{p,q}.$$

In this way, $\mathcal{A} \coloneqq C^{\infty}(\mathcal{N})$ becomes bigraded — $\mathcal{A}^{k,\ell}$ denote the subspace of $C^{\infty}(\mathcal{N})$ consisting of functions that have *total ghost number k* and *function degree* ℓ .

 $\mathcal{A} \coloneqq C^{\infty}(\mathcal{N})$ with additional grading by *total ghost number* and the *BFV bracket* $\{\cdot, \cdot\}$.

 ${\small {\small {\small @ }}} {\small {\small {\small {\small 0}}}} {\small {\small {\small The BRST charge: } {\displaystyle {\it Q}_{\overline{\mathfrak{g}}} \in {\cal A}^{1,2} } {\small {\rm given by }} }$

$$Q_{\overline{\mathfrak{g}}} = J_1^{\sharp}(u^i)u_i^* + J_0^{\sharp}(v^j)v_j^* - \frac{1}{2}c_k^{ij}u_i^*u_j^*u_k^* - d_p^{mn}u_m^*v_n^*v_n^p$$

イロト 不得 トイヨト イヨト

$$\mathcal{A}^{p,q}\coloneqq \mathcal{C}^\infty(\mathcal{M})\otimes \mathcal{S}^p(\overline{\mathfrak{g}}^*[-1])\otimes \mathcal{S}^q(\overline{\mathfrak{g}})\subseteq \mathcal{C}^\infty(\mathcal{N}).$$

Oefine

$$\mathcal{A}^n := \bigoplus_{n=p-q} \mathcal{A}^{p,q}.$$

In this way, $\mathcal{A} \coloneqq C^{\infty}(\mathcal{N})$ becomes bigraded — $\mathcal{A}^{k,\ell}$ denote the subspace of $C^{\infty}(\mathcal{N})$ consisting of functions that have *total ghost number k* and *function degree* ℓ .

 $\mathcal{A} := \mathcal{C}^{\infty}(\mathcal{N})$ with additional grading by *total ghost number* and the *BFV bracket* $\{\cdot, \cdot\}$.

• The BRST charge: $Q_{\overline{\mathfrak{g}}} \in \mathcal{A}^{1,2}$ given by

$$Q_{\overline{\mathfrak{g}}} = J_1^{\sharp}(u^i)u_i^* + J_0^{\sharp}(v^j)v_j^* - \frac{1}{2}c_k^{ij}u_i^*u_j^*u_k^* - d_p^{mn}u_m^*v_n^*v_n^p$$

(graded Jacobi identity for $\overline{\mathfrak{g}} \Leftrightarrow \{Q_{\overline{\mathfrak{g}}}, Q_{\overline{\mathfrak{g}}}\} = 0$).

イロト イヨト イヨト --

Pedro H. Carvalho (UHK)

э.

Theorem (Bonechi-Cabrera-Zabzine)

2

Theorem (Bonechi-Cabrera-Zabzine)

The cohomology of the complex $(A, \{Q_{\overline{g}}, \cdot\})$ at total ghost number zero is so that the natural map

$$\Phi: H^{0,\bullet}_{\{Q_{\overline{\mathfrak{g}}},\,\cdot\,\}}(\mathcal{A}) \longrightarrow \frac{N(\mathcal{J})}{\mathcal{J}}$$
$$(x^{0,0} + x^{1,1} + \cdots)] \longmapsto \overline{x^{0,0}}$$

is an isomorphism of degree -1 Poisson algebras.

æ

Theorem (Bonechi-Cabrera-Zabzine)

The cohomology of the complex $(A, \{Q_{\overline{\mathfrak{g}}}, \cdot\})$ at total ghost number zero is so that the natural map

$$\Phi: H^{0,\bullet}_{\{Q_{\overline{\mathfrak{g}}},\,\cdot\,\}}(\mathcal{A}) \longrightarrow \frac{N(\mathcal{J})}{\mathcal{J}}$$
$$(x^{0,0} + x^{1,1} + \cdots)] \longmapsto \overline{x^{0,0}}$$

is an isomorphism of degree -1 Poisson algebras.

From the Marsden-Weinstein theorem for the reduction of M := T*[1]M, we know that N(J)/J ≃ C[∞](C_{red}), so the above result is a degree one version of the classical Kostant-Sternberg theorem.

A derived bracket construction

э.

イロト イヨト イヨト イヨト

If π ∈ C₂[∞](M) is reducible wrt to geometric data associated to J, that is, π ∈ N(J), then we can take a corresponding cohomology class [Π] ∈ H^{0,2}_{Q_π,·}.

イロト イヨト イヨト イヨト

- If π ∈ C₂[∞](M) is reducible wrt to geometric data associated to J, that is, π ∈ N(J), then we can take a corresponding cohomology class [Π] ∈ H^{0,2}_{Q_π,·}.
- For $[a], [b] \in H^{0,0}_{\{Q_{\overline{\mathfrak{g}}}, \cdot\}}(\mathcal{A}),$

æ

- If π ∈ C₂[∞](M) is reducible wrt to geometric data associated to J, that is, π ∈ N(J), then we can take a corresponding cohomology class [Π] ∈ H^{0,2}_{{Q_π,·}}.
- For $[a], [b] \in H^{0,0}_{\{Q_{\overline{\mathfrak{a}}},\,\cdot\,\}}(\mathcal{A}),$ the derived bracket

 $\{[a], [b]\}_{\Pi} := \{\{[\Pi], [a]\}, [b]\} = [\{\{\Pi, a\}, b\}]$

- If π ∈ C₂[∞](M) is reducible wrt to geometric data associated to J, that is, π ∈ N(J), then we can take a corresponding cohomology class [Π] ∈ H^{0,2}_{{Q_π,·}}.
- For $[a], [b] \in H^{0,0}_{\{Q_{\overline{\mathfrak{g}}}, \cdot\}}(\mathcal{A}),$ the derived bracket

 $\{[a], [b]\}_{\Pi} \coloneqq \{\{[\Pi], [a]\}, [b]\} = [\{\{\Pi, a\}, b\}]$

is a Poisson bracket.

イロト イヨト イヨト イヨト

- If π ∈ C₂[∞](M) is reducible wrt to geometric data associated to J, that is, π ∈ N(J), then we can take a corresponding cohomology class [Π] ∈ H^{0,2}_{Q_π,·}.
- For $[a], [b] \in H^{0,0}_{\{Q_{\overline{\mathfrak{g}}}, \cdot\}}(\mathcal{A}),$ the derived bracket

 $\{[a], [b]\}_{\Pi} \coloneqq \{\{[\Pi], [a]\}, [b]\} = [\{\{\Pi, a\}, b\}]$

is a Poisson bracket.

It turns out that

$$(\mathcal{H}^{0,0}_{\{\mathcal{Q}_{\overline{\mathfrak{g}},\,\cdot\,}\}}(\mathcal{A}),\{\cdot,\cdot\}_{\Pi})\cong(\mathcal{C}^{\infty}(\mathcal{C}_{red}),\{\cdot,\cdot\}_{\pi_{red}}),$$

as Poisson algebras.

э.

イロト イヨト イヨト イヨト

Pedro H. Carvalho (UHK)

э.

イロン イ団 とく ヨン イヨン

$$\mathcal{S}^{(\infty)} = \mathcal{Q}_{\overline{\mathfrak{g}}} + \sum_{k \in \mathbb{N}} \Pi^{(-k)}, \ \ \Pi^{(-k)} \in \mathcal{A}^{-k,2},$$

э.

イロン イ団 とく ヨン イヨン

$$S^{(\infty)} = Q_{\overline{\mathfrak{g}}} + \sum_{k \in \mathbb{N}} \Pi^{(-k)}, \ \Pi^{(-k)} \in \mathcal{A}^{-k,2}, \ \{S^{(\infty)}, S^{(\infty)}\} = 0.$$

э.

イロン イ団 とく ヨン イヨン

$$S^{(\infty)} = Q_{\overline{\mathfrak{g}}} + \sum_{k \in \mathbb{N}} \Pi^{(-k)}, \ \Pi^{(-k)} \in \mathcal{A}^{-k,2}, \ \{S^{(\infty)}, S^{(\infty)}\} = 0.$$

 \bullet Consider $\mathbb{Z}\text{-}\mathsf{graded}$ lagrangian submanifold $\mathcal{N}_{1,-1}\subset \mathcal{N}$ whose sheaf of functions is

$$\mathcal{C}^{\infty}(\mathcal{N}_{1,-1}) \coloneqq \mathcal{C}^{\infty}(\mathcal{M}) \otimes \bigwedge^{\bullet} \mathfrak{g}^* \otimes \bigwedge^{\bullet} \mathfrak{h}.$$

æ

イロト イヨト イヨト イヨト

$$S^{(\infty)} = Q_{\overline{\mathfrak{g}}} + \sum_{k \in \mathbb{N}} \Pi^{(-k)}, \ \Pi^{(-k)} \in \mathcal{A}^{-k,2}, \ \{S^{(\infty)}, S^{(\infty)}\} = 0.$$

 $\bullet\,$ Consider $\mathbb{Z}\mbox{-}graded$ lagrangian submanifold $\mathcal{N}_{1,-1}\subset\mathcal{N}$ whose sheaf of functions is

$$C^{\infty}(\mathcal{N}_{1,-1}) \coloneqq C^{\infty}(M) \otimes \bigwedge^{\bullet} \mathfrak{g}^* \otimes \bigwedge^{\bullet} \mathfrak{h}.$$

• The extended charge $S^{(\infty)}$ induces a homotopy Poisson structure on $C^\infty(\mathcal{N}_{1,-1})$:

3

$$S^{(\infty)} = Q_{\overline{\mathfrak{g}}} + \sum_{k \in \mathbb{N}} \Pi^{(-k)}, \ \Pi^{(-k)} \in \mathcal{A}^{-k,2}, \ \{S^{(\infty)}, S^{(\infty)}\} = 0.$$

 $\bullet\,$ Consider $\mathbb{Z}\mbox{-}{graded}$ lagrangian submanifold $\mathcal{N}_{1,-1}\subset\mathcal{N}$ whose sheaf of functions is

$$C^{\infty}(\mathcal{N}_{1,-1}) \coloneqq C^{\infty}(M) \otimes \bigwedge^{\bullet} \mathfrak{g}^* \otimes \bigwedge^{\bullet} \mathfrak{h}.$$

• The extended charge $S^{(\infty)}$ induces a homotopy Poisson structure on $C^\infty(\mathcal{N}_{1,-1})$:

$$\ell_1(f_1) := \{Q_{\overline{\mathfrak{g}}}, f_1\}$$

э

$$S^{(\infty)} = Q_{\overline{\mathfrak{g}}} + \sum_{k \in \mathbb{N}} \Pi^{(-k)}, \ \Pi^{(-k)} \in \mathcal{A}^{-k,2}, \ \{S^{(\infty)}, S^{(\infty)}\} = 0.$$

 $\bullet\,$ Consider $\mathbb{Z}\mbox{-}{graded}$ lagrangian submanifold $\mathcal{N}_{1,-1}\subset\mathcal{N}$ whose sheaf of functions is

$$C^{\infty}(\mathcal{N}_{1,-1}) \coloneqq C^{\infty}(M) \otimes \bigwedge^{\bullet} \mathfrak{g}^* \otimes \bigwedge^{\bullet} \mathfrak{h}.$$

• The extended charge $S^{(\infty)}$ induces a homotopy Poisson structure on $C^\infty(\mathcal{N}_{1,-1})$:

$$\ell_1(f_1) := \{Q_{\overline{\mathfrak{g}}}, f_1\}$$
 and $\ell_2(f_1, f_2) := (-1)^{f_1}\{\{\Pi, f_1\}, f_2\}$

3

$$S^{(\infty)} = Q_{\overline{\mathfrak{g}}} + \sum_{k \in \mathbb{N}} \Pi^{(-k)}, \ \Pi^{(-k)} \in \mathcal{A}^{-k,2}, \ \{S^{(\infty)}, S^{(\infty)}\} = 0.$$

 $\bullet\,$ Consider $\mathbb{Z}\text{-}\mathsf{graded}$ lagrangian submanifold $\mathcal{N}_{1,-1}\subset\mathcal{N}$ whose sheaf of functions is

$$C^{\infty}(\mathcal{N}_{1,-1}) \coloneqq C^{\infty}(M) \otimes \bigwedge^{\bullet} \mathfrak{g}^* \otimes \bigwedge^{\bullet} \mathfrak{h}.$$

• The extended charge $S^{(\infty)}$ induces a homotopy Poisson structure on $C^\infty(\mathcal{N}_{1,-1})$:

$$\ell_1(f_1) := \{Q_{\overline{\mathfrak{g}}}, f_1\} \text{ and } \ell_2(f_1, f_2) := (-1)^{f_1}\{\{\Pi, f_1\}, f_2\}$$

and, in general, for $k \geq 3$,

э

$$S^{(\infty)} = Q_{\overline{\mathfrak{g}}} + \sum_{k \in \mathbb{N}} \Pi^{(-k)}, \ \Pi^{(-k)} \in \mathcal{A}^{-k,2}, \ \{S^{(\infty)}, S^{(\infty)}\} = 0.$$

 $\bullet\,$ Consider $\mathbb{Z}\mbox{-}{graded}$ lagrangian submanifold $\mathcal{N}_{1,-1}\subset\mathcal{N}$ whose sheaf of functions is

$$C^{\infty}(\mathcal{N}_{1,-1}) \coloneqq C^{\infty}(M) \otimes \bigwedge^{\bullet} \mathfrak{g}^* \otimes \bigwedge^{\bullet} \mathfrak{h}.$$

• The extended charge $S^{(\infty)}$ induces a homotopy Poisson structure on $C^\infty(\mathcal{N}_{1,-1})$:

$$\ell_1(f_1) := \{Q_{\overline{\mathfrak{g}}}, f_1\}$$
 and $\ell_2(f_1, f_2) := (-1)^{f_1}\{\{\Pi, f_1\}, f_2\}$

and, in general, for $k \ge 3$, we let

$$\ell_k: C^{\infty}(\mathcal{N}_{1,-1})^{\otimes k} \to C^{\infty}(\mathcal{N}_{1,-1}) \quad (\text{of degree } 2-k)$$

э

$$S^{(\infty)} = Q_{\overline{\mathfrak{g}}} + \sum_{k \in \mathbb{N}} \Pi^{(-k)}, \ \Pi^{(-k)} \in \mathcal{A}^{-k,2}, \ \{S^{(\infty)}, S^{(\infty)}\} = 0.$$

 $\bullet\,$ Consider $\mathbb{Z}\mbox{-}graded$ lagrangian submanifold $\mathcal{N}_{1,-1}\subset\mathcal{N}$ whose sheaf of functions is

$$C^{\infty}(\mathcal{N}_{1,-1}) \coloneqq C^{\infty}(M) \otimes \bigwedge^{\bullet} \mathfrak{g}^* \otimes \bigwedge^{\bullet} \mathfrak{h}.$$

• The extended charge $S^{(\infty)}$ induces a homotopy Poisson structure on $C^\infty(\mathcal{N}_{1,-1})$:

$$\ell_1(f_1) := \{ Q_{\overline{\mathfrak{g}}}, f_1 \} \text{ and } \ell_2(f_1, f_2) := (-1)^{f_1} \{ \{ \Pi, f_1 \}, f_2 \}$$

and, in general, for $k \ge 3$, we let

$$\ell_k: C^\infty(\mathcal{N}_{1,-1})^{\otimes k} o C^\infty(\mathcal{N}_{1,-1}) \quad (ext{of degree } 2-k)$$

be defined by

$$\ell_k(f_1,\ldots,f_k) \coloneqq (-1)^{\epsilon} \{\ldots \{\{\Pi^{(2-k)},f_1\},f_2\},\ldots,f_k\}.$$

э

Pedro H. Carvalho (UHK)

Homological reduction of Poisson structures

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ の < ⊙ 27.11.2024

• From $\{Q, \Pi^{(-1)}\} + \frac{1}{2}\{\Pi, \Pi\} = 0$,

э.

イロト イヨト イヨト イヨト

• From $\{Q, \Pi^{(-1)}\} + \frac{1}{2}\{\Pi, \Pi\} = 0$, we obtain

 $\ell_2(f,\ell_2(g,h)) - \left(\ell_2(\ell_2(f,g),h) + (-1)^{fg} \ell_2(g,\ell_2(f,h)) \right) = (\ell_3 \circ \ell_1^{\otimes_3} + \ell_1 \circ \ell_3)(f,g,h),$ where $\ell_1^{\otimes_3} : C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3} \to C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3}$ is the differential on $C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3}$ given by

 $\ell_1^{\otimes_3}(f\otimes g\otimes h)\coloneqq \ell_1(f)\otimes g\otimes h+(-1)^ff\otimes \ell_1(g)\otimes h+(-1)^{f+g}f\otimes g\otimes \ell_1(h).$

• From $\{Q, \Pi^{(-1)}\} + \frac{1}{2}\{\Pi, \Pi\} = 0$, we obtain

 $\ell_2(f,\ell_2(g,h)) - \left(\ell_2(\ell_2(f,g),h) + (-1)^{fg} \ell_2(g,\ell_2(f,h)) \right) = (\ell_3 \circ \ell_1^{\otimes_3} + \ell_1 \circ \ell_3)(f,g,h),$ where $\ell_1^{\otimes_3} : C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3} \to C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3}$ is the differential on $C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3}$ given by

 $\ell_1^{\otimes_3}(f\otimes g\otimes h)\coloneqq \ell_1(f)\otimes g\otimes h+(-1)^ff\otimes \ell_1(g)\otimes h+(-1)^{f+g}f\otimes g\otimes \ell_1(h).$

Remark

3

• From $\{Q, \Pi^{(-1)}\} + \frac{1}{2}\{\Pi, \Pi\} = 0$, we obtain $\ell_2(f, \ell_2(g, h)) - (\ell_2(\ell_2(f, g), h) + (-1)^{fg}\ell_2(g, \ell_2(f, h))) = (\ell_3 \circ \ell_1^{\otimes_3} + \ell_1 \circ \ell_3)(f, g, h),$ where $\ell_1^{\otimes_3} : C^{\infty}(\mathcal{N}_{1, -1})^{\otimes_3} \to C^{\infty}(\mathcal{N}_{1, -1})^{\otimes_3}$ is the differential on $C^{\infty}(\mathcal{N}_{1, -1})^{\otimes_3}$ given by

 $\ell_1^{\otimes_3}(f\otimes g\otimes h)\coloneqq \ell_1(f)\otimes g\otimes h+(-1)^ff\otimes \ell_1(g)\otimes h+(-1)^{f+g}f\otimes g\otimes \ell_1(h).$

Remark

We have the identification $\mathcal{A}^{k,\ell} \cong \mathfrak{X}^{\ell-k,\,k}(\mathcal{N}_{1,-1}),$

3

• From $\{Q, \Pi^{(-1)}\} + \frac{1}{2}\{\Pi, \Pi\} = 0$, we obtain $\ell_2(f, \ell_2(g, h)) - (\ell_2(\ell_2(f, g), h) + (-1)^{fg}\ell_2(g, \ell_2(f, h))) = (\ell_3 \circ \ell_1^{\otimes_3} + \ell_1 \circ \ell_3)(f, g, h),$ where $\ell_1^{\otimes_3} : C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3} \to C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3}$ is the differential on $C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3}$ given by

 $\ell_1^{\otimes_3}(f\otimes g\otimes h)\coloneqq \ell_1(f)\otimes g\otimes h+(-1)^ff\otimes \ell_1(g)\otimes h+(-1)^{f+g}f\otimes g\otimes \ell_1(h).$

Remark

We have the identification $\mathcal{A}^{k,\ell} \cong \mathfrak{X}^{\ell-k,\,k}(\mathcal{N}_{1,-1})$, which shows $\mathcal{N} \cong T^*[1](\mathcal{N}_{1,-1})$

(日)

• From $\{Q, \Pi^{(-1)}\} + \frac{1}{2}\{\Pi, \Pi\} = 0$, we obtain

$$\begin{split} \ell_2(f,\ell_2(g,h)) - \left(\ \ell_2(\ell_2(f,g),h) + (-1)^{fg} \ell_2(g,\ell_2(f,h)) \ \right) &= (\ell_3 \circ \ell_1^{\otimes_3} + \ell_1 \circ \ell_3)(f,g,h), \\ \text{where } \ell_1^{\otimes_3} : C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3} \to C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3} \text{ is the differential on } C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3} \text{ given by} \end{split}$$

 $\ell_1^{\otimes_3}(f\otimes g\otimes h):=\ell_1(f)\otimes g\otimes h+(-1)^ff\otimes \ell_1(g)\otimes h+(-1)^{f+g}f\otimes g\otimes \ell_1(h).$

Remark

We have the identification $\mathcal{A}^{k,\ell} \cong \mathfrak{X}^{\ell-k,k}(\mathcal{N}_{1,-1})$, which shows $\mathcal{N} \cong T^*[1](\mathcal{N}_{1,-1})$ – graded version of Weinstein lagrangian neighborhood theorem.

(日)

• From $\{Q, \Pi^{(-1)}\} + \frac{1}{2}\{\Pi, \Pi\} = 0$, we obtain $\ell_2(f, \ell_2(g, h)) - (\ell_2(\ell_2(f, g), h) + (-1)^{fg}\ell_2(g, \ell_2(f, h))) = (\ell_3 \circ \ell_1^{\otimes_3} + \ell_1 \circ \ell_3)(f, g, h),$

where $\ell_1^{\otimes_3}: C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3} \to C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3}$ is the differential on $C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3}$ given by

 $\ell_1^{\otimes_3}(f\otimes g\otimes h):=\ell_1(f)\otimes g\otimes h+(-1)^ff\otimes \ell_1(g)\otimes h+(-1)^{f+g}f\otimes g\otimes \ell_1(h).$

Remark

We have the identification $\mathcal{A}^{k,\ell} \cong \mathfrak{X}^{\ell-k,k}(\mathcal{N}_{1,-1})$, which shows $\mathcal{N} \cong T^*[1](\mathcal{N}_{1,-1})$ – graded version of Weinstein lagrangian neighborhood theorem. Hence,

$$\mathcal{Q}_{\overline{\mathfrak{g}}} \in \mathcal{A}^{1,2} \cong \mathfrak{X}^{1,\,1}(\mathcal{N}_{1,-1}), \ \ \Pi^{(-k)} \in \mathcal{A}^{-k,\,2} \cong \mathfrak{X}^{k+2,-k}(\mathcal{N}_{1,-1})$$

• From $\{Q, \Pi^{(-1)}\} + \frac{1}{2}\{\Pi, \Pi\} = 0$, we obtain $\ell_2(f, \ell_2(g, h)) - (\ell_2(\ell_2(f, g), h) + (-1)^{fg}\ell_2(g, \ell_2(f, h))) = (\ell_3 \circ \ell_1^{\otimes_3} + \ell_1 \circ \ell_3)(f, g, h),$ where $\ell_1^{\otimes_3} : C^{\infty}(\mathcal{N}_{1, -1})^{\otimes_3} \to C^{\infty}(\mathcal{N}_{1, -1})^{\otimes_3}$ is the differential on $C^{\infty}(\mathcal{N}_{1, -1})^{\otimes_3}$ given by

$$\ell_1^{\otimes_3}(f\otimes g\otimes h)\coloneqq \ell_1(f)\otimes g\otimes h+(-1)^ff\otimes \ell_1(g)\otimes h+(-1)^{f+g}f\otimes g\otimes \ell_1(h)$$

Remark

We have the identification $\mathcal{A}^{k,\ell} \cong \mathfrak{X}^{\ell-k,k}(\mathcal{N}_{1,-1})$, which shows $\mathcal{N} \cong T^*[1](\mathcal{N}_{1,-1})$ – graded version of Weinstein lagrangian neighborhood theorem. Hence,

$$Q_{\overline{\mathfrak{g}}} \in \mathcal{A}^{1,2} \cong \mathfrak{X}^{1,\,1}(\mathcal{N}_{1,-1}), \ \ \Pi^{(-k)} \in \mathcal{A}^{-k,\,2} \cong \mathfrak{X}^{k+2,-k}(\mathcal{N}_{1,-1}),$$

that is, $\mathcal{S}^{(\infty)}$ gives a formal bivector on $\mathcal{N}_{1,-1}$

19 / 27

イロト イボト イヨト 一日

• From $\{Q, \Pi^{(-1)}\} + \frac{1}{2}\{\Pi, \Pi\} = 0$, we obtain $\ell_2(f, \ell_2(g, h)) - (\ell_2(\ell_2(f, g), h) + (-1)^{fg}\ell_2(g, \ell_2(f, h))) = (\ell_3 \circ \ell_1^{\otimes_3} + \ell_1 \circ \ell_3)(f, g, h),$ where $\ell_1^{\otimes_3} : C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3} \to C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3}$ is the differential on $C^{\infty}(\mathcal{N}_{1,-1})^{\otimes_3}$ given by

 $\ell_1^{\otimes_3}(f\otimes g\otimes h):=\ell_1(f)\otimes g\otimes h+(-1)^ff\otimes \ell_1(g)\otimes h+(-1)^{f+g}f\otimes g\otimes \ell_1(h).$

Remark

We have the identification $\mathcal{A}^{k,\ell} \cong \mathfrak{X}^{\ell-k,k}(\mathcal{N}_{1,-1})$, which shows $\mathcal{N} \cong T^*[1](\mathcal{N}_{1,-1})$ – graded version of Weinstein lagrangian neighborhood theorem. Hence,

$$Q_{\overline{\mathfrak{g}}} \in \mathcal{A}^{1,2} \cong \mathfrak{X}^{1,\,1}(\mathcal{N}_{1,-1}), \ \ \Pi^{(-k)} \in \mathcal{A}^{-k,\,2} \cong \mathfrak{X}^{k+2,-k}(\mathcal{N}_{1,-1}),$$

that is, $S^{(\infty)}$ gives a formal bivector on $\mathcal{N}_{1,-1} - P_{\infty}$ -structure (Cattaneo-Felder); 0-shifted Poisson structure (Pridham).

イロト イヨト イヨト イヨト 二日

9 / 27

	(UHK)	Carvalho	Pedro H.
--	-------	----------	----------

æ

< □ > < □ > < □ > < □ > < □ >

Let $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action on a Poisson manifold (M, π) , and let $J : M \to \mathfrak{h}^*$ be a \mathfrak{g} -equivariant map, for \mathfrak{h} a \mathfrak{g} -module.

イロト イ団ト イヨト イヨト

Let $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action on a Poisson manifold (M, π) , and let $J : M \to \mathfrak{h}^*$ be a \mathfrak{g} -equivariant map, for \mathfrak{h} a \mathfrak{g} -module. Assume that the reduction data (ψ, J) is regular and compatible with the Poisson structure π .

(日) (四) (日) (日) (日)

Let $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action on a Poisson manifold (M, π) , and let $J : M \to \mathfrak{h}^*$ be a \mathfrak{g} -equivariant map, for \mathfrak{h} a \mathfrak{g} -module. Assume that the reduction data (ψ, J) is regular and compatible with the Poisson structure π . Then the \mathbb{Z} -graded algebra

$$\mathcal{K}^{ullet}_{\mathfrak{g},\mathfrak{h}}:=C^{\infty}(M)\otimes \bigwedge^{ullet}\mathfrak{g}^{*}\otimes \bigwedge^{ullet}\mathfrak{h}$$

graded by total ghost number,

(日) (四) (日) (日) (日)

Let $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action on a Poisson manifold (M, π) , and let $J : M \to \mathfrak{h}^*$ be a \mathfrak{g} -equivariant map, for \mathfrak{h} a \mathfrak{g} -module. Assume that the reduction data (ψ, J) is regular and compatible with the Poisson structure π . Then the \mathbb{Z} -graded algebra

$$\mathcal{K}^{ullet}_{\mathfrak{g},\mathfrak{h}}\coloneqq \mathcal{C}^{\infty}(\mathcal{M})\otimes \bigwedge^{ullet}\mathfrak{g}^{*}\otimes \bigwedge^{ullet}\mathfrak{h},$$

graded by total ghost number, admits a homotopy Poisson structure with differential ∂ : $\mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet} \to \mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet+1}$ and a sequence of k-ary brackets $\{\cdot,\ldots,\cdot\}_k$, $k \geq 2$,

< ロ > < 同 > < 回 > < 回 >

Let $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action on a Poisson manifold (M, π) , and let $J : M \to \mathfrak{h}^*$ be a \mathfrak{g} -equivariant map, for \mathfrak{h} a \mathfrak{g} -module. Assume that the reduction data (ψ, J) is regular and compatible with the Poisson structure π . Then the \mathbb{Z} -graded algebra

$$\mathcal{K}^{ullet}_{\mathfrak{g},\mathfrak{h}}\coloneqq C^{\infty}(\mathcal{M})\otimes \bigwedge^{ullet}\mathfrak{g}^*\otimes \bigwedge^{ullet}\mathfrak{h},$$

graded by total ghost number, admits a homotopy Poisson structure with differential ∂ : $\mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet} \to \mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet+1}$ and a sequence of k-ary brackets $\{\cdot,\ldots,\cdot\}_k$, $k \geq 2$, such that the Poisson algebra $(H^0_\partial(\mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet}), \{\cdot,\cdot\}_2)$ is identified with the reduced Poisson algebra $(\mathcal{C}_{red}^{\infty}), \{\cdot,\cdot\}_{\pi_{red}})$.

20 / 27

< 口 > < 同 > < 回 > < 回 > .

Let $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action on a Poisson manifold (M, π) , and let $J : M \to \mathfrak{h}^*$ be a \mathfrak{g} -equivariant map, for \mathfrak{h} a \mathfrak{g} -module. Assume that the reduction data (ψ, J) is regular and compatible with the Poisson structure π . Then the \mathbb{Z} -graded algebra

$$\mathcal{K}^{ullet}_{\mathfrak{g},\mathfrak{h}}\coloneqq \mathcal{C}^{\infty}(\mathcal{M})\otimes \bigwedge^{ullet}\mathfrak{g}^{*}\otimes \bigwedge^{ullet}\mathfrak{h},$$

graded by total ghost number, admits a homotopy Poisson structure with differential ∂ : $\mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet} \to \mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet+1}$ and a sequence of k-ary brackets $\{\cdot,\ldots,\cdot\}_k$, $k \geq 2$, such that the Poisson algebra $(H^0_\partial(\mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet}), \{\cdot,\cdot\}_2)$ is identified with the reduced Poisson algebra $(\mathcal{C}_{red}^{\infty}), \{\cdot,\cdot\}_{\pi_{red}})$.

20 / 27

イロト イポト イヨト イヨト

Let $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action on a Poisson manifold (M, π) , and let $J : M \to \mathfrak{h}^*$ be a \mathfrak{g} -equivariant map, for \mathfrak{h} a \mathfrak{g} -module. Assume that the reduction data (ψ, J) is regular and compatible with the Poisson structure π . Then the \mathbb{Z} -graded algebra

$$\mathcal{K}^{ullet}_{\mathfrak{g},\mathfrak{h}}\coloneqq C^{\infty}(\mathcal{M})\otimes \bigwedge^{ullet}\mathfrak{g}^*\otimes \bigwedge^{ullet}\mathfrak{h},$$

graded by total ghost number, admits a homotopy Poisson structure with differential ∂ : $\mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet} \to \mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet+1}$ and a sequence of k-ary brackets $\{\cdot,\ldots,\cdot\}_k$, $k \geq 2$, such that the Poisson algebra $(H^0_\partial(\mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet}), \{\cdot,\cdot\}_2)$ is identified with the reduced Poisson algebra $(\mathcal{C}_{red}^{\infty}), \{\cdot,\cdot\}_{\pi_{red}})$.

Take $J^{\sharp}: \overline{\mathfrak{g}}[-1] \to C^{\infty}(\mathcal{M})$ defined by the pair (ψ, J) .

э

イロト イヨト イヨト イヨト

Theorem (C.)

Let $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action on a Poisson manifold (M, π) , and let $J : M \to \mathfrak{h}^*$ be a \mathfrak{g} -equivariant map, for \mathfrak{h} a \mathfrak{g} -module. Assume that the reduction data (ψ, J) is regular and compatible with the Poisson structure π . Then the \mathbb{Z} -graded algebra

$$\mathcal{K}^{ullet}_{\mathfrak{g},\mathfrak{h}}\coloneqq \mathcal{C}^{\infty}(\mathcal{M})\otimes \bigwedge^{ullet}\mathfrak{g}^{*}\otimes \bigwedge^{ullet}\mathfrak{h},$$

graded by total ghost number, admits a homotopy Poisson structure with differential ∂ : $\mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet} \to \mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet+1}$ and a sequence of k-ary brackets $\{\cdot,\ldots,\cdot\}_k$, $k \geq 2$, such that the Poisson algebra $(H^0_\partial(\mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet}), \{\cdot,\cdot\}_2)$ is identified with the reduced Poisson algebra $(\mathcal{C}_{red}^{\infty}), \{\cdot,\cdot\}_{\pi_{red}})$.

 $\mathsf{Take}\ J^{\sharp}:\overline{\mathfrak{g}}[-1]\to \mathit{C}^{\infty}(\mathcal{M}) \text{ defined by the pair } (\psi,J). \text{ Consider } (\mathcal{A},\{Q_{\overline{\mathfrak{g}}},\cdot\}).$

3

Theorem (C.)

Let $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action on a Poisson manifold (M, π) , and let $J : M \to \mathfrak{h}^*$ be a \mathfrak{g} -equivariant map, for \mathfrak{h} a \mathfrak{g} -module. Assume that the reduction data (ψ, J) is regular and compatible with the Poisson structure π . Then the \mathbb{Z} -graded algebra

$$\mathcal{K}^{ullet}_{\mathfrak{g},\mathfrak{h}}\coloneqq \mathcal{C}^{\infty}(\mathcal{M})\otimes \bigwedge^{ullet}\mathfrak{g}^{*}\otimes \bigwedge^{ullet}\mathfrak{h},$$

graded by total ghost number, admits a homotopy Poisson structure with differential ∂ : $\mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet} \to \mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet+1}$ and a sequence of k-ary brackets $\{\cdot,\ldots,\cdot\}_k$, $k \geq 2$, such that the Poisson algebra $(H^0_\partial(\mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet}), \{\cdot,\cdot\}_2)$ is identified with the reduced Poisson algebra $(\mathcal{C}_{red}^{\infty}), \{\cdot,\cdot\}_{\pi_{red}})$.

Take $J^{\sharp} : \overline{\mathfrak{g}}[-1] \to C^{\infty}(\mathcal{M})$ defined by the pair (ψ, J) . Consider $(\mathcal{A}, \{Q_{\overline{\mathfrak{g}}}, \cdot\})$. Regularity of (ψ, J) guarantees existence of $S^{(\infty)}$.

3

20 / 27

Theorem (C.)

Let $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ be a Lie algebra action on a Poisson manifold (M, π) , and let $J : M \to \mathfrak{h}^*$ be a \mathfrak{g} -equivariant map, for \mathfrak{h} a \mathfrak{g} -module. Assume that the reduction data (ψ, J) is regular and compatible with the Poisson structure π . Then the \mathbb{Z} -graded algebra

$$\mathcal{K}^{ullet}_{\mathfrak{g},\mathfrak{h}}\coloneqq \mathcal{C}^{\infty}(\mathcal{M})\otimes \bigwedge^{ullet}\mathfrak{g}^{*}\otimes \bigwedge^{ullet}\mathfrak{h},$$

graded by total ghost number, admits a homotopy Poisson structure with differential ∂ : $\mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet} \to \mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet+1}$ and a sequence of k-ary brackets $\{\cdot,\ldots,\cdot\}_k$, $k \geq 2$, such that the Poisson algebra $(H^0_\partial(\mathcal{K}_{\mathfrak{g},\mathfrak{h}}^{\bullet}), \{\cdot,\cdot\}_2)$ is identified with the reduced Poisson algebra $(\mathcal{C}_{red}^{\infty}), \{\cdot,\cdot\}_{\pi_{red}})$.

Take $J^{\sharp}: \overline{\mathfrak{g}}[-1] \to C^{\infty}(\mathcal{M})$ defined by the pair (ψ, J) . Consider $(\mathcal{A}, \{Q_{\overline{\mathfrak{g}}}, \cdot\})$. Regularity of (ψ, J) guarantees existence of $S^{(\infty)}$. Derived brackets on $\mathcal{K}_{\mathfrak{g},\mathfrak{h}} \coloneqq C^{\infty}(\mathcal{N}_{1,-1})$.

2

Actions by dgla's

Pedro H. Carvalho (UHK) Homological red

Homological reduction of Poisson structures

æ

Actions by dgla's

Let $(\overline{\mathfrak{g}} \coloneqq \mathfrak{h}[1] \oplus \mathfrak{g}, \delta)$ be a dgla concentrated in degrees -1 and 0.

2

Actions by dgla's

Let $(\overline{\mathfrak{g}} := \mathfrak{h}[1] \oplus \mathfrak{g}, \delta)$ be a dgla concentrated in degrees -1 and 0. For (M, π) a Poisson manifold, let $\Psi : (\overline{\mathfrak{g}}, \delta) \to (\mathfrak{X}(\mathcal{M}), [X_{\pi}, \cdot])$ be a morphism of dgla's, where $X_{\pi} := \{\pi, \cdot\}$, and let $J^{\sharp} : \overline{\mathfrak{g}}[-1] \to C^{\infty}(\mathcal{M})$ be a moment map for this $\overline{\mathfrak{g}}$ -action.

Actions by dgla's

Let $(\overline{\mathfrak{g}} := \mathfrak{h}[1] \oplus \mathfrak{g}, \delta)$ be a dgla concentrated in degrees -1 and 0. For (M, π) a Poisson manifold, let $\Psi : (\overline{\mathfrak{g}}, \delta) \to (\mathfrak{X}(\mathcal{M}), [X_{\pi}, \cdot])$ be a morphism of dgla's, where $X_{\pi} := \{\pi, \cdot\}$, and let $J^{\sharp} : \overline{\mathfrak{g}}[-1] \to C^{\infty}(\mathcal{M})$ be a moment map for this $\overline{\mathfrak{g}}$ -action. We have

$$egin{aligned} &\{\pi,J_1^{\sharp}(u)\}=0, & u\in\mathfrak{g},\ &\{\pi,J_0^{\sharp}(v)\}=J_1^{\sharp}(\delta(v)), & v\in\mathfrak{h} \end{aligned}$$

Actions by dgla's

Let $(\overline{\mathfrak{g}} := \mathfrak{h}[1] \oplus \mathfrak{g}, \delta)$ be a dgla concentrated in degrees -1 and 0. For (M, π) a Poisson manifold, let $\Psi : (\overline{\mathfrak{g}}, \delta) \to (\mathfrak{X}(\mathcal{M}), [X_{\pi}, \cdot])$ be a morphism of dgla's, where $X_{\pi} := \{\pi, \cdot\}$, and let $J^{\sharp} : \overline{\mathfrak{g}}[-1] \to C^{\infty}(\mathcal{M})$ be a moment map for this $\overline{\mathfrak{g}}$ -action.We have

$$\{\pi, J_1^{\sharp}(u)\} = 0, \quad u \in \mathfrak{g}, \ \{\pi, J_0^{\sharp}(v)\} = J_1^{\sharp}(\delta(v)), \quad v \in \mathfrak{h}\}$$

For

$$Q_{\overline{\mathfrak{g}}} = J_1^{\sharp}(u^i)u_i^* + J_0^{\sharp}(v^j)v_j^* - rac{1}{2}c_k^{ij}u_i^*u_j^*u^k - d_{
ho}^{mn}u_m^*v_n^*v^{
ho}$$

æ

Actions by dgla's

Let $(\overline{\mathfrak{g}} := \mathfrak{h}[1] \oplus \mathfrak{g}, \delta)$ be a dgla concentrated in degrees -1 and 0. For (M, π) a Poisson manifold, let $\Psi : (\overline{\mathfrak{g}}, \delta) \to (\mathfrak{X}(\mathcal{M}), [X_{\pi}, \cdot])$ be a morphism of dgla's, where $X_{\pi} := \{\pi, \cdot\}$, and let $J^{\sharp} : \overline{\mathfrak{g}}[-1] \to C^{\infty}(\mathcal{M})$ be a moment map for this $\overline{\mathfrak{g}}$ -action.We have

$$\begin{split} \{\pi, J_1^{\sharp}(u)\} &= 0, \quad u \in \mathfrak{g}, \\ \{\pi, J_0^{\sharp}(v)\} &= J_1^{\sharp}(\delta(v)), \quad v \in \mathfrak{h} \end{split}$$

For

$$Q_{\overline{\mathfrak{g}}} = J_1^{\sharp}(u^i)u_i^* + J_0^{\sharp}(v^j)v_j^* - \frac{1}{2}c_k^{ij}\,u_i^*\,u_j^*\,u^k - d_\rho^{mn}u_m^*\,v_n^*\,v^\rho \quad \text{and} \quad \Pi \coloneqq \pi - a_j^i v_i^*u^j$$

Actions by dgla's

Let $(\overline{\mathfrak{g}} := \mathfrak{h}[1] \oplus \mathfrak{g}, \delta)$ be a dgla concentrated in degrees -1 and 0. For (M, π) a Poisson manifold, let $\Psi : (\overline{\mathfrak{g}}, \delta) \to (\mathfrak{X}(\mathcal{M}), [X_{\pi}, \cdot])$ be a morphism of dgla's, where $X_{\pi} := \{\pi, \cdot\}$, and let $J^{\sharp} : \overline{\mathfrak{g}}[-1] \to C^{\infty}(\mathcal{M})$ be a moment map for this $\overline{\mathfrak{g}}$ -action.We have

$$\begin{split} \{\pi, J_1^{\sharp}(u)\} &= 0, \quad u \in \mathfrak{g}, \\ \{\pi, J_0^{\sharp}(v)\} &= J_1^{\sharp}(\delta(v)), \quad v \in \mathfrak{h} \end{split}$$

For

$$Q_{\overline{\mathfrak{g}}} = J_1^{\sharp}(u^i)u_i^* + J_0^{\sharp}(v^j)v_j^* - \frac{1}{2}c_k^{ij}\,u_i^*\,u_j^*\,u^k - d_p^{mn}u_m^*\,v_n^*\,v^p \text{ and } \Pi \coloneqq \pi - a_j^i v_i^*u^j,$$

$$S^{(\infty)} = Q_{\overline{\mathfrak{g}}} + \Pi$$
 satisfies $\{S^{(\infty)}, S^{(\infty)}\} = 0.$

イロン イ団 とく ヨン イヨン

Actions by dgla's

Let $(\overline{\mathfrak{g}} := \mathfrak{h}[1] \oplus \mathfrak{g}, \delta)$ be a dgla concentrated in degrees -1 and 0. For (M, π) a Poisson manifold, let $\Psi : (\overline{\mathfrak{g}}, \delta) \to (\mathfrak{X}(\mathcal{M}), [X_{\pi}, \cdot])$ be a morphism of dgla's, where $X_{\pi} := \{\pi, \cdot\}$, and let $J^{\sharp} : \overline{\mathfrak{g}}[-1] \to C^{\infty}(\mathcal{M})$ be a moment map for this $\overline{\mathfrak{g}}$ -action.We have

$$egin{aligned} & \{\pi, J_1^{\sharp}(u)\} = 0, \quad u \in \mathfrak{g}, \ & \{\pi, J_0^{\sharp}(v)\} = J_1^{\sharp}(\delta(v)), \quad v \in \mathfrak{h} \end{aligned}$$

For

$$Q_{\overline{\mathfrak{g}}} = J_1^{\sharp}(u^i)u_i^* + J_0^{\sharp}(v^j)v_j^* - \frac{1}{2}c_k^{ij}\,u_i^*\,u_j^*\,u^k - d_{\rho}^{mn}u_m^*\,v_n^*\,v^{\rho} \text{ and } \Pi \coloneqq \pi - a_j^iv_i^*u^j,$$

$$\mathcal{S}^{(\infty)} = \mathcal{Q}_{\overline{\mathfrak{g}}} + \Pi$$
 satisfies $\{\mathcal{S}^{(\infty)}, \mathcal{S}^{(\infty)}\} = 0.$

It induces the structure of diff. graded Poisson algebra on

$$\mathcal{K}_{\mathfrak{g},\mathfrak{h}}=\mathcal{C}^{\infty}(\mathcal{M})\otimes\bigwedge\mathfrak{g}^{*}\otimes\bigwedge\mathfrak{h}.$$

Pedro H. Carvalho (UHK)

2

イロン イロン イヨン イヨン

An action of the Lie bialgebra (\mathfrak{g}, F) on the Poisson manifold (M, π) is a \mathfrak{g} -action $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ for which

$$\{\pi, u_M^k\} = (F(u^k))_M = a_{ij}^k u_M^i u_M^j.$$

æ

An action of the Lie bialgebra (\mathfrak{g}, F) on the Poisson manifold (M, π) is a g-action $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ for which

$$\{\pi, u_M^k\} = (F(u^k))_M = a_{ij}^k u_M^i u_M^j.$$

In this case, the corresponding extended BRST charge induces a homotopy Poisson structuce on $\mathcal{K}_{\mathfrak{g}} = C^{\infty}(\mathcal{M}) \otimes \bigwedge^{\bullet} \mathfrak{g}^{*}$

An action of the Lie bialgebra (\mathfrak{g}, F) on the Poisson manifold (M, π) is a g-action $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ for which

$$\{\pi, u_M^k\} = (F(u^k))_M = a_{ij}^k u_M^i u_M^j.$$

In this case, the corresponding extended BRST charge induces a homotopy Poisson structuce on $\mathcal{K}_{\mathfrak{g}} = C^{\infty}(M) \otimes \bigwedge^{\bullet} \mathfrak{g}^*$ and its first two terms are

$$Q_{\mathfrak{g}} = u_M^i u_i^* - \frac{1}{2} c_k^{ij} u_i^* u_j^* u_i^k$$

イロト イヨト イヨト・

An action of the Lie bialgebra (\mathfrak{g}, F) on the Poisson manifold (M, π) is a g-action $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ for which

$$\{\pi, u_M^k\} = (F(u^k))_M = a_{ij}^k u_M^i u_M^j.$$

In this case, the corresponding extended BRST charge induces a homotopy Poisson structuce on $\mathcal{K}_{\mathfrak{g}} = C^{\infty}(M) \otimes \bigwedge^{\bullet} \mathfrak{g}^*$ and its first two terms are

$$Q_{\mathfrak{g}} = u_{M}^{i}u_{i}^{*} - rac{1}{2}c_{k}^{ij}u_{i}^{*}u_{j}^{*}u^{k}$$
 and $\Pi = \pi + a_{ik}^{j}u_{M}^{i}u_{j}^{*}u^{k}.$

22 / 27

An action of the Lie bialgebra (\mathfrak{g}, F) on the Poisson manifold (M, π) is a g-action $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ for which

$$\{\pi, u_M^k\} = (F(u^k))_M = a_{ij}^k u_M^i u_M^j.$$

In this case, the corresponding extended BRST charge induces a homotopy Poisson structuce on $\mathcal{K}_{\mathfrak{g}} = C^{\infty}(M) \otimes \bigwedge^{\bullet} \mathfrak{g}^*$ and its first two terms are

$$Q_{\mathfrak{g}} = u_{M}^{i}u_{i}^{*} - rac{1}{2}c_{k}^{ij}u_{i}^{*}u_{j}^{*}u^{k}$$
 and $\Pi = \pi + a_{ik}^{j}u_{M}^{i}u_{j}^{*}u^{k}.$

(Here, we consider $\mathfrak{h} = \{0\}$, so $J \equiv 0$.)

æ

22 / 27

Let (M, π) be a Poisson manifold, and let $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ be an action of a Lie bialgebra (\mathfrak{g}, F) . Then the graded algebra

$$\mathcal{K}_\mathfrak{g}\coloneqq C^\infty(M)\otimes \bigwedge^{ullet}\mathfrak{g}^*$$

admits a homotopy Poisson structure with the 2-ary bracket given by

$$\ell_{2}(f,g) = \{\{\pi,f\},g\}, f,g \in C^{\infty}(M),$$

$$\ell_{2}(f,u^{*}) = \{u_{M}^{i},f\}[u_{i}^{*},u^{*}]^{*}, f \in C^{\infty}(M), u^{*} \in \mathfrak{g}^{*},$$

$$\ell_{2}(u_{1}^{*},u_{2}^{*}) = 0, u_{1}^{*}, u_{2}^{*} \in \mathfrak{g}^{*}.$$

æ

Ξ.

24 / 27

Given a quasi-Lie bialgebra (g, F, χ), a quasi-Poisson g-space is a manifold M endowed an g-action $\psi : g \to \mathfrak{X}(M)$ and a bivector field $\pi \in \mathfrak{X}^2(M)$

Given a quasi-Lie bialgebra $(\mathfrak{g}, \mathcal{F}, \chi)$, a quasi-Poisson \mathfrak{g} -space is a manifold M endowed an \mathfrak{g} -action $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ and a bivector field $\pi \in \mathfrak{X}^2(M)$ satisfying

$$\{\pi, u_M^k\} = (F(u^k))_M = a_{ij}^k u_M^i u_M^j$$
 and $\frac{1}{2}\{\pi, \pi\} = \chi_{M^k}$

イロン イ団 とく ヨン イヨン

Given a quasi-Lie bialgebra (\mathfrak{g}, F, χ) , a quasi-Poisson \mathfrak{g} -space is a manifold M endowed an \mathfrak{g} -action $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ and a bivector field $\pi \in \mathfrak{X}^2(M)$ satisfying

$$\{\pi, u_M^k\} = (F(u^k))_M = a_{ij}^k u_M^i u_M^j$$
 and $\frac{1}{2}\{\pi, \pi\} = \chi_M$

In this case, the corresponding extended BRST charge induces a homotopy Poisson structuce on $\mathcal{K}_{\mathfrak{g}} = C^{\infty}(\mathcal{M}) \otimes \bigwedge^{\bullet} \mathfrak{g}^*$

24 / 27

Given a quasi-Lie bialgebra (\mathfrak{g}, F, χ) , a quasi-Poisson \mathfrak{g} -space is a manifold M endowed an \mathfrak{g} -action $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ and a bivector field $\pi \in \mathfrak{X}^2(M)$ satisfying

$$\{\pi, u_M^k\} = (F(u^k))_M = a_{ij}^k u_M^i u_M^j$$
 and $rac{1}{2} \{\pi, \pi\} = \chi_{M^k}$

In this case, the corresponding extended BRST charge induces a homotopy Poisson structuce on $\mathcal{K}_{\mathfrak{g}} = C^{\infty}(M) \otimes \bigwedge^{\bullet} \mathfrak{g}^*$ and its first three terms are

$$Q_{\mathfrak{g}} = u_{M}^{i}u_{i}^{*} - rac{1}{2}c_{k}^{ij}u_{i}^{*}u_{j}^{*}u^{k}, \ \ \Pi = \pi + a_{ik}^{j}u_{M}^{i}u_{j}^{*}u^{k}$$

24 / 27

Given a quasi-Lie bialgebra (\mathfrak{g}, F, χ) , a quasi-Poisson \mathfrak{g} -space is a manifold M endowed an \mathfrak{g} -action $\psi : \mathfrak{g} \to \mathfrak{X}(M)$ and a bivector field $\pi \in \mathfrak{X}^2(M)$ satisfying

$$\{\pi, u_M^k\} = (F(u^k))_M = a_{ij}^k u_M^i u_M^j$$
 and $\frac{1}{2}\{\pi, \pi\} = \chi_M$

In this case, the corresponding extended BRST charge induces a homotopy Poisson structuce on $\mathcal{K}_{\mathfrak{g}} = C^{\infty}(M) \otimes \bigwedge^{\bullet} \mathfrak{g}^*$ and its first three terms are

$$egin{aligned} \mathcal{Q}_{\mathfrak{g}} &= u_{M}^{i}u_{i}^{*} - rac{1}{2}c_{k}^{ij}u_{i}^{*}u_{j}^{*}u^{k}, \ \ \Pi &= \pi + a_{ik}^{j}u_{M}^{i}u_{j}^{*}u^{k} \end{aligned}$$
 and $\Pi^{-1} &= rac{1}{3}\psi(\iota_{u_{i}^{*}}\chi)u^{i} + \cdots. \end{aligned}$

24 / 27

Recall that a *G*-manifold *M* endowed with a *invariant bivector* $\pi \in \mathfrak{X}^2(M)$ is said to be a hamiltonian quasi-Poisson space if

$$\{\pi,\pi\}=\phi_{M}\coloneqq\frac{1}{12}\sum_{i,j,k}\langle u^{i},[u^{j},u^{k}]\rangle(u^{i}\wedge u^{j}\wedge u^{j})_{M},$$

and if there exists an equivariant map $\Phi:M\to G$ for which we have the moment map condition

$$\pi^{\sharp}(d(\Phi^*f)) = \frac{1}{2} \sum_{k} \Phi^*((u_{L}^{k} + u_{R}^{k})f)u_{M}^{k}, \ f \in C^{\infty}(G).$$
(3)

In this context, if the identity $e \in G$ is a regular value of $\Phi : M \to G$ and the action of G along $\Phi^{-1}(e)$ is free and proper, then the quotient $\Phi^{-1}(e)/G$ inherits a Poisson structure (Alekseev–Kosmann-Schwarzbach–Meinrenken).

イロト 不得 トイヨト イヨト

Pedro H. Carvalho (UHK)

Homological reduction of Poisson structures

27.11.2024

э.

Let (M,π) be a hamiltonian quasi-Poisson space with moment map $\Phi: M \to G$.

2

Let (M, π) be a hamiltonian quasi-Poisson space with moment map $\Phi : M \to G$. Assume that the identity $e \in G$ is a regular value of $\Phi : M \to G$ and that the G-action on $\Phi^{-1}(e)$ is free and proper.

Let (M, π) be a hamiltonian quasi-Poisson space with moment map $\Phi : M \to G$. Assume that the identity $e \in G$ is a regular value of $\Phi : M \to G$ and that the G-action on $\Phi^{-1}(e)$ is free and proper. Let $\mathcal{U} \subset G$ be neighborhood of $e \in G$ where $exp : \mathfrak{g} \to G$ is diffeomorphism and set $M_{\mathcal{U}} := \Phi^{-1}(\mathcal{U})$.

Let (M, π) be a hamiltonian quasi-Poisson space with moment map $\Phi : M \to G$. Assume that the identity $e \in G$ is a regular value of $\Phi : M \to G$ and that the G-action on $\Phi^{-1}(e)$ is free and proper. Let $U \subset G$ be neighborhood of $e \in G$ where $exp : \mathfrak{g} \to G$ is diffeomorphism and set $M_{\mathcal{U}} := \Phi^{-1}(\mathcal{U})$. Then the algebra

$$\mathcal{K}^{ullet}_{\mathfrak{g},\mathfrak{g}}\coloneqq C^{\infty}(M_{\mathcal{U}})\otimes \bigwedge^{ullet}\mathfrak{g}^*\otimes \bigwedge^{ullet}\mathfrak{g}$$

admits a homotopy Poisson structure

26 / 27

Let (M, π) be a hamiltonian quasi-Poisson space with moment map $\Phi : M \to G$. Assume that the identity $e \in G$ is a regular value of $\Phi : M \to G$ and that the G-action on $\Phi^{-1}(e)$ is free and proper. Let $U \subset G$ be neighborhood of $e \in G$ where $exp : \mathfrak{g} \to G$ is diffeomorphism and set $M_{\mathcal{U}} := \Phi^{-1}(\mathcal{U})$. Then the algebra

$$\mathcal{K}^{ullet}_{\mathfrak{g},\mathfrak{g}}\coloneqq \mathcal{C}^{\infty}(M_{\mathcal{U}})\otimes \bigwedge \mathfrak{g}^{*}\otimes \bigwedge \mathfrak{g}$$

admits a homotopy Poisson structure for which we have

$$(H^0_{\partial}(\mathcal{K}^{\bullet}_{\mathfrak{g},\mathfrak{g}}),\{\cdot,\cdot\}_2)\cong \left(C^{\infty}\left(\frac{\Phi^{-1}(e)}{G}\right),\pi_{red}\right).$$

Let (M, π) be a hamiltonian quasi-Poisson space with moment map $\Phi : M \to G$. Assume that the identity $e \in G$ is a regular value of $\Phi : M \to G$ and that the G-action on $\Phi^{-1}(e)$ is free and proper. Let $U \subset G$ be neighborhood of $e \in G$ where $exp : \mathfrak{g} \to G$ is diffeomorphism and set $M_{\mathcal{U}} := \Phi^{-1}(\mathcal{U})$. Then the algebra

$$\mathcal{K}^{ullet}_{\mathfrak{g},\mathfrak{g}}\coloneqq \mathcal{C}^{\infty}(\mathcal{M}_{\mathcal{U}})\otimes \bigwedge \mathfrak{g}^{*}\otimes \bigwedge \mathfrak{g}$$

admits a homotopy Poisson structure for which we have

$$(\mathcal{H}^0_{\partial}(\mathcal{K}^{\bullet}_{\mathfrak{g},\mathfrak{g}}),\{\cdot,\cdot\}_2)\cong \bigg(C^{\infty}\bigg(\frac{\Phi^{-1}(e)}{G}\bigg),\pi_{red}\bigg).$$

This result provides a BFV model for hamiltonian quasi-Poisson reduction.

イロン イ団 とく ヨン イヨン

Thank you!

・ロト ・回ト ・ヨト ・ヨト

æ