SINGULAR FOLIFITION PRACUE 2084.

An invitation + Neighborhoools of leaves

) emid

· Simon

Jy. Camille LAURENT-GENGOUX, Joint works with Ruben

RYVKIN (Lyon)

FISCHER (Toipei)

2001S (Jilin)

I What? How to define? Il Why? Where do they appear?

TI Neighborhood of leaves. Is there a lot of them ?

Il What are they?

What is a singular foliation? A first attempt

A first attempt to define singular foliations on M :

Definition

A *partitionifold* of M is a partition of M into connected immersed submanifolds ^a, called leaves.

a. From now on, "submanifold" means by default "immersed submanifolds".

Notation $L_{\bullet}: m \mapsto L_m$.

Question

Should we take it as a definition of singular foliation?

Dynamic

Much better: smooth partitionifold.

Definition

A partitionifold L_{\bullet} is said to be <u>smooth</u> if for every $\ell \in M$ and every tangent vector $u \in T_{\ell}L_{\ell}$, there exists a vector field X through u which is tangent to all leaves.

This forbids isolated lasagnas, magnetic or weind partitioniolds. It is better.

Question

Should we take it as a definition of singular foliation?

Why not

The flow of a vector field tangent to all leaves preserves L_{\bullet} .

Proposition

Let L. be a smooth partitionifold.

- Travelling along a leaf is boring
- ② Every leaf has a transverse structure
- Which is unique
- And there is a Weinstein-splitting theorem.

More explicit maybe?

The flow of a vector field tangent to all leaves preserves L_{\bullet} .

Proposition

- Let L. be a smooth partitionifold.
 - Two points on the same leaves have open neighborhoods on which L_• are isomorphic.
 - **2** For Σ transverse to L, $m \mapsto \Sigma \cap L_m$ is a smooth partitionifold on a neighborhood of $L \cap \Sigma$.
 - And any two such transverse smooth partitionifolds have isomorphic germs.
 - And near any point m, L_• is a isomorphic to the direct product of the leaf by any representative of the transverse structure

is il good? Chow theorem. YES, It has lost (so faz) NO/

Definition

A singular foliation on a smooth manifold M is a subspace This definition has won! $\mathcal{F} \subset \mathfrak{X}_{c}(M)$ which

 (α) is involutive,

 (β) is a $\mathcal{C}^{\infty}(M)$ -module

 (γ) is locally finitely generated.

Wait, this has na leaves! Let (M,7) be as above

Leaves are equivalence classes of a given by month, iff X,... Xpe Ju s.t.

$$\varphi_1^{\chi_1} \circ \cdots \circ \varphi_1^{\chi_p}(m_o) = m_1$$

<u>Theorem</u>: (Hormann (55) Nacioya, Androulidakir (75) - Shan oblis Let (M,7) be a singular folicition. J DeF 1 ⇐⇒ DeF 2 2) and leaves form y smooth partitioniFold of M.

NOT INJECTIVE SURJECTIVE.

What are the examples?

txomples 2 Poisson monifaloby Image & anchon Sus pension Lie group lections mop of c a Lie Scoinstrepic 2 a a Jubmanikaldos a gebrai Poiedo tombent to blent W SMD Santa Stelon il Santa Stelon il Sides (voninhing il) Frenential)porators Schild and Contraction of the Kolector Fields Emgencie Vector Bields Ka Billow My by vonishing at a given orden et a given point

A pure scandal!

Open question: Ane vector Fields on TR vanishing ut order 2 at 0 the image through the anchor map of a Lie algebroid.

Open question: Is any S.F. the intege of a Lie algebraid (near any point)? A Through Q-maniFolds! (Lavan -strable)

overview. Ah Androeilideris showed landise smoothness. - Skandalis holonomy groupoid -) Congray oids its c= algebra Clussifi-- cretions showed #Index theorems ... * Prænde ellipticity.... * K-K theory De formations (Lavour ons * YUNCKEN chono cleristic * MOHSEN clusses

(M, I) singular Falicition 1) Leaves moche sense 2) Transverse singular Folicitions moke sense All transieron are the same

About transversols

Some vocabulary Let (M,7) be a singular Faliation: DeF: 11 Inner - Symmetry (Inn) el Symmetry. (at Formal) level 3) Outer symmetry (Out) Inn (h) -> Sym(h) 7, Oul-(h) Let (M, J) be a singular choose à leage Example: Folication

The formal setting

Thm: (CLG, Simon Fischer) given L+ (D, 7) 31-1 correspondence between (i) as-jets of S.F. with leaf L and transverse to (11) Triplets made of · A Galois cover [->L +An extension Innon_s H→T(Č,U) wifh H⊆Sym(?)
 +An H-principal Guendle

Corollary 3.12. Let L be a manifold and $(\mathbb{R}^d, \mathcal{T}_0)$ be a formal singular foliation near 0 which vanishes quadratically. There is a one-to-one correspondence between the three following sets:

- (i) singular foliations along a leaf L with a transverse model $(\mathbb{R}^d, \mathcal{T}_0)$, and
- (ii) pairs made of a Galois cover $\tilde{L} \to L$ together with a group extension of the form

Inner
$$(\mathcal{T}_0) \hookrightarrow H \to \pi_1(\tilde{L}, L)$$

where $H \subset \text{Sym}(\mathcal{T}_0)$, up to conjugation by an element in $\text{Sym}(\mathcal{T}_0)$.

(iii) group morphisms $\pi_1(L) \to \operatorname{Out}(\mathscr{T}_0)$, up to conjugation by an element of $\operatorname{Out}(\mathscr{T}_0)$.

Coro SF own
$$T^2$$
 one given by
Two outer symmetries $\overline{\varphi}, \overline{\psi}$
An element columnities of $[n_h]$
 $\varphi \ \varphi^{-1} \ \varphi^{-1} = k(1)$
where $\varphi, \psi, k(h): Eo, D \rightarrow \mathbb{R}$ are representatives

DéRuji van

