# Representation Theory, Schubert Calculus and Algebraic Topology of Some Embedded Flag Submanifolds

#### Jakub Knesel

Faculty of Mathematics and Physics, Charles University

#### 18.12.2024

## Motivation and Goals

- Understanding K-theory of spaces G/P, where G is complex semisimple Lie group and P a parabolic subgroup of G.
- Complex vector bundles over G/P correspond to P-modules.
- Let G' ⊂ G be a complex semisimple (sub)group and P' ⊂ G' a parabolic subgroup s. t. P' = P ∩ G'. There is a natural embedding ι : G'/P' → G/P.
- *i* induces a short exact sequence of *P*'-modules/vector bundles:

$$O \longrightarrow \operatorname{T}(G'/P') \longrightarrow \iota^*\operatorname{T}(G/P) \longrightarrow \operatorname{N}(\iota) \longrightarrow O.$$

N(i) is the normal bundle of the embedding i and we are interested in its characterictic classes.

So far we have analyzed the situation G/P = Gr(n, k).

## Table of Contents

Topology and cohomology of (complex) Grassmannians and associated representation theory

Computation of Chern classes of normal bundles of embeddings of Grassmannians

Chern Classes of TGr(n, k)

## CW Structure of Gr(n, k) - Schubert Cells

► k-dimensional subspace V of C<sup>n</sup> can be represented as a row-space of a k × n matrix A<sub>V</sub> in echelon form. Example given for Gr(9, 4):

$$\left(\begin{array}{ccccccccccc} * & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ * & 0 & * & * & 1 & 0 & 0 & 0 & 0 \\ * & 0 & * & * & 0 & 1 & 0 & 0 & 0 \\ * & 0 & * & * & 0 & 0 & * & 1 & 0 \end{array}\right)$$

- To V ∈ Gr(n, k) assign indices 1 ≤ t<sub>1</sub> < ... < t<sub>k</sub> ≤ n s. t. the t<sub>i</sub>-th column of A<sub>V</sub> is the *i*-th canonical vector of C<sup>k</sup>.
- V, W ∈ Gr(n, k) belong to the same Schubert cell, iff the indices t<sub>1</sub>,..., t<sub>k</sub> are the same for both A<sub>V</sub> and A<sub>W</sub>.

## Schubert Cells and Partitions

- Schubert cells of Gr(n, k) correspond to partitions of length k with maximal element  $\leq n k$ .
- Schubert cell defined by the sequence 1 ≤ t<sub>1</sub> < ... < t<sub>k</sub> ≤ n corresponds to a partition λ = (λ<sub>1</sub>,...,λ<sub>k</sub>), where λ<sub>i</sub> = n − k − t<sub>i</sub> + i. Denote this cell by C<sub>λ</sub>.
- For a partition  $\lambda = (\lambda_1, \dots, \lambda_k)$ ;  $\lambda_1 \le n k$ ; let  $\lambda^c := (n k \lambda_k, n k \lambda_{k-1}, \dots, n k \lambda_1)$ .
- Schubert cells C<sub>λ</sub> s. t. |λ| = I form a free basis of H<sub>2k(n-k)-2l</sub>(Gr(n, k); ℤ).
- Denote by  $\sigma_{\lambda}$  the Poincaré dual of the class  $C_{\lambda}$ . Then  $\{\sigma_{\lambda}; |\lambda| = I\}$  is a free basis of  $\mathrm{H}^{2l}(\mathrm{Gr}(n,k);\mathbb{Z})$ . Moreover,  $\sigma_{\lambda} = C_{\lambda^c}^*$  (the Hom-dual of  $C_{\lambda^c}$ ).

## Grassmannian as a Homogeneous Space

- ▶ Left multiplication by matrices from SL(n, C) on C<sup>n</sup> induces a transitive action of SL(n, C) on Gr(n, k).
- Let {e<sub>1</sub>,..., e<sub>n</sub>} be the canonical basis of C<sup>n</sup>. The stabilizer of ⟨e<sub>n-k+1</sub>,..., e<sub>n</sub>⟩ is the subgroup P<sub>n,k</sub> consisting of matrices

$$\left(\begin{array}{cc} p_1 & 0 \\ * & p_2 \end{array}\right)$$

with  $p_1 \in \operatorname{GL}(n-k,\mathbb{C}), p_2 \in \operatorname{GL}(k,\mathbb{C}), \det p_1 \det p_2 = 1.$ 

- Thus,  $\operatorname{Gr}(n,k) \simeq \operatorname{SL}(n,\mathbb{C})/P_{n,k}$ .
- Representation ρ : P<sub>n,k</sub> → GL(d, C) defines a complex vector bundle with total space SL(n, C) ×<sub>ρ</sub> C<sup>d</sup> defined as

$$\operatorname{SL}(n,\mathbb{C})\times\mathbb{C}^d/[(gp,v)\sim(g,\rho(p)v);p\in P_{n,k}].$$

### The Grassmannian Lattice



## The Vertical Maps

- $\alpha_{n,k} : \operatorname{Gr}(n,k) \hookrightarrow \operatorname{Gr}(n+1,k)$  is induced by the linear inclusion  $\mathbb{C}^n \hookrightarrow \mathbb{C}^{n+1}$  as the last *n* coordinates.
- ► It is also induced by  $\alpha_{n,k} : g \in SL(n, \mathbb{C}) \longmapsto \begin{pmatrix} 1 & 0 \\ 0 & g \end{pmatrix} \in SL(n+1, \mathbb{C}).$
- α<sub>n,k</sub> maps a Schubert cell C to the Schubert cell (C | 0) and the corresponding partition (λ<sub>1</sub>,...,λ<sub>k</sub>) to (λ<sub>1</sub> + 1,...,λ<sub>k</sub> + 1).

## The Horizontal Maps

- ▶  $\eta_{n,k}$ : Gr(n,k)  $\hookrightarrow$  Gr(n+1, k+1) maps  $V \in$  Gr(n, k) to  $\nu(V) \oplus \langle e_{n+1} \rangle$ , where  $\nu : \mathbb{C}^n \hookrightarrow \mathbb{C}^{n+1}$  as the first n coordinates and  $\{e_1, \ldots, e_n, e_{n+1}\}$  is the canonical basis of  $\mathbb{C}^{n+1}$ .
- It is induced by η<sub>n,k</sub> : g ∈ SL(n, C) → (g 0 0 1) ∈ SL(n + 1, C).
  η<sub>n,k</sub> maps a Schubert cell C to the Schubert cell (1 0 0 C) and the corresponding partition (λ<sub>1</sub>,...,λ<sub>k</sub>) to (n - k, λ<sub>1</sub>,...,λ<sub>k</sub>).

# Homeomorphism $Gr(n, k) \simeq Gr(n, n-k)$

- Let S = (δ<sub>i,n+1−j</sub>)<sub>1≤i,j≤n</sub>. Then S defines a symmetric non-degenerate bilinear form on C<sup>n</sup>. Denote by ⊥<sub>S</sub> orthogonality w. r. t. this bilinear form.
- Define  $\Phi_{n,k}$ :  $\operatorname{Gr}(n,k) \longrightarrow \operatorname{Gr}(n,n-k)$  by  $\Phi_{n,k}(V) = V^{\perp_S}$ .
- $\Phi_{n,k}$  is induced by the (outer) automorphism of  $SL(n, \mathbb{C})$ given by  $\Phi_{n,k} : g \mapsto S(g^T)^{-1}S$ . We have  $\Phi_{n,k}(P_{n,k}) = P_{n,n-k}$  and  $\Phi_{n,n-k} \circ \Phi_{n,k} = id$ .
- $\Phi_{n,k}$  is a cellular map and the image of any Schubert cell of  $\operatorname{Gr}(n,k)$  is a Schubert cell of  $\operatorname{Gr}(n,n-k)$ .
- Thus, the maps (Φ<sub>n,k</sub>)<sub>\*</sub> and Φ<sup>\*</sup><sub>n,k</sub> in (co)homology "permute" the free basis given by Schubert cells and their Poincaré duals. In particular, Φ<sup>\*</sup><sub>n,k</sub>(σ<sub>(1,...,1,0,...,0)</sub>) = σ<sub>(j,0,...,0)</sub>.
- At the level of partitions/Young diagrams Φ<sub>n,k</sub> acts by transposing the diagrams.

## Associated Cohomology Lattice of Grassmannians

Denote  $A_{n,k}^j := \mathrm{H}^{2j}(\mathrm{Gr}(n,k);\mathbb{Z})$ . We have the *j*-th cohomology lattice



## Cohomology Lattice II

Fix  $j \ge 1$ . Partitions of j admit a lexicographic ordering, w. r. t. which (1, 1, ..., 1) is the first and (j, 0, ..., 0) is the last. Denote by  $R_j$  the number of all partitions of j. Let  $\sigma_1^j, \sigma_2^j, ..., \sigma_{R_j}^j$  be the generators of  $A_{2j,j}^j$  corresponding to these partitions.

#### Lemma

(1) The j-th cohomology lattice stabilizes below and to the right from  $A_{2j,j}^{j}$ , i. e.  $A_{n,k}^{j} \simeq A_{2j,j}^{j}$  iff  $n \ge 2j$  and  $k \ge j$ . (2) The projections in the following diagram are the obvious ones:

$$A_{2j-2,j-1}^{j} = \bigoplus_{s=2}^{R_{j}-1} \mathbb{Z}\sigma_{s}^{j} \longleftarrow A_{2j-1,j}^{j} = \bigoplus_{s=1}^{R_{j}-1} \mathbb{Z}\sigma_{s}^{j}$$

$$\uparrow$$

$$A_{2j-1,j-1}^{j} = \bigoplus_{s=2}^{R_{j}} \mathbb{Z}\sigma_{s}^{j} \longleftarrow A_{2j,j}^{j} = \bigoplus_{s=1}^{R_{j}} \mathbb{Z}\sigma_{s}^{j}$$

## Cohomology Lattice III

#### Lemma

(3) Let  $\alpha = \alpha_{2j-1,j} \circ \ldots \circ \alpha_{j+1,j}$ :  $\operatorname{Gr}(j+1,j) \hookrightarrow \operatorname{Gr}(2j,j)$  and  $\eta = \eta_{2j-1,j-1} \circ \ldots \circ \eta_{j+1,1}$ :  $\mathbb{CP}^j \hookrightarrow \operatorname{Gr}(2j,j)$ . Then

$$\begin{array}{ll} \operatorname{Ker} \alpha^* = \bigoplus_{s=2}^{R_j} \mathbb{Z} \sigma_s^j \ , & \operatorname{Im} \alpha^* = \mathbb{Z} \sigma_1^j, \\ \operatorname{Ker} \eta^* = \bigoplus_{s=1}^{R_j-1} \mathbb{Z} \sigma_s^j \ , & \operatorname{Im} \eta^* = \mathbb{Z} \sigma_{R_j}^j. \end{array}$$

*I. e., there are short exact sequences* 

$$O \longrightarrow A^{j}_{2j-1,j-1} \longrightarrow A^{j}_{2j,j} \xrightarrow{\alpha^{*}} A^{j}_{j+1,j} \longrightarrow O,$$
$$O \longrightarrow A^{j}_{2j-1,j} \longrightarrow A^{j}_{2j,j} \xrightarrow{\eta^{*}} A^{j}_{j+1,1} \longrightarrow O.$$

## Cohomology Lattice IV

For example, if j = 3, there are exactly three partitions of 3, namely (1,1,1), (2,1,0), (3,0,0). Only (2,1,0) defines a 6-cell of Gr(4,2). The H<sup>6</sup>-lattice is



## Cohomology Lattice V

- (1) follows from the fact that Young diagrams of all partitions of j fit inside a j × j square.
- ► (2) follows from the fact that the only two partitions of j that do not fit inside the (j - 1) × (j - 1) square are the row and column of length j.
- ► (3) follows from the fact that CP<sup>j</sup> only has partitions with one-row-diagrams and Gr(j + 1, j) only has partitions with one-column-diagrams.

# Chern Classes

#### Theorem

There is a unique sequence of functions  $c_1, c_2, \ldots$  which to a complex vector bundle E over a paracompact base space X assign cohomology classes  $c_j(E) \in \mathrm{H}^{2j}(X; \mathbb{Z})$  such that (1)  $f^*(c_j(E)) = c_j(f^*E)$  for a continuous map  $f : Y \longrightarrow X$ . (2)  $c(E_1 \oplus E_2) = c(E_1) \smile c(E_2)$ , where  $c(E) = 1 + \sum_{j=1}^{\infty} c_j(E)$ . (3)  $c_j(E) = 0$  for all  $j > \operatorname{rank} E$ . (4)  $c_1(L) = \lambda$ , where L is the canonical line-bundle over  $\mathbb{C}\mathrm{P}^{\infty}$  and  $\lambda$  is a specified generator of  $\mathrm{H}^2(\mathbb{C}\mathrm{P}^{\infty}; \mathbb{Z})$ .

We now choose  $c_1(L) = -\sigma_1^1$  for all further calculations.

# Vector Bundles over Gr(n, k)

- ► Vector bundles over Gr(n, k) correspond to representations of  $P_{n,k} = \begin{pmatrix} GL(n-k, \mathbb{C}) & 0 \\ * & GL(k, \mathbb{C}) \end{pmatrix} \subset SL(n, \mathbb{C}).$
- ▶ TGr(n, k) is defined by the rep.  $\rho_{n,k}$  of  $P_{n,k}$  on Hom( $\mathbb{C}^k$ ,  $\mathbb{C}^{n-k}$ )  $\simeq \mathfrak{sl}(n, \mathbb{C})/\mathfrak{p}_{n,k}$  given by

$$\rho_{n,k}\left(\left(\begin{array}{cc}p_1 & 0\\ * & p_2\end{array}\right)\right)v = p_1vp_2^{-1}$$

and is induced by the adjoint rep.

### The Normal Bundles

æ

## The Normal Bundles - Properties

### Lemma (a) $\alpha_{n,k}^* N(\alpha_{n+1,k}) = N(\alpha_{n,k}),$ (b) $\eta_{n,k}^* N(\eta_{n+1,k+1}) = N(\eta_{n,k}),$ (c) $\alpha_{n,k}^* N(\eta_{n+1,k}) = N(\eta_{n,k}) \oplus \mathbb{C},$ (d) $\eta_{n,k}^* N(\alpha_{n+1,k+1}) = N(\alpha_{n,k}) \oplus \mathbb{C},$ (e) $\Phi_{n,k}^* N(\alpha_{n,n-k}) \simeq N(\eta_{n,k}),$ (f) $\Phi_{n,k}^* N(\eta_{n,n-k}) \simeq N(\alpha_{n,k}).$ (g) TGr(n, k) $\simeq N(\alpha_{n,k}) \otimes N(\eta_{n,k}).$ (h) There is a short exact sequence

$$O \longrightarrow \mathcal{N}(\alpha_{n,k})^D \longrightarrow \mathbb{C}^n \longrightarrow \mathcal{N}(\eta_{n,k}) \longrightarrow O.$$

# Chern Classes of $N(\alpha_{n,k})$ and $N(\eta_{n,k})$

Theorem  
(a) 
$$c(N(\alpha_{n,k})) = 1 + \sigma_1^1 + \sigma_1^2 + \ldots + \sigma_1^k$$
.  
(b)  $c(N(\eta_{n,k})) = 1 + \sigma_1^1 + \sigma_{R_2}^2 + \ldots + \sigma_{R_{n-k}}^{n-k}$ .

#### Proof

First, 
$$c(N(\alpha_{n,1})) = c(\mathcal{O}_{\mathbb{CP}^{n-1}}(1)) = 1 + \sigma_1^1$$
.

• Let 
$$k > 1$$
 and assume  $c(N(\alpha_{n,k-1})) = 1 + \sum_{j=1}^{k-1} \sigma_1^j$ .

• 
$$\eta^*_{2k-1,k-1}(c(N(\alpha_{2k,k}))) = c(N(\alpha_{2k-1,k-1}) \oplus \mathbb{C}) = 1 + \sum_{j=1}^{k-1} \sigma^j_1.$$

This determines c<sub>j</sub>(N(α<sub>2k,k</sub>)) for 1 ≤ j ≤ k − 1 because of the stability of 2j-th cohomology lattice (A<sup>j</sup><sub>2k,k</sub> = A<sup>j</sup><sub>2k−1,k−1</sub> = A<sup>j</sup><sub>2j,j</sub>).

# Chern Classes of $N(\alpha_{n,k})$ and $N(\eta_{n,k})$ II

- Moreover, since  $c_k(N(\alpha_{2k-1,k-1})) = 0$ , we have  $c_k(N(\alpha_{2k,k})) \in \text{Ker } \eta^*_{2k-1,k-1} = \mathbb{Z}\sigma^k_1$ .
- $(\alpha_{2k-1,k} \circ \ldots \circ \alpha_{k+1,1})^* N(\alpha_{2k,k}) = N(\alpha_{k+1,k})$  and  $(\alpha_{2k-1,k} \circ \ldots \circ \alpha_{k+1,1})^*|_{\mathbb{Z}\sigma_1^k}$  is an isom. onto  $A_{k+1,k}^k$ . Thus, it is enough to find  $c_k(N(\alpha_{k+1,k}))$ .
- $\Phi_{k+1,k}^* N(\alpha_{k+1,k}) \simeq N(\eta_{k+1,1})$  and we have the short exact sequence

$$O \longrightarrow \mathcal{O}_{\mathbb{C}\mathrm{P}^{k}}(-1) \longrightarrow \mathbb{C}^{k+1} \longrightarrow \mathrm{N}(\eta_{k+1,1}) \longrightarrow O.$$

# Chern Classes of $N(\alpha_{n,k})$ and $N(\eta_{n,k})$ III

•  $\mathrm{H}^*(\mathbb{C}\mathrm{P}^k;\mathbb{Z}) = \mathbb{Z}[\sigma_1^1]/(\sigma_1^1)^{k+1}$ ,  $c(\mathcal{O}_{\mathbb{C}\mathrm{P}^k}(-1)) = 1 - \sigma_1^1$  and we must have

$$1=c(\mathbb{C}^{k+1})=(1-\sigma_1^1)\cdot c(\mathrm{N}(\eta_{k+1,1})).$$

- We compute  $c_k(N(\eta_{k+1,1})) = (\sigma_1^1)^k = \sigma_{R_k}^k$ .
- Then

   c<sub>k</sub>(N(α<sub>k+1,k</sub>)) = c<sub>k</sub>(Φ<sup>\*</sup><sub>k+1,k</sub>N(η<sub>k+1,1</sub>)) = Φ<sup>\*</sup><sub>k+1,k</sub>(σ<sup>k</sup><sub>R<sub>k</sub></sub>) = σ<sup>k</sup><sub>1</sub>.

   Thus, also c<sub>k</sub>(N(α<sub>2k,k</sub>)) = σ<sup>k</sup><sub>1</sub> and previous lemma together
   with stability of cohomology lattices determines

   c(N(α<sub>n,k</sub>)) = c(N(α<sub>2k,k</sub>)) for all n.

# Chern Classes of $N(\alpha_{n,k})$ and $N(\eta_{n,k})$ IV

This proves 
$$c(N(\alpha_{n,k})) = 1 + \sigma_1^1 + \sigma_1^2 + \ldots + \sigma_1^k$$
.
Then
$$c(N(\eta_{n,k})) = c(\Phi_{n,k}^* N(\alpha_{n,n-k}))$$

$$= \Phi_{n,k}^* (1 + \sum_{j=1}^{n-k} \sigma_1^j)$$

$$= 1 + \sum_{j=1}^{n-k} \sigma_{R_j}^j.$$

Representation Theory, Schubert Calculus and Algebraic Topology of

# The Normal Bundle of $\iota : \operatorname{Gr}(n, k) \longrightarrow \operatorname{Gr}(n', k')$

- ► Let  $\iota$ : Gr(n, k)  $\longrightarrow$  Gr(n', k') be the composition  $\eta_{n'-1,k'-1} \circ \ldots \circ \eta_{n'-k'+k,k} \circ \alpha_{n'-k'+k-1,k} \circ \ldots \circ \alpha_{n,k}$ , so that  $n \leq n', k \leq k'$ .
- We have a short exact sequence

$$O \longrightarrow \mathrm{TGr}(n,k) \longrightarrow \iota^* \mathrm{TGr}(n',k') \longrightarrow \mathrm{N}(\iota) \longrightarrow O.$$

Applying the pullback rules successively, we obtain

$$\mathrm{N}(\iota) \simeq \begin{bmatrix} \binom{(n'-k')-(n-k)}{\bigoplus} \mathrm{N}(\alpha_{n,k}) \end{bmatrix} \oplus \begin{bmatrix} \binom{k'-k}{\bigoplus} \mathrm{N}(\eta_{n,k}) \end{bmatrix} \oplus \mathbb{C}^m,$$

where m = ((n' - k') - (n - k))(k' - k).

## Pieri Formula

#### Theorem

Let  $0 \le l \le n - k$ ,  $\lambda$  the partition (l, 0, ..., 0) and  $\mu$  a partition of length k and maximal element  $\le n - k$ . Then  $\sigma_{\lambda} \smile \sigma_{\mu} = \sum_{\nu} \sigma_{\nu}$ , where we sum over all partitions  $\nu$  that can be obtained by adding one box to exactly l different columns of the Young diagram of  $\mu$ .

Since Φ<sup>\*</sup><sub>n,k</sub> acts on partitions by transposing their Young diagrams, we also obtain the "dual" Pieri formula:

#### Theorem

Let  $0 \le l \le n - k$ ,  $\lambda$  the partition (1, ..., 1, 0, ..., 0) of l and  $\mu$  a partition of length k and maximal element  $\le n - k$ . Then  $\sigma_{\lambda} \smile \sigma_{\mu} = \sum_{\nu} \sigma_{\nu}$ , where we sum over all partitions  $\nu$  that can be obtained by adding one box to exactly l different rows of the Young diagram of  $\mu$ .

# Chern Classes of $N(\iota)$

 Applying the Whitney product formula for characteristic classes, we obtain

$$c(\mathbf{N}(\iota)) = c(\mathbf{N}(\alpha_{n,k}))^{(n'-k')-(n-k)} \smile c(\mathbf{N}(\eta_{n,k}))^{k'-k}$$

- The only cohomology classes appearing in this products are  $\sigma_{(1,...,1,0,...,0)}$  and  $\sigma_{(I,0,...,0)}$ , hence the two Pieri formulas suffice for computing this product.
- ► For example, whenever  $k, n k \ge 2$  we have  $(\sigma_1^1)^2 = \sigma_1^2 + \sigma_2^2$ and

$$\begin{split} c_1(\mathrm{N}(\iota)) &= (n'-n)\sigma_1^1, \\ c_2(\mathrm{N}(\iota)) &= (k'-k)\sigma_1^2 + ((n'-k')-(n-k))\sigma_2^2 + \binom{n'-n}{2}(\sigma_1^1)^2. \end{split}$$

## The Endomorphism Bundle

- ▶ For vector bundles  $E, F \to X$  we define the bundle  $\operatorname{Hom}(E, F)$  as  $E^D \otimes F$ . In particular,  $\operatorname{End} E = \operatorname{Hom}(E, E)$ .
- ► TGr(n, k)  $\simeq$  Hom(N( $\alpha_{n,k}$ )<sup>D</sup>, N( $\eta_{n,k}$ ))
- ► Then End N( $\alpha_{n,k}$ )<sup>D</sup>  $\oplus$  TGr(n, k) = Hom(N( $\alpha_{n,k}$ )<sup>D</sup>, N( $\alpha_{n,k}$ )<sup>D</sup>)  $\oplus$  Hom(N( $\alpha_{n,k}$ )<sup>D</sup>, N( $\eta_{n,k}$ ))  $\simeq$ Hom(N( $\alpha_{n,k}$ )<sup>D</sup>, N( $\alpha_{n,k}$ )<sup>D</sup>  $\oplus$  N( $\eta_{n,k}$ ))  $\simeq$ Hom(N( $\alpha_{n,k}$ )<sup>D</sup>,  $\mathbb{C}^n$ ) = N( $\alpha_{n,k}$ )  $\otimes \mathbb{C}^n \simeq \bigoplus^n N(\alpha_{n,k}).$
- The pullback of N(α<sub>n,k</sub>) over the variety of complete flags in C<sup>n</sup> splits into a direct sum of line bundles L<sub>1</sub> ⊕ ... ⊕ L<sub>k</sub>.
- Hence the pullback of End N(α<sub>n,k</sub>)<sup>D</sup> = End N(α<sub>n,k</sub>) splits into C<sup>k</sup> ⊕ ⊕<sub>i≠j</sub>(L<sup>D</sup><sub>i</sub> ⊗ L<sub>j</sub>).

## The Endomorphism Bundle II

- $c(\operatorname{End} N(\alpha_{n,k})) = \prod_{i \neq j} (1 c_1(L_i) + c_1(L_j)) = \prod_{1 \leq i < j \leq k} (1 (c_1(L_i) c_1(L_j))^2)$
- The odd Chern classes of End N(α<sub>n,k</sub>) are zero and the even Chern classes are polynomials in Chern classes of N(α<sub>n,k</sub>).
- Thus, we can compute the Chern classes of TGr(n, k) from Chern classes of N(α<sub>n,k</sub>) only.
- $c_1(\operatorname{TGr}(n,k)) = c_1(\oplus^n \operatorname{N}(\alpha_{n,k})) = n\sigma_1^1$  and for j > 2:

$$c_j(\mathrm{TGr}(n,k)) =$$

$$c_j(\oplus^n \mathrm{N}(\alpha_{n,k})) - = \prod_{s=0}^{j-1} c_s(\mathrm{TGr}(n,k)) c_{j-s}(\mathrm{End}\,\mathrm{N}(\alpha_{n,k})).$$

### The case k = 2

- The formula is in particular nice for  $c_j(TGr(n, 2))$ .
- The only nonzero Chern class of End N( $\alpha_{n,k}$ ) is  $c_2(\text{End N}(\alpha_{n,2})) = -(c_1(L_1) - c_1(L_2))^2 =$   $-(c_1(L_1) + c_1(L_2))^2 + 4c_1(L_1)c_1(L_2) =$  $-c_1(N(\alpha_{n,2}))^2 + 4c_2(N(\alpha_{n,2})) = -(\sigma_1^1)^2 + 4\sigma_1^2 = 3\sigma_1^2 - \sigma_2^2.$
- So we have  $c_1(\mathrm{TGr}(n,2)) = n\sigma_1^1$  and for j > 2:

 $c_j(\mathrm{TGr}(n,2)) = c_j(\oplus^n \mathrm{N}(\alpha_{n,2})) - c_{j-2}(\mathrm{TGr}(n,2))c_2(\mathrm{End}\,\mathrm{N}(\alpha_{n,2})).$