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Background

• Batalin-Vilkovisky (BV) formalism.

• Alexandrov, Kontsevich, Schwartz, Zaboronsky (AKSZ) construction
of BV for Lagrangian topological models. Further develop-
ments Cattaneo, Felder, Roytenberg, Reshetikhin, Mnev, Ikeda, . . .

• BV on jet-bundles, local BRST cohomology Henneaux,

Barnich, Brandt, . . .

• Unfolded approach in higher spin gauge theories M.Vasiliev

• Geometric approach to PDEs Vinogradov, Tulczyjew, . . .

• FDA approach to SUGRA d’Auria, Fre, Castellani, Grassi . . .

• BRST first-quantized (cf. L1) approach to SFT and gauge
fields Zwiebach; Thorn, Bochicchio, Henneaux, Teitelboim, . . . . . .

• Fedosov quantization and its variations



AKSZ construction

(M, q,!) - QP-manifold (target space) equipped with:
- Z-degree (ghost number) gh()
- homological v.f. q, q

2 = 0, gh(q) = 1
- (odd)symplectic structure !, gh(!) = n� 1 such that

q
2 = 0 , Lq! = 0

It follows: iqiq! = 0 and (locally) 9L such that iq!+ dL = 0

(X ,dX, ⇢) (source space)
equipped with Z-degree (ghost number) gh()
homological v.f. dX and compatible measure ⇢
Typically, X = T [1]X, dimX = n, coordinates x

µ
, ✓

µ ⌘ dx
µ,

dX = ✓
µ @

@xµ
, µ = 0, . . . n� 1, and ⇢ = 1



Supermanifold of supermaps: b� : T [1]X ! M.  
A coordinates

on M. Fields:  A(x, ✓) := b�⇤( A), b� : T [1]X ! M. BV action

SBV [b�] =
Z

T [1]X
(b�⇤(�)(dX) + b�⇤(L)) , gh(SBV ) = 0

� is the potential: ! = d�. In components:

SBV =
Z

d
n
xd

n
✓

h
dX 

A(x, ✓)�A( (x, ✓)) + L( (x, ✓))
i

BV symplectic structure:

!̄ =
Z

T [1]X
b�⇤(!AB)� A(x, ✓) ^ � B(x, ✓) , gh(!̄) = �1

BV antibracket:
⇣
F,G

⌘
=
Z

T [1]X

�
R
F

� A(x, ✓)
!
AB( (x, ✓))

�G

� B(x, ✓)
, gh

⇣
,

⌘
= 1

Master equation:
⇣
SBV , SBV

⌘
= 0 modulo boundary terms



Physical fields: those of vanishing ghost degree

 
A(x, ✓) =

0
 
A(x) +

1
 
A
µ (x)✓

µ + . . . gh(
k

 
A
µ1...µk

) = gh( A)� k

If gh( A) = k with k>0 then
k

 
A
µ1...µk

(x) is physical. Setting to
zero fields of nonzero degree (i.e. restricting to maps) gives the
classical action:

S[�] =
Z

T [1]X
(�⇤(�)(dX) + �

⇤(L))



EL equations of motion:

!AB( (x, ✓))(dX 
A � q

A) = 0 , ) (dX 
A(x, ✓)� q

A( (x, ✓))) = 0

provided !AB is invertible.

More invariantly, if  A(x, ✓) = �
⇤( A) the equations of motion

read as:

dX�
⇤( A) = �

⇤(q A) , dX � �⇤ = �
⇤ � q

so that �⇤ is a morphism of respective complexes. Gauge trans-
formations correspond to trivial morphisms:

�✏�
⇤ = dX � ✏⇤� + ✏

⇤
� � q

✏� - gauge parameter. ✏
⇤
�(fg) = (✏⇤�f)�

⇤(g) + (�1)|f |�⇤(f)✏⇤�(g),
i.e. is a vector field along �.



Example: CS theory, AKSZ, 1995

Target: M = g[1], q-CE di↵erential, ! – invariant form on g
(degree 2 symplectic structure on g[1])
Source: X = T [1]X, dimX = 3, gh() – form degree, dX

SBV =
Z

X

Tr(A ^ dA+
2

3
A ^A ^A) + BV completion

Ghosts and antifields arise as nonzero degree components of a
supermap:

b�⇤(C) =
0
C(x) +Aµ(x)✓µ +

1

2

2
Cµ⌫(x)✓µ✓⌫ +

1

6

3
Cµ⌫⇢(x)✓µ✓⌫✓⇢

Introducing C
⇤
, A

⇤µ via
3
Cµ⌫⇢(x) = ✏µ⌫⇢C

⇤ and
2
Cµ⌫(x) = ✏µ⌫⇢A

⇤⇢

the BV symplectic structure

!BV =
Z

X

Tr(�Aµ ^ �A⇤µ + �C ^ �C⇤)



Example: 1d AKSZ sigma model

Target: BFV phase space M equipped with symplectic form
! and BFV-BRST charge ⌦ = c

↵
T↵ + . . . such that {⌦,⌦} =

0 and the Hamiltonian H = H0 + . . . satisfying {H,⌦} = 0.
(Generalized) AKSZ action M.G., Damgaard 2000

SBV =
Z

dtd✓(�AdX 
A �⌦( (t, ✓))� ✓H( (x, ✓)))

is a BV extension (Fisch, Henneaux) of the Hamiltonian action:

S0 =
Z

dt(pq̇ �H0 � �
↵
T↵)

Lagrange multipliers �↵ arise as 1-forms associated to BFV ghost
variables: �⇤(c↵) = �

↵(t)✓.



The relation between the BV antibracket and BFV Poisson bracket
⇣
·, ·
⌘

BV
=
Z

dtd✓ { · , · }

Explicit realization of the isomorphism of Barnich, Henneaux 1996



What we’ve learned:

– non-di↵eo-invariant theories correspond to x
a
, ✓

a-dependent
structures. Suitable language is that of fiber bundles.

– AKSZ unifies BV and BFV. For X = ⌃ ⇥ R1 taking T [1]⌃
as a source gives BFV-AKSZ sigma model. M.G. Barnich 2003;

M.G. 2010. Further developments: Cattaneo, Mnev, Reshetikhin 2012;

Bonechi, Zabzine 2012; . . . .

– More generally, induces (shifted) BV (BFV) on any source
manifold. Gives a natural framework to study gauge theories with
(asymptotic) boundaries M.G, Bekaert 2012; Mnev, Schiavina 2019, MG

Markov 2023, . . .



Towards generalized AKSZ

In general, AKSZ equations of motion

!AB( (x, ✓))(dX 
A(x, ✓)� q

A( (x, ✓))) , q
A = q 

A
.

For !AB invertible, these imply (generalized) zero-curvature and
hence the system is topological provided M is finite-dimensional.

What about general local gauge theories? Possible way out is
infinite-dimensional M involving all the curvatures. The idea
goes back to unfolded approach of M.Vasiliev . General formalism
and existense: Barnich, MG, 2010

An alternative (with M finite-dim.): take ! degenerate so that
AKSZ equations of motion kill only part of the curvature. The
first characteristic example is Cartan-Weyl form of Einstein grav-
ity:



Presymplectic AKSZ form of gravity

Target (g[1], q,!), with g Poincare algebra and q its CE di↵eren-
tial. Coordinates on g[1] in the standard basis ⇠a, ⇢ab

q⇠
a = ⇢

a
c ⇠

c
, q⇢

ab = ⇢
a
c ⇢

cb

Presymplectic structure: Alkalaev, M.G. 2013; MG 2016

! = ✏abcd⇠
a
d⇠

b
d⇢

cd
, ! = d�

Lq! = 0 , d! = 0 ) iq!+ dL =

AKSZ-like action:

S[�] =
Z

T [1]X
�
⇤(�)(dX) + �

⇤(L) =
Z

T [1]X
(dX�

ab + �
a
c�

cb)✏abcde
c
e
d

where e
a = �

⇤(⇠a) and �
ab = �

⇤(⇢ab). Familiar Cartan-Weyl
action for GR. Generalization for n > 4 and ⇤ 6= 0 is obvious.
What about the remaining components of supermaps? Full-scale
BV formulation?



General axioms:

Def Pre Q-bundle ⇡ : (E,Q) ! (X , q) Z-graded manifolds equipped
with degree 1 vector fields such that Q � ⇡⇤ = ⇡

⇤ � q,
If Q

2 = 0 and q
2 = 0 one gets Z-graded version of Q-bundle

Kotov, Strobl 2007.

Def [MG 22, Dneprov, Gritzaenko, MG 24] Weak presymplectic gauge
PDE is a pre Q-bundle ⇡ : (E,Q) ! (T [1]X,dX) equipped with
presymplectic structure !, gh(!) = dimX � 1 d! = 0, and a
function L, gh(L) = dimX:

d! = 0 ,
1

2
iQiQ!+QL = 0 , iQ!+ dL 2 I

where I is the ideal in
V•(E) generated by ⇡

⇤(↵) with ↵ 2
V
>0(T [1]X).

In coordinates, I is generated by dx, d✓.



Example: weak presymplectic scalar field

E = T [1]X ⇥ F , fiber coordinates:

�,�
a
, gh(�) = gh(�a) = 0

Qx
a = ✓

a
, Q✓

a = 0, Q� = ✓
a
⌘ab�

b
, Q�

a = ✓
a
V

0(�)

Presymplectic form (cf. Kijowski, Tulczyjew 1979, Crnkovic, Witten,

1987,. . . presymplectic current):

! = d� , � = (✓a)n�1
a �

a
d� , (✓)(n�1)

a = (⇤✓)a
Note: in general LQ! 6= 0 and Q

2 6= 0 but the axioms hold!

iQ!+ dL 2 I =) L = �(✓)n(
1

2
�a�

a + V (�))

AKSZ-like (aka intrinsic) action: Schwinger, De Donder-Weyl

S[�,�a] =
Z

X

(dx)n
✓
�
a(@a�� 1

2
�a)� V (�)

◆



Presymplectic AKSZ form of YM:

E = T [1]X ⇥ F , fiber coordinates (g-valued):

C, gh(C) = 1 , F
a|b

, gh(Fa|b) = 0

Qx
a = ✓

a
, Q✓

a = 0, QC = �1

2
[C,C] +

1

2
F
a|b
✓a✓b, QF

a|b = [Fa|b
, C]

Note Q
2 6= 0, in general. Presymplectic structure satisfying

LQ! 2 I: Alkalaev, M.G. 2013

! = d� , � = (✓)(n�2)
ab

Tr

⇣
F
a|b

dC

⌘

AKSZ-like action (�⇤(C) = Aa(x)✓a,�⇤(Fa|b) = F
a|b(x)):

S[�] =
Z

d
n
xTr

✓
(@aAb � @bAa + [Aa,Ab])F

a|b �
1

2
(Fa|b)2

◆



Features of weak presymplectic gPDEs:

- Almost as good as AKSZ but applies to general local gauge
theories

- Encodes a local gauge theory in terms of a finite-dim pre-Q
presymplectic manifold that can be regarded as a minimal model
of the theory (as we are going to see it arises as a minimal
mode of the L1 algebra determined by the jet-space BV-BRST
di↵erential + descent of the BV symplectic structure)

- Together with minimality condition seems to be an invariant
geometrical object underlying local gauge systems. Should be
unique modulo suitable equivalence.

- What about full-scale BV? Where does it come from? Exis-
tence?



Quasi-regularity

Given a fiber bundle E ! T [1]X one can construct a new bundle
Ē ! X whose fiber at x 2 X ⇢ T [1]X is a space of super-maps
from Tx[1]X to the fiber over x. Supersections of Ē over X are
1 : 1 with supersections of E over T [1]X.
Locally:

Smaps(T [1]X,F ) ⇠= Smaps(X, F̄ ) , F̄ = Smaps(Tx[1]X,F ))

Presymplectic structure ! determines a presymplectic structure
!̄x on Ēx via integration over Tx[1]X. We say that ! is quasi-
regular if !̄ is regular. More systematic treatment uses vertical
jets.



Thm. [MG22, Dneprov, MG, Gritzaenko 24] Let (E,Q, T [1]X,!) be
a weak presymplectic gauge PDE. Assume that presymplectic
structure ! is quasi-regular. Then, locally,

SBV (b�) =
Z

T [1]X
(b�⇤(�)(dX) + b�⇤(L)) , ! = d�

defines a local BV system on the symplectic quotient of Ē.
Idea of the proof: Prolongation of Q defines a BV system on the
symplectic quotient. Particular case in Kotov, MG 20.

Physical explanation: Shifts along ker !̄ are algebraic gauge transf.
for SBV . Gauge-fixing them gives BV action satisfying BV master-
equation modulo boundary terms. In particular, SBV can be used
in the path integral Z

eL
exp

i

~
SBV

where eL also takes into account ker !̄. No need to take the
symplectic quotient explicitly



Example: scalar

Recall: fiber coordinates �,�a. Coordinates on �S(E):

b�⇤(�) =
0
�(x) +

1
�a(x)✓

a + . . .

b�⇤(�a) =
0
�
a(x) +

1
�
a

b
(x)✓b + . . .

Presymplectic structure ! = (✓a)n�1
a d�

a
d� induced on supermaps:

!̄ =
Z

X

d
n
x

 

�

0
� ^ �

1
�
a
a + �

0
�
a ^ �

1
�a

!

All the fields are in the kernel except for:

' =
0
�, '

⇤ =
1
�
a
a, '

a =
0
�
a
, '

⇤
a =

1
�a

Correct set of fields and antifields for the 1st order form of
scalar! BV symplectic structure emerged from the presymplectic
current!



Example: YM

Recall: fiber coordinates C,F
a|b. Coordinates on �S(E):

b�⇤(C) =
0
C(x) +Aa(x)✓a +

1

2

2
Cab(x)✓

a
✓
b
. . .

b�⇤(Fa|b) =
0
F
a|b(x) +

1
F
a|b
c (x)✓c +

1

2

2
F
a|b
cd

(x)✓c✓d + . . .

Presymplectic structure ! = ✓
(2)
ab

dF
ab
dC induces on supermaps:

!̄ =
Z

X

Tr

 

�

0
C ^ �

2
F
a|b
ab

+ �Aa ^ �
1
F
a|b
b

+ �

2
Cab ^ �

0
F
a|b
!

All the fields are in the kernel except for:

C =
0
C, C

⇤ =
2
F
a|b
ab

, Aa, A
a
⇤ =

1
F
a|b
b

, F
a|b

, F
⇤
ab

=
2
Cab

SBV coincides with the standard BV action for YM in the first-
order formalism.



Example: Gravity

Fiber coordinates ⇠a, ⇢ab. Coordinates on the supermaps:

b�⇤(⇠a) =
0
⇠
a(x) + e

a
µ(x)✓

µ +
2
⇠
a
µ⌫(x)✓

µ
✓
⌫ + . . . ,

b�⇤(⇢ab) =
0
⇢
ab(x) + �

ab
µ (x)✓µ +

2
⇢
ab
µ⌫(x)✓

µ
✓
⌫ + . . . .

Prop.[Kotov, MG 2020] !̄ determined by ! = ✏abcd⇠
a
d⇠

b
d⇢

cd is regular
provided e

a
µ is invertible.

In particular,

S[b�] =
Z
b�⇤(�)(dX)� b�⇤(L)

induces a proper BV action on the symplectic quotient.
In contrast to the YM and scalar field examples the symplectic
structure is not in Darboux form.



Weak gauge PDEs

MG, Rudinsky 2024

Whats is the analog at the level of equations of motion?
Idea: keep the kernel distribution and forget about the presym-
plectic structure.
Def. Weak gPDE is a pre-Q-bundle (E,Q) ! (T [1]X,dX) equipped
with a Q-invariant vertical distribution K such that Q

2 2 K.
gPDE corresponds to K = 0

Thm. Let (E,Q, T [1]X,K) be a weak gPDE. Assume that pro-
longation K̄ of K is regular. Then, at least locally, J

1
S

(E)/K̄ is
a local BV system.
The proof is based on the observation: Q̄

2 2 K̄ ) Q̄
2
f = 0 for

any function f such that K̄f = 0.

Any weak presympectic gPDE gives weak gPDE by taking
K =

n
V 2 Vectv(E) : iV ! 2 I

o
and forgetting !.



Example: self-dual YM

X = R4 with Eucledean metric and E ! T [1]R4, with the fiber
being g[1], where g is a real Lie algebra. Local coordinates on E

are: x
a
, ✓

a
, C

A. Useful convention C = C
A
tA. The Q-structure is

then defined as

Q(xa) = ✓
a
, Q(✓a) = 0, Q(C) = �

1

2
[C,C]

Distribution K is generated by:

K
(1)ab
A

=
✓
✓
a
✓
b +

1

2
✏
ab

cd✓
c
✓
d

◆
@

@CA
, K

(2)
aA

= ✏abcd✓
b
✓
c
✓
d @

@CA
,

Note: Q
2 = 0 and LQK ⇢ K.

Minimal model (in the sense of weak gPDE) of seld-dual YM



Example: self-dual YM

Fields parameterizing the quotient J
1
S

(E)/K̄:

0
C, Aa ⌘

1
C|a, F⇤�

ab
⌘

0
C|ab �

1

2
✏abcd

0
C
|cd

.

The induced BRST di↵erential s:

s(F⇤�
ab

) = �(DaAb �DbAa)� � [F⇤�
ab

, C̄],

s(
0
C) = �

1

2
[
0
C,

0
C], s(Aa) = Da

0
C

where Da = Da + [Aa, ·] is the covariant total derivative.

Gives standard BRST complex for self-dual YM.



Where do all these structures come from?

Def Q-manifold (M,Q) (aka dg-manifold) is a Z-graded super-
manifold M equipped with the odd nilpotent vector field of de-
gree 1, i.e.

Q
2 = 0 , gh(Q) = 1

� : (M1, Q1) ! (M2, Q2) is a Q-map if �⇤ �Q2 = Q1 � �⇤
Example: (V [1](M), Q) where V (M) Lie algebroid. Indeed generic
Q of degree 1 locally reads as:

Q = c
↵
R↵ � 1

2
c
↵
c
�
U
�

↵�
(z)

@

@c�

R↵ gives anchor, U
�

↵�
bracket, Q

2 = 0 encodes compatibility.

Proposition: [AKSZ] Let (M,Q) a Q-manifold, p 2 M and Q|p =
0 then TpM is an L1 algebra.

Formal pointed Q-manifolds are 1:1 with L1-algebras



Equivalence of Q-manifolds:
Idea: restrict to local analysis. Let

M = N ⇥ T [1]V , Q = QN + d
T [1]V

with V a graded space. Then (M,Q) and (N,QN) are equivalent.
Q-manifold (T [1]V, d

T [1]V ) is called contractible. In coordinates:

Q = QN + v
↵ @

@w↵
, QN = q

i(�)
@

@�i
.

Often one finds a “minimal” equivalent Q-man. In the formal
setup this gives a minimal model of the respective L1 algebra.

Geometric charachterization: let w
a be independent functions

such that w
a
,Qw

a are also independent then the surface w
a =

0 = Qw
a is a Q-submanifold isomorphic to (N,QN). Simple ge-

ometric picture of the homotopy transfer

In the context of gauge theories: w
↵
, v
↵ – are known as “gener-

alized auxiliary fields” Henneaux, 1990; Barnich, M.G. 2004.



Def. [Kotov, Strobl] Locally trivial bundle ⇡ : E ! M of Q-
manifolds is called Q-bundle if ⇡ is a Q-map. Section � : M ! E

is called Q-section if it’s a Q-map.
In general, ⇡ : E ! M is not a locally trivial Q-bundle.
Indeed, although locally E

⇠= M ⇥ F (product of manifolds) in
general Q is not a product Q-structure of QF and QM .

Example: let ⇡X : E ! X be a fiber bundle then
⇡ = d⇡X : (T [1]E, dE) ! (T [1]X,dX) is a Q-bundle.

Def. [MG, Kotov] (M,Q) is called an equivalent reduction of (M 0
, Q

0)
if (M 0

, Q
0) is a locally trivial Q-bundle over (M,Q) with a con-

tractible fiber and (M 0
, Q

0) admits a global Q-section.

This generates an equivalence relation for Q-manifolds.



Gauge PDEs

Def. Gauge PDE (E,Q, T [1]X) is a Q-bundle over T [1]X. In
addition: equivalent to nonnegatively graded.

Solutions: � : T [1]X ! E is a solution if

dX � �⇤ = �
⇤ �Q , .

Gauge parameter: Y = Y
A( , x, ✓)

@

@ A
, gh(Y ) = �1.

Infinitesimal gauge transformations:

�Y �
⇤ = �

⇤ � [Q,Y ]

In a similar way one defines gauge (for gauge)N symmetries.
In local coordinates x

µ
, ✓

µ
, 

A:

Q = ✓
µ @

@xµ
+Q

A( , x, ✓)
@

@ A
, dX 

A(x, ✓) = Q
A( A(x, ✓), x, ✓)



Equivalence of gauge PDEs

Def. A sub-gPDE ( eE, eQ,T [1]X) ⇢ (E,Q, T [1]X) (i.e. eE ⇢ E is
a subbundle, Q restricts to eQ) is called an equivalent reduction
if E is a locally trivial Q-bundle over eE (as bundles over T [1]X)
with a contractible fiber.

In local coordinates: if in adapted coordinates x
µ
, ✓

µ
,�

i
, w

a
, v

a

one has Qw
a = v

a and eE is singled out by w
a = 0 = v

a then eE is
an equivalent reduction.

A version of elimination of “generalized auxiliary fields” Henneaux,

1990; Barnich, M.G. 2004; M.G. Kotov 2019.



Example: BV formulation (EOM level)

Let (J1(E), s) be a local BV system, i.e. E is the BV bundle
(fields, ghosts, antifields) and s, s

2 = 0 is the BRST di↵erential
on J

1(E).

Take J
1(E) pulled back to T [1]X as E, total degree as a de-

gree, and Q = dh + s. Locally, the gauge system determined by
(E,Q, T [1]X) is equivalent to the one encoded in the BV formu-
lation (J1(E), s). Barnich, MG 2010

The notion of gauge PDE is su�ceintly flexible to include BV
as a particular case and hence all reasonable gauge theories.
Justifies definition.



Example: PDE

Let E0 ! X be a bundle equipped with Cartan distribution.
Extend to a bundle E ! T [1]X, the Cartan distribution defines
dh on E:

dh = ✓
a
Da , (✓a ⌘ dx

a)

We arrive at Q-bundle (E, dh, T [1]X).
Seen as a section of E ! T [1]X, a solution is a Q-section. If
 
A are local fiber coordinates the section is parameterized by

�
A(x) = �

⇤( A)
Q-map condition dX � �⇤ = �

⇤ � dh gives:

@

@xa
�
A(x) = �A

a (�(x), x) , dh = ✓
a
Da = ✓

a(
@

@xa
+ �A

a ( , x)
@

@ A
)

cf. “unfolded” representation of M.Vasiliev .
Usual PDEs are gauge PDEs whose grading is horizontal



Riemannian geometry as a gauge PDE

Take G = (T ⇤
X _ T

⇤
X)nd � T [1]X. Take E to be J

1(G) pulled
back to T [1]X. Local trivialization:

x
a
, ✓

a
, gab, gab|c, . . . , ⇠

a
, ⇠

a
|c . . .

In a suitable trivialization (cf. AKSZ):

Q = dX + � , �gab = ⇠
c
gab|c + ⇠

c
|agcb + ⇠

c
|bgac , �⇠

a = ⇠
c
⇠
a
|c , . . .

E.g. Lagrangians: H
n(Q, localfunctions), n = dimX. Applies to

generic o↵-shell (equivalent to jets) gauge PDEs.

Locally, E = (T [1]X,dX)⇥ (F , q), i.e. Locally-trivial Q-bundle.



Minimal model

Restrict to local analysis. �a

(bc|d...) form contractible pairs with
⇠
a

bcd...
and gab with symmetric part of ⇠

a

b
. Resulting minimal

model Stora; Barnich, Brandt, Henneaux; Vasiliev . . . :

Coordinates: x
µ
, ✓

µ
, ⇠

a
, ⇢

a
b, Rab

c
d, Ra(b

c
de), . . . , Ra(b

c
de...), . . .

Qx
µ = ✓

µ
, Q⇠

a = ⇢
a
c ⇠

c
, q⇢

ab = ⇢
a
c ⇢

cb + �⇠
a
⇠
b + ⇠

c
⇠
d
R
ab

cd
,

QRab
c
d = ⇠

e
R
a(b

c
de) + ⇢a

f
Rfb

c
d + . . . , . . .

For instance H
0(Q) gives Riemannian invariants. On-shell ver-

sion: R are totally traceless (only Weyl tensors).



Section:

�
⇤(⇠a) = e

a
µ(x)✓

µ
, �

⇤(⇢ab) = �
ab
µ (x)✓µ, �

⇤(Rab
c
d) = Rab

c
d(x), . . .

Equations of motion:

dXe
a + �

a
be

b = 0 , dX�
ab + �

a
c�

cb = e
c
e
dRcd

ab
, . . .

Cartan structure equations. Taking a total degree “gh+form
degree” is crucial. Frame-like formulations.

On shell version – equivalent form of Einstein equations.



Presymplectic structures on gauge PDE

How to represent a generic local gauge theory as a presymplectic
gauge PDE? At nonlagrangian level: total di↵erential Q = dh+s,

total degree = gh+ ”horizontal form degree”

At Lagrangian level: in the simplest case where ”gauge part of
BRST di↵erential” �

2 = 0 there is an easy shortcut: descent

completion of the Lagrangian
n

L

�

n

L+ dh
n�1
L = 0 , �

n�1
L + dh

n�2
L = 0 , . . .

. . . �

1
L+ dh

0
L = 0 , �

0
L = 0 .

Defines a QP structure on T
⇤[n � 1](J1(E)). Resulting AKSZ

model is equivalent to the parameterized version of the initial
local gauge theory MG 2010



Descent completed BV

More general but technically involved: descent completion of the
BV symplectic structure:
Cattaneo Mnev Reshetikhin; Sharapov; MG; Mnev Schiavina. . .

n
! = (dx)n!AB(x, A)dv A

dv 
B
,

Ls

n
!+ dh

n�1
! = 0 , Ls

n�1
! + dh

n�2
! = 0 , . . .

. . . Ls

1
!+ dh

0
! = 0 , Ls

0
! = 0

with

Q = dh + s, ! =
n
!+

n
!+ . . .

0
!

one finds iQiQ! = 0. Results in presymplectic gauge PDE. Tak-
ing minimal model and setting to zero variables from the kernel
of ! results in the presymplectic minimal model.



Conclusions

• (Finite-dimensional) super-geometrical objects underlying lo-
cal gauge theories. Minimal models seem unique.

• Generalization and first principle derivation of the AKSZ con-
struction. Can be considered as an extension of AKSZ to
generic local theories.

• Determines a “canonical” first-order realization in terms of
the fields taking values in the minimal model. Makes mani-
fest the underlying Cartan geometry. Covariant Hamiltonian
formalism. Classification?

• Further examples include conformal gravity (Denprov MG, 2022),
supergravity (MG Mamekin, to appear).



• Tool to study geometry underlying a given gauge system.
Background fields and background independence can be in-
corporated in the approach (MG, Dneprov, to appear)

• In the case of variational systems unifies Lagrangian BV and
Hamiltonian BFV formalism, cf. BV/BFV approach of Cat-

taneo et all.

• Gives a geometrically-invariant approach to study boundary
values of gauge fields and asymptotic symmetries Bekaert,

M.G. 2012, MG, Markov 2023. In particular, Fe↵erman-Graham
construction (and tractor calculus) can be seen as a certain
gauge PDE. Bekaert, M.G. Skvortsov 2017

• Gives a criterion to characterize local theory in terms of its
infinite dimensional equation manifold. Possibly ineteresting
in the higher-spin theory context.


