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Q-manifolds

Definition (Q-manifold)

A Q-manifold is a graded manifold M together with a vector field
Q of degree one such that Q2 = 0.

Examples

Let M be a smooth manifold. The shifted tangent bundle
T [1]M is a Q-manifold with the homological vector field given
by the de Rham differential.

Let g be a Lie algebra. The shifted vector space g[1] is a
Q-manifold endowed with the Chevalley-Eilenberg differential.
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L∞-algebras

Definition (L∞-algebra)

Let L be a graded vector space. We say that L is an l∞-algebra if
it is endowed with graded symmetric brackets
lk : L× · · · × L −→ L of degree one satisfying:∑

i+j=n+1

∑
σ∈Gi,n−i

ε(σ)lj(li (xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0

where σ denotes a permutation such that σ(1) < · · · < σ(i) and
σ(i + 1) < · · · < σ(n).
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It follows that:

1) l21 = 0 gives us a cochain complex.

2) l1(l2(v1, v2)) = l2(l1(v1), v2) + (−1)|v1|l2(v1, l1(v2)), for all
homogeneous v1, v2 ∈ L. This means that l1 is a derivation of
l2.

3) For homogeneous v1, v2, v3 ∈ L:

l2(l2(v1, v2), v3)± l2(l2(v1, v3), v2)± l2(l2(v2, v3), v1)

+ l1(l3(v1, v2, v3)) + l3(l1(v1), v2, v3)

± l3(v1, l1(v2), v3)± l3(v1, v2, l1(v3)) = 0,

which means that the Jacobi identity holds in the cohomology
of L.
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L∞-algebras as formal pointed Q-manifolds

A vector space endowed with an L∞- structure can be seen as a
pointed Q-manifold by defining the formal homological vector field
Q as:

Q(v) =
∑
i≥1

1

i !
li (v , . . . , v).

for v ∈ L. It can be seen that Q is homological if and only if the
brackets {li}i≥1 define an L∞-algebra.
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Now, consider a general Q-manifold M and let p ∈ M. The
homological vector field has a Taylor expansion:

Qk(x) = Qk(p) + Qk
i (p)x

i +
1

2
Qk

ij (p)x
ix j + . . .

where (xa) are coordinates around p.

If Qk(p) = 0, then the Taylor coefficients produce an
L∞-algebra on the tangent space TpM with basis
{e1, . . . , en} by setting:

li : TpM⊗i −→ TpM, li (eb1 , . . . , ebi ) := Qk
b1...bi

ek

In general, if Qk(p) ̸= 0, such term is known as the curvature
and the corresponding structure is called “curved” l∞-algebra.
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The previous construction defines an l∞-algebra on the tangent
space at a fixed point p in the zero locus of Q.

Problem Different local coordinates induce different l∞-algebras
on the tangent spaces. We also may obtain curved l∞-algebras in
general.
What do we wish? We would like to introduce a construction
that is independent of local coordinates.
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Fedosov-like construction for graded manifolds

Consider the bundle whose fiber at a point x ∈ M is
Ŝ(T ∗

xM)⊗ TxM.
If {y i}ni=1 and {pj}nj=1 denote coordinates on TxM and T ∗

xM
respectively, then we can write an element in the fiber
ax ∈ Ŝ(T ∗

xM)⊗ TxM as follows:

ax =
n∑

i=1

ai (y)pi

where ai (y) is a formal power series on y i ’s variables.
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Lie bracket

Each fiber is a Lie superalgebra endowed with the following bracket:

Definition

Let {y i} and {pj} be coordinates in TxM and T ∗
xM respectively,

then we can express the (fiberwise) Lie bracket between formal
vector fields as:

[ax , bx ] =
n∑

i=1

(
ai

∂

∂y i
bj − (−1)|a||b|bi

∂

∂y i
aj
)
pj

for ax =
∑n

i=1 a
i (y)pi , bx =

∑n
i=1 b

i (y)pi ∈ Ŝ(T ∗
xM)⊗ TxM.
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Derived brackets

Proposition

Let L be a Lie superalgebra and ∆ ∈ L a nilpotent odd element. If
there exists a projector P from L onto an abelian subalgebra A
satisfying the distributivity condition

P[a, b] = P[Pa, b] + P[a,Pb], ∀a, b ∈ L

then there exists an l∞−algebra on A with the n-ary bracket given
by:

λn(a1, . . . , an) = P[. . . [[∆, a1], a2], . . . ], ∀a1, . . . , an ∈ A.
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It turns out that:

the space of sections Γ(Ŝ(T ∗M)⊗ TM) is a Lie
superalgebra.

The abelian subalgebra corresponds to the space of sections
Γ(TM).

So, in order to define an l∞− algebra on the space of vector fields
Γ(TM), we need to construct a nilpotent operator
∆ ∈ Γ(Ŝ(T ∗M)⊗ TM) and a projector P from
Γ(Ŝ(T ∗M)⊗ TM) to the space of vector fields Γ(TM).
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The key results

Theorem

Let ∇ be a torsion-free connection on TM. Then there exists a
one-form r with values in Ŝ(T ∗M)⊗ TM such that the operator
D := ∇+ [r, ·] is nilpotent.

Theorem

The operator D allows us to construct a bijection between Γ(TM)

and covariantly constant sections in Γ(Ŝ(T ∗M)⊗ TM).

Notation. Given a vector field X ∈ Γ(TM), we will denote the

corresponding covariantly constant element in Γ(Ŝ(T ∗M)⊗ TM)
by X̂ .
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by X̂ .



Q-manifolds l∞− algebra on vector fields Further ideas

By applying the previous lemmas to the homological vector field Q,
we obtain a nilpotent and covariantly constant element
Q̂ ∈ Γ(Ŝ(TM)⊗ TM) such that Q̂

∣∣
y=0

= Q. Then, by the
previous proposition we obtain the following brackets:

λ0 corresponds to Q.

The unary map λ1 : Γ(TM) −→ Γ(TM) is defined by:
λ1(X ) = [Q̂,X ]

∣∣
y=0

, for X ∈ Γ(TM). This will correspond to

−(−1)|X |∇XQ.

The binary map λ2 : Γ(TM)⊗ Γ(TM) −→ Γ(TM) is given
by λ2(X ,Y ) = [[Q̂,X ],Y ]

∣∣
y=0

.

In general, for the n-ary bracket:

λn(X1, . . . ,Xn) = [. . . [[Q̂,X1],X2], . . .Xn]
∣∣
y=0

,

where X1, . . . ,Xn ∈ Γ(TM).
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Q̂ ∈ Γ(Ŝ(TM)⊗ TM) such that Q̂

∣∣
y=0

= Q. Then, by the
previous proposition we obtain the following brackets:

λ0 corresponds to Q.

The unary map λ1 : Γ(TM) −→ Γ(TM) is defined by:
λ1(X ) = [Q̂,X ]

∣∣
y=0

, for X ∈ Γ(TM). This will correspond to

−(−1)|X |∇XQ.

The binary map λ2 : Γ(TM)⊗ Γ(TM) −→ Γ(TM) is given
by λ2(X ,Y ) = [[Q̂,X ],Y ]

∣∣
y=0

.

In general, for the n-ary bracket:

λn(X1, . . . ,Xn) = [. . . [[Q̂,X1],X2], . . .Xn]
∣∣
y=0

,

where X1, . . . ,Xn ∈ Γ(TM).



Q-manifolds l∞− algebra on vector fields Further ideas

By applying the previous lemmas to the homological vector field Q,
we obtain a nilpotent and covariantly constant element
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Q̂ ∈ Γ(Ŝ(TM)⊗ TM) such that Q̂

∣∣
y=0

= Q. Then, by the
previous proposition we obtain the following brackets:

λ0 corresponds to Q.

The unary map λ1 : Γ(TM) −→ Γ(TM) is defined by:
λ1(X ) = [Q̂,X ]

∣∣
y=0

, for X ∈ Γ(TM). This will correspond to

−(−1)|X |∇XQ.

The binary map λ2 : Γ(TM)⊗ Γ(TM) −→ Γ(TM) is given
by λ2(X ,Y ) = [[Q̂,X ],Y ]

∣∣
y=0

.

In general, for the n-ary bracket:

λn(X1, . . . ,Xn) = [. . . [[Q̂,X1],X2], . . .Xn]
∣∣
y=0

,

where X1, . . . ,Xn ∈ Γ(TM).



Q-manifolds l∞− algebra on vector fields Further ideas

Kapranov-type l∞- algebras

Mehta, Stiénon and Xu [18] proved that the space of vector fields
on a graded manifold M admits an l∞- algebra.

The unary bracket is the Lie bracket with the odd vector field
Q,

λ1 :Γ(TM) −→ Γ(TM)

X −→ [Q,X ]

The binary bracket λ2 : Γ(TM)× Γ(TM) −→ Γ(TM)
coincides with the so-called Atiyah cocycle:

λ2(X ,Y ) = [Q,∇XY ]−∇[Q,X ]Y − (−1)|X |∇X [Q,Y ]

In general, they showed that λn, for n ≥ 2 is recursively
determined by the Atiyah cocycle and the curvature of the
connection.
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A small remark

We have two different structures defined on the space of vector
fields on a Q-manifold M.

We have a curved l∞- algebra for the Fedosov procedure.

For a torsion-free connection, we obtain:

λ1(X ) = [Q,X ] = ∇QX − (−1)|X |∇XQ, ∀X ∈ Γ(TM)

for the Kapranov l∞-algebra, while

λ1(X ) = −(−1)|X |∇XQ

for the Fedosov procedure.
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We wish to have a general understanding on how to obtain both
structures from a more general and unifying approach.
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Geodesic exponential map

Let p1, p2 : M ×M −→ M be the two projections onto M. By
considering the geodesic exponential map

exp : TM −→ M ×M

we identify the formal neighborhood of the diagonal M(∞) with the
formal neighborhood of the zero section of TM, denoted by ∆∞

0 .
We can reproduce the two previous l∞- algebras by considering two
different liftings of the homological vector field Q.

We can lift Q by the condition dpi (Q̂) = Q for i = 1, 2, or

We can consider dp1(Q̂) = 0 and dp2(Q̂) = Q.



Q-manifolds l∞− algebra on vector fields Further ideas

Flat coordinates

If (x1, . . . , xn, η1, . . . ηn) denotes coordinates on TM, the geodesic
coordinates on M×M take the form (x1, . . . , xn, y1, . . . , yn),
where y i = x i + ηi .

First lifting We consider the lifting of Q given by:
Q̂(x , y) = Q i (x) ∂

∂x i
+ Q j(y) ∂

∂y j .

We express Q̂ in coordinates (x , η) and expand around η = 0.
By applying the construction of derived brackets (Voronov
[27]), we obtain an l∞- algebra in the space of vector fields of
the form X = X i (x) ∂

∂ηi
whose brackets coincide (up to some

factors) with the Kapranov l∞- algebra.
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Flat case

Second lifting On the other hand, if we consider the lifting
given by Q̂(x , y) = Q i (y) ∂

∂y i and proceed as in the previous
way, the construction of derived brackets produces an
l∞-algebra that coincides with the one obtained in the
Fedosov-like procedure.
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Non-zero curvature

In general, we also expect to reproduce the two l ∞-algebras in the
case where we have general geodesic coordinates.

The next steps

We write the geodesic coordinates (x , y) in terms of
coordinates (x , η) on TM by a formal power series in η.

Next, we reconstruct the Fedosov operator D. This will
coincide with the one mentioned previously.

We proceed to construct the lifting of the homological vector
field Q, written in geodesic coordinates, and compute the
corresponding l∞-algebra. We plan to prove that this
coincides with the Fedosov l∞-algebra.
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Děkuju!

¡Gracias!

Thank you!

Danke!

Grazie!

Merci!

Dziȩkujȩ!

Hvala ti!

Paschi



Q-manifolds l∞− algebra on vector fields Further ideas

M. Alexandrov, A. Schwarz, O. Zaboronsky, and
M. Kontsevich.
The geometry of the master equation and topological quantum
field theory.
International Journal of Modern Physics A, 12(07):1405–1429,
March 1997.

G. Barnich, R. Fulp, T. Lada, and J. Stasheff.
The sh lie structure of poisson brackets in field theory.
Communications in Mathematical Physics, 191(3):585–601,
February 1998.

Klaus Bering.
Three natural generalizations of fedosov quantization.
Symmetry, Integrability and Geometry: Methods and
Applications, March 2009.

Riccardo D’Auria and Pietro Fré.
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Dg manifolds, formal exponential maps and homotopy lie
algebras.
Communications in Mathematical Physics, 391(1):33–76,
February 2022.

Jim Stasheff.
Deformation theory and the batalin-vilkovisky master equation,
1997.

Jim Stasheff.
l∞ and a∞ structures: then and now, 2018.



Q-manifolds l∞− algebra on vector fields Further ideas

A Vaintrob.
Normal forms of homological vector fields.
Journal of Mathematical Sciences, 82(6):3865–3868, 1996.

Arkady Vaintrob.
Darboux theorem and equivariant morse lemma.
Journal of Geometry and Physics, 18(1):59–75, 1996.

Theodore Voronov.
Higher derived brackets and homotopy algebras.
Journal of Pure and Applied Algebra, 202(1–3):133–153,
November 2005.

Theodore Th. Voronov.
Graded geometry, q-manifolds, and microformal geometry:
Lms/epsrc durham symposium on higher structures in
m-theory.
Fortschritte der Physik, 67(8–9), May 2019.

Barton Zwiebach.



Q-manifolds l∞− algebra on vector fields Further ideas

Closed string field theory: Quantum action and the
batalin-vilkovisky master equation.
Nuclear Physics B, 390(1):33–152, January 1993.


	Q-manifolds
	l- algebra on vector fields
	Kapranov-type l- algebras

	Further ideas

