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1 Supervised (machine) learning: frequentist

vs Bayesian.

Supervised Bayesian Inference (SBI) Problem]

X - input space, Y - measurable label space.

Sn :=
(
(x1, y1), . . . , (xn, yn)

)
∈ (X × Y)n - training

data, Tm := (t1, . . . , tm) ∈ Xm - test data.

Problem: estimate the predictive probability

measure PTm|Sn
∈ P(Ym) that governs the

joint distribution
(
y′1, . . . , y

′
m

)
∈ Ym where y′i

is the label of ti.



• Frequentist statistics assumes the i.i.d. condition,
hence it suffices to consider m = 1 and X is
measurable.

• Frequentist regards {P(·|x), x ∈ X} is an
element in Meas

(
X ,P(Y)

)
. Bayesians regards

{P(·|x), x ∈ X} as an element in P(Y)X with
a certainty encoded in a prior probability measure
µ ∈ P(P(Y)X ), which can be seen as the law
of a stochastic process (Ω, µ)×X → P(Y).

• (P(Y),Σw) is a measurable space s.t. ∀A ∈
ΣY, the map P(Y) → R, µ 7→ µ(A), is measurable.
(P(Y)X ,Σcyl) is measurable.



• Frequentists approximate the ”true” h :

X → P(Y) by hH ∈ H ⊂ Meas (X ,P(Y)) via

a loss function and empirical data Sn ∈ (X ×
Y)n. Bayesians predict PTm|Sn

∈ P(Ym) using

prior measure µ and Bayesian inversion.

• Bayesian inversions are best understood

best via the concept of probabilistic morphisms,

which is a categorical approach to Markov

kernels and their calculations.



2. Markov kernel, probabilistic morphism
and Bayesian supervised learning

• A Markov kernel : T ∈ Meas
(
X ,P(Y)

)
.

• For T1 ∈ Meas
(
X ,P(Y)

)
, T2 ∈ Meas (Y,P(Z)

)
T2 ◦ T1 ∈ Meas

(
X ,P(Z)

)
is defined by

T2 ◦ T2(B|x) :=
∫
Y
T2(B|y)dT2(y|x), B ∈ ΣZ

This composition is associative.

• For T ∈ Meas
(
X ,P(Y)

)
, T : X ; Y is the

probabilistic morphism generated by T .



• For µ ∈ P(X ), (T )∗µ ∈ P(Y):

(T )∗µ(B) :=
∫
X
T (B|x)dµ(x).

This defines a faithful functor from Category
of Markov kernels to Category of measurable
spaces.

• For p ∈ Meas
(
X ,P(Y)

)
, the reduced graph

Γ•
p : X → P(X × Y) is defined by:

Γ•
p(x) := δx ⊗ p(x).

Its generated probabilistic morphism is denoted
by Γp : X ; X × Y, the graph of p.



(Γp)∗µ(A×B) =
∫
A
T (B|x)dµ(x). (1)

• ∀X Evaluation EXm : P(Y)X → P(Y)m and

Inclusion mm : P(Y)m → P(Ym) are measurable.

• A Bayesian statistical model (Θ, µΘ,p,X ):

(Θ, µΘ) - probability space, p ∈ Meas
(
Θ,P(X )

)
.

The predictive distribution µX ∈ P(X ) is defined

by µX := (ΠX )∗(Γp)∗µΘ = (p)∗µΘ:

µX (A) =
∫
Θ
p(A|θ)dµΘ(θ), A ∈ ΣX .



• We solve Problem SBI for X = {pt} with
help of Bayesian inversion.

• A Markov kernel q : X → P(Θ) is called
a Bayesian inversion of a Markov kernel p :
Θ → P(X ) relative to µΘ ∈ P(Θ) if

(σX ,Θ)∗(Γq)∗(p)∗µΘ = (Γp)∗µΘ.

• For a Bayesian inversion q(n) : Xn → P(Θ)
of pn : Θ → P(Xn) relative to µΘ, the posterior
distribution of µΘ after seeing Sn ∈ Xn is
q(n)(Sn) ∈ P(Θ). The posterior predictive
distribution PTm|Sn

:= (pn)∗(µΘ|Sn
) ∈ P(Xn).



• A Bayesian model for the supervised inference

problem SBI (Le2025) is (Θ, µΘ,p,P(Y)X ),

where µΘ ∈ P(Θ), p ∈ Meas (Θ,P(Y)X ).

(1) For Xm = (x1, . . . , xm) ∈ Xm, pXm :=

mm ◦ EXm ◦ p : Θ → P(Y) × . . . × P(Y) ↪→
P(Ym) parameterizes sampling distributions

of Ym = (y1, . . . , ym) ∈ Ym, where yi is a label

of xi, with certainty encoded in µΘ.



(2) For Sn ∈ (X×Y)n, µΘ|Sn
:= qΠX (Sn)

(
ΠY(Sn)

)
,

where qΠX (Sn) : Yn → P(Θ) is a Bayesian
inversion of pΠX (Sn) : Θ → P(Yn) relative to
µΘ.

(3) The posterior predictive distribution
PTm|Sn,µΘ

∈ P(Ym) is defined as the predictive
distribution of the Bayesian statistical model
(Θ, µΘ|Sn

,pTm,Ym), i.e.,

PTm|Sn,µΘ
:= (pTm)∗µΘ|Sn

∈ P(Ym).

(4) The aim of a learner is to estimate and
approximate PTm|Sn,µΘ

.



• (P(Y)X , µ, IdP(Y)X ,P(Y)X ) is a universal

model for Bayesian supervised learning in the

following sense. Assume that q(m) : Ym → P(Θ)

is a Bayesian inversion of mm ◦ EXm ◦ p :

Θ → P(Ym) for Xm ∈ Xm. Then p∗ ◦ q(m) :

Ym → P
(
P(Y)X

)
is a Bayesian inversion of

pXm : P(Y)X → P(Ym). Consequently, for any

Tm ∈ Xm and Xn ∈ Xn and w.(pXn)∗µΘ-a.e.

Yn ∈ Yn we have

PTm|Sn(Xn,Yn),µΘ
= PTm|Sn(Xn,Yn),p∗µΘ

(2)

where the RHS of (2) is the posterior predictive

distribution of
(
P(Y)X ,p∗µΘ, IdP(Y)X ,P(Y)X

)
.



3. Bayesian batch learning vs online learning.

• A batch learning algorithm is a map

A : ∪∞
n=1X

n × H → H where X is a sample

space and H is a hypothesis space.

• Online learning: (x1, . . . , xn, ) is a time-

series. We regard Xn ×H → H as a discrete

dynamical system X × (. . . × (X × H) → H.

Online learning advantages: higher computational

efficiency and adaptability.



Theorem 1. Online formula for Bayesian

inversion (Le2025)

• (Θ, µΘ,p,P(Y)X ) - Bayesian model.

• Sn =
(
(x1, y1), . . . , (xn, yn)

)
∈ (X × Y)n,

• Sn−1 =
(
(x1, y1), . . . , (xn−1, yn−1)

)
. Then

qΠX (Sn)(yn, . . . , y1∥µΘ) :=

qxn(yn∥qΠX (Sn−1)
(yn−1, . . . , yn)∥µΘ).

defines a Bayesian inversion

qΠX (Sn)(·∥µΘ) : Yn → P(Θ) of pΠX (Sn) : Θ →
P(Yn) relative to µΘ.



Theorem 2. Posterior predictive distribution

(Le2025)

• (Θ, µΘ,p,P(Y)X ),

• Xn = (x1, . . . , xn) ∈ Xn,

• Tm = (t1, . . . , tm) ∈ Xm.

• For Yn = (y1, . . . , yn) ∈ Yn let Sn := Sn(Xn, Yn)

:=
(
(x1, y1), . . . , (xn, yn)

)
∈ (X × Y)n.

Then Pn
m : Yn → P(Ym), defined by

(y1, . . . , yn) 7→ P
Tm|

(
(x1,y1),...(xn,yn)

)
,µΘ

,

is a reg. conditional probability measure for

µ0Tm,Sn,µΘ
:= m2(pTm,pXn)∗µΘ ∈ P(Ym × Yn)



with respect ot the projection ΠYn : Ym ×
Yn → Yn.

(Θ, µΘ)

pTm

�� pXn
,,

m2(pTm,pXn)
//Ym × Yn

ΠYn

��

Ym Yn.

qXn
kk

2) The posterior predictive distribution PTm|Sn,µΘ
∈

P(Ym) can be computed recursively.



4. Gaussian regression and Kalman filter

In Bayesian regression learning, we learn a
function f ∈ (V )X where: V = Rn

y = f(x) + ε(x) : f ∈ ((V )X , µ), ε(x) ∈ (V, νε(x)).

We model probability of y given x, denoted
by µV |X (x) ∈ P(V ), as generated from

Ad : V × V → V, (x, y) 7→ x+ y.

For µ1, µ2 ∈ P(V ) their convolution is defined
as follows:

µ1 ∗ µ2 := (Ad)∗(µ1 ⊗ µ2) ∈ P(V ).



Then

µV |X (x) = δf(x) ∗ νε(x).

Let pε,p0 ∈ Meas
(
(V )X ,P(V )X

)
be

pε(f) := δf ∗ νε ∈ P(V )X ,

(δf ∗ νε)(x) := δf(x) ∗ νε(x) for x ∈ X ,

p0(f) := δf ∈ P(V )X , δf(x) := δf(x)

Then we can learn f ∈ (V X , µ) using a Bayesian

regression model Θ, µΘ, h, (V )X
)
that generates

two Bayesian supervised learning models

(Θ, µ,p0,P(V )X ) and (Θ, µ,pε,P(V )X ).



For Xm = (x1, . . . , xm) ∈ Xm, f ∈ V X

EV
Xm

(f) :=
(
f(x1), . . . , f(xm)

)
.

(Θ, µΘ, hεXm
:= C⊗m

i=1νε(xi)
◦ δ ◦ EV

Xm
◦ h,m ) is

a Bayesian model for learning the distribution

of (y1 = f(x1) + ε(x1), . . . , ym = f(xm) +

ε(xm)) ∈ V m.

For Sn ∈ (X × V )n, the posterior distribution

µΘ|Sn
∈ P(Θ) is qεΠX (Sn)

(ΠY(Sn)) where

qεΠX (Sn)
: V n → P(Θ) is a Bayesian inversion

of hεΠX (Sn)
: Θ → P(V n) relative to µΘ.



For Tm = (t1, . . . , tm) ∈ Xm, the posterior

predictive distribution PTm|Sn,µΘ
∈ P(V m) of

the tuple
(
y′1 = f(t1), . . . , y

′
m = f(tm)

)
after

seeing Sn is defined as the predictive distribution

of the Bayesian statistical model

(Θ, µΘ|Sn
, h0Tm := mm◦ETm ◦p0◦h,P(V m))

• (V X , µ, IdVX , V X ) is a universal Bayesian

regression model.



• Let X be an arbitrary set. A Gaussian

process regression model is a Bayesian regression

model (RX , µ = GP(m,K), IdRX ,RX ) where

ε(xi) ∈ (R,N (0, ε2(xi))).

• ε(x) > 0 ∀x ∈ X =⇒ pε
Xk

: V X → P(V k)

is a dominated Markov kernel : pε
Xk

(g) ≪
λk. Hence a Bayesian inversion qεXk

: Rk →
P(RX ) of pε

Xk
: RX → P(Rk) relative to

µ = GP(m,K) can be found by the classical

Bayesian inversion formula.



• Theorem 2 in this case. Denote training

points by

Sn =
(
(x1, y1), . . . , (xn, yn)

)
∈ (X ×R)n

. Let Tm = (t1, . . . , tm) ∈ Xm be test points

and Xn := ΠX (Sn) = (x1, . . . , xn).(
RX , µ

)
p0
Tm

xx

��

(Rm ×Rn, µ0(Tm,Sn,µ)
)

ΠRm

tt ΠRn **(
Rm, (p0

Tm
)∗µ

) (
Rn, (pε

Xn
)∗µ

)
,

p0
Tm

◦qεXn
oo

qεXn

ff



(
RX , µ

)
p0
Tm

xx

��

(Rm ×Rn, µ0(Tm,Sn,µ)
)

ΠRm

tt ΠRn **(
Rm, (p0

Tm
)∗µ

) (
Rn, (pε

Xn
)∗µ

)
,

p0
Tm

◦qεXn
oo

qεXn

ff

µ = GP(m,K), µ0(Tm,Sn,µ)
is also a Gaussian

measure on Rm+n.

µ0(Tm,Sn,µ)
= N

(
m(Tm, Sn, µ),Σ(Tm, Sn, µ)

)
.



• Σ(Tm, Sn, µ) is the quadratic form whose

matrix expression in coordinates {e1, . . . , em} ∈
Rm and {em+1, . . . , em+m} ∈ Rn has the following

form:

Σ(Tm, Sn, µ) =

(
Σm,m Σm,n

Σn,m Σnε,nε

)
,

• Σnε,nε is the covariance quadratic form of

the Gaussian measure (pε)∗µ on Rn,

• Σm,m is the covariance quadratic form of

the Gaussian measure (p0
Tm

)∗µ on Rm,



• Σn,m are components of the covariance

matrix of the Gaussian measure µ0(Tm,Sn,µ)
on

Rm+n in the same coordinates.

Recall that Yn = ΠR(Sn) ∈ Rn. By Theorem

2, the posterior predictive distribution PTm|Sn,µ ∈
P(Rm) is a Gaussian measure N (mTm|Sn,µ,ΣTm|Sn,µ),

mTm|Sn,µ = Σm,n(Σnε,nε)
−1(Yn) ∈ Rm

ΣTm|Sn,µ = Σm,m−Σm,nΣ
−1
nε,nεΣn,m ∈ S2

+(Rm).

where Σ−1
nε,nε is pseudo inverse of Σnε,nε.



This sequential update procedure is known

to be equivalent to the celebrated Kalman

filter update equations. Kalman filtering is

much applied in time series analysis, signal

processing, robotic motion planning, trajectory

optimization.



5. Final Remarks

• Unified categorical framework for Bayesian
supervised learning + ∃ universal spaces.

• Equivalence of batch and online learning in
Bayesian settings.

• Connection between Gaussian process regression
and Kalman filtering.

• Priors on universal parameter space P(Y)X

(and YX ) are constructed using projective
systems. (in arXiv:2510.16892).



Open Problems.

1. Consistency of posterior predictive distributions

PTm|Sn,µ for more general class of Bayesian

supervised learning than Gaussian process regression,

e.g., for the class of Dependent Dirichlet

Process.

2. Efficiency of Bayesian neural networks

and neural processes. (BNNs extend traditional

neural networks by incorporating Bayesian

inference, treating network weights as probability

distributions rather than fixed point estimates).
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