Alexei Kovalev DPMMS, University of Cambridge, UK

Institute of Mathematics, Czech Academy of Sciences 29 May 2024

Based on arXiv:2208.13046, with M.Fernández, A.Fino, V.Muños. To appear in Math. Res. Lett.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly paralle G_2 -structures

Sasaki– Einstein manifolds

Associative 3-folds

Two types o associatives

Aloff–Wallach spaces

G₂-structures on 7-manifolds

The standard action of $GL(7, \mathbb{R})$ on \mathbb{R}^7 induces an action on the 3-forms $\Lambda^3(\mathbb{R}^7)^*$. The orbit of

 $\varphi_0 = dx_{123} + dx_{145} + dx_{167} - dx_{246} + dx_{257} + dx_{347} + dx_{356}$

(where $dx_{ijk} = dx_i \wedge dx_j \wedge dx_k$) is open and the stabilizer of φ_0 is the exceptional Lie group G_2 which is a subgroup of SO(7).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly paralle G_2 -structures

Sasaki– Einstein manifolds

Associativ 3-folds

Two types or associatives

Aloff—Walla spaces

G₂-structures on 7-manifolds

The standard action of $GL(7,\mathbb{R})$ on \mathbb{R}^7 induces an action on the 3-forms $\Lambda^3(\mathbb{R}^7)^*$. The orbit of

 $\varphi_0 = dx_{123} + dx_{145} + dx_{167} - dx_{246} + dx_{257} + dx_{347} + dx_{356}$

(where $dx_{ijk} = dx_i \wedge dx_j \wedge dx_k$) is open and the stabilizer of φ_0 is the exceptional Lie group G_2 which is a subgroup of SO(7). Let M be a 7-manifold. A G_2 -structure on M (a reduction of the structure group of *TM* from $GL(7, \mathbb{R})$ to G_2) is equivalent to a choice of differential 3-form φ on M, called a G₂ 3-form, meaning, for each $x \in M$, φ_x is pointwise identified with φ_0 via a linear isomorphism $\mathbb{R}^7 \to T_x M$. Every G_2 3-form φ induces on *M* a metric $g(\varphi)$, an orientation and a Hodge star $*_{\varphi}$ as $G_2 \subset SO(7)$. A 7-manifold M admits a G_2 -structure iff M is orientable and spin.

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly paralle G_2 -structures

Sasaki– Einstein manifolds

Associativ 3-folds

Two types of associatives Aloff–Wallac G₂-structures on 7-manifolds

The standard action of $GL(7,\mathbb{R})$ on \mathbb{R}^7 induces an action on the 3-forms $\Lambda^3(\mathbb{R}^7)^*$. The orbit of

 $\varphi_0 = dx_{123} + dx_{145} + dx_{167} - dx_{246} + dx_{257} + dx_{347} + dx_{356}$

(where $dx_{ijk} = dx_i \wedge dx_j \wedge dx_k$) is open and the stabilizer of φ_0 is the exceptional Lie group G_2 which is a subgroup of SO(7). Let M be a 7-manifold. A G_2 -structure on M (a reduction of the structure group of TM from $GL(7, \mathbb{R})$ to G_2 is equivalent to a choice of differential 3-form φ on *M*, called a G₂ 3-form, meaning, for each $x \in M$, φ_x is pointwise identified with φ_0 via a linear isomorphism $\mathbb{R}^7 \to T_x M$. Every G_2 3-form φ induces on *M* a metric $g(\varphi)$, an orientation and a Hodge star $*_{\varphi}$ as $G_2 \subset SO(7)$. A 7-manifold M admits a G_2 -structure iff M is orientable and spin.

Fernández and Gray (1982) worked out a classification of G_2 -structures considering components of the intrinsic torsion; these can be determined from $d\varphi$ and $*_{\varphi}\varphi$.

Alexei Kovalev (Cambridge)

 G_2 3-forms

Nearly parallel G_2 -structures

Sasaki– Einstein manifolds

Associative 3-folds

Two types of associatives

Aloff–Wallach spaces

Nearly parallel G_2 -structures

A G_2 -structure φ on a 7-manifold M is called *nearly parallel* if $d\varphi = \tau *_{\varphi} \varphi$ for some constant $\tau \neq 0$. It can be shown, using spinors, that the induced metric $g(\varphi)$ then is Einstein with positive scalar curvature. If this metric is complete, then M must be compact with $\pi_1(M)$ finite, by Myers' theorem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Alexei Kovalev (Cambridge)

 G_2 3-forms

Nearly parallel G_2 -structures

Sasaki– Einstein manifolds

Associativ 3-folds

Two types o associatives

Aloff–Wallach spaces

Nearly parallel G_2 -structures

A G_2 -structure φ on a 7-manifold M is called *nearly parallel* if $d\varphi = \tau *_{\varphi} \varphi$ for some constant $\tau \neq 0$. It can be shown, using spinors, that the induced metric $g(\varphi)$ then is Einstein with positive scalar curvature. If this metric is complete, then M must be compact with $\pi_1(M)$ finite, by Myers' theorem.

A G_2 -structure φ on M is nearly parallel iff the Riemannian cone ($\mathbb{R}_{>0} \times M, g_{cone} = dr^2 + r^2g$), r > 0, has holonomy in Spin(7).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly parallel G_2 -structures

Sasaki– Einstein manifolds

Associative 3-folds

Two types of associatives

Aloff–Wallach spaces

Nearly parallel G_2 -structures

A G_2 -structure φ on a 7-manifold M is called *nearly parallel* if $d\varphi = \tau *_{\varphi} \varphi$ for some constant $\tau \neq 0$. It can be shown, using spinors, that the induced metric $g(\varphi)$ then is Einstein with positive scalar curvature. If this metric is complete, then M must be compact with $\pi_1(M)$ finite, by Myers' theorem.

A G_2 -structure φ on M is nearly parallel iff the Riemannian cone ($\mathbb{R}_{>0} \times M, g_{\text{cone}} = dr^2 + r^2g$), r > 0, has holonomy in Spin(7). If M is simply connected and not isometric to the standard S^7 , then there are three possible cases

 (M,g) is 3-Sasakian if Hol(g_{cone}) = Sp(2) (a hyper-Kähler metric compatible with an action of quaternions)

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly parallel G_2 -structures

Sasaki– Einstein manifolds

Associativ 3-folds

Two types or associatives

Aloff–Wallach spaces

Nearly parallel G_2 -structures

A G_2 -structure φ on a 7-manifold M is called *nearly parallel* if $d\varphi = \tau *_{\varphi} \varphi$ for some constant $\tau \neq 0$. It can be shown, using spinors, that the induced metric $g(\varphi)$ then is Einstein with positive scalar curvature. If this metric is complete, then M must be compact with $\pi_1(M)$ finite, by Myers' theorem.

A G_2 -structure φ on M is nearly parallel iff the Riemannian cone ($\mathbb{R}_{>0} \times M, g_{\text{cone}} = dr^2 + r^2g$), r > 0, has holonomy in Spin(7). If M is simply connected and not isometric to the standard S^7 , then there are three possible cases

- (M,g) is 3-Sasakian if Hol(g_{cone}) = Sp(2) (a hyper-Kähler metric compatible with an action of quaternions)
- (*M*, *g*) is *Sasaki–Einstein* if Hol(*g*_{cone}) = *SU*(4) (a Ricci-flat Kähler metric, but not hyper-Kähler)

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly parallel G_2 -structures

Sasaki– Einstein manifolds

Associativ 3-folds

Two types o associatives

Aloff–Wallach spaces

Nearly parallel G_2 -structures

A G_2 -structure φ on a 7-manifold M is called *nearly parallel* if $d\varphi = \tau *_{\varphi} \varphi$ for some constant $\tau \neq 0$. It can be shown, using spinors, that the induced metric $g(\varphi)$ then is Einstein with positive scalar curvature. If this metric is complete, then M must be compact with $\pi_1(M)$ finite, by Myers' theorem.

A G_2 -structure φ on M is nearly parallel iff the Riemannian cone ($\mathbb{R}_{>0} \times M, g_{\text{cone}} = dr^2 + r^2g$), r > 0, has holonomy in Spin(7). If M is simply connected and not isometric to the standard S^7 , then there are three possible cases

- (M,g) is 3-Sasakian if Hol(g_{cone}) = Sp(2) (a hyper-Kähler metric compatible with an action of quaternions)
- (M,g) is Sasaki–Einstein if Hol(g_{cone}) = SU(4) (a Ricci-flat Kähler metric, but not hyper-Kähler)
- (M,g) is proper if Hol(g_{cone}) = Spin(7) (a Ricci-flat but not Kähler metric)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly parallel G₂-structures

Sasaki– Einstein manifolds

Associative 3-folds

Two types of associatives

Aloff–Wallach spaces

G2-structures on Sasaki-Einstein manifolds

A Riemannian 2n + 1-manifold (S, g) is called *Sasakian* when the cone metric $g_{cone} = dr^2 + r^2g$ on $\mathbb{R}_{>0} \times S$ is Kähler for some (integrable) complex structure J.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly paralle G_2 -structures

Sasaki– Einstein manifolds

Associative 3-folds

Two types of associatives

Aloff–Wallach spaces

G2-structures on Sasaki-Einstein manifolds

A Riemannian 2n + 1-manifold (S, g) is called *Sasakian* when the cone metric $g_{cone} = dr^2 + r^2g$ on $\mathbb{R}_{>0} \times S$ is Kähler for some (integrable) complex structure *J*. Then the 1-form η dual to the vector field $J(r^{-1}\partial_r)$ is a contact form, $\eta \wedge (d\eta)^n \neq 0$ on $\{1\} \times S$, and the Kähler form on the cone is $\omega^c = \frac{1}{2}d(r^2\eta)$.

Alexei Kovalev (Cambridge)

G₂ 3-torms

G₂-structures

Sasaki– Einstein manifolds

Associative 3-folds

Two types o associatives

Aloff–Wallach spaces

G₂-structures on Sasaki-Einstein manifolds

A Riemannian 2n + 1-manifold (S, g) is called *Sasakian* when the cone metric $g_{cone} = dr^2 + r^2g$ on $\mathbb{R}_{>0} \times S$ is Kähler for some (integrable) complex structure J. Then the 1-form η dual to the vector field $J(r^{-1}\partial_r)$ is a contact form, $\eta \wedge (d\eta)^n \neq 0$ on $\{1\} \times S$, and the Kähler form on the cone is $\omega^c = \frac{1}{2}d(r^2\eta)$.

A compact Sasakian–Einstein manifold (S,g) is called *regular* if $J\partial_r$ integrates to a free S^1 -action on S. Then S is a principal S^1 -bundle $S^1 \to S \xrightarrow{p} X$ over a Kähler–Einstein manifold Xwith positive curvature and with the Euler class $c_1 = [\omega_X]$ given by the Kähler form (X is then a simply-connected, smooth **Fano variety**)

Alexei Kovalev (Cambridge)

G₂ 3-forms Nearly paralle

G₂-structures

Sasaki– Einstein manifolds

Associativ 3-folds

Two types or associatives

Aloff—Wallad spaces

G₂-structures on Sasaki-Einstein manifolds

A Riemannian 2n + 1-manifold (S, g) is called *Sasakian* when the cone metric $g_{cone} = dr^2 + r^2g$ on $\mathbb{R}_{>0} \times S$ is Kähler for some (integrable) complex structure J. Then the 1-form η dual to the vector field $J(r^{-1}\partial_r)$ is a contact form, $\eta \wedge (d\eta)^n \neq 0$ on $\{1\} \times S$, and the Kähler form on the cone is $\omega^c = \frac{1}{2}d(r^2\eta)$.

A compact Sasakian–Einstein manifold (S,g) is called *regular* if $J\partial_r$ integrates to a free S^1 -action on S. Then S is a principal S^1 -bundle $S^1 \rightarrow S \xrightarrow{p} X$ over a Kähler–Einstein manifold Xwith positive curvature and with the Euler class $c_1 = [\omega_X]$ given by the Kähler form (X is then a simply-connected, smooth **Fano variety**)

A regular Sasaki–Einstein 7-manifold (S,g) has a canonical S^1 -family of nearly parallel G_2 -structures inducing the metric g

 $\varphi_t = \Omega \wedge \eta + \operatorname{Re}(e^{-it}\Psi),$

where $\Omega = p^* \omega_X$, $\Psi = \partial_r \lrcorner \widehat{\Psi}|_{r=1}$, $\widehat{\Psi}$ a unit length holomorphic 4-form on the cone $\mathbb{R}_{>0} \times S$ (Alexandrov & Semmelmann,2012)

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly paralle G_2 -structures

Sasaki– Einstein manifolds

Associative 3-folds

Two types of associatives Aloff–Wallack spaces

Associative 3-folds

Let *M* be a 7-manifold with a G_2 -structure φ . An oriented 3-dimensional submanifold $Y \subset M$ is called *associative* if

 $\varphi|_{Y} = \operatorname{vol}_{Y}$

where vol_Y is the volume form of the metric induced by $g(\varphi)$. (In general, one only has $\varphi|_Y \leq \operatorname{vol}_Y$.) If $d\varphi = 0$, then an associative Y is an instance of a **calibrated submanifold** in the sense of Harvey and Lawson; if Y is also compact then Y is volume-minimizing in its homology class and thus minimal.

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly paralle G_2 -structures

Sasaki– Einstein manifolds

Associative 3-folds

Two types of associatives Aloff–Wallach spaces

Associative 3-folds

Let *M* be a 7-manifold with a *G*₂-structure φ . An oriented 3-dimensional submanifold *Y* \subset *M* is called *associative* if

 $\varphi|_{Y} = \operatorname{vol}_{Y}$

where vol_Y is the volume form of the metric induced by $g(\varphi)$. (In general, one only has $\varphi|_Y \leq \operatorname{vol}_Y$.) If $d\varphi = 0$, then an associative Y is an instance of a **calibrated submanifold** in the sense of Harvey and Lawson; if Y is also compact then Y is volume-minimizing in its homology class and thus minimal.

If instead φ is a nearly parallel, then $Y \times \mathbb{R}_+$ is a calibrated 4-submanifold for the torsion-free Spin(7)-structure on the Riemannian cone $M \times \mathbb{R}_+$ and Y is still **minimal**.

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly paralle G_2 -structures

Sasaki– Einstein manifolds

Associative 3-folds

Two types of associatives Aloff–Wallach spaces

Associative 3-folds

Let *M* be a 7-manifold with a G_2 -structure φ . An oriented 3-dimensional submanifold $Y \subset M$ is called *associative* if

$$\varphi|_{Y} = \mathsf{vol}_{Y}$$

where vol_Y is the volume form of the metric induced by $g(\varphi)$. (In general, one only has $\varphi|_Y \leq \operatorname{vol}_Y$.) If $d\varphi = 0$, then an associative Y is an instance of a **calibrated submanifold** in the sense of Harvey and Lawson; if Y is also compact then Y is volume-minimizing in its homology class and thus minimal.

If instead φ is a nearly parallel, then $Y \times \mathbb{R}_+$ is a calibrated 4-submanifold for the torsion-free Spin(7)-structure on the Riemannian cone $M \times \mathbb{R}_+$ and Y is still **minimal**. Moreover, in the Fernández-Gray classification of G_2 -structures, the latter two possibilities give the largest class where every associative 3-fold is minimal (Ball and Madnick, 2021).

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly parallel G₂-structures

Sasaki– Einstein manifolds

Associativ 3-folds

Two types of associatives

Aloff–Wallach spaces

Associative 3-folds in Sasaki-Einstein 7-manifolds I

When a (nearly parallel) G_2 -structure on a 7-manifold S comes from a Sasaki–Einstein structure, the associative 3-folds $Y \subset S$ can be:

- 'invariant' submanifolds or
- special Legendrian submanifolds,

when the cone $\mathbb{R}_{>0} \times Y$ is, respectively, a complex surface or a special Lagrangian submanifold in the Ricci-flat Kähler $\mathbb{R}_{>0} \times S$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly parallel G_2 -structures

Sasaki– Einstein manifolds

Associative 3-folds

Two types of associatives

Aloff–Wallach spaces

Associative 3-folds in Sasaki-Einstein 7-manifolds I

When a (nearly parallel) G_2 -structure on a 7-manifold S comes from a Sasaki–Einstein structure, the associative 3-folds $Y \subset S$ can be:

- 'invariant' submanifolds or
- special Legendrian submanifolds,

when the cone $\mathbb{R}_{>0} \times Y$ is, respectively, a complex surface or a special Lagrangian submanifold in the Ricci-flat Kähler $\mathbb{R}_{>0} \times S$

Proposition

Let S be a regular Sasaki–Einstein 7-manifold with contact form η , thus a principal S¹-bundle $\pi : S \to X$ over a Kähler– Einstein projective 3-fold X with Kähler form ω and $d\eta = \pi^* \omega$. Let φ_t be the induced S¹-family of nearly parallel G₂ 3-forms.

Then, given a complex curve Σ in X, the $Y_{\Sigma} = \pi^{-1}(\Sigma) \subset S$ is an invariant minimal associative with respect to φ_t for each t.

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly paralle G_2 -structures

Sasaki– Einstein manifolds

Associative 3-folds

Two types of associatives

Aloff–Wallach spaces

Associative 3-folds in Sasaki-Einstein 7-manifolds II

A minimal associative Y_{Σ} is invariant under isometric S^1 -action on the principal bundle S and every deformation of the complex curve Σ in X induces an associative deformation of Y_{Σ} .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly parallel G₂-structures

Sasaki– Einstein manifolds

Associativ 3-folds

Two types of associatives

Aloff–Wallach spaces

Associative 3-folds in Sasaki-Einstein 7-manifolds II

A minimal associative Y_{Σ} is invariant under isometric S^1 -action on the principal bundle S and every deformation of the complex curve Σ in X induces an associative deformation of Y_{Σ} .

Examples arising from the above Proposition are:

- the S¹-bundle over $\mathbb{C}P^1 \times \mathbb{C}P^1 \times \mathbb{C}P^1$ with $c_1 = [\omega]$, $\omega = \omega_1 + \omega_2 + \omega_3$ where ω_k is a Kähler form on the *k*-th
 - factor generating $H^2(\mathbb{C}P^1,\mathbb{Z})$. Equivalently, $S = Q(1,1,1) = (SU(2) \times SU(2) \times SU(2))/(U(1) \times U(1));$
- the S¹-bundle over $\mathbb{C}P^1 \times P_k$ with P_k a del Pezzo surface, ($3 \le k \le 8$), $c_1 = [\omega]$, $\omega = \omega_1 + \omega_P$ with $[\omega_P] \in H^2(P_k, \mathbb{Z})$

Taking $\Sigma = \mathbb{C}P^1 \times (point)$ we obtain a minimal associative 3-sphere $Y_{\Sigma} \cong S^3$.

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly parallel G₂-structures

Sasaki– Einstein manifolds

Associative 3-folds

Two types of associatives

Aloff–Wallach spaces

Associative 3-folds in Sasaki-Einstein 7-manifolds II

A minimal associative Y_{Σ} is invariant under isometric S^1 -action on the principal bundle S and every deformation of the complex curve Σ in X induces an associative deformation of Y_{Σ} .

Examples arising from the above Proposition are:

- the S¹-bundle over $\mathbb{C}P^1 \times \mathbb{C}P^1 \times \mathbb{C}P^1$ with $c_1 = [\omega]$, $\omega = \omega_1 + \omega_2 + \omega_3$ where ω_k is a Kähler form on the *k*-th
 - factor generating $H^2(\mathbb{C}P^1,\mathbb{Z})$. Equivalently,
 - $S = Q(1, 1, 1) = (SU(2) \times SU(2) \times SU(2))/(U(1) \times U(1));$
- the S¹-bundle over $\mathbb{C}P^1 \times P_k$ with P_k a del Pezzo surface, ($3 \le k \le 8$), $c_1 = [\omega]$, $\omega = \omega_1 + \omega_P$ with $[\omega_P] \in H^2(P_k, \mathbb{Z})$

Taking $\Sigma = \mathbb{C}P^1 \times (point)$ we obtain a minimal associative 3-sphere $Y_{\Sigma} \cong S^3$.

More generally one can take Σ to be the graph of a holomorphic embedding $\mathbb{C}P^1 \to P$ or $\mathbb{C}P^1 \to \mathbb{C}P^1 \times \mathbb{C}P^1$. In the latter case the ambiguity corresponds to a generic choice of two rational functions of one complex variable.

Theorem

Alexei Kovalev (Cambridge)

G₂ 3-forms

Sasaki-

Associative 3-folds

Two types of associatives

Aloff–Wallach spaces Let S be a regular Sasaki–Einstein 7-manifold with contact form η arising from a principal S¹-bundle $\pi : S \to X$ with Euler class $c_1 = [\omega]$, where X is a Kähler–Einstein Fano 3-fold with Kähler form ω and $d\eta = \pi^*(\omega)$. Let φ_t be the corresponding 1-parameter family of induced nearly parallel G₂ forms. Then (i) for each compact special Legendrian submanifold $Y \subset S$, the restriction $\pi|_Y : Y \to Y_X$ is a finite covering of a

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lagrangian submanifold $Y_X \subset X$.

Theorem

Alexei Kovalev (Cambridge)

G₂ 3-forms Nearly paralle

Sasaki– Einstein manifolds

Associativ 3-folds

Two types of associatives

Aloff–Wallach spaces Let *S* be a regular Sasaki–Einstein 7-manifold with contact form η arising from a principal *S*¹-bundle $\pi : S \to X$ with Euler class $c_1 = [\omega]$, where *X* is a Kähler–Einstein Fano 3-fold with Kähler form ω and $d\eta = \pi^*(\omega)$. Let φ_t be the corresponding 1-parameter family of induced nearly parallel *G*₂ forms.

Then (i) for each compact special Legendrian submanifold $Y \subset S$, the restriction $\pi|_Y : Y \to Y_X$ is a finite covering of a Lagrangian submanifold $Y_X \subset X$.

(ii) If $Y_X \subset X$ is a compact simply-connected Lagrangian submanifold, thus a Lagrangian 3-sphere, then Y_X lifts to an S^1 -family of Legendrian submanifolds $Y_s \subset S$ such that $\pi(Y_s) = Y_X$ for each $s \in S^1$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem

Alexei Kovalev (Cambridge)

G₂ 3-forms Nearly paralle

Sasaki– Einstein manifolds

Associativ 3-folds

Two types of associatives

Aloff–Wallach spaces Let S be a regular Sasaki–Einstein 7-manifold with contact form η arising from a principal S¹-bundle $\pi : S \to X$ with Euler class $c_1 = [\omega]$, where X is a Kähler–Einstein Fano 3-fold with Kähler form ω and $d\eta = \pi^*(\omega)$. Let φ_t be the corresponding 1-parameter family of induced nearly parallel G₂ forms.

Then (i) for each compact special Legendrian submanifold $Y \subset S$, the restriction $\pi|_Y : Y \to Y_X$ is a finite covering of a Lagrangian submanifold $Y_X \subset X$.

(ii) If $Y_X \subset X$ is a compact simply-connected Lagrangian submanifold, thus a Lagrangian 3-sphere, then Y_X lifts to an S^1 -family of Legendrian submanifolds $Y_s \subset S$ such that $\pi(Y_s) = Y_X$ for each $s \in S^1$.

(iii) Assume that $\tau : X \to X$ is an isometric anti-holomorphic involution. If the fixed point set $Y_X \subset X$ of τ is non-empty, then Y_X is Lagrangian and diffeomorphically lifts to a special Legendrian (hence minimal associative) submanifold of S.

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly paralle G₂-structures

Sasaki– Einstein manifolds

Associativ 3-folds

Two types of associatives

Aloff–Wallach spaces

Examples of Legendrian associatives

We consider again the 7-manifold Q(1,1,1) and the S^1 -bundle over a product of $\mathbb{C}P^1$ and the del Pezzo surface P_3 .

Proposition

Let $\pi_M : Q(1,1,1) \to X = S^2 \times S^2 \times S^2$ be the principal S^1 -bundle and φ_t the 1-dimensional family of nearly parallel G_2 -structures on Q(1,1,1). Let $L \subset X$ be a 3-torus defined by $\theta_j = \pi/2, j = 1,2,3$, in the spherical coordinates ϕ_j, θ_j on X.

Then L lifts via π_M to a family of minimal Legendrian 3-tori $L_s \subset M$, $s \in \mathbb{R}/2\pi\mathbb{Z}$. For each s, the 3-torus L_s is associative with respect to φ_t for all t.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly paralle G₂-structures

Sasaki– Einstein manifolds

Associativ 3-folds

Two types of associatives

Aloff–Wallach spaces

Examples of Legendrian associatives

We consider again the 7-manifold Q(1,1,1) and the S^1 -bundle over a product of $\mathbb{C}P^1$ and the del Pezzo surface P_3 .

Proposition

Let $\pi_M : Q(1,1,1) \to X = S^2 \times S^2 \times S^2$ be the principal S^1 -bundle and φ_t the 1-dimensional family of nearly parallel G_2 -structures on Q(1,1,1). Let $L \subset X$ be a 3-torus defined by $\theta_j = \pi/2, j = 1, 2, 3$, in the spherical coordinates ϕ_j, θ_j on X.

Then L lifts via π_M to a family of minimal Legendrian 3-tori $L_s \subset M$, $s \in \mathbb{R}/2\pi\mathbb{Z}$. For each s, the 3-torus L_s is associative with respect to φ_t for all t.

For the next result it is important that P_3 is a toric variety and has a Kähler–Einstein metric invariant under the \mathbb{C}^* action.

Proposition

There exists a (minimal) associative 3-torus in the nearly parallel G_2 -manifold (S_3, φ_t) , where S_3 is the S^1 -bundle over $\mathbb{C}P^1 \times P_3$ (with c_1 given by the Kähler form as before).

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly paralle G_2 -structures

Sasaki– Einstein manifolds

Associative 3-folds

Two types of associatives

Aloff–Wallach spaces

Associative 3-folds in Aloff–Wallach spaces

The Aloff–Wallach spaces are compact simply-connected 7-manifolds defined as the quotients $W_{k,l} = SU(3)/S_{k,l}^1$ of SU(3) by a circle subgroup $S_{k,l}^1 = \text{diag}(e^{ik\theta}, e^{il\theta}, e^{im\theta})$, where $k > 0, l \neq 0$ are coprime integers and k + l + m = 0.

イロト 不得 トイヨト イヨト ニヨー

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly paralle G₂-structures

Sasaki– Einstein manifolds

Associativ 3-folds

Two types of associatives

Aloff–Wallach spaces

Associative 3-folds in Aloff–Wallach spaces

The Aloff–Wallach spaces are compact simply-connected 7-manifolds defined as the quotients $W_{k,l} = SU(3)/S_{k,l}^1$ of SU(3) by a circle subgroup $S_{k,l}^1 = \text{diag}(e^{ik\theta}, e^{il\theta}, e^{im\theta})$, where $k > 0, l \neq 0$ are coprime integers and k + l + m = 0.

By considering a basis of left-invariant 1-forms on SU(3), one can write down a family of homogeneous co-closed G_2 3-forms φ_W depending on 4 real parameters. If $(k, l) \neq (1, \pm 1)$, then up to homotheties exactly 2, of these φ_W are (proper) nearly parallel (Cabrera, Monar, Swann 1996).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly paralle G₂-structures

Sasaki– Einstein manifolds

Associativ 3-folds

Two types o associatives

Aloff–Wallach spaces

Associative 3-folds in Aloff–Wallach spaces

The Aloff–Wallach spaces are compact simply-connected 7-manifolds defined as the quotients $W_{k,l} = SU(3)/S_{k,l}^1$ of SU(3) by a circle subgroup $S_{k,l}^1 = \text{diag}(e^{ik\theta}, e^{il\theta}, e^{im\theta})$, where $k > 0, l \neq 0$ are coprime integers and k + l + m = 0.

By considering a basis of left-invariant 1-forms on SU(3), one can write down a family of homogeneous co-closed G_2 3-forms φ_W depending on 4 real parameters. If $(k, l) \neq (1, \pm 1)$, then up to homotheties exactly 2, of these φ_W are (proper) nearly parallel (Cabrera, Monar, Swann 1996).

If $(k, l) \neq (1, -1)$, then there is a fibre bundle $\pi_{k,l} : W_{k,l} = SU(3)/S_{k,l}^1 \rightarrow SU(3)/U(2) \cong \mathbb{C}P^2$ with fibres $S^3/\mathbb{Z}_{|k+l|}$, corresponding to an embedding of U(2)as a subgroup consisting of the block-diagonal matrices with blocks $Ae^{i\theta}$ and $e^{-2i\theta}$, $A \in SU(2)$.

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly paralle G_2 -structures

Sasaki– Einstein manifolds

Associative 3-folds

Two types of associatives

Aloff–Wallach spaces

This fibration $\pi_{k,l}$ is not unique. The Weyl group of SU(3) contains an element of order 3 which induces a diffeomorphism $\upsilon : W_{k,l} \to W_{l,m}$. The composition $\pi_{l,m} \circ \upsilon$ defines a different fibration, in general by different spherical space forms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Alexei Kovalev (Cambridge)

Nearly parallel

Sasaki– Einstein manifolds

Associative 3-folds

Two types of associatives

Aloff–Wallach spaces This fibration $\pi_{k,l}$ is not unique. The Weyl group of SU(3) contains an element of order 3 which induces a diffeomorphism $\upsilon : W_{k,l} \to W_{l,m}$. The composition $\pi_{l,m} \circ \upsilon$ defines a different fibration, in general by different spherical space forms.

Theorem

Let φ_W be a homogeneous (left-invariant) nearly parallel G_2 -structure on the Aloff–Wallach space $W_{k,l}$, with $(k,l) \neq (1,\pm 1)$. Then the fibres of $\pi_{k,l}$ are embedded minimal associative 3-folds with respect to φ_W . Furthermore, for suitably 'generic' k, l, the Aloff–Wallach space

 $W_{k,l}$ has three different 4-dimensional deformation families of minimal associative spherical space forms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Alexei Kovalev (Cambridge)

Nearly parallel

Sasaki– Einstein manifolds

Associativo 3-folds

Two types of associatives

Aloff–Wallach spaces This fibration $\pi_{k,l}$ is not unique. The Weyl group of SU(3) contains an element of order 3 which induces a diffeomorphism $\upsilon : W_{k,l} \to W_{l,m}$. The composition $\pi_{l,m} \circ \upsilon$ defines a different fibration, in general by different spherical space forms.

Theorem

Let φ_W be a homogeneous (left-invariant) nearly parallel G_2 -structure on the Aloff–Wallach space $W_{k,l}$, with $(k,l) \neq (1,\pm 1)$. Then the fibres of $\pi_{k,l}$ are embedded minimal associative 3-folds with respect to φ_W .

Furthermore, for suitably 'generic' k, l, the Aloff–Wallach space $W_{k,l}$ has three different 4-dimensional deformation families of minimal associative spherical space forms.

On $W_{1,-1}$ there is only one homogeneous nearly parallel G_2 structure. and the fibres of $\pi_{1,-1}$ are minimal associative $S^2 \times S^1$'s. On $W_{1,1}$ we only show associative S^3/\mathbb{Z}_2 for one of the two homogeneous nearly parallel G_2 structure which is 3-Sasakian. On the other hand, Ball and Madnick (2022) constructed in $W_{1,1}$ associative 3-folds diffeomorphic to S^1 -bundles over a compact surface of any genus $g \ge 0$.

Alexei Kovalev (Cambridge)

G₂ 3-forms

Nearly parallel G₂-structures

Sasaki– Einstein manifolds

Associativ 3-folds

Two types of associatives

Aloff–Wallach spaces

Some open questions

- Our theorem on minimal associatives of Legendrian type Sasaki-Einstein 7-manifolds can probably produce more examples. One would need to determine which Kähler-Einstein Fano 3-folds, e.g. (del Pezzo surfaces)×ℂP¹, have an isometric antiholomorphic involution. One challenge is that the Kähler-Einstein metrics are often given implicitly via existence results for PDEs and vanishing of certain 'obstruction' invariants.
- It would be interesting to find a more systematic description of minimal associative 3-folds in the Aloff–Wallach which includes the known examples.