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Gy 3-forms

Go-structures on 7-manifolds

The standard action of GL(7,R) on R’ induces an action on
the 3-forms A3(R”)*. The orbit of

o = dx123 + dxi45 + dx167 — dXo46 + dxo57 + dXx347 + dx3s6

(where dxjix = dx; A dx; A dxy) is open and the stabilizer of ¢
is the exceptional Lie group G, which is a subgroup of SO(7).
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Go-structures on 7-manifolds

The standard action of GL(7,R) on R’ induces an action on
the 3-forms A3(R”)*. The orbit of

o = dx123 + dxi45 + dx167 — dXo46 + dxo57 + dXx347 + dx3s6

(where dxjix = dx; A dx; A dxy) is open and the stabilizer of ¢
is the exceptional Lie group G, which is a subgroup of SO(7).

Let M be a 7-manifold. A Gp-structure on M (a reduction of
the structure group of TM from GL(7,R) to Gp) is equivalent
to a choice of differential 3-form ¢ on M, called a G, 3-form,
meaning, for each x € M, @, is pointwise identified with ¢g via
a linear isomorphism R — T, M. Every G, 3-form ¢ induces
on M a metric g(¢), an orientation and a Hodge star x, as
Gy C SO(7). A 7-manifold M admits a Gp-structure iff M is
orientable and spin.
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The standard action of GL(7,R) on R’ induces an action on
the 3-forms A3(R”)*. The orbit of

o = dx123 + dxi45 + dx167 — dXo46 + dxo57 + dXx347 + dx3s6

(where dxjix = dx; A dx; A dxy) is open and the stabilizer of ¢
is the exceptional Lie group G, which is a subgroup of SO(7).

Let M be a 7-manifold. A Gp-structure on M (a reduction of
the structure group of TM from GL(7,R) to Gp) is equivalent
to a choice of differential 3-form ¢ on M, called a G, 3-form,
meaning, for each x € M, @, is pointwise identified with ¢g via
a linear isomorphism R — T, M. Every G, 3-form ¢ induces
on M a metric g(¢), an orientation and a Hodge star x, as
Gy C SO(7). A 7-manifold M admits a Gp-structure iff M is
orientable and spin.

Fernandez and Gray (1982) worked out a classification of
G,-structures considering components of the intrinsic torsion;
these can be determined from dy and *,¢.



On nearly
parallel
Gp-manifolds

Alexei Kovalev
(Cambridge)

Nearly parallel
Gp-structures

Nearly parallel G,-structures

A Gp-structure ¢ on a 7-manifold M is called nearly parallel if
dp = 7 %, ¢ for some constant 7 # 0. It can be shown, using
spinors, that the induced metric g(¢) then is Einstein with
positive scalar curvature. If this metric is complete, then M
must be compact with 71 (M) finite, by Myers’ theorem.
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Nearly parallel G,-structures

A Gp-structure ¢ on a 7-manifold M is called nearly parallel if
dp = 7 %, ¢ for some constant 7 # 0. It can be shown, using
spinors, that the induced metric g(¢) then is Einstein with
positive scalar curvature. If this metric is complete, then M
must be compact with 71 (M) finite, by Myers’ theorem.

A Gp-structure ¢ on M is nearly parallel iff the Riemannian
cone (Rsg X M, geone = dr? + rg), r > 0, has holonomy in
Spin(7).
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Nearly parallel G,-structures

A Gp-structure ¢ on a 7-manifold M is called nearly parallel if
dp = 7 %, ¢ for some constant 7 # 0. It can be shown, using
spinors, that the induced metric g(¢) then is Einstein with
positive scalar curvature. If this metric is complete, then M
must be compact with 71 (M) finite, by Myers’ theorem.

A Gp-structure ¢ on M is nearly parallel iff the Riemannian

cone (Rsg X M, geone = dr? + rg), r > 0, has holonomy in
Spin(7). If M is simply connected and not isometric to the

standard S, then there are three possible cases

e (M, g) is 3-Sasakian if Hol(gcone) = Sp(2) (a hyper-Kahler
metric compatible with an action of quaternions)
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Nearly parallel G,-structures

A Gp-structure ¢ on a 7-manifold M is called nearly parallel if
dp = 7 %, ¢ for some constant 7 # 0. It can be shown, using
spinors, that the induced metric g(¢) then is Einstein with
positive scalar curvature. If this metric is complete, then M
must be compact with 71 (M) finite, by Myers’ theorem.

A Gp-structure ¢ on M is nearly parallel iff the Riemannian
cone (Rsg X M, geone = dr? + rg), r > 0, has holonomy in
Spin(7). If M is simply connected and not isometric to the
standard S, then there are three possible cases
e (M, g) is 3-Sasakian if Hol(gcone) = Sp(2) (a hyper-Kahler
metric compatible with an action of quaternions)
e (M, g) is Sasaki-Einstein if Hol(gcone) = SU(4) (a
Ricci-flat Kéhler metric, but not hyper-Kahler)
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Nearly parallel G,-structures

A Gp-structure ¢ on a 7-manifold M is called nearly parallel if
dp = 7 %, ¢ for some constant 7 # 0. It can be shown, using
spinors, that the induced metric g(¢) then is Einstein with
positive scalar curvature. If this metric is complete, then M
must be compact with 71 (M) finite, by Myers’ theorem.

A Gp-structure ¢ on M is nearly parallel iff the Riemannian

cone (Rsg X M, geone = dr? + rg), r > 0, has holonomy in
Spin(7). If M is simply connected and not isometric to the

standard S, then there are three possible cases

e (M, g) is 3-Sasakian if Hol(gcone) = Sp(2) (a hyper-Kahler
metric compatible with an action of quaternions)

e (M, g) is Sasaki-Einstein if Hol(gcone) = SU(4) (a
Ricci-flat Kéhler metric, but not hyper-Kahler)

e (M, g) is proper if Hol(gcone) = Spin(7) (a Ricci-flat but
not Kahler metric)
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Go-structures on Sasaki—Einstein manifolds

A Riemannian 2n + 1-manifold (S, g) is called Sasakian when
the cone metric geone = dr? + r’g on Ry x S is Kahler for
some (integrable) complex structure J.
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Go-structures on Sasaki—Einstein manifolds

A Riemannian 2n + 1-manifold (S, g) is called Sasakian when
the cone metric geone = dr? + r’g on Ry x S is Kahler for
some (integrable) complex structure J. Then the 1-form 7 dual
to the vector field J(r19,) is a contact form, n A (dn)" # 0
on {1} x S, and the Kahler form on the cone is w® = 3d(r?p).
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Go-structures on Sasaki—Einstein manifolds

A Riemannian 2n + 1-manifold (S, g) is called Sasakian when
the cone metric geone = dr? + r’g on Ry x S is Kahler for
some (integrable) complex structure J. Then the 1-form 7 dual
to the vector field J(r19,) is a contact form, n A (dn)" # 0
on {1} x S, and the Kahler form on the cone is w® = 3d(r?p).

A compact Sasakian—Einstein manifold (S, g) is called regular
if JO, integrates to a free S-action on S. Then S is a principal
Sl-bundle S* — S % X over a Kihler—Einstein manifold X
with positive curvature and with the Euler class ¢; = [wx]
given by the Kahler form (X is then a simply-connected,
smooth Fano variety)
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Go-structures on Sasaki—Einstein manifolds

A Riemannian 2n + 1-manifold (S, g) is called Sasakian when
the cone metric geone = dr? + r’g on Ry x S is Kahler for
some (integrable) complex structure J. Then the 1-form 7 dual
to the vector field J(r19,) is a contact form, n A (dn)" # 0
on {1} x S, and the Kahler form on the cone is w® = 3d(r?p).

A compact Sasakian—Einstein manifold (S, g) is called regular
if JO, integrates to a free S-action on S. Then S is a principal
Sl-bundle S* — S % X over a Kihler—Einstein manifold X
with positive curvature and with the Euler class ¢; = [wx]
given by the Kahler form (X is then a simply-connected,
smooth Fano variety)

A regular Sasaki—Einstein 7-manifold (S, g) has a canonical
St-family of nearly parallel Gy-structures inducing the metric g
©r = QA1+ Re(e W),
where Q = p*wx, ¥V = 8,_1@\,:1, W a unit length holomorphic
4-form on the cone R x S (Alexandrov & Semmelmann,2012)
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Associative 3-folds

Let M be a 7-manifold with a Gy-structure . An oriented
3-dimensional submanifold Y C M is called associative if

cp|y :V0|y

where voly is the volume form of the metric induced by g(¢).
(In general, one only has |y < voly.) If dp =0, then an
associative Y is an instance of a calibrated submanifold in
the sense of Harvey and Lawson; if Y is also compact then Y
is volume-minimizing in its homology class and thus minimal.



On nearly
parallel
Gp-manifolds

Alexei Kovalev
(Cambridge)

Associative
3-folds

Associative 3-folds

Let M be a 7-manifold with a Gy-structure . An oriented
3-dimensional submanifold Y C M is called associative if

(p|y :V0|y

where voly is the volume form of the metric induced by g(¢).
(In general, one only has |y < voly.) If dp =0, then an
associative Y is an instance of a calibrated submanifold in
the sense of Harvey and Lawson; if Y is also compact then Y
is volume-minimizing in its homology class and thus minimal.

If instead ¢ is a nearly parallel, then Y x R is a calibrated
4-submanifold for the torsion-free Spin(7)-structure on the
Riemannian cone M x Ry and Y is still minimal.
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(Combridac) Let M be a 7-manifold with a Gy-structure . An oriented
3-dimensional submanifold Y C M is called associative if

(p|y :V0|y

where voly is the volume form of the metric induced by g(¢).
Aecocintie (In general, one only has |y < voly.) If dp =0, then an
St associative Y is an instance of a calibrated submanifold in

the sense of Harvey and Lawson; if Y is also compact then Y

is volume-minimizing in its homology class and thus minimal.

If instead ¢ is a nearly parallel, then Y x R is a calibrated
4-submanifold for the torsion-free Spin(7)-structure on the
Riemannian cone M x Ry and Y is still minimal. Moreover, in
the Fernandez-Gray classification of Gp-structures, the latter
two possibilities give the largest class where every associative
3-fold is minimal (Ball and Madnick, 2021).
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Associative 3-folds in Sasaki—Einstein 7-manifolds |

When a (nearly parallel) Gp-structure on a 7-manifold S comes
from a Sasaki—Einstein structure, the associative 3-folds Y C S
can be:

e ‘invariant’ submanifolds or

e special Legendrian submanifolds,
when the cone R-g X Y is, respectively, a complex surface or a
special Lagrangian submanifold in the Ricci-flat Kahler R<g x S
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Associative 3-folds in Sasaki—Einstein 7-manifolds |

When a (nearly parallel) Gp-structure on a 7-manifold S comes
from a Sasaki—Einstein structure, the associative 3-folds Y C S
can be:

e ‘invariant’ submanifolds or

e special Legendrian submanifolds,
when the cone R-g X Y is, respectively, a complex surface or a
special Lagrangian submanifold in the Ricci-flat Kahler R<g x S

Proposition

Let S be a regular Sasaki—Einstein 7-manifold with contact
form n, thus a principal S'-bundle ™ : S — X over a Kahler—
Einstein projective 3-fold X with Kahler form w and dn = m*w.
Let ¢; be the induced S*-family of nearly parallel G, 3-forms.

Then, given a complex curve ¥ in X, the Yy =7 Y(X) C S is
an invariant minimal associative with respect to y; for each t.
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Associative 3-folds in Sasaki—Einstein 7-manifolds Il

A minimal associative Yy is invariant under isometric S'-action
on the principal bundle S and every deformation of the complex
curve X in X induces an associative deformation of Ys.
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Alexei Kovaler A minimal associative Ys is invariant under isometric S!-action
Cambrid . . .
(Combridee) - 5n the principal bundle S and every deformation of the complex
curve X in X induces an associative deformation of Ys.

Examples arising from the above Proposition are:

e the S'-bundle over CP! x CP! x CP! with ¢; = [w],
w = w1 + wy + w3 where wy is a Kahler form on the k-th
factor generating H?(CP',Z). Equivalently,
S=Q(1,1,1) = (SU(2) x SU(2) x SU(2))/(U(1) x U(1));
e the S-bundle over CP! x Py with Pj a del Pezzo surface,
(3< k <8),c1 = [w], w= w1 +wp with [wp] € H*(Py,Z)
Taking ¥ = CP! x (point) we obtain a minimal associative
3-sphere Y5 = S3.

Two types of
associatives
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Gp-manifolds

Alexei Kovaler A minimal associative Ys is invariant under isometric S!-action
Cambrid . . .
(Combridee) - 5n the principal bundle S and every deformation of the complex
curve X in X induces an associative deformation of Ys.

Examples arising from the above Proposition are:

e the S'-bundle over CP! x CP! x CP! with ¢; = [w],
w = w1 + wy + w3 where wy is a Kahler form on the k-th
factor generating H?(CP',Z). Equivalently,
S=Q(1,1,1) = (SU(2) x SU(2) x SU(2))/(U(1) x U(1));
e the S-bundle over CP! x Py with Pj a del Pezzo surface,
(3< k <8),c1 = [w], w= w1 +wp with [wp] € H*(Py,Z)
Taking ¥ = CP! x (point) we obtain a minimal associative
3-sphere Y5 = S3.
More generally one can take ¥ to be the graph of a
holomorphic embedding CP! — P or CP! — CP! x CP!. In

the latter case the ambiguity corresponds to a generic choice of
two rational functions of one complex variable.

Two types of
associatives



On nearly
parallel
Gp-manifolds

Alexei Kovalev
(Cambridge)

Two types of
associatives

Theorem

Let S be a regular Sasaki—Einstein 7-manifold with contact
form 1 arising from a principal S*-bundle 7w : S — X with Euler
class ¢; = |w], where X is a Kéhler—Einstein Fano 3-fold with
Kéhler form w and dn = n*(w). Let : be the corresponding
1-parameter family of induced nearly parallel G, forms.

Then (i) for each compact special Legendrian submanifold
Y C S, the restriction w|y : Y — Yx is a finite covering of a
Lagrangian submanifold Yx C X.
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Theorem

Let S be a regular Sasaki—Einstein 7-manifold with contact
form 1 arising from a principal S*-bundle 7w : S — X with Euler
class ¢; = |w], where X is a Kéhler—Einstein Fano 3-fold with
Kéhler form w and dn = n*(w). Let : be the corresponding
1-parameter family of induced nearly parallel G, forms.

Then (i) for each compact special Legendrian submanifold
Y C S, the restriction w|y : Y — Yx is a finite covering of a
Lagrangian submanifold Yx C X.

(ii) If Yx C X is a compact simply-connected Lagrangian
submanifold, thus a Lagrangian 3-sphere, then Yx lifts to an
Sl—family of Legendrian submanifolds Ys C S such that
7(Ys) = Yx for each s € St.
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(Cambridee) — form 0 arising from a principal S'-bundle w : S — X with Euler
class ¢; = |w], where X is a Kéhler—Einstein Fano 3-fold with
Kéhler form w and dn = n*(w). Let : be the corresponding
1-parameter family of induced nearly parallel G, forms.

Then (i) for each compact special Legendrian submanifold
Y C S, the restriction w|y : Y — Yx is a finite covering of a
Lagrangian submanifold Yx C X.

Two types of
associatives (ii) If Yx C X is a compact simply-connected Lagrangian

submanifold, thus a Lagrangian 3-sphere, then Yx lifts to an
Sl—family of Legendrian submanifolds Ys C S such that
7(Ys) = Yx for each s € St.

(i) Assume that 7 : X — X is an isometric anti-holomorphic
involution. If the fixed point set Yx C X of T is non-empty,
then Yy is Lagrangian and diffeomorphically lifts to a special
Legendrian (hence minimal associative) submanifold of S.
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Ao Koy Ve consider again the 7-manifold Q(1,1,1) and the S'-bundle
(Cambridge) over a product of CP! and the del Pezzo surface Ps.
Proposition
Let mp 2 Q(1,1,1) — X = S? x S? x S? be the principal
S'-bundle and . the 1-dimensional family of nearly parallel
Gy-structures on Q(1,1,1). Let L C X be a 3-torus defined by
0; =7/2, j =1,2,3, in the spherical coordinates ¢;,0; on X.
Two types of Then L lifts via mp to a family of minimal Legendrian 3-tori

associatives Ls C M, s € R/27Z. For each s, the 3-torus Ls is associative
with respect to @; for all t.
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Examples of Legendrian associatives
We consider again the 7-manifold @(1,1,1) and the S'-bundle
over a product of CP! and the del Pezzo surface Ps.
Proposition
Let mp 2 Q(1,1,1) — X = S? x S? x S? be the principal
S'-bundle and . the 1-dimensional family of nearly parallel
Gy-structures on Q(1,1,1). Let L C X be a 3-torus defined by
0; =7/2, j =1,2,3, in the spherical coordinates ¢;,0; on X.
Then L lifts via wpy to a family of minimal Legendrian 3-tori

Ls C M, s € R/27Z. For each s, the 3-torus Ls is associative
with respect to @; for all t.

For the next result it is important that Ps is a toric variety and
has a Kahler—Einstein metric invariant under the C* action.
Proposition

There exists a (minimal) associative 3-torus in the nearly
parallel Gy-manifold (S3, ¢+), where Sz is the S'-bundle over
CP! x P3 (with c; given by the Kihler form as before).
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Associative 3-folds in Aloff-Wallach spaces

The Aloff-Wallach spaces are compact simply-connected
7-manifolds defined as the quotients Wi ; = SU(3)/S ; of
SU(3) by a circle subgroup 511’, = diag(e™?, e/’ eim?), where
k > 0, | # 0 are coprime integers and k +/+ m = 0.
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Associative 3-folds in Aloff-Wallach spaces

The Aloff-Wallach spaces are compact simply-connected
7-manifolds defined as the quotients Wi ; = SU(3)/S ; of
SU(3) by a circle subgroup 511’, = diag(e™?, e/’ eim?), where
k > 0, | # 0 are coprime integers and k +/+ m = 0.

By considering a basis of left-invariant 1-forms on SU(3), one
can write down a family of homogeneous co-closed G, 3-forms
ow depending on 4 real parameters. If (k,/) # (1,+£1), then
up to homotheties exactly 2, of these ¢, are (proper) nearly
parallel (Cabrera, Monar, Swann 1996).
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Associative 3-folds in Aloff-Wallach spaces

The Aloff-Wallach spaces are compact simply-connected
7-manifolds defined as the quotients Wi ; = SU(3)/S ; of

SU(3) by a circle subgroup 511’, = diag(e™?, % eim?)
k > 0, | # 0 are coprime integers and k +/+ m = 0.

, where

By considering a basis of left-invariant 1-forms on SU(3), one
can write down a family of homogeneous co-closed G, 3-forms
ow depending on 4 real parameters. If (k,/) # (1,+£1), then
up to homotheties exactly 2, of these ¢, are (proper) nearly
parallel (Cabrera, Monar, Swann 1996).

If (k,1) # (1,—1), then there is a fibre bundle
Tt Wi = SU(3)/S,1’, — SU(3)/U(2) = CP?
with fibres 53/Z|k+,|, corresponding to an embedding of U(2)

as a subgroup consisting of the block-diagonal matrices with
blocks Ae’® and =2/, A € SU(2).
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This fibration 7y ; is not unique. The Weyl group of SU(3)
contains an element of order 3 which induces a diffeomorphism
v: Wy — W), The composition 7 ,, o v defines a different
fibration, in general by different spherical space forms.
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This fibration 7y ; is not unique. The Weyl group of SU(3)
contains an element of order 3 which induces a diffeomorphism
v: Wy — W), The composition 7 ,, o v defines a different
fibration, in general by different spherical space forms.

Theorem

Let oy be a homogeneous (left-invariant) nearly parallel
Go-structure on the Aloff~Wallach space Wy, with

(k,1) # (1,£1). Then the fibres of ) are embedded minimal
associative 3-folds with respect to oy .

Furthermore, for suitably ‘generic’ k, |, the Aloff~Wallach space
Wy,i has three different 4-dimensional deformation families of
minimal associative spherical space forms.
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This fibration 7y ; is not unique. The Weyl group of SU(3)
contains an element of order 3 which induces a diffeomorphism
v: Wy — W), The composition 7 ,, o v defines a different
fibration, in general by different spherical space forms.

Theorem

Let oy be a homogeneous (left-invariant) nearly parallel
Go-structure on the Aloff~Wallach space Wy, with

(k,1) # (1,£1). Then the fibres of ) are embedded minimal
associative 3-folds with respect to oy .

Furthermore, for suitably ‘generic’ k, |, the Aloff~Wallach space
Wy,i has three different 4-dimensional deformation families of
minimal associative spherical space forms.

On Wi _ there is only one homogeneous nearly parallel G,
structure. and the fibres of 7 _1 are minimal associative

S2 x Sl's. On W4 1 we only show associative S3/Zy for one of
the two homogeneous nearly parallel Gy structure which is
3-Sasakian. On the other hand, Ball and Madnick (2022)
constructed in W ;1 associative 3-folds diffeomorphic to
S'-bundles over a compact surface of any genus g > 0.
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Some open questions

Our theorem on minimal associatives of Legendrian type
Sasaki—Einstein 7-manifolds can probably produce more
examples. One would need to determine which
Kahler—Einstein Fano 3-folds, e.g. (del Pezzo

surfaces) xCP?!, have an isometric antiholomorphic
involution. One challenge is that the Kahler—Einstein
metrics are often given implicitly via existence results for
PDEs and vanishing of certain ‘obstruction’ invariants.

It would be interesting to find a more systematic
description of minimal associative 3-folds in the
Aloff-Wallach which includes the known examples.
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