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Thank you

for your attention!

Děkuji za pozornost!



Gauge theories

Électromagnetism: G = U(1)

Standard model:
G = U(1) ⇥ SU(2) ⇥ SU(3)

Geometric picture –
principal G -bundle

G — compact connected Lie
group

g = Lie(G ) its Lie algebra
Tr – invariant product on g

gauge connection A 2 ⌦1(P , g);
curvature:

F = dA + 1
2 [A, A] 2 ⌦2(P , g).



Nonlocal observables

Wilson loop observable

A Wilson line is defined by

the holonomy of the gauge field A along a closed curve �, embedded
in a manifold N,

finite dimensional representation R of G .

Wilson line formula:

W
R
� (A) = TrR P exp

�Z

�
A

R

�
,

The gauge field takes values in the Lie algebra g of G:

A
R =

�

a,i

A
a
i t

R
a dx

i .

The gauge invariance is guaranteed by taking the trace in the
representation R .



Alekseev-Faddeev-Shatashvili presentation of Wilson

Line

Involves a path integral quantization of coadgoint orbits of G.

An irreducible finite dimensional representation is uniquely determined
by its highest weight � 2 h⇤, h ⇢ g is a Cartan subalgebra of g.

Associate to � the orbit of the coadjoint action in the space of g⇤.

Denote the coadjoint action by Ad
⇤
g (�) = g�g

�1.

The coadjoint orbit:

O� = {g�g
�1|� 2 g⇤, g 2 G}.



Nonlocal observables.

Wilson lines and surfaces

g : � ! G , A 2 ⌦1(P , g)
� 2 h⇤ – the highest weight
of the representation R

O� = {g�g
�1 2 g⇤|g 2 G , � 2 g⇤}.

b : � ! g⇤ is a field s.t.
b(t) = g(t)�g(t)�1.

W
R
� = TrRPexp

⇣ Z

�
A

⌘
=

Z
Dge

iS�(g ,A),

where SWL(A, g , b) =
R
� Trb

⇣
dgg

�1 + A

⌘
is WL action functional.

SWS(A, g) =
R
⌃ Trb

⇣
FA + (dAgg

�1)2
⌘

is the bulk / WS functional

Important result: SWS is defined by an equivariant extension of
Kirillov–Kostant–Souriau symplectic form on O�



Interpretation
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Recall: Poisson �-model

Consider a Poisson manifold (M, ⇡)

with Poisson structure ⇡ = 1
2 ⇡ij �

�xi � �
�xj .

Poisson �-model:

S
�(X , ↵) =

Z

⌃

�
↵idX

i +
1

2
⇡ij(X )↵i � ↵j

�
,

where X
i = x

i � X are components of the map X : ⌃ ! M,
↵i are 1-forms on ⌃ representing gauge fields of the Poisson �-model.

In case ⇡ij is invertible, (M, ⇡) is also symplectic with �ij = (⇡�1)ji .



Recall: Poisson �-model on a coadjoint orbit

Let the target space be O�,

then the action

S�O = �
Z

⌃
Tr �(g�1

dg)2 = �
Z

⌃
Tr b(dgg

�1)2.

Poisson �-model on O�:

S
�(b, ↵) =

Z

⌃
Tr b(d↵ + ↵2),

where ↵ 2 ⌦1(⌃, g) is the auxiliary gauge field.

Remark:
Z

⌃
Tr b(d↵ + ↵2) =

Z

⌃
Tr b

�
(dgg

�1 + ↵)2 � (dgg
�1)2

�
.

not equal but equivalent action

SDLDge's



Poisson �-model for a Wilson surface

View Wilson surface action as a version of the action S�O interacting
with the external gauge field A.

Poisson �-model version of the action

S�(b, A, ↵) =

Z

⌃
Tr b

�
FA + (dAgg

�1 + ↵)2 � (dAgg
�1)2

�
.

Poisson �-model as a BF theory

S�(b, A, ↵) =

Z

⌃
Tr b FA+�,

where the field b is constrained and A + ↵ is a new connection on P .

constrained
to Q

b E O cog



Recall: Canonical quantization of 2-dimensional BF

theory

Principal G -bundles over ⌃ are classified by the elements of the
fundamental group of G : ⇡1(G ) ⇠= � ⇢ Z (G̃ ).

Consider a surface with one boundary component. Gluing this
puncture to an infinitesimal disc is described by identifying U = Ci ,
where Ci 2 � is a central element of G̃ .

The formula for a closed surface:

The contribution to the partition function of each class [P] of a principal
G -bundle over the surface:

Z
⌃
BF (Ci ) =

�

R

d
1�2g
R �R(Ci ).
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Wilson surface theory

Theory on a closed surface

The formula of the Wilson surface theory for a closed surface for a class
[P] of principal bundles P ! ⌃:

Z
⌃
WS(Ci , �) =

��(Ci )

d�
. (10)

G E p

G covering group
simply connected

P C 2 G subgroup of
the center of G

T G P

C E P central elements in

L



Result 3: Topological interactions

The presence of a Wilson surface modifies the partition function of the

background theory multiplying by a phase e
i�� = ��(C�)

d�
the individual

contributions for each class of principal bundles:

Z
interact =

�

���1(G)

Z
backgr (C�) · e

i�� .



Because the world

is an odd place..

I We add odd degrees of freedom to the structure group

I We add odd degrees of freedom to the target

I We study linear super Poisson sigma model with super
coadjoint orbit as a target



Super Wilson surface action functional

S =

Z

⌃
Tr

⇣
bFA+a

⌘
.

G = G0 n ⇧g0 is a matrix Lie supergroup , g = g0 � g1.
The fields are now superfields.
The gauge potential is A = A

a⇠
i dx

i ⌦ Ta ⌦ e⇠ 2 ⌦1(P , g0 � g1).
The field b : ⌃ ! g⇤

0 � g⇤
1

b = (g , ↵)(X , �)(g , ↵)�1,
where (g , ↵) 2 G ,
(X , �) = � 2 h⇤

0 � h⇤
1 is the orbit representative with

h⇤
0 ⇢ g⇤

0 being the dual to the Cartan subalgebra of g0,
h⇤

1 = ⇧h⇤
0 being the odd extension of h⇤

0;
a 2 ⌦1

hor (P , g)G , as before, is an auxiliary field,
Tr is invariant bilinear product on the Lie superalgebra g = g0 � g1.



Example G = UOSp(1|2)

The algebra uosp(1|2): the even (bosonic) generators h, b+, b�
are those of su(2),
the odd (fermionic) generators f+, f� are the basis of the odd
subspace ⇧p0,
where p0 is the invariant compliment of the Cartan subalgebra
h0 ⇢ g0 in the Cartan decomposition g0 = h0 � p0,
h is the generator of h0.
Then uosp(1|2) = su(2) � ⇧p0.
The commutation relations read:

[h, b+] = b+, [h, b�] = �b�, [b+, b�] = 2h, [h, f+] = 1
2 f+,

[h, f�] = �1
2 f�, [b�, f+] = f�, [b+, f�] = f+, [b+, f+] = 0,

[b�, f�] = 0, [f+, f+] = 1
2b+, [f�, f�] = �1

2b�, [f+, f�] = �1
2h.

sup n 1 P



Example G = UOSp(1|2)

We use the fact that for UOSp(1|2), g ⇠= g⇤ and identify adjoint
and coadjoint orbits.

It is enough to consider the orbit representative
(X , 0) 2 h = h0 � 0 which is purely even, since Cartan subalgebra
of g0 does not have an odd counterpart.

The stabilizer of (X , 0) is purely even: H = U(1).
And the orbit is

O(X ,0) = SU(2) n ⇧p0/U(1) ⇠= S
2 ⇥ ⇧R2.



Example G = UOSp(1|2)

Then the partition function of the Wilson surface labeled by the
element (X , �) for a particular equivalence class of principal
bundles P ! ⌃, defined by � 2 ⇡1(G ) is given by:

Z (C� , (X , �)) =
�(X ,�)(C�)

sD(X ,�)
,

where �(X ,�)(C�) = sTr(C�) is a value of the character �(X ,�) on
the element C� in the representation R(X ,�), corresponding to the
orbit element (X , �), and sD(X ,�) is the “super dimension” of the
matrix R(X ,�)(C�) (i.e. number of nontrivial diagonal elements of
the even block minus the number of diagonal elements in the odd
block in its normal form).



For G = UOSp(1|2) the highest weight (X , 0) 2 h⇤ defines an
irreducible finite-dimensional representation. In this case the target
space of the theory is given by the coadjoint orbit O(X ,0) passing
through the point (X , 0) 2 g⇤.

For G = UOSp(1|2), since there exists only the trivial class of
principal G -bundles over a closed surface ⌃, the partition function
of the Wilson surface is

Z (e, (X , 0)) =
�(X ,0)(e)

sD(X ,0)
=

sTr(X ,0)(e)

sD(X ,0)
=

sD(X ,0)

sD(X ,0)
= 1,

just like in non-supersymmetric case.



Bosonization conjecture

For G = UOSp(1|2)/Z2 = SO(3) n ⇧p0 there are two classes of
principal G -bundles over a closed surface ⌃. The partition function
of the Wilson surface for the trivial class is

Ztriv = Z (e, (X , 0)) =
�(X ,0)(e)

sD(X ,0)
=

sTr(X ,0)(e)

sD(X ,0)
=

sD(X ,0)

sD(X ,0)
= 1.

The partition function of the Wilson surface for the nontrivial
class:

Znontriv = Z (�e, (X , 0)) =
�(X ,0)(�e)

sD(X ,0)
=

sTr(X ,0)(�e)

sD(X ,0)
=

�sD(X ,0)

sD(X ,0)
= �1.

This result agrees with the (non supersymmetric) case of
G = SU(2)/Z2 = SO(3) computed by A-C-M, in spite of the fact
that the orbit is supersymmetric.

V



Twisted SU(2). Odd Wilson surface
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Spin-o↵: Weird Lie Algebras

with Alexei Kotov
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Generalisations of Wilson surfaces Wilson surfaces

en 2d

Close range and distant interactions

Continuous interactions and multiverse systems
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