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Differential equations as models of physical systems

x =x(t) ... scalar quantity (state of a physical system at time t)
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Introducing noise - first attempt

x(t) ... scalar quantity (state of a physical system)
n(t)

X
n noise (random, non-systematic error)

y(t+h) —y(t) = f(y(t)h+ gy (t))n(t)h

What properties should 7 have?

i) 7(0) =0 (no error at the beginning)
(i) independence (prior error does not influence future error)
(iii) statlonarlty (probablllstlc properties do not change in time)
(iv) En(1) =0, En(1)?> =1 (non-degeneracy)

v) continuous paths

Problem: Such process does not exist!
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Introducing noise - second attempt

x = y(t) ... scalar quantity (state of a physical system)
W= W(t) .. noise (random, non-systematic error)

y(t+h) —y(t) = f(y(t)h+ gy () [W(t + h) — W(t)]
l
() = Fy (1) + gy (1)) W(t)

What properties should W have?

W(0) =

mdependence of increments

)
)
) statlonarlty of mcrements
) E
)

(i
i
(iv

\Y

W(1) =0, EW(1)* =
continuous paths

The process W does exists. Let's call it the Brownian motion.
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Differential equations with noise

y(8) = f(y(1) + g (v () W(e)

Typical Brownian paths:

gy

Problem: Brownian paths are nowhere differentiable.
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Recall

y(t+h) —y(t) = f(y(t)h+ gly(£)[W(t + h) — W(1)]

and consider equidistant partition of [0, T] with mesh smaller than h:

I ] ]
I T T

]
1
0=t t - th=T

We then have

n—1 n—1
Y(T)=y(0) = D fly(t)Ati +) gly(t)AW,,
i=0 =0
{ {
Jo fy(s))ds Iy g(v(s)) AW,

Question: Can the ODE be given meaning in the integral form?
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What can we learn from the exponential?

Let us see what the bare minimum that we need is. Consider

y(t) = y(t), y(0) = yo.
With w(s) := s, we can equivalently write
t
A6 =0+ [y duts).
Solution is found as the limit of Picard’s iterations:

¥o(t) = wo,
t

y"(t) = yo +/ y"Y(s)dw(s), neN.

0
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The first few:
yo(t) = yo,
t
yit) =y [1 —|—/ ldw(r)} ,
0
t t
v3(t) = v [1 —|—/ 1dw(r) —|—/ w(r) dW(r)} .
0 )
We see that we get Taylor's expansion of the exponential:

¥o(t) = yo,
yit) =y (l+t),

2 t?
y(t) =y 1—|—t—|—5 .

7/24



Continuity of the solution map

Observation: We need at least iterated integrals fot W(r)dW(r).

Problem: There is no continuous extension of the Stieltjes integral that
could be used to define the iterated integral for a Wiener path.

This means that while for the discrete equation

YD)~ y(0) = 3 FAEN AL + 3 80/(E)AW,,.

the solution map
S (AW, ... AW, x(0)) = (y(t1), -, ¥(tn))

is continuous, continuity is in general lost in the limit as |[At| — 0.
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[to vs. Stratonovi¢ SDEs

Idea: Approximation by Riemann-type sums

n—1
/W(t*) = Z W(ti*)AWtHN t; € [tl'a ti+1]
1=

is still desirable so change the mode of convergence - instead of almost
sure convergence, consider convergence in probability.

But:
e By choosing different t*, we obtain different objects:
= (It8) .. Elw(t*)=0
tr =ttt (Strat) .. Elw(t*) =3
t,-* = tip1 Elw(t*) E

e We cannot hope to solve equations pathwise:

y(t) = y(0) = /0 £(s, y(s)) ds + It6/Strat /O g(s, y(s))dW,
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A key observation

Well-posedness of the problem is restored if one has not only the sample
path W but also its iterated integral [ W dW as input.
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The Ito-Lyons solution map

The [t6 solution map can be factorized as

Ww) % (WW)(w) = yw)

where

e WV is a measurable map that does not depend on y(0), f, or g but
only consists of enhancing the Wiener path with iterated integrals

W ¢ :/ (W(r) — W(s))dW(r)

e Sis a (continuous!) map that takes enhanced path (X,X) defined
via certain algebraic properties and analytical conditions as input
and spits out a solution of the (rough) differential equation

ym:mm+4aﬂm¢+égu@wwxp
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Construction of S

Recall that we need to give meaning to the integral

/ "g(y(s))aw,

where y is the (so far unknown) solution to the differential equation.
But here, x is not arbitrary! Solution to a differential equation should
behave, at least locally, as the driver W, i.e.

y(t) — y(s) = g(y(s))[W(t) — W(s)] + Rs.:
where R is some remainder that is “smoother” than W.

But that means that we need to be able to define integrals of W against
W itself and that is precisely what W encodes.
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Rough path - Chen'’s relation

We wish to think of X, ; as the iterated integral fst(X, — X5)dX..

If we have a form of integration such that

o f— [fdX is linear,

o [FdX, =X — X,

o [[fdX = [fdX+ [, fdX (s<u<t),
then

/st(X,—Xs)er_ /SU(X,—Xs)er_ / (X X)X, = (Xe=X) (X=X,

or, in other words, X should satisfy

Xs,t = Xs,u = Xu,t — (Xt — Xu)(Xu = Xs)
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Rough path - regularity

If X € C%, then (formally!),

t t t
/(Xr—xs)dxr s/ |r—s|a|dxr|5|r—s|a/ x| < [t — s
S S S

so that one would expect that X € C?*.
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Rough path - definition

Definition. For o € (1/3,1/2], an a-Hélder rough path X = (X,X) is a
pair of functions X : [0, T] — R and X : [0, T]?> — R such that

Xs,t - Xs,u = Xu,t — ()<t - )Kll)()(ﬁ - /x(s)
holds for every s < u < t and such that

X
<oo and |[X|2a = supi < 0.
s#t

. |)<t — )<§|
[ X[l := sup ———— st |t — s[2®

s#t t— 5|(y
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Rough paths for the Wiener process

Let W be the Wiener process. We set
t
W, = (It5) / (W, — W,)dW,
t
We'p = (Strat) / (W, — Ws)dW,.
S
Then for any a € (1/3,1/2), both

(W, Wg:) and (W, W)

are, almost surely, a-Holder rough paths.
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Rough integral - idea

Recall that we need to define

/ Y. dX,
0

for Y that “looks like X on very small scales”.

If X is nice enough (i.e. if & > 1/2), we have that

1
Y,~ Y, -1 then /Y,dX,z > Ye(Xe - Xo).
¢ [s,tleP

For rougher X (i.e. if 1/3 < @ < 1/2), we should have

1
Y, ~ Y51+ Y. (X, —X5) then / Y, dX, = Z Ys(Xe—Xs)+ YIXs ¢
0
[s,t]leP
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Rough integral - controlled paths

Definition. Given X € C%, we say that Y € C% is controlled by X if
there exists Y’ € C® such that the remainder RY defined by

Ye— Ye = Y/(Xe — X) + R),

satisfies ||RY ||2o < 0.
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Rough integral

Theorem. Let o € (1/3,1/2] and let X = (X, X) be an a-Hdlder rough
path. Let Y be a path controlled by X. Then the integral

YodX; = I|m )+ YIX )
/0 : S (v »

[s tleP

exists and for every pair s < t, we have

t
/ YedXs — Yo(Xe — Xs) — YiXes
s

Sa (IXNallRY llza + 1Xll2all Y'lla) [ = s
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Rough integrals for the Wiener process
Recall that, for almost every w, both
W' = (W(w), W (w)) and W™ = (W(w), Wi (w))
are a-Holder rough paths for any o € (1/3,1/2).

Theorem. Assume that Y(w) is a path controlled by W/(w). Then both
rough integrals

/ V()dWE(w) and / BB ®

exist. If, moreover, Y is adapted, then, almost surely, these integrals
coincide with

1 1
(1t3) / Y,dW, and (Strat) / Y,dW,,
0 0

respectively.
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Rough differential equations

Problem: For given g, yo, and a rough path X = (X, X), find y such that
t
1O =)+ [ gly(s)ax.

Theorem. Let a € (1/3,1/2). Given y(0) € R, g € C3, and an
a-Hédlder rough path X = (X, X), there exists Tp € (0, 1] and a unique
path Y that is controlled by X with Y’ = g(Ys), such that

t
Ye = yo / g(Y.)dX,, te [0, Tol.
0

(Proof idea: Banach fixed point in the space of controlled paths.)
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Rough differential equations for the Wiener process

Recall that, for almost every w, both
W™ = (W(w), W) and W™ = (W(w), W (w))
are a-Hdlder rough paths for any o € (1/3,1/2).
Theorem. Let o € (1/3,1/2). Given y(0) € R and g € C? for almost

every w, there is a unique solution (i.e. a path Y(w) controlled by W (w))
to the RDE

Ye(w) = y(0) + /0 g (Ya(w))dW™s ()

that, almost surely, coincides with the solution to the SDE

Y: = y(0) + (lt6/Strat) /tg(Ys)dWs.
(0]
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Wrap-up

o Let a € (1/3,1/2] and g € C3. Let X be an a-Holder trajectory of
a stochastic process. To solve

dY: = g(yt)dXta Yo = yo,

we proceed in two steps:
(1) Probabilistic step: Lift X to (X, X).
(2) Analytical: Solve the (R)DE pathwise.

e Key observation: Adding iterated integrals as input restores
well-posedness of the problem. The solution map is continuous as a
function of the (rough) path and the initial condition.

e Possible extensions for & < 1/3 - add higher order terms that play
the role of higher-order iterated integrals.

e For the rough path theory and for stochastic analysis, it is crucial to
understand the analytical and algebraic properties of iterated
integrals.
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Thank you for your attention!

Some references:

(1) Friz, P.K., Hairer, M., A Course on Rough Paths: With an
Introduction to Regularity Structures, Springer, 2014.

(2) Friz, P.K., Victoir, N.B., Multidimensional Stochastic Processes as
Rough Paths: Theory and Applications, Cambridge University Press,
2010.
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