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Plan

Aims:
1 A (reasonably general) theory of Kähler (symplectic) orbifolds and

Seifert bundles,
2 a description of (some) existence problems in Sasakian geometry,
3 an application of (1) to (2), a sample of results,
4 (very rough) description of methods of proofs.



Contact forms

(M2n+1, η), η ∈ Ω1(M), η ∧ (dη)n 6= 0. everywhere on M.

There exists ξ ∈ χ(M) such that

η(ξ) = 1, ξydη = 0

(Reeb vector field).

ξ determines a 1-dimensional foliation Fξ (characteristic foliation) and
the decomposition

TM = D⊕ Lξ,D = Ker η.



Examples

M = R2n+1, coordinates
(x1, ..., xn, y1, ..., yn, z), η = dz −

∑n
i=1 yidxi , η ∧ (dη)n 6= 0.

M = S2n+1 ⊂ R2n+2 with coordinates (x0, ..., xn, y0, ..., yn) and

η =
n∑

i=0

xidyi − yidxi |S2n+1 .

Check up:

η ∧ (dη)n = 2nn!(
∑

xidx0 ∧ dy0 ∧ · · · d̂xi ∧ dyi ∧ · · · ∧ dxn ∧ dyn−∑
yidx0 ∧ dy0 ∧ · · · ∧ dxi ∧ d̂yi ∧ · · · ∧ dxn ∧ dyn|S2n+1 .

Take β =
∑n

i=0(xidxi + yidyi and check that

β ∧ η ∧ (dη)n = 2nn!
n∑

i=0

((xi)
2 + (yi)

2)dx0 ∧ dy0 ∧ · · · ∧ dxn ∧ dyn.



Sasakian manifolds

We say that (M, η) admits a Sasakian structure (M,g, ξ, η, J), if
there exists an endomorphism J : TM → TM such that
J2 = − id +ξ ⊗ η,
dη(JX , JY ) = dη(X ,Y ), for all X ,Y , and dη(JX ,X ) > 0,X ∈
Ker η,
ξ is Killing (Lξg = 0) with respect to the Riemannian metric

g(X ,Y ) = dη(JX ,Y ) + η(X )η(Y )

the almost complex structure I on the contact cone
C(M) = (M × R+, t2g + dt2) defined by

I(X ) = J(X ),X ∈ Ker η, I(ξ) = t
∂

∂t
, I(t

∂

∂t
) = −ξ

is integrable.



Thinking about Sasakian manifolds

Boothby-Wang bundle

(X , ω) symplectic, [ω] ∈ H2(X ,Z) =⇒
S1 → M → X - principal circle bundle determined by [ω]

Theorem
The Boothby-Wang circle bundle admits a K-contact structure. If (X , ω)
is Kähler, then M is Sasakian.

Example
Hopf bundle

S1 → S2n+1 → CPn,

S2n+1 ⊂ Cn+1,

S1 acts on S2n+1 by multiplication.



Explanation of Boothby-Wang example

Kobayashi’s theorem: there exists a connection form
η ∈ Ω1(M,L(S1)) = Ω1(M,R) such that p∗ω = dη, =⇒
η is a contact form, since dη is non-degenerate on the horizontal
distribution (TM = 〈ξ〉 ⊕H),
using 〈ξ〉 ⊕H define a Riemannian metric g on M in a way to get a
Riemannian submersion with totally geodesic fibers =⇒ Lξg = 0,
if J is integrable on H (or, X is Kähler), then I is integrable on
C(M) (non-trivial calculation of the tensor

NI(U,V ) = [IU, IV ]− [U,V ]− I[U, IV ]− I[IU,V ]

separately for vector fields in H,and ξ, t ∂∂t ).



Reference

S. Kobayashi, Topology of positively pinched Kähler manifolds, Toholu
Math. J. 15(1963), 121-139.



General Sasakian manifolds

Rukimbira’s theorem
If a manifold M admits a Sasakian structure, it also admits a
quasi-regular Sasakian structure.

Quasi-regular⇐⇒ Seifert bundle over Kähler orbifold determined by
orbifold Kähler class.

Aim:
Create a reasonably general theory of Seifert bundles over Kähler
orbifolds and use it to solve (some) existence problems in Sasakian
geometry.



Advertising Sasakian geometry

Some reasons (chosen at random)
The structure (M,g, ξ, η, J) is a tool to construct η-Einstein metrics
Ric(g) = λg + νη ⊗ η, λ, ν ∈ R.
Quasi-regular Sasakian structures is a tool to construct Einstein
metrics (Sasaki-Einstein metrics)
Every simply connected Sasaki-Einstein manifold admits a Killing
spinor (Friedrich-Kath theorem)

These have applications in mathematical physics, esp. in General
Relativity, supergravity theories, supersymmetry etc....

On the other hand, there are obstructions to the existence of Sasakian
structures (for example, Kollár’s obstructions in dimension 5) =⇒

Existence problems for Sasakian structures yield interesting
mathematics.



Orbifolds: definition

X , Hausdorff, paracompact with atlas U = {(Ũi , ϕi , Γi)}, Ũi open in
Rc(Cn), Γi < GL(n,R) finite,
Ui = Ũi/Γi , ϕi(γp) = ϕi(p),p ∈ Ũi ,
X = ∪iϕi(Ũi) = ∪iUi , Ui open in X ,
(Ũi , Γi , ϕi) and (Ũj , Γj , ϕj), Ui ,Uj and x ∈ Uj ∩ Uj there exists

Uk ⊂ Ui ∩ Uj , and (Ũk , Γk , ϕk ),

with
λik : Ũk → Ũi

commuting with the actions of Γk and Γi .
Cyclic 4-orbifold: Ũi = C2, Γi = Zm = 〈ψ〉 ⊂ U(2),

ψ(z1, z2) = (ψj1z1, ψ
j2z2), gcd(j1, j2,m) = 1.



Examples of orbifolds

1 M - manifold, Γ acts on M properly discontinuously (but not freely).
Then p ∈ M has finite isotropy Γp and γŨp ∩ Ũp = ∅, γ 6∈ Γp and
γŨp = Ũp, γ ∈ Γp =⇒

Up = Ũp/Γp

yield an orbifold atlas on X = M/Γ.
2 S2 as a Riemann sphere C ∪∞ with atlas

ϕ0 : C→ V0 = S2 \ {0}, ϕ∞ : C→ V∞ : C→ S2 \ {∞}.

with

ϕ0(z) = zm, ϕ∞(w) = w−n, λ : C→ C, λ(z) = (
1
z

)
m
n .



Geometric structures on orbifolds (roughly)

X an orbifold with orbifold atlas {Ũα, ϕα, Γα}. An orbi-tensor on X is a
collection of tensors Tα on each Ũα that are Γα-invariant and that
agree on intersections. Thus:

orbi-differential forms Ω∗orb(X ),
orbi-Riemannian metrics g,
orbi-almost complex structures J,
orbi-Kähler metrics h = g + i

√
−1ω,dω = 0.



Regular and singular points of an orbifold

For x ∈ X and a chart U around x , the order m(x) of the isotropy
subgroup is called the order of the isotropy. We condsider 4-orbifolds
X whose points are divided into:

regular, if m(x) = 1
isolated singular ( isotropy) points,
singular (isotropy) curves (with multiplicities mi ), that is, there are
Di , with all x ∈ Di , m(x) = mi .



Types of local models of 4-orbifolds

ξ(z1, z2) = (ξj1z1, ξ
j2z2),

m1 = gcd(j1,m),m2 = gcd(j2.m) =⇒ gcd(m1,m2) = 1 =⇒

m1m2d = m, j1 = m1e1, j2 = m1e1,m = m1c1 = m2c2.

1 If gcd(j1,m) = 1, gcd(j2,m) = 1 =⇒ (ξj1z1, ξ
j2z2) 6= (z1, z2),

except (0,0) =⇒ the quotient is singular: C2/Zm, m1 = 1,m2 = 1
=⇒ x is an isolated singular point.

2 If m1,m2 > 1,d = 1 =⇒ m = m1m2, then Zm-action on C2 is
equivalent to the product action of Zm1 × Zm2 on C× C
(homeomorphic to C× C).

3 fixed points in case (2) are non-isolated, they form transversal
surfaces D1 = {(z1,0)},D2 = {(0, z2)}.

Type (1) - non-smooth, type (2) - smooth points. There are more
possibilities, but they fall into smooth and non-smooth cases.



Simpler case: smooth 4-orbifolds

Definition
We say that a singular point x ∈ X is smooth if U is homeomorphic to
a ball in R4.

Proposition [Rojo-Muñoz-AT]
Let X be a smooth oriented 4-manifold with embedded surfaces Di
intersecting transversally, and coefficients mi > 1 such that
gcd(mi ,mj) = 1, if they intersect. Then there exists a smooth orbifold
structure on X with isotropy surfaces Di of multiplicities mi .

Proof. Use the manifold atlas for all points not in D. Use the
Riemannian metric on a manifold X , normal bundle for open V ⊂ D,
trivialize Nε

D
∼= V × Bε(0) = Ũ and define Zm-action on Ũ by

ξ(z1, z2) = (z1, ξz2).



Example: smooth symplectic 4-orbifold

Proposition [Rojo-Muñoz-AT]
Let (M, ω) be a symplectic 4-manifold with symplectic surfaces Di
intersecting transversally and positively, and coefficients mi > 1 such
that gcd(mi ,mj) = 1 if Di ∩ Dj 6= ∅. Then there is a smooth symplectic
orbifold structure on X.

For the proof, use the manifold symplectic form and compatible
Darboux charts...



How to construct a non-smooth Kähler orbifold?

A cyclic singular symplectic (Kähler) orbifold: singular points are
isolated (then they are non-smooth);
Embedded symplectic surfaces Di intersect nicely, if
Di = {z1,0},Dj = {0, z2} in the Darboux chart.

Theorem [Muñoz] Let X be a cyclic Kähler 4-orbifold, with a set of
singular isolated points P. Let Di be embedded curves intersecting
nicely. Take coefficients mi > 1 such that gcd(mi ,mj) = 1, if
Di ∩ Dj 6= ∅. Then there exists a Kähler orbifold structure X with
isotropy surfaces Di of multiplicities mi , and singular points x ∈ P of
multiplicity m = d(x)

∏
i∈Ix mi , where Ix = {i | x ∈ Di}.



Seifert bundles

Let X be a cyclic oriented 4-orbifold. A Seifert bundle over X is an
oriented 5-manifold M endowed with a smooth S1-action and a
continuous map π : M → X such that for an orbifold chart (U, Ũ,Zm, ϕ)
there is a commutative diagram

(S1 × Ũ)/Zm
∼=−−−−→ π−1(U)y π

y
Ũ/Zm

∼=−−−−→ U

where the action of Zm on S1 is by multiplication by exp(2πi/m), and
the top diffeomorphism is S1-equivariant.



Seifert bundles: a condition on local invariants of X

Let

(X ,P,∆ =
∑

i

(
1− 1

m i

)
Di)

For each point x ∈ P with multiplicity m = dm1m2 we have an adapted
chart U ⊂ C2/Zm with action

exp(2πi/m)(z1, z2) = (e2πij1/mz1,e2πij2/mz2),

We call jx = (m, j1, j2) the local invariants at x ∈ P. Assume that
D1 = {(z1,0)} is one of the isotropy surfaces with multiplicity m1 and
assume that each singular point x ∈ P lies in a single isotropy surface,
if any. The local invariant of D1 is by definition, jD1 = (m1, j2), where j2
is considered modulo m1. It is compatibility condition.



The first Chern class of a Seifert bundle

Given a Seifert bundle π : M → X , the order of a stabilizer (in S1) of
any point p in the fiber over x ∈ X is denoted by m = m(x).
For a Seifert bundle M → X define the first Chern class as follows. Let
l = lcm(m(x) | x ∈ X ). Denote by M/l the quotient of M by Zl ⊂ S1.
Then M/l → X is a circle bundle with the first Chern class
c1(M/l) ∈ H2(X ,Z). Define

c1(M) =
1
l
c1(M/l) ∈ H2(X ,Q).



How to construct Seifert bundle?

Theorem.[Muñoz-AT] Let X be a cyclic 4-orbifold with a complex
structure and Di ⊂ X complex curves of X which intersect
transversally. Let mi > 1 such that gcd(mi ,mj) = 1 if Di and Dj
intersect. Suppose that there are given local invariants (mi , ji) for each
Di and jp for every singular point p (and they are compatible). Choose
any 0 < bi < mi such that jibi ≡ 1(mod mi). Let B be a complex line
bundle over X. Then there exists a Seifert bundle M → X with the
given local invariants and the first orbifold Chern class

c1(M) = c1(B) +
∑

i

bi

mi
[Di ].

Moreover, if X is a Kähler cyclic orbifold and c1(M) = [ω] for the
orbifold Kähler form, then M is Sasakian.



Comparison

B-W: S1 → M → (X , ω) corresponding [ω] ∈ H2(X ,Z)

VM+AT:

(X ,P,∆ =
∑

i

(
1− 1

m i

)
Di), (m, j1, j2), (m1, j2)...

c1(M) = c1(B) +
∑

i

bi

mi
[Di ]

Conclusion
More flexibility: one wants to choose local invariants mi , ji ,bi , P,∆ in
an "arbitrary" way, ensuring, however, c1(M) to be represented by
some Kähler form!



Smale-Barden manifolds: the first interesting
dimension

A 5-dimensional simply connected manifold M is called a
Smale-Barden manifold. These manifolds are classified by their
second homology group over Z and the Barden invariant.
Write H2(M,Z) as a direct sum of cyclic groups of prime power order

H2(M,Z) = Zk ⊕
(
⊕
p,i

Zc(pi )

pi

)
,

where k = b2(M). Let i(M) be the smallest integer j such that there is
α ∈ H2(M,Z) such that w2(α) 6= 0 and α has order 2j . i(M) and is
called the Barden invariant.



Classification theorem

Any Smale-Barden manifold is uniquely determined up to
diffeomorphism by the data

H2(M,Z) = Zk ⊕
(
⊕
p,i

Zc(pi )

pi

)
,

and i(M).
Thus, Smale-Barden manifolds are classfied by b2(M), torsion groups
in H2(M,Z) and i(M).



Basic cohomology

Let (M, ξ, η, g, J) be Sasakian.

Definition
A differential form α ∈ Ω(M) is called basic, if

ξyα = 0 = ξydα = 0.

The differential complex

(ΩB(M),d),ΩB(M) = {α ∈ Ω(M) |α basic}

yields the basic cohomology H∗B(M).



Definite Sasakian structures

Let Fξ be the characteristic foliation of the Reeb vector field ξ on the
Sasakian manifold M. Then

TM = D⊕ Lξ

Lξ al line bundle tangent to leaves of Fξ. D is a complex vector bundle,
hence there are basic Chern classes defined as
ck (Fξ) = ck (D) ∈ H2k

B (Fξ) as elements of the basic cohomology of Fξ.

Definition
A Sasakian structure is called negative if c1(Fξ) can be represented by
a negative definite (1,1)-form, and it is called positive, if it can be
represented by a positive definite (1,1)-form. It is null, if c1(Fξ) = 0.



Open problems (Boyer-Galicki, Sasakian Geometry,
2009)

1 (fundamental) Which Smale-Barden manifolds admit Sasakian
structures?

2 are there Smale-Barden manifolds which admit K-contact, but do
not admit Sasakian structures?

3 which simply connected rational homology spheres admit
Sasakian structures?

4 (weaker) which simply connected rational homology spheres
admit both positive and negative Sasakian structures?

5 determine when #k (S2 × S3) admits a negative Sasakian
structure?

6 determine, when #k (S2 × S3) admits a null Sasakian structure?



Sample of results

In

V. Muñoz, AT,M.Schütt, Negative Sasakian structures on
simply-connected 5-manifolds, Mathematical Research Letters
29(2022), 1827-1857

we give complete answers to questions 4,5.
In greater detail:
Theorem 1. Any simply connected rational homology sphere admitting
positive Sasakian structure admits also a negative Sasakian structure.

Theorem 2. Any #k (S2 × S3) admits negative Sasakian structures.



Context

Theorem (Kollár) Suppose that a rational homology sphere admits a
positive Sasakian structure. Then M is spin, and H2(M,Z) is one of the
following:

0,Z2
m,Z4

5,Z4
4,Z

4
3,Z

6
3,Z

8
3,Z

2n
2

where n > 0,m ≥ 2, m not divisible by 30. Conversely, all these cases
do occur.

Theorem (Kollár) Let M be a Sasakian 5- manifold with positive
Sasakian structure. Then, a positive Ricci curvature metric (resp.
Einstein metric) on X can be lifted to a positive Ricci curvature metric
(resp. Einstein metric) on M. Moreover, the lifted metric is also
Sasakian (thus, it is Sasakian-Einstein).



Context, contd.

Kollár’s theorems yielded (2005) new examples of Einstein metrics on
simply connected homology spheres (and even on spheres).

Negative Sasakian structures do not yield Sasaki-Einstein metrics, but
yield η-Einstein metrics:

Ricg = λg + νη ⊗ η

(a "transversal version of the Aubin-Yau theorem") (Boyer-Galicki).



Realization problem

To answer Question 4 of Boyer and Galicki, one needs to construct a
manifold M with b2(M) = 0, and torsion groups in the second
homology as in Kollár’s theorem and with a negative Sasakian
structure.



General scheme of proof

1 A quasi-regular Sasakian structure arises from Seifert bundle
M → X , where X is a Kähler orbifold (Rukimbira),

2 There is a method of "Kollár’s type" of calculating H∗(M,Z) from
H∗(X ,Z), in particular H2(M),Z),

3 CONSTRUCT a Kähler orbifold X and a Seifert bundle M → X
with such H∗(X ) that H2(M) has prescribed b2 = 0, or b2 = k ,
torsion groups and i(M), AND π1(M) = 1. If such X is constructed,
we get M as the rational homology sphere or #k(S2 × S3)

4 Also, EXPRESS in these terms the negativity condition, and check
if it is compatible with the other data.



(1): a method of construction of Kähler orbifolds

Theorem[Muñoz-Schütt-AT] Let X be a smooth complex surface
containing a chain of smooth rational curves E1, . . . ,El of
self-intersections −b1,−b2, . . ., −bl , with all bi ≥ 2, intersecting
transversally. Let π : X → X̄ be the contraction of E = E1 ∪ . . . ∪ El .
Then X̄ has a cyclic singularity at p = π(E), with an action Zm on C2

given by (z1, z2)→ (ξz1, ξ
r z2),0 < r < m. Moreover, if D is a curve

intersecting transversally a tail of the chain (that is, either E1 or El but
not E1 ∩ El ), then the push down curve D̄ = π(D) is an orbismooth
curve in X̄ .

Note: the theorem is derived from results in

P. Popescu-Pampu, Introduction to Jung’s method of resolution of
singularities, 2011.



(2): Kollár’s type results on topology of Seifert bundles

Theorem[Muñoz-AT] Suppose that π : M → X is a quasi-regular
Seifert bundle over a cyclic orbifold X with isotropy surfaces Di and set
of singular points P. Let µ = lcm(mi). Then H1(M,Z) = 0 if and only if

1 H1(X ,Z) = 0,
2 H2(X ,Z)→ ⊕H2(Di ,Zmi ) is onto,
3 c1(M/µ) ∈ H2(X − P,Z) is primitive.

Moreover, H2(M,Z) = Zk ⊕ (⊕
i
Z2gi

mi
), gi = genus of Di , k + 1 = b2(X ).



(4): Canonical class and negativity condition

Let X is a complex surface (orbifold). A canonical line bundle KX is
Λ2T ∗X (a determinant line bundle oven X ). An orbifold canonical class
is

K orb
X = KX + ∆

where ∆ is a branch divisor.

Theorem [Boyer-Galicki] A manifold M admits a quasi-regular negative
Sasakian structure if and only if the base X of the Seifert bundle
M → X has the property that the canonical class K orb

X is ample.

Ampleness (Nakai-Moishezon criterion) A line bundle L→ X is
ample, if and only if

c2
1(L) > 0 and L · D > 0

for any effective divisor D.



What to do "in practice" (Example of Theorem 1)
1 Fix some data for rational homology sphere, that is, torsion group,

say Z2n
2

2 find smooth algebraic surface Y with a chain of curves Ei as in the
general construction, and blow down this configurattion, getting an
orbifold X , and a branch divisor ∆ =

∑
i
(
1− 1

m i

)
Di (assign

appropriate mi ),
3 using algebraic geometry formulas (e.g. "adjunction formula"),

calculate K orb
X , the branch divisor should ensure the ampleness of

K orb
X ,

4 construct a Seifert bundle choosing

c1(M) = c1(B) +
∑

i

bi

mi
[Di ]

in way to ensure the primitivity condition and the "correct
homology", that is, b2(M) = 0 and the torsion Z2n

2 , and
c1(M) = [ω] for some orbifold Kähler form [ω] on X .

5 show that π1(M) = 1 under the choices made.



Conclusion

The key points are:
to guess what smooth algebraic surface to take,
what chain of curves Ei should be taken, and calculate the rest,
the flexibility is ensured by the choice of local invariants and the
branch divisor.



Example of the choice: H2(M) = Z2n
2

1 The algebraic surface: the Hirzebruch surface Fn,
2 the chain: only one curve - infinity section E∞, X is a blowdown of

Fn along E∞,
3 the branch divisor ∆ = (1− 1

m )D +
∑s

i=1(1− 1
mi

)Di , where

D = C + βE0,Di = Eσi

m1, ...,ms are pairwise coprime, mi a coprime to m and to n,
β ≥ 1, C is a fiber of the fibration F→ C1.



Notation and formulas

1 Fn = P(OCP1 ⊕ OCP1),
2 "infinity section": σ∞ : CP1 → OCP1(n) gives the image E∞ of

(σ, 0), where σ : CP1 → OCP1(n) is a holomorphic section
3 section σ defines the image C of (σ, 1) in Fn.

Intersection numbers: E∞ · E∞ = −n, Ei · Ei = n, C2 = 0, E0 · C = 1.

Adjunction formula for orbifolds:
K orb

X ·D + D2 = −χorb(D) = 2g(D)− 2 +
∑

p(1− 1
np

), where np are the
orders of isolated singularities.

Genus formula: D2 + KX · D = 2g(D)− 2.



Verification of ampleness

One calculates first KX using adjunction formlua to get

KX = −(n + 2)C

and then
K orb

X = KX + ∆ =

(−(n + 2) + (1− 1
m

)(1 + βn) + n
n∑

i=1

(1− 1
mi

))C.

The ampleness is equivalent to the positivity of the coefficients in this
expression.



Null Sasakian structures

In

A. Cañaz, V. Muõz, M. Schütt, AT, Quasi-regular Sasakian and
K-contact structures on Smale-Barden manifolds, Revista Mat.
Iberoam. 38(2022), 1027-1050

we "did the same" for Seifert bundles over orbifold K3 surfaces and got
the full answer to Question 6 of Boyer and Galicki.
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A Survey

AT: Some topics in Sasakian geometry, a survey, in: V. Rovenski, P.
Walczak, R. Wolak (Eds.), Differential Geometric Structures and
Applications, Springer, 2024.


