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Context

Consider a Poisson manifold (M, w) endowed with a hamiltonian g-action with moment
map J: M — g*.
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Consider a Poisson manifold (M, w) endowed with a hamiltonian g-action with moment
map J: M — g*. Then

BFV in degree zero

Kostant-Sternberg BRST algebra: dg super Poisson algebra
whose cohomology in degree zero recovers the Poisson algebra of the
reduced space (Cred, Tred) associated to the level set
C = J7(0), for 0 € g* a regular value.
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Consider a Poisson manifold (M, w) endowed with a hamiltonian g-action with moment
map J: M — g*. Then

BFV in degree zero

Kostant-Sternberg BRST algebra: dg super Poisson algebra
whose cohomology in degree zero recovers the Poisson algebra of the
reduced space (Cred, Tred) associated to the level set
C = J7(0), for 0 € g* a regular value.

Idea

To study BFV models for the hamiltonian reduction of graded symplectic
manifolds of degree one with a view towards homological
reduction of Poisson structures.
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Graded symplectic viewpoint

Poisson structures and their reduction

Poisson manifolds (M, )

Symplectic NQ-manifolds of degree one
(M = T*[l]Mv {"7 '}7X7T = {71-7 })
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Graded symplectic viewpoint

Poisson structures and their reduction

Poisson manifolds (M, )

Symplectic NQ-manifolds of degree one
(M = T*[l]Mv {'7 '}7X7T = {7T7 })

Reduction of (M, )

Coisotropic and presymplectic reduction

of (M= T*[1IM, {-, -}, Xx = {m,})
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A generalized hamiltonian setting

Pedro H. Carvalho (UHK) Homological reduction of Poisson structures 27.11.2024



A generalized hamiltonian setting

o Following Cattaneo-Zambon graded geometric approach to Poisson reduction:
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A generalized hamiltonian setting

o Following Cattaneo-Zambon graded geometric approach to Poisson reduction:

hamiltonian action of g == h[1] D g
on T*[1]M compatible with m € C5°(T*[1]M)

g-action on (M, ) with J : M — h* equivariant
for h a g-module
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A generalized hamiltonian setting

o Following Cattaneo-Zambon graded geometric approach to Poisson reduction:

hamiltonian action of g := h[1] D g
on T*[1]M compatible with m € C5°(T*[1]M)

g-action on (M, ) with J : M — h* equivariant
for h a g-module

Theorem (Cattaneo-Zambon)

Let ) : g — X(M) be a Lie algebra action on a Poisson manifold (M, r), and let J :
M — b* be a g-equivariant map, for ) a g-module. Assume that the pair (1, J) is regular
and compatible with the Poisson structure w. Then the quotient C,q := C/G inherits a
Poisson structure Ted.
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A generalized hamiltonian setting

o Following Cattaneo-Zambon graded geometric approach to Poisson reduction:

hamiltonian action of g := h[1] D g
on T*[1]M compatible with m € C5°(T*[1]M)

g-action on (M, ) with J : M — h* equivariant
for h a g-module

Theorem (Cattaneo-Zambon)

Let ) : g — X(M) be a Lie algebra action on a Poisson manifold (M, r), and let J :
M — b* be a g-equivariant map, for ) a g-module. Assume that the pair (1, J) is regular
and compatible with the Poisson structure w. Then the quotient C,q := C/G inherits a
Poisson structure Ted.

What is the corresponding homological version of this result?
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BFV in degree zero

Functions on Marsden-Weinstein quotients
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BFV in degree zero

Functions on Marsden-Weinstein quotients

Let (M, ) be a Poisson manifold endowed with a g-action, and let J: M — g* be a
moment map.
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BFV in degree zero

Functions on Marsden-Weinstein quotients

Let (M, ) be a Poisson manifold endowed with a g-action, and let J: M — g* be a
moment map.

o Marsden-Weinstein theorem: (J7*(0)/G, mreq);
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BFV in degree zero

Functions on Marsden-Weinstein quotients

Let (M, ) be a Poisson manifold endowed with a g-action, and let J: M — g* be a
moment map.

o Marsden-Weinstein theorem: (J7*(0)/G, mreq);
o Let C:=J7(0) and Gy = C/G.
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BFV in degree zero

Functions on Marsden-Weinstein quotients

Let (M, ) be a Poisson manifold endowed with a g-action, and let J: M — g* be a
moment map.

o Marsden-Weinstein theorem: (J7*(0)/G, mreq);
o Let C :=J7'(0) and Gy = C/G. We have

C®(Creq) = C=(C)°.
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BFV in degree zero

Functions on Marsden-Weinstein quotients

Let (M, ) be a Poisson manifold endowed with a g-action, and let J: M — g* be a
moment map.

o Marsden-Weinstein theorem: (J7*(0)/G, mreq);
o Let C :=J7'(0) and Gy = C/G. We have

C®(Creq) = C=(C)°.

e | C C*°(M), the vanishing ideal of C, satisfies {/,/} C I.
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BFV in degree zero

Functions on Marsden-Weinstein quotients

Let (M, ) be a Poisson manifold endowed with a g-action, and let J: M — g* be a
moment map.

o Marsden-Weinstein theorem: (J7*(0)/G, mreq);
o Let C :=J7'(0) and Gy = C/G. We have

C®(Creq) = C=(C)°.

e | C C°°(M), the vanishing ideal of C, satisfies {/,/} C I. Moreover,

cE(C) = cx(m)/1 (1)
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BFV in degree zero

Functions on Marsden-Weinstein quotients

Let (M, ) be a Poisson manifold endowed with a g-action, and let J: M — g* be a
moment map.

o Marsden-Weinstein theorem: (J7*(0)/G, mreq);
o Let C :=J7'(0) and Gy = C/G. We have

C®(Creq) = C=(C)°.

e | C C°°(M), the vanishing ideal of C, satisfies {/,/} C I. Moreover,
cE(C) = cx(m)/1 (1)

and
(C=(M)/1)¢ = N(I)/I, (2)
where
N(I)={fe C*(M):{f, I} CI}.
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BFV in degree zero

Functions on Marsden-Weinstein quotients

Let (M, ) be a Poisson manifold endowed with a g-action, and let J: M — g* be a
moment map.

o Marsden-Weinstein theorem: (J7*(0)/G, mreq);
o Let C :=J7'(0) and Gy = C/G. We have

C®(Creq) = C=(C)°.

e | C C°°(M), the vanishing ideal of C, satisfies {/,/} C I. Moreover,
cE(C) = cx(m)/1 (1)
and
oo G o
(C=(M)/1) = N()/1, )

where
N(I)={fe C*(M):{f, I} CI}.

A homological model for hamiltonian reduction comes out of realizing (1) and (2)
homologically.
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BFV in degree zero

Kostant-Sternberg BRST algebra
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BFV in degree zero

Kostant-Sternberg BRST algebra

The Kostant-Sternberg BRST algebra is a differential graded Poisson algebra
(K, {-,-}, OrsT), with K* := @, ., K", where

K"= @ K", for KM= c°°(/vl)®/p\g* ®/q\g,

n=p—q
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BFV in degree zero

Kostant-Sternberg BRST algebra

The Kostant-Sternberg BRST algebra is a differential graded Poisson algebra
(K, {-,-}, OrsT), with K* := @, ., K", where

K"= @ K", for KM= c°°(/vl)®/p\g* ®/q\g,

n=p—q

and JgrsT = {Qq, -}, for

* i * ]- ook ok
Qo = p"(u)ui = 5l uuiu', Q€K' {Qq Q}=0.
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BFV in degree zero

Kostant-Sternberg BRST algebra

The Kostant-Sternberg BRST algebra is a differential graded Poisson algebra
(K, {-,-}, OrsT), with K* := @, ., K", where

K"= @ K", for KM= c°°(/vl)®/p\g* ®/q\g,

n=p—q

and JgrsT = {Qq, -}, for

* i * ]- ook ok
Qo = p"(u)ui = 5l uuiu', Q€K' {Qq Q}=0.

Theorem (Kostant-Sternberg, Stasheff)

Let / € C*°(M) be the vanishing ideal of C := 1 ~*(0).
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BFV in degree zero

Kostant-Sternberg BRST algebra

The Kostant-Sternberg BRST algebra is a differential graded Poisson algebra
(K, {-,-}, OrsT), with K* := @, ., K", where

K"= @ K", for KM= c°°(/vl)®/p\g* ®/q\g,

n=p—q

and JgrsT = {Qq, -}, for

* i * ]- ook ok
Qo = p"(u)ui = 5l uuiu', Q€K' {Qq Q}=0.

Theorem (Kostant-Sternberg, Stasheff)

Let / € C°°(M) be the vanishing ideal of C := 1~*(0). Then

Hia,,.} = N(1)/1
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BFV in degree zero

Kostant-Sternberg BRST algebra

The Kostant-Sternberg BRST algebra is a differential graded Poisson algebra
(K, {-,-}, OrsT), with K* := @, ., K", where

K"= @ K", for KM= c°°(/vl)®/p\g* ®/q\g,

n=p—q

and JgrsT = {Qq, -}, for

* i * ]- ook ok
Qo = p"(u)ui = 5l uuiu', Q€K' {Qq Q}=0.

Theorem (Kostant-Sternberg, Stasheff)

Let / € C°°(M) be the vanishing ideal of C := 1~*(0). Then

H{g,..} = N(1)/1 = C*(Creq).
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A generalized hamiltonian setting

o Following Cattaneo-Zambon graded geometric approach to Poisson reduction:

hamiltonian action of g :=h[1] & g
on T*[1]M compatible with = € C3°(T*[1]M)

g-action on (M, ) with J: M — h* equivariant,
for h a g-module

Theorem (Cattaneo-Zambon)

Let ¢ : g — X(M) be a Lie algebra action on a Poisson manifold (M,r), and let J :
M — b* be a g-equivariant map, for ) a g-module. Assume that the pair (1, J) is regular
and compatible with the Poisson structure w. Then the quotient C,q := C/G inherits a
Poisson structure Ted.
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A generalized hamiltonian setting

o Following Cattaneo-Zambon graded geometric approach to Poisson reduction:

hamiltonian action of g :=h[1] & g
on T*[1]M compatible with = € C3°(T*[1]M)

g-action on (M, ) with J: M — h* equivariant,
for h a g-module

Theorem (Cattaneo-Zambon)

Let ¢ : g — X(M) be a Lie algebra action on a Poisson manifold (M,r), and let J :
M — b* be a g-equivariant map, for ) a g-module. Assume that the pair (1, J) is regular
and compatible with the Poisson structure w. Then the quotient C,q := C/G inherits a
Poisson structure Ted.

What is the algebraic structure of the homological model for this
reduction scheme? J
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Shifted cotangent bundles
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Shifted cotangent bundles

For M a smooth manifold, the shifted cotangent bundle of M is the degree one manifold
M= T*[1]M
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Shifted cotangent bundles

For M a smooth manifold, the shifted cotangent bundle of M is the degree one manifold
M = T*[1]M whose sheaf of functions is

C=(M) = r(/\ TM) = X*(M).
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Shifted cotangent bundles

For M a smooth manifold, the shifted cotangent bundle of M is the degree one manifold
M = T*[1]M whose sheaf of functions is

C=(M) = r(/\ TM) = X*(M).

In local coordinates (U, x1, ..., x,) for M, a multivector field X € XP(M) can be written
as

X = Z ai.ili - -Eipy A, € CT (M),

1< <ip

where §; == O -
J
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Shifted cotangent bundles

For M a smooth manifold, the shifted cotangent bundle of M is the degree one manifold
M = T*[1]M whose sheaf of functions is

C=(M) = r(/\ TM) = X*(M).

In local coordinates (U, x1, ..., x,) for M, a multivector field X € XP(M) can be written
as

X = Z ai.ili - -Eipy A, € CT (M),

< <ip
where §; == O -
J

@ X € ¥P(M) and Y € X9(M), the shifted Poisson bracket {X, Y} € ¥PT971(M)
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Shifted cotangent bundles

For M a smooth manifold, the shifted cotangent bundle of M is the degree one manifold
M = T*[1]M whose sheaf of functions is

C=(M) = r(/\ TM) = X*(M).

In local coordinates (U, x1, ..., x,) for M, a multivector field X € XP(M) can be written
as

X = Z ai.ili - -Eipy A, € CT (M),

i< <ip
where §; == i

@ X € X¥P(M) and Y € X9(M), the shifted Poisson bracket {X, Y} € ¥PT971(M) is
given, in local coordinates, by

OX0Y _\e-ne-n§ Y 0X
X.vy= Z o6 ax Y Z 9€; dx;i”
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Hamiltonian reduction of M = T*[1]M
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Hamiltonian reduction of M = T*[1]M

o Let g = h[1]@® g be a graded Lie algebra concentrated in degrees —1 and 0. An action
of g on M is a morphism of graded Lie algebras W : g — X(M).
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Hamiltonian reduction of M = T*[1]M

o Let g = h[1]@® g be a graded Lie algebra concentrated in degrees —1 and 0. An action
of g on M is a morphism of graded Lie algebras W : g — X(M).

o Moment map: a morphism of (odd) Lie algebras J* : g[—1] — C°°(M) such that
um = {Jf(u)’ } and vy = {J(’)j(v)v '}a

foruegandvehb.

27.11.2024

Homological reduction of Poisson structures
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Hamiltonian reduction of M = T*[1]M

o Let g = h[1]@® g be a graded Lie algebra concentrated in degrees —1 and 0. An action
of g on M is a morphism of graded Lie algebras W : g — X(M).

o Moment map: a morphism of (odd) Lie algebras J* : g[—1] — C°°(M) such that
um = {Jf(u)’ } and vy = {J(’)j(v)v '}a
foruegandvehb.

o Dually, we can see a moment map J* : g[—1] — C*°(M) as a map of degree one
manifolds (J, J*) : M — (g[-1])*.

Pedro H. Carvalho (UHK) Homological reduction of Poisson structures 27.11.2024



Hamiltonian reduction of M = T*[1]M

Constraint submanifold
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Hamiltonian reduction of M = T*[1]M

Constraint submanifold

o The constraint submanifold C := (J,J*)~%(0) is the defined in terms of its sheaf of
vanishing ideals

T = (J(v), S (u)).
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Hamiltonian reduction of M = T*[1]M

Constraint submanifold

o The constraint submanifold C := (J,J*)~%(0) is the defined in terms of its sheaf of
vanishing ideals

T = (J(v), S (u)).

o J#:g[-1] — C>°(M) being a moment map is equivalent to 7 being a coisotropic
ideal, that'is, {J,J} C J.
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Hamiltonian reduction of M = T*[1]M

Constraint submanifold

o The constraint submanifold C := (J,J*)~%(0) is the defined in terms of its sheaf of
vanishing ideals

T = (J(v), S (u)).

o J#:g[-1] — C>°(M) being a moment map is equivalent to 7 being a coisotropic
ideal, that'is, {J,J} C J.

graded g-action W : g — X(M)
with moment map J* : g[—1] — C>~(M)
g-action ¥ : g — X(M) with
J: M — b* equivariant, for h a g-module

o Geometrically on M : we have the level set C .= J7'(0) C M endowed with the
involutive tangent distribution D = (J!(u))ueq.
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Hamiltonian reduction of M = T*[1]M

Reduced space
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Hamiltonian reduction of M = T*[1]M

Reduced space

o For
N(T) ={f e C(M) | {f,.T} C T},
we have
# = Coo(cred)v

when Creq exists.
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Hamiltonian reduction of M = T*[1]M

Reduced space

o For
N(T) ={f e C(M) | {f,.T} C T},
we have
% = Coo(cred)v

when Creq exists.

Theorem (Cattaneo-Zambon)

Let J* : g[—1] — C>(M) be a moment map for an infinitesimal action of g == h[1] © g
on M. Assume that 0 € b* is a regular value of J : M — b* and that the action
= Sy : g = X(M) on C := J~1(0) integrates to a free and proper action of a Lie
group G, that is, assume that the pair (¢, J) is regular. Then the corresponding degree
one reduced space Creq exists and is naturally isomorphic to T*[1](C/G).
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Hamiltonian reduction of M = T*[1]M

Reducible Poisson structures
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Hamiltonian reduction of M = T*[1]M

Reducible Poisson structures

o A Poisson structure on M is a bivector m € X*(M) = C§°(M) satisfying {m, 7} = 0.
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Hamiltonian reduction of M = T*[1]M

Reducible Poisson structures

o A Poisson structure on M is a bivector m € X*(M) = C§°(M) satisfying {m, 7} = 0.

@ Since N
Coo(cred) = %7

7 € X?(M) is said to be reducible iff 7 € N(J).
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Hamiltonian reduction of M = T*[1]M

Reducible Poisson structures

o A Poisson structure on M is a bivector m € X*(M) = C§°(M) satisfying {m, 7} = 0.

@ Since N(T
Coo(cred) = %7
7 € X?(M) is said to be reducible iff 1 € N(J). In this case, we have s €
X2(Crea)-
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Hamiltonian reduction of M = T*[1]M

Reducible Poisson structures

o A Poisson structure on M is a bivector m € X*(M) = C§°(M) satisfying {m, 7} = 0.

@ Since N(T
Coo(cred) = %7
7 € X?(M) is said to be reducible iff 1 € N(J). In this case, we have s €
X2(Crea)-

e For m € X*(M) = C§°(M) to induce a Poisson structure on C,eq it suffices that
{m,m} € J (weak Poisson — Lyakhovich-Sharapov, quasi-Poisson spaces).
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Hamiltonian reduction of M = T*[1]M

Reducible Poisson structures: non-graded perspective
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Hamiltonian reduction of M = T*[1]M

Reducible Poisson structures: non-graded perspective

@ In non-graded terms, the condition m € N(J) gives:
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Hamiltonian reduction of M = T*[1]M

Reducible Poisson structures: non-graded perspective

@ In non-graded terms, the condition m € N(J) gives:
o C®(M)|ginv C C>°(M) is a Poisson subalgebra;
o T (Ann(TC)) C D = (¥(u))ueg-
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Hamiltonian reduction of M = T*[1]M

Reducible Poisson structures: non-graded perspective

@ In non-graded terms, the condition m € N(J) gives:
o C®(M)|ginv C C>°(M) is a Poisson subalgebra;
o T (Ann(TC)) C D = (¥(u))ueg-
@ The Marsden-Weinstein theorem for the reduction of M := T*[1]M implies the fol-
lowing generalized version of the classical Marsden-Weinstein theorem:
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Hamiltonian reduction of M = T*[1]M

Reducible Poisson structures: non-graded perspective

@ In non-graded terms, the condition m € N(J) gives:
o C®(M)|ginv C C>°(M) is a Poisson subalgebra;
o 7 (Ann(TC)) C D = ((u))uey.
@ The Marsden-Weinstein theorem for the reduction of M := T*[1]M implies the fol-
lowing generalized version of the classical Marsden-Weinstein theorem:

Theorem (Cattaneo-Zambon)

Let ¢ : g — X(M) be a Lie algebra action on a Poisson manifold (M, r), and let J :
M — b* be a g-equivariant map, for ) a g-module. Assume that the pair (1, J) is regular
and compatible with the Poisson structure w. Then the quotient C.q := C/G inherits a
Poisson structure Ted.
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Hamiltonian reduction of M = T*[1]M

Reducible Poisson structures: non-graded perspective

@ In non-graded terms, the condition m € N(J) gives:
o C®(M)|ginv C C>°(M) is a Poisson subalgebra;
o 7 (Ann(TC)) C D = ((u))uey.
@ The Marsden-Weinstein theorem for the reduction of M := T*[1]M implies the fol-
lowing generalized version of the classical Marsden-Weinstein theorem:

Theorem (Cattaneo-Zambon)

Let ¢ : g — X(M) be a Lie algebra action on a Poisson manifold (M, r), and let J :
M — b* be a g-equivariant map, for ) a g-module. Assume that the pair (1, J) is regular
and compatible with the Poisson structure w. Then the quotient C.q := C/G inherits a
Poisson structure Ted.

The homological counterpart of this result will be derived from a
homological model for the hamiltonian reduction of (M, {:,}). J
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BFV in degree one

The underlying algebra and the BRST charge
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BFV in degree one

The underlying algebra and the BRST charge

Let J* : g[~1] — C°°(M) be a moment map describing the hamiltonian action of a graded
Lie algebra g = ph[1] @ g.
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BFV in degree one

The underlying algebra and the BRST charge

Let J* : g[~1] — C°°(M) be a moment map describing the hamiltonian action of a graded
Lie algebra g = ph[1] @ g.

» Note K* = C®(M)® A®g* ® A\° g can be seen as the algebra of functions of
M x T*g*[—1] and the BRST charge Q, € K* as a function defining the homological
vector field Ogrst = {Qq, -}
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BFV in degree one

The underlying algebra and the BRST charge

Let J* : g[~1] — C°°(M) be a moment map describing the hamiltonian action of a graded
Lie algebra g = ph[1] @ g.

» Note K* = C®(M)® A®g* ® A\° g can be seen as the algebra of functions of
M x T*g*[—1] and the BRST charge Q, € K* as a function defining the homological
vector field Ogrst = {Qq, -}

@ Take
N = M x T 1]g"[-1],
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BFV in degree one

The underlying algebra and the BRST charge

Let J* : g[~1] — C°°(M) be a moment map describing the hamiltonian action of a graded
Lie algebra g = ph[1] @ g.

» Note K* = C®(M)® A®g* ® A\° g can be seen as the algebra of functions of
M x T*g*[—1] and the BRST charge Q, € K* as a function defining the homological
vector field Ogrst = {Qq, -}

@ Take
N = M x T 1]g"[-1],

in such a way that
CTW) = M) @ C=(T 1" [-1]) = C*(M) © S*(@"[-1]) ® $°(9)-

Note C*°(N) is endowed with a natural Poisson bracket {-,-} of degree —1.
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Q Let
AP = (M) @ SP(g"[-1]) ® $7(F) € CT(N).
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Q Let
AP = (M) @ SP(g"[-1]) ® $7(F) € CT(N).

© Define

o= @ oA

n=p—q
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Q Let
AP = (M) @ SP(g"[-1]) ® $7(F) € CT(N).

© Define

o= @ oA

n=p—q

In this way, A := C*°(N') becomes bigraded
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Q Let
AP = (M) @ SP(g"[-1]) ® $7(F) € CT(N).

© Define

o= @ oA

n=p—q

In this way, A := C°>°(N') becomes bigraded — A** denote the subspace of C°°(N)
consisting of functions that have total ghost number k and function degree .
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Q Let
AP = (M) @ SP(g"[-1]) ® $7(F) € CT(N).

© Define

o= @ oA

n=p—q

In this way, A := C°>°(N') becomes bigraded — A** denote the subspace of C°°(N)
consisting of functions that have total ghost number k and function degree .

A = C*(N) with additional grading by total ghost number and the BFV bracket {-, }J
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Q Let
AP = (M) @ SP(g"[-1]) ® $7(F) € CT(N).

© Define

o= @ oA

n=p—q

In this way, A := C°>°(N') becomes bigraded — A** denote the subspace of C°°(N)
consisting of functions that have total ghost number k and function degree .

A = C*(N) with additional grading by total ghost number and the BFV bracket {-, }J

Q@ The BRST charge: @; € A"? given by
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Q Let
AP = (M) @ SP(g"[-1]) ® $7(F) € CT(N).

© Define

o= @ oA

n=p—q

In this way, A := C°>°(N') becomes bigraded — A** denote the subspace of C°°(N)
consisting of functions that have total ghost number k and function degree .

A = C*(N) with additional grading by total ghost number and the BFV bracket {-, }J

Q@ The BRST charge: @; € A"? given by

. . 1 -
Qs = Ji(u)ui + (V) — 5 uf o u — & vy v
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Q Let
AP = (M) @ SP(g"[-1]) ® $7(F) € CT(N).

© Define

o= @ oA

n=p—q

In this way, A := C°>°(N') becomes bigraded — A** denote the subspace of C°°(N)
consisting of functions that have total ghost number k and function degree .

A = C*(N) with additional grading by total ghost number and the BFV bracket {-, }J

Q@ The BRST charge: @; € A"? given by

. . 1 -
Qs = Ji(u)ui + (V) — 5 uf o u — & vy v

(graded Jacobi identity for § < {Qg, Qg} = 0).
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Cohomology at tgh =0
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Cohomology at tgh =0

Theorem (Bonechi-Cabrera-Zabzine)
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Cohomology at tgh =0

Theorem (Bonechi-Cabrera-Zabzine)

The cohomology of the complex (A, {Qg, - }) at total ghost number zero is so that the
natural map

N(T)
v
[(x%° + xM 4o )] — x00

¢ HOCF 1 (A) —

is an isomorphism of degree —1 Poisson algebras.
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Cohomology at tgh =0

Theorem (Bonechi-Cabrera-Zabzine)

The cohomology of the complex (A, {Qg, - }) at total ghost number zero is so that the
natural map

o N(T)
®: Hg 4 (A) — 7

[(XO,O_,’_XI,I +)] '_)W

is an isomorphism of degree —1 Poisson algebras.
v

» From the Marsden-Weinstein theorem for the reduction of M = T*[1]M, we know
that N(J)/J = C°(Creq), so the above result is a degree one version of the classical
Kostant-Sternberg theorem.
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Coupling a Poisson structure

A derived bracket construction
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Coupling a Poisson structure

A derived bracket construction

o If T € C5°(M) is reducible wrt to geometric data associated to J, thatis, m € N(J),
then we can take a corresponding cohomology class [[1] € H?’(i 3
o

Pedro H. Carvalho (UHK) Homological reduction of Poisson structures 27.11.2024



Coupling a Poisson structure

A derived bracket construction

o If T € C5°(M) is reducible wrt to geometric data associated to J, thatis, m € N(J),
then we can take a corresponding cohomology class [[1] € H?’(i 3
o

e For [a],[b] € H?gH’A}(A),
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Coupling a Poisson structure

A derived bracket construction

o If T € C5°(M) is reducible wrt to geometric data associated to J, thatis, m € N(J),
then we can take a corresponding cohomology class [[1] € H?’(i 3
o

e For [a],[b] € H?gH’A}(A), the derived bracket

{[a], [pl}n == {{[M], [al}, [B]} = [{{M, a}, b}]
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Coupling a Poisson structure

A derived bracket construction

o If T € C5°(M) is reducible wrt to geometric data associated to J, thatis, m € N(J),
then we can take a corresponding cohomology class [[1] € H?’(i 3
o

e For [a],[b] € H?gH’A}(A), the derived bracket

{[a], [pl}n == {{[M], [al}, [B]} = [{{M, a}, b}]

is a Poisson bracket.
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Coupling a Poisson structure

A derived bracket construction

o If T € C5°(M) is reducible wrt to geometric data associated to J, thatis, m € N(J),
then we can take a corresponding cohomology class [[1] € H?’(i 3
o

e For [a],[b] € H?gH’A}(A), the derived bracket
{lal, [b]}n = {{[M], [al}, [b]} = [{{, a}, b}]

is a Poisson bracket.

@ It turns out that
(HE8 (A £ 1) = (C(Ca)s Y

as Poisson algebras.
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Coupling a Poisson structure

Extended BRST charge
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Coupling a Poisson structure

Extended BRST charge

@ Extended BRST charge:
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Coupling a Poisson structure

Extended BRST charge

@ Extended BRST charge:

gleo) — Qs + Zn(—k)’ n=x ¢ A-"’?’

keN
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Coupling a Poisson structure

Extended BRST charge

@ Extended BRST charge:

gleo) — Qs + Z n(—k), n=x ¢ A-"’?’ {5(00)’ 5(00)} = 0.
keN
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Coupling a Poisson structure

Extended BRST charge

@ Extended BRST charge:

gleo) — Qs + Z n(—k), n=x ¢ A-"’?’ {5(00)’ 5(00)} = 0.
keN

o Consider Z-graded lagrangian submanifold Ni,_1 C N whose sheaf of functions is

C*®(Ni,—1) = CZ(M) ® /.\g* ® /.\h.
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Coupling a Poisson structure

Extended BRST charge

@ Extended BRST charge:

gleo) — Qs + Z n(—k), n=x ¢ A-"’?’ {5(00)’ 5(00)} = 0.
keN

o Consider Z-graded lagrangian submanifold Ni,_1 C N whose sheaf of functions is
C (W) = ¥ (M) @ A o* o b

@ The extended charge S induces a homotopy Poisson structure on C®(Ni,_1) :
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Coupling a Poisson structure

Extended BRST charge

@ Extended BRST charge:

gleo) — Qs + Z n(—k), n=x ¢ A-"’?’ {5(00)’ 5(00)} = 0.
keN

o Consider Z-graded lagrangian submanifold Ni,_1 C N whose sheaf of functions is
C (W) = ¥ (M) @ A o* o b

@ The extended charge S induces a homotopy Poisson structure on C®(Ni,_1) :

t(h) = {Qq i}
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Coupling a Poisson structure

Extended BRST charge

@ Extended BRST charge:

gleo) — Qs + Z n(—k), n=x ¢ A-"’?’ {5(00)’ 5(00)} = 0.
keN

o Consider Z-graded lagrangian submanifold Ni,_1 C N whose sheaf of functions is
C (W) = ¥ (M) @ A o* o b

@ The extended charge S induces a homotopy Poisson structure on C®(Ni,_1) :

Zl(fl) = {Qﬁ, fl} and éz(fl, f2) = (_1)f1{{|'|7 fl}7 f2}
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Coupling a Poisson structure

Extended BRST charge

@ Extended BRST charge:

gleo) — Qs + Z n(—k), n=x ¢ A-"’?’ {5(00)’ 5(00)} = 0.
keN

o Consider Z-graded lagrangian submanifold Ni,_1 C N whose sheaf of functions is
C (W) = ¥ (M) @ A o* o b

@ The extended charge S induces a homotopy Poisson structure on C®(Ni,_1) :
6(f) = 1{Qs A} and L(fi, f) = (~1)"{{N, A}, £}

and, in general, for kK > 3,

Pedro H. Carvalho (UHK) Homological reduction of Poisson structures 27.11.2024



Coupling a Poisson structure

Extended BRST charge

@ Extended BRST charge:

gleo) — Qs + Z n(—k), n=x ¢ A-"’?’ {5(00)’ 5(00)} = 0.
keN

o Consider Z-graded lagrangian submanifold Ni,_1 C N whose sheaf of functions is
C (W) = ¥ (M) @ A o* o b

@ The extended charge S induces a homotopy Poisson structure on C®(Ni,_1) :
0(h) = {Qq i} and fa(fi, &) = (—=1)"{{N, A}, £}
and, in general, for k > 3, we let

b C(N1,—1)®F = C®(WV1,—1)  (of degree 2 — k)
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Coupling a Poisson structure

Extended BRST charge

@ Extended BRST charge:

gleo) — Qs + Z n(—k), n=x ¢ A-"’?’ {5(00)’ 5(00)} = 0.
keN

o Consider Z-graded lagrangian submanifold Ni,_1 C N whose sheaf of functions is
C (W) = ¥ (M) @ A o* o b

@ The extended charge S induces a homotopy Poisson structure on C®(Ni,_1) :
6(f) = 1{Qs A} and L(fi, f) = (~1)"{{N, A}, £}
and, in general, for k > 3, we let
b C(N1,—1)®F = C®(WV1,—1)  (of degree 2 — k)
be defined by
O(fiy oo B) = (D). ({N® R RY B, .. A
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e From {Q,N"Y} 4+ 1{n,N} =0,
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o From {Q,N"Y} + 1{MN,M} = 0, we obtain
62(f7 Z2(g7 h))_ ( 52(52(f>g)7 h)+(_1)fg€2(g7 62(f’ h)) ) = (6306?3 +€10£3)(f7g’ h)v

where (2% : C*(N1,-1)®* — C°°(N1,-1)® is the differential on C>(N1,-1)%* given
by
(35(fogeh) =L(f)og@h+ (1) fehL(g) @ h+ (—1)8f @ g ® ti(h).

27.11.2024
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o From {Q,N"Y} + 1{MN,M} = 0, we obtain
62(f7 Z2(g7 h))_ ( 52(52(f>g)7 h)+(_1)fg€2(g7 62(f’ h)) ) = (6306?3 +€10£3)(f7g’ h)v

where (2% : C*(N1,-1)®* — C°°(N1,-1)® is the differential on C>(N1,-1)%* given
by
(35(fogeh) =L(f)og@h+ (1) fehL(g) @ h+ (—1)8f @ g ® ti(h).
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o From {Q,N"Y} + 1{MN,M} = 0, we obtain
62(f7 Z2(g7 h))_ ( 52(52(f>g)7 h)+(_1)fg€2(g7 62(f’ h)) ) = (6306?3 +€10£3)(f7g’ h)v

where (2% : C*(N1,-1)®* — C°°(N1,-1)® is the differential on C>(N1,-1)%* given
by
(35(fogeh) =L(f)og@h+ (1) fehL(g) @ h+ (—1)8f @ g ® ti(h).

We have the identification A%¢ = Xtk k(Aq ),
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o From {Q,N"Y} + 1{MN,M} = 0, we obtain
62(f7 Z2(g7 h))_ ( 52(52(f>g)7 h)+(_1)fg€2(g7 62(f’ h)) ) = (6306?3 +€10£3)(f7g’ h)v

where (2% : C*(N1,-1)®* — C°°(N1,-1)® is the differential on C>(N1,-1)%* given
by
(35(fogeh) =L(f)og@h+ (1) fehL(g) @ h+ (—1)8f @ g ® ti(h).

We have the identification A%¢ = %% k(A7 1), which shows N = T*[1](M,_1)

27.11.2024
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o From {Q,N"Y} + 1{MN,M} = 0, we obtain
62(f7 Z2(3—7 h))_ ( 52(52(f>g)7 h)+(_1)fg€2(g7 62(f’ h)) ) = (6306?3 +€10£3)(f7g7 h)v

where (2% : C*(N1,-1)®* — C°°(N1,-1)® is the differential on C>(N1,-1)%* given
by
(35(fogeh) =L(f)og@h+ (1) fehL(g) @ h+ (—1)8f @ g ® ti(h).

We have the identification AX* =2 X% %(Nq _1), which shows N =2 T*[1](N1,-1) -
graded version of Weinstein lagrangian neighborhood theorem.

27.11.2024
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o From {Q,N"Y} + 1{MN,M} = 0, we obtain
62(f7 Z2(3—7 h))_ ( 52(52(f>g)7 h)+(_1)fg€2(g7 62(f’ h)) ) = (6306?3 +€10£3)(f7g7 h)v

where (2% : C*(N1,-1)®* — C°°(N1,-1)® is the differential on C>(N1,-1)%* given
by
(35(fogeh) =L(f)og@h+ (1) fehL(g) @ h+ (—1)8f @ g ® ti(h).

We have the identification AX* =2 X% %(Nq _1), which shows N =2 T*[1](N1,-1) -
graded version of Weinstein lagrangian neighborhood theorem. Hence,

QE c AI,Z o~ xlyl(./\/’l,—l), I—I(fk) c Afk,Z o~ %k+2,7k(./\/'1‘_1)’
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o From {Q,N"Y} + 1{MN,M} = 0, we obtain
62(f7 Z2(3—7 h))_ ( 52(E2(f>g)7 h)+(_1)fg€2(g7 62(f’ h)) ) = (6306?3 +€10£3)(f7g7 h)v

where (2% : C*(N1,-1)®* — C°°(N1,-1)® is the differential on C>(N1,-1)%* given
by
(35(fogeh) =L(f)og@h+ (1) fehL(g) @ h+ (—1)8f @ g ® ti(h).

We have the identification AX* =2 X% %(Nq _1), which shows N =2 T*[1](N1,-1) -
graded version of Weinstein lagrangian neighborhood theorem. Hence,

QE c AI,Z o~ xlyl(./\/’l,—l), I—I(fk) c Afk,Z o~ %k+2,7k(./\/'1‘_1)’

that is, S(°°) gives a formal bivector on A7, 1
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o From {Q,N"Y} + 1{MN,M} = 0, we obtain
62(f7 Z2(3—7 h))_ ( 52(E2(f>g)7 h)+(_1)fg€2(g7 62(f’ h)) ) = (6306?3 +€10£3)(f7g7 h)v

where (2% : C*(N1,-1)®* — C°°(N1,-1)® is the differential on C>(N1,-1)%* given
by
(35(fogeh) =L(f)og@h+ (1) fehL(g) @ h+ (—1)8f @ g ® ti(h).

We have the identification AX* =2 X% %(Nq _1), which shows N =2 T*[1](N1,-1) -
graded version of Weinstein lagrangian neighborhood theorem. Hence,

QE c AI,Z o~ xlyl(./\/’l,—l), I—I(fk) c Afk,Z o~ %k+2,7k(./\/'1‘_1)’

that is, S(>°) gives a formal bivector on A1, _1 — Poo-structure (Cattaneo-Felder); O-shifted

Poisson structure (Pridham).
v
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A homotopy Poisson structure from Poisson reduction
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A homotopy Poisson structure from Poisson reduction

Let 1) : g — X(M) be a Lie algebra action on a Poisson manifold (M, x), and let J : M —
h* be a g-equivariant map, for b a g-module.
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A homotopy Poisson structure from Poisson reduction

Let 1) : g — X(M) be a Lie algebra action on a Poisson manifold (M, x), and let J : M —
h* be a g-equivariant map, for b a g-module. Assume that the reduction data (,J) is
regular and compatible with the Poisson structure .
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A homotopy Poisson structure from Poisson reduction

Let 1) : g — X(M) be a Lie algebra action on a Poisson manifold (M, x), and let J : M —
h* be a g-equivariant map, for b a g-module. Assume that the reduction data (,J) is
regular and compatible with the Poisson structure w. Then the Z-graded algebra

Ksp = C*(M) @ \g"® Ab,

graded by total ghost number,
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A homotopy Poisson structure from Poisson reduction

Let 1) : g — X(M) be a Lie algebra action on a Poisson manifold (M, x), and let J : M —
h* be a g-equivariant map, for b a g-module. Assume that the reduction data (,J) is
regular and compatible with the Poisson structure w. Then the Z-graded algebra

Ksp = C*(M) @ \g"® Ab,

graded by total ghost number, admits a homotopy Poisson structure with differential
J: Kgy — IC;;I and a sequence of k-ary brackets {-,..., }x, k > 2,
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A homotopy Poisson structure from Poisson reduction

Let 1) : g — X(M) be a Lie algebra action on a Poisson manifold (M, x), and let J : M —
h* be a g-equivariant map, for b a g-module. Assume that the reduction data (,J) is
regular and compatible with the Poisson structure w. Then the Z-graded algebra

Ksp = C*(M) @ \g"® Ab,

graded by total ghost number, admits a homotopy Poisson structure with differential
J: Kgy — IC;;I and a sequence of k-ary brackets {-,...,-}«, k > 2, such that

the Poisson algebra (H3(K3,),{-,-}2) is identified with the reduced Poisson algebra
(Coo(cfed)7{'7'}ﬂred)'

v
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A homotopy Poisson structure from Poisson reduction

Let 1) : g — X(M) be a Lie algebra action on a Poisson manifold (M, x), and let J : M —
h* be a g-equivariant map, for b a g-module. Assume that the reduction data (,J) is
regular and compatible with the Poisson structure w. Then the Z-graded algebra

Ksp = C*(M) @ \g"® Ab,

graded by total ghost number, admits a homotopy Poisson structure with differential
J: Kgy — IC;BI and a sequence of k-ary brackets {-,...,-}«, k > 2, such that
the Poisson algebra (H3(K3,),{-,-}2) is identified with the reduced Poisson algebra
(Coo(cfed)7{'7'}7rred)'

V.
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A homotopy Poisson structure from Poisson reduction

Let 1) : g — X(M) be a Lie algebra action on a Poisson manifold (M, x), and let J : M —
h* be a g-equivariant map, for b a g-module. Assume that the reduction data (,J) is
regular and compatible with the Poisson structure w. Then the Z-graded algebra

Ksp = C*(M) @ \g"® Ab,

graded by total ghost number, admits a homotopy Poisson structure with differential
J: Kgy — IC;BI and a sequence of k-ary brackets {-,...,-}«, k > 2, such that
the Poisson algebra (H3(K3,),{-,-}2) is identified with the reduced Poisson algebra
(Coo(cfed)7{'7'}7rred)'

V.

Take J* : g[~1] = C*(M) defined by the pair (¢, J).
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A homotopy Poisson structure from Poisson reduction

Let 1) : g — X(M) be a Lie algebra action on a Poisson manifold (M, x), and let J : M —
h* be a g-equivariant map, for b a g-module. Assume that the reduction data (,J) is
regular and compatible with the Poisson structure w. Then the Z-graded algebra

Ksp = C*(M) @ \g"® Ab,

graded by total ghost number, admits a homotopy Poisson structure with differential
J: Kgy — IC;;I and a sequence of k-ary brackets {-,...,-}«, k > 2, such that
the Poisson algebra (H3(K3,),{-,-}2) is identified with the reduced Poisson algebra
(Coo(cfed)7{'7'}7rred)'

V.

Take J* : g[—1] — C>(M) defined by the pair (1, J). Consider (A, {Qg, }).
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A homotopy Poisson structure from Poisson reduction

Let 1) : g — X(M) be a Lie algebra action on a Poisson manifold (M, x), and let J : M —
h* be a g-equivariant map, for b a g-module. Assume that the reduction data (,J) is
regular and compatible with the Poisson structure w. Then the Z-graded algebra

Ksp = C*(M) @ \g"® Ab,

graded by total ghost number, admits a homotopy Poisson structure with differential
J: Kgy — IC;;I and a sequence of k-ary brackets {-,...,-}«, k > 2, such that
the Poisson algebra (H3(K3,),{-,-}2) is identified with the reduced Poisson algebra
(Coo(cfed)7{'7'}7rred)'

V.

Take J* : g[—1] — C>(M) defined by the pair (¢, J). Consider (A, {Qs,-}). Regularity
of (1, J) guarantees existence of S(°°).

v
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A homotopy Poisson structure from Poisson reduction

Let 1) : g — X(M) be a Lie algebra action on a Poisson manifold (M, x), and let J : M —
h* be a g-equivariant map, for b a g-module. Assume that the reduction data (,J) is
regular and compatible with the Poisson structure w. Then the Z-graded algebra

Ksp = C*(M) @ \g"® Ab,

graded by total ghost number, admits a homotopy Poisson structure with differential
J: Kgy — IC;;I and a sequence of k-ary brackets {-,...,-}«, k > 2, such that
the Poisson algebra (H3(K3,),{-,-}2) is identified with the reduced Poisson algebra
(Coo(cfed)7{'7'}7rred)'

V.

Take J* : g[—1] — C>(M) defined by the pair (¢, J). Consider (A, {Qs,-}). Regularity
of (¢, J) guarantees existence of S(>)_ Derived brackets on Kgp = C°(Ni,-1).

v
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Examples

ons by dgla's
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Examples

Actions by dgla's

Let (g := h[1] & g,9) be a dgla concentrated in degrees —1 and 0.
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Examples

Actions by dgla's

Let (g == b[1] ® g,0) be a dgla concentrated in degrees —1 and 0. For (M, 7) a Poisson
manifold, let W : (g,0) — (X(M),[Xx,]) be a morphism of dgla’s, where X, = {m, -},
and let J* : g[—1] — C°°(M) be a moment map for this g-action.
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Examples

Actions by dgla's
Let (g == b[1] ® g,0) be a dgla concentrated in degrees —1 and 0. For (M, 7) a Poisson
manifold, let W : (g,0) — (X(M),[Xx,]) be a morphism of dgla’s, where X, = {m, -},
and let J* : g[—1] — C°°(M) be a moment map for this g-action.We have

{m,Ji(u)} =0, ueg,

{m, ()} = H(6()), ven.
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Examples

Actions by dgla's

Let (g == b[1] ® g,0) be a dgla concentrated in degrees —1 and 0. For (M, 7) a Poisson
manifold, let W : (g,0) — (X(M),[Xx,]) be a morphism of dgla’s, where X, = {m, -},
and let J* : g[—1] — C°°(M) be a moment map for this g-action.We have

{W,Jf(u)} =0, uegy,
{m, J5(v)} = J(5(v)), veb.

For

) ) 1 .
Q= Jf(u')u,-* —I—Jg(vj)vj* — Ec,'f ui Uy uk — o U vy VP
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Examples

Actions by dgla's

Let (g == b[1] ® g,0) be a dgla concentrated in degrees —1 and 0. For (M, 7) a Poisson
manifold, let W : (g,0) — (X(M),[Xx,]) be a morphism of dgla’s, where X, = {m, -},
and let J* : g[—1] — C°°(M) be a moment map for this g-action.We have

{W,Jf(u)} =0, uegy,
{m, J5(v)} = J(5(v)), veb.

For

) ) 1 . o
Qg = S )u? —I—Jg(vj)vj* - Ec,'{ uf uf uk — S um vy vPoand Mi=7m — ajvi v/,
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Examples

Actions by dgla's

Let (g == b[1] ® g,0) be a dgla concentrated in degrees —1 and 0. For (M, 7) a Poisson
manifold, let W : (g,0) — (X(M),[Xx,]) be a morphism of dgla’s, where X, = {m, -},
and let J* : g[—1] — C°°(M) be a moment map for this g-action.We have

{W,Jf(u)} =0, uegy,
{m, J5(v)} = J(5(v)), veb.

For

) ) 1 . o
Qg = S )u? —I—Jg(vj)vj* - Ec,'{ uf uf uk — S um vy vPoand Mi=7m — ajvi v/,

50 — Qs+ N satisfies {S>), 5>)} = 0.
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Examples

Actions by dgla's

Let (g == b[1] ® g,0) be a dgla concentrated in degrees —1 and 0. For (M, 7) a Poisson
manifold, let W : (g,0) — (X(M),[Xx,]) be a morphism of dgla’s, where X, = {m, -},
and let J* : g[—1] — C°°(M) be a moment map for this g-action.We have

{W,Jf(u)} =0, uegy,
{m, ()} = H(5(v)),

) ) 1 . o
Qg = S )u? —I—Jg(vj)vj" - Ec,’{ uf uf uk — S um vy vPoand Mi=7m — ajvi v/,

= Qg + N satisfies {S©) 5>} — 0.

It induces the structure of diff. graded Poisson algebra on

gh—Coo(M)@’/\g ®/\b
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Examples

Lie bialgebra actions
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Examples

Lie bialgebra actions

An action of the Lie bialgebra (g, F) on the Poisson manifold (M, ) is a g-action
¥ : g — X(M) for which

{m, uir} = (F(u))m = afupuy.
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Examples

Lie bialgebra actions

An action of the Lie bialgebra (g, F) on the Poisson manifold (M, ) is a g-action
¥ : g — X(M) for which

{m, uir} = (F(u))m = afupuy.

In this case, the corresponding extended BRST charge induces a homotopy Poisson
structuce on Kg = C¥(M) @ A\°® ¢*
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Examples

Lie bialgebra actions
An action of the Lie bialgebra (g, F) on the Poisson manifold (M, ) is a g-action
¥ : g — X(M) for which

{m, uir} = (F(u))m = afupuy.

In this case, the corresponding extended BRST charge induces a homotopy Poisson
structuce on Kg = C*®(M)® A°® g* and its first two terms are
ook %

_oqoa g K
Qg = upu; — Ecku,- uiu
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Examples

Lie bialgebra actions

An action of the Lie bialgebra (g, F) on the Poisson manifold (M, ) is a g-action
¥ : g — X(M) for which

{m, uir} = (F(u))m = afupuy.

In this case, the corresponding extended BRST charge induces a homotopy Poisson
structuce on Kg = C*®(M)® A°® g* and its first two terms are

) 1 - o
i * gk %k i * Kk
Qg = umu; —Ecku,- ufu and M=+ ad,uyuu".
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Examples

Lie bialgebra actions
An action of the Lie bialgebra (g, F) on the Poisson manifold (M, ) is a g-action
¥ : g — X(M) for which

{m, i} = (F(u"))m = ajubuy.

In this case, the corresponding extended BRST charge induces a homotopy Poisson
structuce on Kg = C*®(M)® A°® g* and its first two terms are

3 1
o * gk %k
Qs = umuy; — Gy u and M =7+ a,upyu;u*.

(Here, we consider h = {0}, so J =0.)
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Proposition (C.)

Let (M, ) be a Poisson manifold, and let ¢ : g — X(M) be an action of a Lie bialgebra
(g, F). Then the graded algebra

Ky =Co(M)® /\g
admits a homotopy Poisson structure with the 2-ary bracket given by
6(f,g) = {{r,f},g}, f,g e C™(M),
bo(f,u™) = {uly, FHuf,u*]*, feC®(M), u* g,
O(ur,u) =0, u,u; €g”.
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Examples

Quasi-Poisson spaces
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Examples

Quasi-Poisson spaces

Given a quasi-Lie bialgebra (g, F, x), a quasi-Poisson g-space is a manifold M endowed
an g-action 1 : g — X(M) and a bivector field 7 € X*(M)
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Examples

Quasi-Poisson spaces

Given a quasi-Lie bialgebra (g, F, x), a quasi-Poisson g-space is a manifold M endowed
an g-action 1 : g — ¥(M) and a bivector field 7 € ¥%(M) satisfying

P 1
{m, u,’f/,} = (F(uk))M = a,’-‘juMu’M and 5{7’[‘, T = XM-
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Examples

Quasi-Poisson spaces

Given a quasi-Lie bialgebra (g, F, x), a quasi-Poisson g-space is a manifold M endowed
an g-action % : g — ¥(M) and a bivector field = € ¥?(M) satisfying

P 1
{m, u,’f/,} = (F(uk))M = a,’-‘juMl/M and 5{7’[‘, T = XM-

In this case, the corresponding extended BRST charge induces a homotopy Poisson
structuce on Kg = C*(M)® A° g
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Examples

Quasi-Poisson spaces

Given a quasi-Lie bialgebra (g, F, x), a quasi-Poisson g-space is a manifold M endowed
an g-action % : g — ¥(M) and a bivector field = € ¥?(M) satisfying

P 1
{m, u,’f/,} = (F(uk))M = a,’-‘juMl/M and 5{7’[‘, T = XM-

In this case, the corresponding extended BRST charge induces a homotopy Poisson
structuce on g = C*°(M) ® A°® g* and its first three terms are

1 o
jox ok k _ ik k
clufuiu’, M=x+ a,uyuiu

I
Qg—uMui_2 i
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Examples

Quasi-Poisson spaces

Given a quasi-Lie bialgebra (g, F, x), a quasi-Poisson g-space is a manifold M endowed
an g-action % : g — ¥(M) and a bivector field = € ¥?(M) satisfying

P 1
{m, u,’f/,} = (F(uk))M = a,’-‘juMl/M and 5{7’[‘, T = XM-

In this case, the corresponding extended BRST charge induces a homotopy Poisson
structuce on g = C*°(M) ® A°® g* and its first three terms are

gk ok ok

. o .
Qs = umui — Zcjufufu”, N =x+auyuu

2

and M' = %w(Lufx)ui qFeoe
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Hamiltonian quasi-Poisson spaces

Recall that a G-manifold M endowed with a invariant bivector m € ¥?(M) is said to be a
hamiltonian quasi-Poisson space if

{m, 7} = ¢m :712Zu [, "' A A Y,
ik
and if there exists an equivariant map ® : M — G for which we have the moment map

condition
7 (d(P*F)) Z(D ((uf + ur)f)up, f e C=(G). (3)

In this context, if the identity e € G is a regular value of & : M — G and the action of G
along ®~!(e) is free and proper, then the quotient ®~!(e)/G inherits a Poisson structure
(Alekseev—Kosmann-Schwarzbach—Meinrenken).
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Proposition (C.)
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Proposition (C.)

Let (M, ) be a hamiltonian quasi-Poisson space with moment map ¢ : M — G.
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Proposition (C.)

Let (M, ) be a hamiltonian quasi-Poisson space with moment map ® : M — G. Assume
that the identity e € G is a regular value of ® : M — G and that the G-action on
®~!(e) is free and proper.
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Proposition (C.)

Let (M, ) be a hamiltonian quasi-Poisson space with moment map ® : M — G. Assume
that the identity e € G is a regular value of ® : M — G and that the G-action on
®~1(e) is free and proper. Let U C G be neighborhood of e € G where exp : g — G is
diffeomorphism and set My = &~ (U).
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Proposition (C.)

Let (M, ) be a hamiltonian quasi-Poisson space with moment map ® : M — G. Assume
that the identity e € G is a regular value of ® : M — G and that the G-action on
®~1(e) is free and proper. Let U C G be neighborhood of e € G where exp : g — G is
diffeomorphism and set My :== ' (U). Then the algebra

Koo =C"(M)® \o" @ N\

admits a homotopy Poisson structure
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Proposition (C.)

Let (M, ) be a hamiltonian quasi-Poisson space with moment map ® : M — G. Assume
that the identity e € G is a regular value of ® : M — G and that the G-action on
®~1(e) is free and proper. Let U C G be neighborhood of e € G where exp : g — G is
diffeomorphism and set My :== ' (U). Then the algebra

Keg=C*(M)® N\g"® g

admits a homotopy Poisson structure for which we have

(030, £ 1) = (€ (21D ) s,
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Proposition (C.)

Let (M, ) be a hamiltonian quasi-Poisson space with moment map ® : M — G. Assume
that the identity e € G is a regular value of ® : M — G and that the G-action on
®~1(e) is free and proper. Let U C G be neighborhood of e € G where exp : g — G is
diffeomorphism and set My :== ' (U). Then the algebra

Keg=C*(M)® N\g"® g

admits a homotopy Poisson structure for which we have

(030, £ 1) = (€ (21D ) s,

This result provides a BFV model for hamiltonian quasi-Poisson reduction.
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Thank you!
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