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1 Supervised (machine) learning: frequentist
vs Bayesian.

Supervised Bayesian Inference (SBI) Problem]
X - input space, ) - measurable label space.
S ((:Bl,yl), ...,(a:n,yn)> c (X x Y)"-training
data, Ty, := (t1,...,tm) € X - test data.

Problem: estimate the predictive probability
measure PTm|Sn c P(Y™) that governs the
joint distribution (y’ly;n) e Y™ where y/
is the label of ;.



e Frequentist statistics assumes thei.i.d. condition,
hence it suffices to consider m = 1 and X is
measurable.

e Frequentist regards {P(:|z),z € X} is an
element in Meas (X, 7>(y)>. Bayesians regards

{P(:|x),z € X} as an element in P(P)* with

a certainty encoded in a prior probability measure
e P(P(O)Y), which can be seen as the law

of a stochastic process (2, u) xX — P(Y).

e (P(Y),>w) is a measurable space s.t. VA €
>y, the map P(Y) — R, u— p(A), is measurable.
(P(V)*,%.,) is measurable.



e Frequentists approximate the "true” h :
X — P(Y) by hyy € H C Meas (X,P(Y)) via
a loss function and empirical data S,, € (X x
V). Bayesians predict P8, € P(Y™) using
prior measure p and Bayesian inversion.

e Bayesian inversions are best understood
best via the concept of probabilistic morphisms,
which is a categorical approach to Markov
kernels and their calculations.



2. Markov kernel, probabilistic morphism
and Bayesian supervised learning

e A Markov kernel : T € Meas (X,P(y)).

e For T7 € Meas (X,P(y)), T> € Meas (y,P(Z))
T 0Ty € Meas (X,P(2)) is defined by

Ty 0 To(Blz) i= | To(Bly)dTa(yle), B € ¥z
T his composition is associative.

o For T € Meas (X,P())), T : X ~ Y is the
probabilistic morphism generated by 7.



o For € P(X), (T)xpn € P(Y):

(D)ep(B) = [ T(Bla)du(a).

This defines a faithful functor from Category
of Markov kernels to Category of measurable
Spaces.

e For p € Meas (X,P(y)), the reduced graph
DX — P(X x)) is defined by:

I_;,(:c) = 0, Q plx).

Its generated probabilistic morphism is denoted
by I‘B : X~ X x YV, the graph of p.



(Mp)«u(A x B) = [ T(Blo)du(a). (1)

e VX Evaluation Ey, : P(V)* — P(Y)™ and
Inclusion m"™ : P(Y)™ — P(Y") are measurable.

e A Bayesian statistical model (©, ug,p, X):
(©, ug) - probability space, p € Meas (@,73()()).
The predictive distribution uy € P(X) is defined

by py = (HX)*(FE)*#@ = (P)x1o:

pa(A) = [ p(Al6)dne(6), A€ Ty,



e We solve Problem SBI for X = {pt} with
help of Bayesian inversion.

e A Markov kernel q : X — P(©) is called
a Bayesian inversion of a Markov kernel p :
© — P(X) relative to ug € P(O©) if

(cx,0)+«(M)«(P)xue = (Mp)+to-

e For a Bayesian inversion q(”) X" — P(O)
of p’*: © — P(X"™) relative to ug, the posterior
distribution of ug after seeing S, € X" is
q()(S,) € P(©). The posterior predictive
distribution Pr, g = (E”)*(u@|5n) c P(X™).



e A Bayesian model for the supervised inference
problem SBI (Le2025) is (O, uo,p, P(V)Y),
where pug € P(©), p € Meas (©, P(Y)Y).

(1) For Xm = (x1,...,2m) € X, px, ‘=
mmoFEx op: O — P(Y) x...xPQ) —
P(Y™) parameterizes sampling distributions
of Yin = (y1,...,ym) € V", where y; is a label
of z;, with certainty encoded in ug.



(2) For Sn € (XX, pig|s, = dn (s, (My(Sn)),
where qp (g, @ V" — P(©) is a Bayesian
inversion of pn,.(g,): © — P(Y") relative to

1o

(3) The posterior predictive distribution
PTm\Sn,u@ c P(Y™) is defined as the predictive
distribution of the Bayesian statistical model

(©, 1o|S,: PTy, V™), 1€,
ProlSnpe = (P1,)+He|s, € POY™).

(4) The aim of a learner is to estimate and

approximate Pr g -



° (P(y)X,,u,IdP(y)X,P(y)X) is a universal
model for Bayesian supervised learning in the
following sense. Assume that (™) : Yy — P(©)
is a Bayesian inversion of m™ o Eyx op :

© — P(Y™) for X € X™. Then psoql™
ym 7?(7?(3/))(> is a Bayesian inversion of
px, : P(Y)* — P(Y™). Consequently, for any
Tm € X™ and X, € X™ and w.(px, )«uo-a.e.
Y, € Y™ we have -

PTm|Sn(Xn,Yn),,u@ — PTm|Sn(Xn,Yn),p*M@ (2)

where the RHS of (2) is the posterior predictive
distribution of (P(y)?‘, P, 1dp s P(y)?f).



3. Bayesian batch learning vs online learning.

e A batch learning algorithm is a map
AU X" X H — H where X is a sample
space and H is a hypothesis space.

e Online learning: (z1,...,zn,) is a time-
series. We regard X" x H — H as a discrete
dynamical system X x (... x (X x H) — H.
Online learning advantages: higher computational
efficiency and adaptability.



Theorem 1. Online formula for Bayesian
inversion (Le2025)
o (O, uo,p, P(Y)Y) - Bayesian model.

o Sp=((@1,51); s @n,yn)) € (X x I,
® Opn—-1 — ((xlayl)a"'a(xn—layn—l))- Then

Am p(Sy) Wns -5 y1llpe) 1=

qﬂ?n(yanl_lX(Sn_l)(yn—la c e 7y71)||:u@)

defines a Bayesian inversion

an (s, Clle) 1 Y — P(O) of pr,(s,) 1 © —
P(Y"™) relative to ue.



Theorem 2. Posterior predictive distribution
(Le2025)

o (@7M@7p773<y))()7

o X, = (x1,...,2n) € X7,

e Ty = (t1,...,tm) € X™,

eForY, = (y1,...,yn) € YVlet S, ;= Sn(Xn, Yn)

= ((@1,91) -+ (@n,yn) ) € (X x V).
Then PL V" — P(Y™), defined by

(Y1, yn) — P :
" Tm‘((xl,yl),(xn,yn)),,u@
IS a reg. conditional probability measure for

/'L'%m,snpﬂe = m2<me7 an)*,LL@ S P(ym X yn)




with respect ot the projection [lyn : Yy x
Yy — Y.

m?(pr,,,PX,)
(O, M@)Wym X Y

PTm

Myn

PXxp,

Y Y.

2) The posterior predictive distribution Pp, g o €

P(Y™) can be computed recursively.

HO



4. Gaussian regression and Kalman filter

In Bayesian regression learning, we learn a
function f € (V)% where: V =R"

y=f(x)+e(@): fe (V)Y ), elx) € (V,ve(z)).
We model probability of y given z, denoted
by ,uV‘X(a:) € P(V), as generated from

Ad VXV =V (z,y) —x+y.

For uy, uo € P(V) their convolution is defined
as follows:

p1 * o i= (Ad)«(p1 ® u2) € P(V).



Then

Py x(2) = Op(z) * Ve(a)-
Let p¢, p° € Meas ((V)X,P(V)X) be

p°(f) i= 6y xve € P(V)Y,
(0f x ve)(x) 1= 6p(y) * ve(z) for z € X,
pO(f) =687 € POV)Y, 6p(x) =6
Then we can learn f € (VX,M) using a Bayesian

regression model O, ug, h, (V)X) that generates
two Bayesian supervised learning models

(©, 1, p%, P(V)?Y) and (O, u, p%, P(V)F).



For Xm = (z1,...,zm) € X™, fe VX
EX (f) = (f(z1),. .., f(m)).
(O, no, h%m = C®T11Vs($i) 0d o E}ém oh,") is

a Bayesian model for learning the distribution

of (y1 = f(z1) + e(z1),...,ym = f(zm) +
5($m)) cVm,

For S, € (X x V)", the posterior distribution
Hols, € P(O©) is Q%X(Sn)(ﬂy(sn)) where
an.(sy - V" P(©) is a Bayesian inversion

of hgﬂx(sn) . © — P(V™) relative to ng.



For T, = (t1,...,tm) € X™, the posterior
predictive distribution Pr, g . € P(V™) of
the tuple (y’l = f(t1),...,y.,, = f(tm)) after
seeing Sy, is defined as the predictive distribution
of the Bayesian statistical model
(@7M@|Sn7h%m = mmoETmopOoh,P(Vm))

o (V* pIdyx, V<) is a universal Bayesian
regression model.



e Let X be an arbitrary set. A Gaussian
process regression model is a Bayesian regression
model (R, = GP(m, K),Idgx, RY) where
e(z;) € R,N(0,2%(z;))).

oe(:c)>0‘v’x€X=:>p§(k:VX—>73(Vk)
is a dominated Markov kernel : p%k(g) <
\i- Hence a Bayesian inversion g5, RF —
P(RY) of P, RY — P(RF) relative to
uw = GP(m,K) can be found by the classical
Bayesian inversion formula.



e Theorem 2 in this case. Denote training
points by

Sn = ((wl,yl), e (azn,yn)> c (X xR)"

Let Trn = (t1,...,tm) € X™ be test points

m n ,,0
Rm xR "LL(Tm,Sn,,u)
0]

(R 0, 50




(R 0, 50

uw = GP(m, K), ”?Tm,Sn,u) is also a Gaussian

measure on R™Mt7,
M(()Tm,sn,ﬂ) — N(’m(Tm, Sn, 1), 2 (Tm,, Sn, M)) .



o > (T, Sn, ) is the quadratic form whose
matrix expression in coordinates {eq1,...,em} €
R™ and {e;,41,.--,em+m} € R™ has the following
form:

Z(Tm7 Sn):u) — ( Zm,m Zm,n ) )

Zn)m Znéﬁ,n&?

® > e pe IS the covariance quadratic form of
the Gaussian measure (p®)«u on R",

® > ,»m IS the covariance quadratic form of
the Gaussian measure (p%n)*,u on R™,



e >, m are components of the covariance
matrix of th ian m re 19 on
atrix of the Gaussia easure pep g

R™1" in the same coordinates.

Recall that Y, = MNr(Sn) € R™. By Theorem
2, the posterior predictive distribution PTm|Sn7M c
P(R™) is a Gaussian measure N'(mq, 15, 1 13S0

me|Sn,,u — Zm,n(zng,ng)_l(yn> - R™

ZTm|an,M — Zm’m_zmanzgsl,nszmm = S?I-(Rm)‘

where Z;% e IS pseudo inverse of 2 ;¢ ;e.

n



This sequential update procedure is known
to be equivalent to the celebrated Kalman
filter update equations. Kalman filtering is
much applied in time series analysis, signal
processing, robotic motion planning, trajectory
optimization.



5. Final Remarks

e Unified categorical framework for Bayesian
supervised learning + 3 universal spaces.

e Equivalence of batch and online learning in
Bayesian settings.

e Connection between Gaussian process regression
and Kalman filtering.

e Priors on universal parameter space P(Y)<*
(and Y¥) are constructed using projective
systems. (in arXiv:2510.16892).



Open Problems.

1. Consistency of posterior predictive distributions
PTm|Sn,,U for more general class of Bayesian
supervised learning than Gaussian process regression,
e.g., for the class of Dependent Dirichlet
Process.

2. Efficiency of Bayesian neural networks
and neural processes. (BNNs extend traditional
neural networks by incorporating Bayesian
inference, treating network weights as probability
distributions rather than fixed point estimates).
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