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Introduction

Computations [Kac, Zhu, Dong-Li-Mason, Mason-Tuite-Z, Tuite-Z]
related to vertex algebras were always a source of new identities in
number theory. While finding closed expressions for vertex operator
algebra characters, we finally obtain relations among modular forms,
fundamental kernels, and g-series.

Various ways to compute characters for vertex operator algebra modules
lead to generation of modular forms as well as interesting identities for
them in terms of elliptic functions. In particular, [Mason-Tuite-Z]
considerations of the twisted partition function on the torus for the rank
two free fermion vertex operator superalgebra allow us to provide a pure
algebraic explanation of Jacobi triple product identity [Kac].

At the same time, computations of higher correlation functions on a
genus one Riemann surface provide us [Mason-Tuite-Z] with an elliptic
version of the Fay's trisecant identity [Fay] known from algebraic
geometry. Various identities for powers of the 7-function appear [Kac] in
studies of affine Lie algebras. Those are important in number theory.



Torus correlation functions

For an automorphism g twisted module V for a vertex operator algebra
V we find closed formulas for correlation functions of vertex operators )
on the torus, g = €®™7, with local coordinates z; , vie V, 1 < i < n,
[Mason-Tuite-Z]:
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where L(0) is the Virasoro algebra generator, and C is central charge.

The formal parameter is associated to a complex parameter on the torus.
Final expressions are given by determinants of matrices with elements
being coefficients in the expansions of the regular parts of corresponding
differentials: Bergman (bosons) or Szeg6 (fermions) kernels
[Mason-Tuite-Z].



In this talk we derive some new genus two generalizations of the
fundamental formulas for powers of the n-function in terms of deformed
versions [Dong-Li-Mason, Mason-Tuite-Z] of Weierstrass functions and
Eisenstein series.

In particular, we find that powers of the modular discriminant are
expressed (up to theta-functions multipliers) via determinants of finite
matrices containing combinations of deformed modular functions. In the
proof we use the generalized elliptic version of the Fay's trisecant identity
for a vertex operator superalgebra.



Modular discriminant and Eisenstein series

The modular discriminant is defined by A(7) = n(7)%*, where (1) is the
Dedekind eta-function, g = ™7, n(1) = ¢¥** [ [_,(1 — ¢").

Recall E,(7) is equal to 0 for n odd, and for n even is the Eisenstein
series [Serre]
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where B,,(0) is the n-th Bernoulli number
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One finds [Ramanujan] the relations: Eg = Ef, Eig = E4Eg,
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Classical Gavan formula:

Then the fundamental classical formulas for the modular discriminant
follow
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The next formula is due to F. Garvan:
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which was then proved and generalized in [Milne]. In this talk we give
various generalizations for higher powers of the modular discriminant
computed as a determinant of matrices containing deformed Weierstrass
functions [Dong-Li-Mason, Mason-Tuite-Z].



The generalized Garvan formulas
Computations of the twisted partition function Z\(/l) [ 2 ] (1) for the

free fermion vertex operator superalgebra leads to two alternative
expressions (see, e.g., [Kac, Mason-Tuite-Z]) as expansion over a basis:
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in terms of the torus theta series with characteristics:

g [ ’ ] (z,7) = Y exp [im(n + a)27 + (n + a)(z + 2mib)] .
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Here we define f = e2"iaa(0), g = e27”'5"”(0), with some parameters «,
B € R, and zero mode a(0) of a Heisenberg subalgebra in the rank two
free fermionic vertex operator superalgebra [Mason-Tuite-Z].

We also define ¢ = e=278 and § = e~2™"®. Note that
zM { ; ] (1) = 0 for (6,6) = (1,1), i.e., (a, 8) = (0,0) (mod Z).

Comparing two representations we obtain Jacobi triple product formula
[Kac] which can be rewritten in the form:
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corresponds to sphere self-sewing to form a torus [Tuite-Z]. Thus we get
the identity for the first power of the n-function.



Deformed Weierstrass functions

In [Dong-Li-Mason, Mason-Tuite-Z] the deformed Weierstrass functions
(which can be expressed via deformed Eisenstein series) were defined and
studied:
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for g = €2™7, and where > means we omit n = 0 if (§,¢) = (1,1).
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Note that Pa(z,7) = p(z,7) + E2(7), ¢ = exp(2mi)) for 0 < A < 1. The
Weierstrass p-function periodic in z with periods 27/ and 27iT is
p(z,7) =272+ 2 [m—%]
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for (z,7) € C x H with wp , = 27i(mT + n).



In addition to that, for integers m;, n; > 0, satisfying
Dy mj = st-zl n;, let us introduce the notation
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Let us introduce P,(0, ¢), a the n x n matrix:

P60, ) — [Pl { Z } (x,—yj,f)], (L<ij<n),

and another (n+ 1) x (n+ 1) matrix Qp:
Pl(Xl —y1,7'> Pl(Xl—yn,T) 1
Qn =

Pl(Xn—)/lﬂ') Pl(Xn_yan) 1
1 1 0



Proposition
Generalizing Garvan's formula, or (0, ¢) # (1,1) one has
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This can be also expressed in terms of deformed Eisenstein series by

{ Z } (z,7) in terms of En[ Z ] (7)

leading to a quite involved formula which we do not give here.
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Recall the genus one prime form K()(z, 7) [Mumford, Fay]:
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function version of the Fay's generalized trisecant identity [Fay| was
derived. For (0, ¢) # (1,1) one has
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and similarly for (6, ¢) = (1,1),
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Higher power formulas
There exist also the analytic expansion [Mason-Tuite-Z], for k,/ > 1,
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forl<a<randl<b<s.



Using the full version of the Fay's generalized trisecant identity
[Mason-Tuite-Z], we derive the following

Proposition
For (0,¢) # (1,1), ¢ = 89,
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Genus two formulas
In [Tuite-Z] we derived the genus two counterpart of the triple Jacobi
identity. In particular, for « = 8 = 1/2 one has
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In [Tuite-Z] we compared the rank two fermion partition function on a
genus two Riemann surface
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with column vectors a = (a1, a2)t, 8 = (81, f2)".




Here fora=1, 2
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In particular, for 7 = 74 = 7 we obtain
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The genus two: self-sewing formulas

In [Tuite-Z], by computing the genus two partition function for the
fermionic vertex operator algebra and performing bosonization, we found
a genus two analogue of the classical Jacobi triple product identity
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Here p is the torus self-sewing complex parameter, Q(2) is the genus two
period matrix [Mason-Tuite], —1/2 < k < 1/2, B is an odd integer
parametrizing the formal branch cut, T = £¢GD%,
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The genus two Szego kernel for x, y considered on the torus is given by
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Let us introduce also the semi-infinite matrices H = ((h(x;)) (k, a)),
H = ((h(y») (1, b))t, with n row indexed by i and columns indexed by
k>=1land a=1, 2 and H' is semi-infinite with rows indexed by I >1
and b =1, 2 and with n columns indexed by j.

Then we obtain [Levin-Shin-Z]

Proposition
Forn>=1, weC, a=1, 2 a genus two generalization of the Garvan's
formula is
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We are looking forward for higher genus Eisenstein series.
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