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Abstract

We investigate the proof complexity of extended Frege (EF) systems for basic transi-

tive modal logics (K4, S4, GL, . . . ) augmented with the bounded branching axioms BBk.

First, we study feasibility of the disjunction property and more general extension rules in EF

systems for these logics: we show that the corresponding decision problems reduce to total

coNP search problems (or equivalently, disjoint NP pairs, in the binary case); more precisely,

the decision problem for extension rules is equivalent to a certain special case of interpolation

for the classical EF system. Next, we use this characterization to prove superpolynomial (or

even exponential, with stronger hypotheses) separations between EF and substitution Frege

(SF) systems for all transitive logics contained in S4.2GrzBB2 or GL.2BB2 under some

assumptions weaker than PSPACE 6= NP. We also prove analogous results for superintu-

itionistic logics: we characterize the decision complexity of multi-conclusion Visser’s rules in

EF systems for Gabbay–de Jongh logics Tk, and we show conditional separations between

EF and SF for all intermediate logics contained in T2 + KC.

Keywords: proof complexity, modal logic, intermediate logic, extended Frege system, dis-

junction property
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1 Introduction

The primary focus of proof complexity is on questions about lengths of derivations or refutations

in proof systems for classical propositional logic CPC (including algebraic proof systems dealing

with polynomial equations or inequalities, into which Boolean tautologies can be easily trans-

lated). While lower bounds on systems such as resolution exhibit limitations of SAT-solving

technology, the original motivation comes from computational complexity, as the fundamen-

tal problem NP 6= coNP is equivalent to superpolynomial lower bounds on all proof systems

for CPC. Despite years of effort, we can currently only prove lower bounds on relatively weak

systems such as constant-depth Frege. The unrestricted Frege system (the simplest textbook

proof system for CPC, also p-equivalent to sequent or natural deduction calculi) is well out of

reach.

The situation is rather different in proof complexity of nonclassical propositional logics such

as modal logics or intuitionistic logic, where Frege and related systems are the main objects of
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study. First, unlike the plethora of classical proof systems, there are not many alternatives to

variants of Frege systems (or equivalent sequent calculi) in nonclassical logics, though extended

Frege (EF) systems are perhaps even more natural, or at least more robust: on the one hand,

extension axioms formalize the intuitive practice of naming longer formulas so that they can

be referred to succinctly in the proof; on the other hand, bounds on the size of EF proofs are

essentially equivalent to bounds on the number of lines in Frege (or EF) proofs, which is a

measure easier to work with than size, and EF systems can be thought of as Frege systems

operating with circuits instead of formulas, which makes many arguments go through more

smoothly.

Crucially, there are a number of nontrivial results on the complexity of Frege and EF systems

in various nonclassical logics, in contrast to CPC. The underlying theme in many works on the

proof complexity of modal or (super)intuitionistic logics is that of feasibility of the disjunction

property (DP): given a proof of 2ϕ0 ∨ 2ϕ1 (or just ϕ0 ∨ ϕ1 in the intuitionistic case), can we

efficiently decide which ϕu is provable, or better yet, can we construct its proof?

Buss and Mints [1] proved the feasibility of DP in the natural deduction system for in-

tuitionistic logic (IPC); Buss and Pudlák [2] extended this result, and made the important

connection that it implies conditional lower bounds in a similar way as feasible interpolation

does in classical proof systems. Feasibility of DP for some modal proof systems was shown by

Ferrari et al. [6]. Mints and Kojevnikov [20] generalized feasible DP in IPC to feasibility of

Visser’s rules, and used it to show that all Frege systems for IPC are p-equivalent, even if

allowed to include inference rules that are not valid, but merely admissible. A similar result

was proved for a certain family of transitive modal logics by Jeřábek [12], using feasibility of

modal extension rules generalizing DP.

A breakthrough was achieved by Hrubeš [8, 9, 10] who proved unconditional exponential

lower bounds on (effectively) EF proofs in some modal logics and IPC, using a modified version

of feasible DP as a form of monotone interpolation. Building on his results, Jeřábek [14] proved

exponential separation between EF and substitution Frege (SF) systems for a class of transitive

modal and superintuitionistic logics, while EF and SF systems are equivalent for some other

classes of logics (this equivalence was well known for classical EF and SF systems).

More specifically, it was shown in [14] that the proof complexity of modal and superintu-

itionistic logics is connected to their model-theoretic properties, in particular frame measures

such as width (maximum size of finite antichains) and branching (maximum number of imme-

diate successors): on the one hand, L-SF has exponential speed-up over L-EF for all transitive

modal or superintuitionistic logics L of unbounded branching. On the other hand, L-EF and

L-SF are p-equivalent (and, in a suitable sense, p-equivalent to CPC-EF) for many logics of

bounded width: basic logics of bounded width such as K4BWk, S4BWk, GLBWk, and LC,

all logics of bounded width and depth, and—for a restricted class of tautologies—all cofinal-

subframe logics of bounded width. Note that branching is upper bounded by width, hence all

logics of bounded width have bounded branching, but the converse is not true—there are logics

of branching 2 and unbounded width.

Although these results reveal considerable information about modal EF systems, they do

not precisely delimit the boundary between logics for which we have unconditional EF lower
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bounds and separations from SF, and logics where EF and SF are equivalent and lower bounds

on them imply classical EF lower bounds; nor do they establish that such a sharp boundary

exists in the first place. Can we say something about the proof complexity of EF for logics of

bounded branching and unbounded width? (Cf. [14, Prob. 7.1].)

This is the question we take up in the present paper. We look at basic logics L of bounded

branching such as K4BBk, S4BBk, and GLBBk (more generally, extensible logics as in [12]

augmented with the bounded branching axioms BBk). First, we study the feasibility of DP

and extension rules for L-EF: while they are (probably) no longer decidable in polynomial

time as was the case for extensible logics, we will show that they are decidable by total coNP

search problems (or equivalently, disjoint NP pairs, for two-conclusion rules), which is still

much smaller complexity than the trivial PSPACE upper bound. As a consequence, we prove

a superpolynomial separation between L-EF and L-SF unless PSPACE = NP = coNP; in fact,

this holds not just for the basic logics of bounded branching, but for all logics included in

GLBB2 or S4GrzBB2. (Note that logics with the DP are PSPACE-hard, hence PSPACE 6=
NP implies superpolynomial lower bounds on all proof systems for these logics; however, such

trivial arguments cannot separate L-EF from L-SF.) The speed-up of L-SF over L-EF can be

improved to exponential if we assume PSPACE * NSUBEXP.

We elaborate our basic argument by internalizing parts of it in the EF system itself. In

this way, we can characterize the complexity of extension rules for EF systems of basic logics

of bounded branching exactly: they are equivalent to certain special cases of interpolation

for CPC-EF. We also extend the argument to cover monotone interpolation in the style of

Hrubeš [8, 10]. This leads to separations of L-EF from L-SF under weaker hypotheses than

PSPACE 6= NP, but unfortunately we still do not obtain unconditional separations or lower

bounds.

We extend the scope of our results in two ways. First, by using positive (⊥-free) tautologies,

we show (under the same hypotheses) that L-SF has a superpolynomial speed-up over L-EF for

a class of logics L that includes all logics contained in S4.2GrzBB2 or GL.2BB2. Second, we

adapt our results to superintuitionistic logics: we characterize the complexity of Visser’s rules

(which generalize the intuitionistic DP) for EF systems of the Gabbay–de Jongh logics Tk, and

we prove a conditional superpolynomial speed-up of L-SF over L-EF for all logics L ⊆ T2 +KC.

The paper is organized as follows. In Section 2, we review the necessary background on

modal logics, their proof complexity, and extension rules. Section 3 presents an overview of

the main results. Section 4 presents the reduction of extension rules for EF systems of our

logics to coNP search problems, and the ensuing separation between EF and SF conditional on

PSPACE 6= NP. In Section 5 we internalize the argument inside EF, leading to separation under

weaker assumptions, and in Section 6 we extend it to Hrubeš-style monotone interpolation,

leading to further weakening of the assumptions. The separations between EF and SF are

generalized to a larger class of logics using positive tautologies in Section 7, and parallel results

for superintuitionistic logics are proved in Section 8. We conclude the paper with a few remarks

and open problems in Section 9.
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2 Preliminaries

As a general notational convention, we denote the set of natural numbers (including 0) by ω,

and unless stated otherwise, our indices and similar integer variables start from 0, so that, e.g.,

{ϕi : i < n} means {ϕ0, . . . , ϕn−1}, and
∨
i<n ϕi is ϕ0 ∨ · · · ∨ ϕn−1. If n = 0, we understand∨

i<n ϕi as ⊥, and
∧
i<n ϕi as >.

2.1 Modal logic

We refer the reader to Chagrov and Zakharyaschev [4] for background on modal logic.

We consider monomodal propositional modal logics in a language using countably infinitely

many propositional variables pi, i ∈ ω (often denoted also by other letters such as q, r, . . . for

convenience), a complete set of Boolean connectives (say, {∧,∨,→,¬,>,⊥}, but for the most

part the choice will not matter), and a unary modal connective 2. Let Var denote the set of

variables, and Form the set of formulas. We define the abbreviations 3ϕ = ¬2¬ϕ, ·2ϕ = ϕ∧2ϕ,

and ·3ϕ = ¬ ·2¬ϕ. We will generally denote formulas by lower-case Greek letters ϕ, ψ, . . . , or

upper-case Latin letters A, B, C, . . . . If X is a formula or a set of formulas, then Sub(X)

denotes the set of subformulas of (formulas from) X.

A normal modal logic is a set of formulas L that contains all classical (Boolean) tautologies

and the schema

(K) 2(ϕ→ ψ)→ (2ϕ→ 2ψ),

and it is closed under substitution and the rules of modus ponens and necessitation:

ϕ,ϕ→ ψ / ψ,(MP)

ϕ / 2ϕ.(Nec)

Elements of L are also more explicitly called L-tautologies. The consequence relation `L of L is

defined such that for any set of formulas Γ ∪ {ϕ}, Γ `L ϕ iff ϕ is in the closure of L ∪ Γ under

(MP) and (Nec). The least normal modal logic is denoted K.

If L is a normal modal logic and X a formula or a set of formulas, let L ⊕X be the least

normal modal logic containing L ∪ X, i.e., the closure of L and substitution instances of X

under (MP) and (Nec). A logic is finitely axiomatizable if can be written as K ⊕ ϕ for some

formula ϕ (or equivalently, K⊕X for a finite set X).

A transitive modal logic is a normal modal logic that also includes the schema

(4) 2ϕ→ 22ϕ.

The least transitive modal logic is denoted K4. Unless stated otherwise, all logics in this paper

are finitely axiomatizable transitive modal logics; we will also write K4 ⊆ L as a shorthand for

L being a (finitely axiomatizable transitive modal) logic.

A (transitive) Kripke frame is a pair 〈W,<〉 where < is a transitive relation on a set W .

(Such notation is not meant to imply that < is irreflexive.) We will write x ≤ y for x < y∨x = y,

x ∼ y for x ≤ y ∧ y ≤ x, and x � y for x < y ∧ y ≮ x. Equivalence classes of ∼ are called
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clusters, and the quotient partial order 〈W,≤〉/∼ is called the skeleton of 〈W,<〉. The cluster

of a point x is denoted cl(x). If X ⊆W , let

X↓ = {y ∈W : ∃x ∈ X (y < x)},
X↑ = {y ∈W : ∃x ∈ X (x ≤ y)},

and similarly for X↑, X↓. A frame 〈W,<〉 is called rooted if W = {x}↑ for some x ∈ W ; any

such x is called the root of W . A point x ∈ W is called reflexive if x < x, and irreflexive

otherwise. As a general notational convention, we will denote irreflexive points and related

objects with •, and reflexive points with ◦.
A valuation in a Kripke frame 〈W,<〉 is a mapping v : Var → P(W ). A Kripke model is

M = 〈W,<, v〉, where F = 〈W,<〉 is a Kripke frame, and v a valuation in F . The valuation

uniquely defines a satisfaction relation for all formulas:

M,x � pi ⇐⇒ x ∈ v(pi),

M, x � c(ϕ0, . . . , ϕd−1) ⇐⇒ c
(
(M,x � ϕ0), . . . , (M,x � ϕd−1)

)
, c ∈ {∧,∨,→,¬,>,⊥},

M, x � 2ϕ ⇐⇒ ∀y ∈W (x < y =⇒ M,y � ϕ).

Instead of M,x � ϕ, we may write F, x � ϕ or just x � ϕ if the model or frame is understood

from the context. We define

M � ϕ ⇐⇒ ∀x ∈W M,x � ϕ,

F � ϕ ⇐⇒ ∀v : Var→ P(W ) 〈W,<, v〉 � ϕ.

A (general) frame is F = 〈W,<,A〉, where 〈W,<〉 is a Kripke frame, and A ⊆ P(W ) is a

Boolean algebra of sets, closed under the operation X 7→ 2X = {x ∈ W : ∀y > x (y ∈ X)}, or

equivalently, under X 7→ X↓. An admissible valuation in the frame F is a map v : Var → A;

the closure conditions on A ensure that the resulting model 〈W,<, v〉 (which is said to be based

on F ) satisfies {x ∈W : x � ϕ} ∈ A for all formulas ϕ. We put

F � ϕ ⇐⇒ ∀v : Var→ A 〈W,<, v〉 � ϕ.

If F � ϕ, we say that ϕ is valid in F . We will identify a Kripke frame 〈W,<〉 with the frame

〈W,<,P(W )〉. If L is a logic, an L-frame is a frame F such that F � ϕ for all ϕ ∈ L, and an

L-model is a model based on an L-frame. A frame 〈W,<,A〉 is refined if

x < y ⇐⇒ ∀X ∈ A (x ∈ 2X =⇒ y ∈ X),

x = y ⇐⇒ ∀X ∈ A (x ∈ X =⇒ y ∈ X),

for all x, y ∈ W , and a refined frame is descriptive if A is compact: every S ⊆ A with the

finite intersection property has a nonempty intersection. Kripke frames are refined. Every

logic L is complete w.r.t. a class of descriptive frames (whereas some logics are not complete

w.r.t. Kripke frames): i.e., if 0L ϕ, there exists a descriptive L-frame F such that F 2 ϕ. If a

frame F = 〈W,<,A〉 is finite, the atoms of A define a partition of W , and the quotient of F by
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logic axiomatization over K4 finite rooted frames

S4 2ϕ→ ϕ reflexive

D4 3> final clusters reflexive

GL 2(2ϕ→ ϕ)→ 2ϕ irreflexive

K4Grz 2
(
2(ϕ→ 2ϕ)→ ϕ

)
→ 2ϕ no proper clusters

K4.1 ·23ϕ→ 32ϕ no proper final clusters

K4.2 3 ·2ϕ→ 2 ·3ϕ unique final cluster

K4.3 2( ·2ϕ→ ψ) ∨2(2ψ → ϕ) linear (width 1)

K4B ϕ→ 23ϕ single cluster

S5 S4⊕K4B single reflexive cluster

K4BWk

∨
i≤k

2

(∧
j 6=i

·2ϕj → ϕi

)
width at most k

K4BDk (see below) depth at most k

K4BCk 2

[∨
i≤k

2

(∧
j<i

ϕj → ϕi

)
→
∧
i≤k

ϕi

]
→ 2ϕ0 cluster size at most k

K4BBk (see below) branching at most k

S4.1.4 2
(
2(ϕ→ 2ϕ)→ ϕ

)
→ (232ϕ→ ϕ) reflexive,

no inner proper clusters

Table 1: Some transitive modal logics

the corresponding equivalence relation is a Kripke frame that validates the same formulas as F .

For this reason, there is no loss of generality if we reserve the phrase finite frame to denote

finite Kripke frames. A logic L has the finite model property (FMP) if it is complete w.r.t. a

class of finite frames.

Several common (or otherwise interesting) transitive modal logics are listed in Table 1, along

with frame conditions that characterize them on finite rooted frames. (A cluster is proper if it

has ≥ 2 elements. It is final if it has no successor clusters, otherwise it is inner. Other semantic

conditions are described below.) Some of the entries are redundant: K4Grz = K4BC1,

K4.3 = K4BW1, K4B = K4BD1. We will generally form compound names of logics by

stacking axiom names on a base logic without ⊕ symbols, so that, e.g., S4.2GrzBB2 = S4 ⊕
K4.2 ⊕ K4Grz ⊕ K4BB2. An exception is S4.1.4, which is not a systematic name, but a

meaningless numerical label (see Zeman [25]).

If F = 〈W,<,A〉 is a frame, and U ⊆W is an upper subset (i.e., U↑ = U), then 〈U,<U , AU 〉
is a generated subframe of F , where <U = < ∩ U2 and AU = {X ∩ U : X ∈ A}. The disjoint

sum
∑

i∈I Fi of a family of frames Fi = 〈Wi, <i, Ai〉, i ∈ I, is the frame 〈W,<,A〉, where W is

the disjoint union
⋃̇
iWi, < =

⋃
i<i, and A = {X ⊆W : ∀i ∈ I (X ∩Wi ∈ Ai)}. A subreduction

from a frame F = 〈W,<,A〉 to a frame G = 〈V,≺, B〉 is a partial mapping f from W onto V

such that
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(S1) x < y =⇒ f(x) ≺ f(y) for all x, y ∈ dom(f),

(S2) f(x) ≺ u =⇒ ∃y > x f(y) = v for all x ∈ dom(f) and v ∈ V , and

(S3) f−1[Y ] ∈ A for all Y ∈ B (which implies dom(f) ∈ A).

If V ⊆ W and f = idV (in which case the conditions reduce to ≺ = < ∩ V 2 and B ⊆ A),

then G is called a subframe of F . (Since this implies V ∈ A, generated subframes are not

necessarily subframes.) A subreduction is called a p-morphism (or reduction) if it is total, i.e.,

dom(f) = W .

For any logic L, the class of L-frames is closed under generated subframes, disjoint sums,

and p-morphic images; that is, these frame operations preserve the validity of all formulas.

A subframe 〈V,<,B〉 of 〈W,<,A〉 is dense if V ↑ ∩ V ↓ = V , i.e., if x < y < z and x, z ∈ V
imply y ∈ V . More generally, a subreduction f from F to G is dense if dom(f) is a dense

subframe of F . Dense subreductions preserve the validity of positive formulas (also called

negation-free or ⊥-free): i.e., formulas built from propositional variables using {2,∧,∨,→,>},
disallowing ¬ and ⊥. (In general, a Boolean connective c is positive if c(1, . . . , 1) = 1.)

It will be also convenient to have a version of subreductions that is oblivious to reflexivity

of points: we define a weak subreduction from F = 〈W,<,A〉 to G = 〈V,≺, B〉 to be a partial

mapping f from W onto V that satisfies

(S1′) x < y =⇒ f(x) � f(y) for all x, y ∈ dom(f),

(S2′) f(x) ≺ u =⇒ ∃y ≥ x f(y) = v for all x ∈ dom(f) and v ∈ V ,

and (S3).

Let k ≥ 1. A rooted frame 〈W,<,A〉 has width ≤ k if it contains no antichain of size

k + 1, i.e., points x0, . . . , xk ∈ W such that xi � xj for i 6= j. A logic L has width ≤ k if it

is complete w.r.t. a class of rooted frames of width ≤ k, or equivalently, if all rooted refined

L-frames have width ≤ k. We say that L has bounded width if it has width ≤ k for some k, and

it has unbounded width otherwise.

A frame 〈W,<,A〉 has depth ≤ k if it contains no chain of length k+ 1, i.e., x0, . . . , xk ∈W
such that x0 � x1 � · · · � xk. A frame F has cluster size ≤ k if all clusters of F have at most k

elements. Similarly to width, we say a logic L has depth (cluster size) ≤ k if it is complete

w.r.t. a class of frames of depth (cluster size, resp.) ≤ k, or equivalently, if all refined L-frames

have depth (cluster size) ≤ k; L has bounded depth (cluster size) if it has depth (cluster size)

≤ k for some k, and it has unbounded depth (cluster size) otherwise.

These properties are modally definable: L has width (depth, cluster size) ≤ k iff it proves

the BWk (BDk, BCk, resp.) axioms, where BWk and BCk were given in Table 1, and BDk

is the schema

ϕ0 ∨2(2ϕ0 → ϕ1 ∨2(2ϕ1 → · · · → ϕk−1 ∨2(2ϕk−1 → ⊥) · · · )).

A finite frame F has branching ≤ k if every cluster of F has at most k immediate successor

clusters. If L is a logic with FMP, then L has branching ≤ k if it is complete w.r.t. a class

of finite frames of branching ≤ k, or equivalently, if all finite L-frames have branching ≤ k.
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Again, L has bounded branching if it has branching ≤ k for some k, and unbounded branching

otherwise.

It is more complicated to extend the definition of branching to logics without FMP, as the

concept of branching does not make good sense for infinite frames: first, a non-leaf point in an

infinite frame may have no immediate successors at all, or its immediate successors may not

lower bound all its other successors. Second, even in well-behaved frames such as trees where

immediate successors have reasonable graph-theoretic properties, a bound on their number

does not have the expected modal consequences: for example, it is not difficult to show that

an arbitrary finite rooted reflexive frame is a p-morphic image of the infinite complete binary

tree1, thus the logic of this tree is just S4, which has unbounded branching, even though the

tree appears to have branching 2.

These issues are solved by showing that the logic of finite frames of branching ≤ k can be

axiomatized by a suitable axiom schema, namely

(BBk) 2

[∨
i≤k

2

(
·2ϕi →

∨
j≤k
j 6=i

·2ϕj
)
→
∨
i≤k

·2ϕi
]
→
∨
i≤k

2
∨
j≤k
j 6=i

·2ϕj

(recall that we number indices from 0, hence i ≤ k stands for i = 0, . . . , k), and then we define a

logic L to have branching ≤ k iff it includes K4BBk. Since the BBk axioms are a central topic

of this paper, and in contrast to the well-known superintuitionistic Gabbay–de Jongh logics,

this axiomatization is not commonly found in modal logic literature, we provide more details.

(Our BBk axioms are mentioned without proof in [14, Rem. 6.11]. The bounded branching

logics as such appear in other sources, but they are defined semantically: see e.g. Rybakov [24,

p. 331].)

Let Ψk denote the k-prong fork : the finite frame consisting of a root with k immediate

successors. (For definiteness, let Ψk be reflexive, but this does not matter.)

Lemma 2.1 Let k ≥ 1.

(i) A frame F validates BBk iff there is no dense weak subreduction from F to Ψk+1.

(ii) A finite frame F has branching ≤ k iff there is no dense weak subreduction from F to Ψk+1.

(iii) A formula ϕ holds in all finite frames of branching ≤ k iff it is derivable in K4BBk.

Proof: Let us denote the root of Ψk+1 as u, and its leaves as {vi : i ≤ k}.
(i): Let f be a subreduction from F to Ψk+1. We endow F with an admissible valuation

such that

F, x � pi ⇐⇒ x /∈ dom(f) or f(x) = vi.

Clearly,

(1) f(x) = vi =⇒ F, x � ·2pi ∧ ¬
∨
j 6=i

·2pj ,

1See [4, Thm. 2.21] for the intuitionistic case; the only difference in the modal case is that f(x0), f(x1), . . .

will cycle through the root cluster of F. One can also modify the argument to apply to all countable rooted

S4-frames.
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hence also

f(x) = u =⇒ F, x � ¬
∨
i≤k

2
∨
j 6=i

·2pj .

We claim that

f(x) = u =⇒ F, x � 2

[∨
i≤k

2

(
·2pi →

∨
j 6=i

·2pj
)
→
∨
i≤k

·2pi
]
,

hence F 2 BBk. Indeed, if f(x) = u, and x < y � ¬
∨
i
·2pi, let zi ≥ y be such that zi 2 pi for

each i ≤ k, i.e., zi ∈ dom(f) and f(zi) 6= vi. Since f is dense, x < y < z0 implies y ∈ dom(f).

We cannot have f(y) = vi, as f(y) ≤ f(zi) 6= vi. Thus, f(y) = u. But then y sees points in

preimages of all vi, hence (1) implies

F, y � ¬
∨
i≤k

2

(
·2pi →

∨
j 6=i

·2pj
)
.

Conversely, assume that F 2 BBk. Fix a model M based on F , and an instance of BBk

using {ϕi : i ≤ k} which is not true in M . Notice that

`K4 2

[∨
i≤k

2

(
·2ϕi →

∨
j 6=i

·2ϕj
)
→
∨
i≤k

·2ϕi
]
→
∧
i≤k

[
2

(
·2ϕi →

∨
j 6=i

·2ϕj
)
→ 2

∨
j 6=i

·2ϕj
]
,

hence putting

βi = ·2ϕi ∧
∧
j 6=i
¬ ·2ϕj , i ≤ k,

α =
∨
i≤k

2¬βi →
∨
i≤k

·2ϕi,

we have M 2 2α →
∨
i2¬βi. We define a partial (and a priori multi-valued) mapping f from

F to Ψk+1 by

f(x) =


u M, x � 2α ∧

∧
i3βi,

vi M,x � βi,

undefined otherwise.

We claim that f is a weak dense subreduction. The property (S3) is clear, and for (S2′), it

suffices to observe that f(x) = u implies x � 3βi, hence f(yi) = vi for some yi > x. Since there

exists x such that f(x) = u, this also implies that f is onto.

For (S1′), it is clear from the definition that f(yi) = vi and f(yj) = vj implies yi � yj for

i 6= j. Also, if f(x) = u and f(yi) = vi, then yi � x: fixing j 6= i (here we use k ≥ 1), we

already established that there exists yj > x such that f(yj) = vj , hence yi � yj , and a fortiori

yi � x. This also ensures f is single-valued.

It remains to prove that f is dense. Assume x < y < z and x, z ∈ dom(f). It is easy to

see that f(x) = f(z) implies f(y) = f(x). Otherwise f(x) = u and f(z) = vi for some i ≤ k.

Then y � ·2α, thus either f(y) = u and we are done, or y �
∨
j 2¬βj , hence (in view of y � α)
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y � ·2ϕi′ for some i′ ≤ k. Since y < z, we have y �
∧
j 6=i ¬ ·2ϕj , hence i′ = i and y � βi, i.e.,

f(y) = vi.

(ii): If a point x of F has immediate successors y0, . . . , yk, each belonging to a different

cluster, we can construct a weak dense subreduction from F to Ψk+1 by mapping cl(x) to u,

and each cl(yi) to vi.

On the other hand, if f is such a weak dense subreduction, let x be a �-maximal point

of F mapped to u. For each i ≤ k, there exists yi � x such that f(yi) = vi. Let zi be an

immediate successor of xi such that zi ≤ yi. Since f is dense, zi ∈ dom(f); by maximality of x,

u 6= f(zi) ≤ f(yi), hence f(zi) = vi. But then {zi : i ≤ k} are pairwise incomparable, i.e., they

belong to k + 1 different clusters.

(iii): The right-to-left implication follows from (i) and (ii). Conversely, if 0K4BBk ϕ, let us

fix a K4BBk-frame F such that F 2 ϕ. Then F validates the axioms α•,k+1 and α 1©,k+1 from

[15, Def. 4.30]: this follows from (i) and [15, L. 4.31], as any weak morphism to F•,k+1 or F 1©,k+1

(as defined there) is a weak dense subreduction to Ψk+1. By [15, L. 4.35], there exists a finite

frame F0 � K4 ⊕ α•,k+1 ⊕ α 1©,k+1 such that F0 2 ϕ. But then F0 has branching ≤ k by [15,

L. 4.34]. (This argument also shows K4BBk = K4⊕ α•,k+1 ⊕ α 1©,k+1.)

Alternatively, a similar argument can be set up using [14, L. 6.10] (note that the K4BBk

appearing in the statement of that lemma is defined as the logic of all finite frames of branch-

ing ≤ k). 2

We remark that our definition of BBk does not have the correct semantics for k = 0; in

order to extend Lemma 2.1 to k = 0, we should redefine K4BB0 as K4B.

We have K4BB1 = K4BW1 = K4.3. For k ≥ 2, all logics of width ≤ k also have

branching ≤ k, but there exist logics of branching 2 and unbounded width such as K4BB2

itself. We have K4BB1 ) K4BB2 ) K4BB3 ) . . . , and
⋂
k K4BBk = K4.

We could drop the right-most ·2 in the definition of BBk, but for our purposes the definition

above will be more convenient to work with. Furthermore, the BBk axiom can be simplified to

2
∨
i≤k

·2ϕi →
∨
i≤k

2
∨
j 6=i

ϕj

over GL.

2.2 Proof complexity

An introduction to classical proof complexity can be found in Kraj́ıček [18]; our setup for proof

complexity of modal logics is based on Jeřábek [14].

A Frege rule consists of all substitution instances of α0, . . . , αk−1 / β, where k ≥ 0, and

αi and β are formulas. A Frege system is given by a finite set of Frege rules R. A Frege R-

derivation of a formula ϕ from a set of formulas Γ is a sequence of formulas ϕ0, . . . , ϕm such

that ϕm = ϕ, and for each i ≤ m, ϕi ∈ Γ, or ϕj0 , . . . , ϕjk−1
/ ϕi is an instance of an R-rule for

some j0, . . . , jk−1 < i. A Frege R-proof of ϕ is a Frege R-derivation of ϕ from ∅. The length

or size of a derivation ϕ0, . . . , ϕm is
∑

i|ϕi|, and the number of lines is m + 1. A derivation is

tree-like if each formula is used at most once as a premise of a Frege rule.
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The associated consequence relation `R is defined such that Γ `R ϕ iff there exists a Frege

R-derivation of ϕ from Γ. If L is a logic, a Frege system using a set of rules R is a Frege system

for L if `R = `L. (Note that this disallows the use of proper L-admissible rules as in [20, 12].)

Observation 2.2 If ϕ0, . . . , ϕm is a Frege R-derivation of size s using variables {pi : i < n},
and σ is a substitution, then σ(ϕ0), . . . , σ(ϕm) is a Frege R-derivation of size ≤ s

∑
i<n|σ(pi)|

with the same number of lines. 2

A proof system P p-simulates a proof system Q, written as Q ≤p P , if there exists a poly-

time function f such that for any Q-proof π of ϕ, f(π) is a P -proof of ϕ. The systems P and Q

are p-equivalent, written as P ≡p Q, if P ≤p Q ≤p P . The system P (weakly) simulates Q if for

any Q-proof π of ϕ, there exists a P -proof of ϕ of size polynomial in |π|. If P does not weakly

simulate Q, we also say that Q has superpolynomial speed-up over P ; more generally, if S is a

family of functions s : ω → ω, then Q has speed-up S over P if there exist s ∈ S, an infinite

sequence of tautologies {ϕn : n ∈ ω}, and for each n, a Q-proof πn of ϕn such that all P -proofs

of ϕn have size at least s
(
|πn|

)
. (For example, for S = 2n

Ω(1)
, we have exponential speed-up.)

Observation 2.2 implies that instances of a fixed Frege rule have linear-size proofs in any

Frege system where they are derivable at all, hence:

Corollary 2.3 For any logics L ⊆ L′, all Frege systems for L′ p-simulate all Frege systems

for L. In particular, all Frege-systems for L are p-equivalent. 2

(We rely here on all our proof systems having the same language. It is well known that in the

classical case, Corollary 2.3 holds even if we allow Frege systems using different complete sets

of connectives, but the argument fails for modal logics.) In view of Corollary 2.3, we will speak

of the Frege system for a logic L, and we will denote it L-F. If P is a line-based proof system

such as L-F, we denote by P ∗ the tree-like version of P .

Let us fix an L-F system using a set of rules R. An extended Frege derivation of ϕ from Γ

is a sequence ϕ0, . . . , ϕm = ϕ where each ϕi is either from Γ, or derived by a Frege rule, or it is

an extension axiom of the form q ↔ ψ, where q is a variable (an extension variable) that does

not occur in ϕ, Γ, ψ, or ϕj for any j < i.

A substitution Frege proof of ϕ is a sequence ϕ0, . . . , ϕm = ϕ such that each ϕi is derived

by a Frege rule, or by the substitution rule: ϕi = σ(ϕj) for some substitution σ and j < i. (SF

derivations from nonempty sets of premises do not make good sense.)

The extended Frege and substitution Frege systems for L are denoted L-EF and L-SF,

respectively. Corollary 2.3 holds for EF systems, SF systems, as well as the circuit-based

systems below. It also holds for the tree-like systems L-F∗, L-EF∗, and L-CF∗ because of [14,

Prop. 3.17], but for L-SF∗, we need to assume that (MP) is included among the Frege rules (or

at least, that it has a tree-like Frege derivation in which one of the premises is used only once).

For classical logic, EF and SF are p-equivalent. The situation in modal logics is more

complicated; the main properties of the two systems are summarized below.

Theorem 2.4 ([14]) Let L ⊇ K4.

(i) L-F ≡p L-F∗ and L-EF ≡p L-EF∗ ≡p L-SF∗.
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(ii) If ϕ has an L-EF proof with m lines, it has an L-F proof with O(m) lines. If ϕ has an

L-F proof with m lines, it has an L-EF proof of size O
(
m+ |ϕ|2

)
.

(iii) If ϕ has an L-SF proof of size s with m lines, it has an L-F∗ proof of size (s/m)m < 2s

with 2m lines.

(iv) If L has unbounded branching, then L-SF has exponential speed-up over L-EF.

(v) If L is a logic of bounded width and depth, or L = K4BWk, S4BWk, GLBWk,

K4GrzBWk, or S4GrzBWk for some k, then L-SF ≡p L-EF. 2

Formulas (both Boolean and modal) can be represented more succinctly by circuits: a circuit

is a directed acyclic graph (allowing multiple edges) with a unique node of out-degree 0 (the

output node); each node of the circuit is labelled either with a variable, in which case it has

in-degree 0, or with a k-ary connective, in which case it has in-degree k (the incoming edges

are ordered). Formulas can be identified with tree-like circuits (i.e., each node other than the

output has out-degree 1).

The circuit Frege system L-CF (introduced in [11] for CPC) is defined essentially the same

way as L-F, except that it operates with circuits instead of formulas. There is an additional

rule that allows to infer a circuit from another circuit that represents the same formula (this

property can be checked in polynomial time, or even in NL); alternatively, this rule may be

replaced with several “local” transformation rules that only modify the top part of the circuit.

When used for proving formulas (or deriving formulas from formulas), L-CF is p-equivalent

to L-EF. In fact, we can in a sense simulate L-CF by L-EF even for proofs of circuits, but we

need to translate them to formulas first.

If ϕ is a circuit, we interpret Sub(ϕ) as the set of subcircuits of ϕ. We fix distinct variables

{qψ : ψ ∈ Sub(ϕ)} not occurring in ϕ, and define

ψ∗ =

{
ψ ψ is a variable,

c(qψ0 , . . . , qψk−1
) ψ = c(ψ0, . . . , ψk−1) for a connective c,

Eϕ =
∧

ψ∈Sub(ϕ)

·2(qψ ↔ ψ∗).

Lemma 2.5 Let L ⊇ K4. Given a modal circuit ϕ, the following are polynomial-time con-

structible from each other:

(i) An L-CF proof of ϕ.

(ii) An L-CF proof of Eϕ → qϕ.

(iii) An L-EF proof of Eϕ → qϕ.

Proof: We can construct K4-CF proofs of Eϕ → ·2(qψ ↔ ψ) for all ψ ∈ Sub(ϕ) by induction

on the complexity of ψ, which yields a K4-CF proof of ϕ → (Eϕ → qϕ). Conversely, given an

L-CF proof of Eϕ → qϕ, we (simultaneously) substitute ψ for qψ in the whole proof, resulting

in an L-CF proof of
∧
ψ
·2(ψ ↔ ψ)→ ϕ, from which we can infer ϕ.

(ii) and (iii) are mutually poly-time constructible by [14, Prop. 3.3]. 2
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In view of Lemma 2.5, EF and CF are essentially identical proof systems. We find it much

more convenient to operate with circuits directly rather than by encoding them with extension

axioms, hence we will work almost exclusively with CF. We will still formulate lower bounds

and similar results for EF as it is the better known of the two systems, but our results on

feasibility of the disjunction property will be stated for CF as it makes them more general (i.e.,

directly applicable to proofs of circuits rather than just formulas).

We would also like to work with circuits directly in SF. Let us define the substitution circuit

Frege system L-SCF as a version of the L-SF system that operates with circuits in place of

formulas, including the L-CF rules. Now, L-SF is p-equivalent to L-SCF just like L-EF is

p-equivalent to L-CF:

Lemma 2.6 Let L ⊇ K4. Given a modal circuit ϕ, the following are polynomial-time con-

structible from each other:

(i) An L-SCF proof of ϕ.

(ii) An L-SCF proof of Eϕ → qϕ.

(iii) An L-SF proof of Eϕ → qϕ.

Proof: We can construct (i) from (ii) as in the proof of Lemma 2.5, and (iii) is trivially an

instance of (ii). Given an L-SCF proof ϕ0, . . . , ϕm = ϕ, we consider the sequence of formulas

Eϕ0 → ·2qϕ0 , . . . ,Eϕm → ·2qϕm ,

and complete it to a valid L-SF proof as follows.

If ϕi = σ(ϕj) is derived by substitution from ϕj , j < i, we use substitution to rename each

qψ from Eϕj to the corresponding qσ(ψ) from Eϕi , and each original variable p to qσ(p). This

turns Eϕj → ·2qϕj into E′ϕi → ·2qϕi , where E′ϕi is a conjunction of some conjuncts of Eϕi and

the tautologies ·2(qσ(x) ↔ qσ(x)). We infer Eϕi → ·2qϕi .
If ϕi is derived by an instance of a Frege rule α0, . . . , αk−1 / β, say ϕi = β(~χ) and ϕju =

αu(~χ) with ju < i, we first apply the substitution rule on the premises Eϕju → ·2qϕju if necessary

to rename the extension variables qψ so that they are used coherently in all Eϕju and Eϕi . We

unwind the top parts of the circuits to prove Eϕju → ·2
(
qϕju ↔ αu(~qχ)

)
, and derive

Eϕju → ·2αu(~qχ).

We use an instance of the tautology
∧
u<k
·2αu → ·2β and Eϕi → ·2(qϕi ↔ β(~qχ)) to derive

Eϕi ∧
∧
u<k

Eϕju → ·2qϕi .

Finally, we get rid of the conjuncts ·2(qψ ↔ ψ∗) of Eϕju not present in Eϕi by substituting ψ∗

for qψ and using the tautology ·2(ψ∗ ↔ ψ∗). (We do this in a top-down order, so that qψ is not

present elsewhere in the formula when it is being substituted for.)

If ϕi represents the same formula as ϕj , j < i, we first use substitution to make sure

the extension variables {qψ : ψ ∈ Sub(ϕi)} from Eϕi are disjoint from the extension variables
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from Eϕj ; let us denote the latter as q′ψ. Then we prove bottom-up that whenever ψ ∈ Sub(ϕi)

and ψ′ ∈ Sub(ϕj) represent the same formula, we have Eϕj ∧ Eϕi → ·2(qψ ↔ q′ψ′). Using

Eϕj → ·2q′ϕj , we infer Eϕj ∧ Eϕi → ·2qϕi , and we discard Eϕj as in the case of Frege rules. 2

The upshot of Lemmas 2.5 and 2.6 is not just that L-EF ≡p L-CF and L-SF ≡p L-SCF as

proof systems for formulas, but also that a speed-up of L-SCF over L-CF on circuit tautologies

implies a speed-up of L-SF over L-EF: if {ϕn : n ∈ ω} is a sequence of circuits that are easy

for L-SCF and hard for L-CF, then the formulas {Eϕn → qϕn : n ∈ ω} are easy for L-SF and

hard for L-EF.

We remark that in a way, the term formulas has a double meaning in the paper: formulas-1

are abstract entities that may be L-tautologies, may be true or false in a given model, etc., and

they are concretely represented by syntactic objects such as circuits or formulas-2 (= tree-like

circuits) that may be operated by proof systems.

Transitive modal logics have a deduction theorem in the form that Γ `L ϕ implies `L∧ ·2Γ→ ϕ. (Here, if Γ is a sequence of formulas ϕ0, . . . , ϕn−1, we write 2Γ for 2ϕ0, . . . ,2ϕn−1,

and similarly for ·2Γ, ¬Γ, etc., while
∧

Γ is ϕ0 ∧ · · · ∧ϕn−1.) Frege systems and friends without

an explicit substitution rule satisfy a feasible deduction theorem:

Lemma 2.7 ([14, Prop. 3.6]) Let L ⊇ K4, and P be L-F, L-EF, or L-CF. Given a P -

derivation of ϕ from Γ, we can construct in polynomial time a P -proof of
∧ ·2Γ→ ϕ. 2

We also have feasible substitution of equivalence:

Lemma 2.8 Given modal circuits ϕ, ψ, and χ(p) (with other variables not shown), we can

construct in polynomial time K4-CF proofs of

·2(ϕ↔ ψ)→
(
χ(ϕ)↔ χ(ψ)

)
.

Proof: By induction on χ. 2

Let 2 = {0, 1}. A Boolean function f : 2n → 2 is monotone if for all a, b ∈ 2n, a ≤ b (i.e.,

ai ≤ bi for each i < n) implies f(a) ≤ f(b). A monotone language is L ⊆ 2∗ such that for all

n ∈ ω, the characteristic function of Ln = L ∩ 2n is monotone.

A Boolean formula or circuit is monotone if it is built from variables using only the mono-

tone connectives {∧,∨,>,⊥}. More generally, ϕ is monotone in variables ~p if it is built using

monotone connectives from the variables ~p, and from subformulas/subcircuits that do not con-

tain ~p. A Boolean formula or circuit is in negation normal form if it has the form ϕ(~p,¬~p),
where ϕ is monotone (i.e., it is built using monotone connectives from positive and negative

literals).

Lemma 2.9 Given a Boolean circuit ϕ(p0, . . . , pn−1) (possibly using other variables) that is

monotone in ~p, and Boolean or modal circuits ~ψ and ~χ, there is a polynomial-time constructible

CPC-CF proof or K-CF proof (as appropriate) of

(2)
∧
i<n

(ψi → χi)→
(
ϕ(~ψ)→ ϕ(~χ)

)
.
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Proof: By induction on ϕ. (Note that (2) is a substitution instance of the Boolean tautology∧
i(pi → qi)→

(
ϕ(~p)→ ϕ(~q)

)
, hence even in the modal case, the proof is essentially a CPC-CF

proof in modal language.) 2

Lemma 2.10 Given a monotone Boolean circuit ϕ(~p), and (modal) circuits ~ψ, there are poly-

time constructible K-CF proofs of

ϕ(2~ψ)→ 2ϕ(~ψ).

Proof: By induction on the size of ϕ, using Lemma 2.9, and the tautologies 2ψ∧2χ→ 2(ψ∧χ)

and 2ψ ∨2χ→ 2(ψ ∨ χ). 2

Makinson’s theorem states that every consistent normal modal logic L is valid in a one-point

Kripke frame (irreflexive •, or reflexive ◦). In other words, L is included in L(•) = K⊕ 2⊥ or

in L(◦) = K ⊕ (ϕ ↔ 2ϕ). In either case, we obtain a poly-time translation of L into CPC:

if ∗ ∈ {•, ◦}, we define a translation of modal formulas ϕ to Boolean formulas ϕ∗ such that it

preserves propositional variables, commutes with Boolean connectives, and

(2ϕ)• = >,
(2ϕ)◦ = ϕ◦.

Notice that ϕ∗ = ϕ for non-modal formulas ϕ, and ( ·2ϕ)∗ ≡ ϕ∗. Unwinding the definition of

satisfaction in one-point frames, we see that

(3) `L(∗) ϕ ⇐⇒ `CPC ϕ∗.

Moreover, the translation acts efficiently on proofs:

Lemma 2.11 Let ∗ ∈ {•, ◦}, and L ⊆ L(∗) be a normal modal logic. Given an L-CF proof of

ϕ, we can construct in polynomial time a CPC-CF proof of ϕ∗.

Proof: We may assume the L-CF system is axiomatized by (MP), (Nec), and axiom schemata.

We apply the −∗ translation to each line in the proof: modus ponens translates to modus

ponens, the translation of (Nec) is trivial, and since −∗ commutes with substitution, instances

of a fixed axiom schema valid in L translate to instances of a fixed axiom schema, which is valid

in CPC by (3), and as such has linear-size CPC-CF proofs. 2

So far we discussed specific proof systems for a given logic. In general, a (Cook–Reckhow)

proof system for a logic L is a polynomial-time function P whose image is L. (Here, each

string w is considered a P -proof of the L-tautology P (w).) For classical logic, NP 6= coNP

implies superpolynomial lower bounds on all proof systems because of the coNP-completeness

of the set of tautologies.

For the modal logics we are interested in, we will obtain similar automatic lower bounds

from PSPACE 6= NP, because they are PSPACE-hard. Ladner [19] proved that K, T, and S4

are PSPACE-complete, and that all logics K ⊆ L ⊆ S4 are PSPACE-hard. It is in fact not

difficult to extend Ladner’s proof to show the PSPACE-hardness of all normal modal logics with

the disjunction property (see Section 2.4 for precise definition), but the author is not aware of
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this argument being published anywhere. (Cf. Lemmas 4.4 and 4.5. The PSPACE-hardness of

superintuitionistic logics with the DP was proved in Chagrov [3].) The following stronger result

was shown in Jeřábek [17]:

Theorem 2.12 All logics L ⊇ K4 with the disjunction property are PSPACE-hard. More

generally, if for every finite binary tree T , there exists a weak subreduction from an L-frame

to T , then L is PSPACE-hard. 2

Corollary 2.13 If L is a logic as in Theorem 2.12, then no proof system for L is polynomially

bounded unless PSPACE = NP = coNP. 2

The only conditional superpolynomial lower bounds on L-SF we know of follow from Corol-

lary 2.13 (assuming PSPACE 6= NP) and from an SF version of Lemma 2.11 (assuming lower

bounds on CPC-EF).

2.3 Computational complexity

We assume the reader is familiar with basic notions from complexity theory, in particular the

complexity classes P, NP, coNP, and PSPACE, and the notions of polynomial-time reductions,

completeness, and hardness.

Recall that a quantified Boolean formula (QBF) is a propositional formula that, in addition

to the usual Boolean connectives, also allows quantifiers ∃p and ∀p ranging over the set of truth

values 2. We will generally assume that QBFs are given in prenex normal form, i.e., they consist

of a quantifier prefix followed by a quantifier-free formula. A QBF Φ in prenex normal form

is in negation normal form if its quantifier-free matrix ϕ is in negation normal form, and it is

monotone in ~p if the ~p variables are not bound in Φ, and ϕ is monotone in ~p.

The validity problem for QBF is a PSPACE-complete language. More uniformly, for any

PSPACE-language L ⊆ 2∗, there exists a sequence of QBFs {Φn(p0, . . . , pn−1) : n ∈ ω} con-

structible in time nO(1) such that

w ∈ L ⇐⇒ Φn(w0, . . . , wn−1)

for all w ∈ 2n. If L ∈ NP (L ∈ coNP), the Φn can be taken existential (universal, respectively).

The computational problems studied in this paper are mostly not YES–NO decision prob-

lems, but search problems. Here, the search problem SR associated with a relation R(x, y) is

the following computational task: given x, find a y such that R(x, y), if one exists. The class

of search problems solvable in polynomial time is denoted FP. A search problem SR is total2 if

∀x ∃y R(x, y).

A search problem SR1 is (many-one) reducible to SR0 , written as SR1 ≤ SR0 , if there are

poly-time functions f and g such that

R0

(
f(x), y

)
=⇒ R1

(
x, g(x, y)

)
2In practice, we will usually deal with search problems whose input is constrained by syntactic prerequisites,

such as “given a proof of ϕ, . . . ”. We can consider them to be total by stipulating that, say, 0 is a valid output

if the input does not meet the requirements; this does not change the computational complexity of the problem,

as the input condition is checkable in polynomial time.
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for all x and y (i.e., f translates instances of SR1 to instances of SR0 , and g translates solutions

back). We write SR0 ≡ SR1 if SR0 ≤ SR1 ≤ SR0 .

This standard notion of search problem reduction is suitable for “open-ended” search prob-

lems with many solutions, such as when looking for proofs of some formula. However, we will

also encounter search problems with a fixed finite set of possible outcomes that may be bet-

ter thought of as many-valued decision problems (possibly with non-unique answers). In such

cases, it is not appropriate to translate solutions. (Notice that many-one reductions between

languages likewise do not allow swapping a language for its complement.)

Thus, we define SR1 to be strictly reducible to SR0 , written as SR1 ≤s SR0 , if there exists a

reduction of SR1 to SR0 with g(x, y) = y. Again, we put SR0 ≡s SR1 iff SR0 ≤s SR1 ≤s SR0 .

An even stricter notion of reduction is when f is identity as well, i.e., R0 ⊆ R1: then we say

SR1 is subsumed by SR0 .

We will also refer to nonuniform poly-time reductions, where the reduction functions are

computable in polynomial time using an extra polynomial-size advice string that only depends

on the length of the input.

We define SR to be a coNP search problem3 if R ∈ coNP.

Two-valued search problems are closely related to promise problems, i.e., disjoint pairs. In

particular, a disjoint NP pair is 〈A0, A1〉, where A0, A1 ∈ NP and A0∩A1 = ∅. This represents

the following computational task: given x ∈ A0 ∪ A1, output i < 2 such that x ∈ Ai (if

x /∈ A0 ∪ A1, any output is valid). A disjoint NP pair A = 〈A0, A1〉 reduces to B = 〈B0, B1〉,
written A ≤ B, if there exists a poly-time function f such that

x ∈ Ai =⇒ f(x) ∈ Bi, i = 0, 1.

Now, a disjoint NP pair 〈A0, A1〉 represents the same task as the total 2-valued coNP search

problem SR, where R(x, i) ⇐⇒ x /∈ A1−i. On the other hand, if SR is a total 2-valued

coNP search problem, it represents the same task as the disjoint NP pair 〈A0, A1〉, where

Ai = {x : ¬R(x, 1− i)}. Moreover, if SR and SR′ are total 2-valued coNP search problems, and

A and A′ the corresponding disjoint NP pairs, we have

SR ≤s SR′ ⇐⇒ A ≤ A′,

using the same reduction function. For these reasons, we may identify total two-valued coNP

search problems with disjoint NP pairs. (More generally, total two-valued search problems may

be identified with promise problems.)

2.4 Disjunction properties

A consistent modal logic L has the disjunction property (DP) if for all formulas ϕ0 and ϕ1,

L proves 2ϕ0∨2ϕ1 only if it proves ϕ0 or ϕ1. (We note that it is conceptually more appropriate

3Confusingly, NP search problems are those where R ∈ P. To be consistent with this terminology, we should

perhaps call coNP search problems ΣP
2 search problems. We do not, because we consider the naming of NP search

problems somewhat of a misnomer in the first place, and moreover, the idea behind this nomenclature (that

ΣP
2 search problems seek witnesses for ΣP

2 predicates) does not apply to our problems, which have a bounded

range, hence the corresponding decision problems are in BH rather than full ΣP
2 . (Calling them BH search

problems would be probably even more confusing.)
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to define DP so that for every finite set of formulas {ϕi : i ∈ I}, L proves
∨
i∈I 2ϕi only if it

proves ϕi for some i ∈ I. However, for transitive logics, this more general definition is equivalent

to its special cases with I = ∅, which amounts to the consistency of L, and |I| = 2, which is how

we introduced DP above. We prefer the definition with |I| = 2 as it simplifies the presentation

of DP as a computational problem, see below.)

DP is an example of a multi-conclusion admissible rule. In general, a consecution is a pair of

finite sets of formulas, written as Γ / ∆, and a multi-conclusion rule4 is a set R of consecutions

(called the instances of R). A rule R is L-admissible if for all instances Γ / ∆ of R, if `L ϕ

for all ϕ ∈ Γ, then `L ψ for some ψ ∈ ∆. We will write rules in a schematic form (analogous

to axiom schemata) whenever possible. Thus, L has DP iff the rule 2ϕ0 ∨ 2ϕ1 / ϕ0, ϕ1 is

admissible, and the finite-set formulation of DP amounts to the admissibility of the rules

(DPn) 2ϕ0 ∨ · · · ∨2ϕn−1 / ϕ0, . . . , ϕn−1

for n ∈ ω.

Semantically, the disjunction property corresponds to the following closure property on L-

frames (see [4, Thm. 15.1]): given two (or finitely many) rooted L-frames F0 and F1, there

exists a rooted L-frame F that includes disjoint isomorphic copies of F0 and F1 as generated

subframes. In particular, if for each i = 0, 1, Wi is a model based on Fi that refutes ϕi, then

2ϕ0 ∨2ϕ1 is refuted at the root of F under any valuation that extends that of W0 and W1.

The simplest way how to construct a rooted frame that includes given rooted frames {Fi :

i < n} as generated subframes is to take their disjoint sum
∑

i<n Fi, and attach to it a new root:

we denote the resulting frame
(∑

i<n Fi
)•

if the new root is irreflexive, and
(∑

i<n Fi
)◦

if it is

reflexive. Many common transitive modal logics with DP are in fact closed under this frame

construction; if ∗ ∈ {•, ◦}, we say that a logic L is ∗-extensible if for every n ∈ ω and rooted

L-frames {Fi : i < n}, the frame
(∑

i<n Fi
)∗

is an L-frame. (We also say that L is extensible if

it is •-extensible unless L ⊇ S4, and ◦-extensible unless L ⊇ GL.)

It turns out that ∗-extensible logics do not have just DP, but they admit more general

extension rules5

(Ext∗n,m)
∧
j<m

B∗(χj)→ 2ϕ0 ∨ · · · ∨2ϕn−1

/ ∧
j<m

·2χj → ϕ0, . . . ,
∧
j<m

·2χj → ϕn−1

for n,m ∈ ω, where

B•(ϕ) = 2ϕ,

B◦(ϕ) = (ϕ↔ 2ϕ).

We also put Ext∗ =
⋃
{Ext∗n,m : n,m ∈ ω} and Ext∗n =

⋃
{Ext∗n,m : m ∈ ω}.

4In structural theory of propositional logics, the term “admissible rule” is usually reserved for schematic

rules, i.e., rules that consist of all substitutions instances of a single consecution, similarly to Frege rules (see e.g.

Rybakov [24]); however, it will be more convenient for our purposes to adopt a more relaxed definition.
5By an unfortunate clash of terminology, extension rule is also a standard name in proof complexity for the

“rule” that warrants postulation of extension axioms in EF proofs. We refrain from this usage to avoid confusion.
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For example, the logics K4, S4, GL, K4Grz, K4.1, K4BCk, S4.1.4, and their arbitrary

combinations, are extensible. The logics D4, D4.1, D4Grz, and D4BCk are ◦-extensible, but

not •-extensible (though they only fail the condition for n = 0, hence they admit Ext•n for all

n > 0, and most results below on •-extensible logics can be easily adapted to them).

The following characterization was essentially proved in [12]:

Theorem 2.14 Let L ⊇ K4, and ∗ ∈ {•, ◦}. The following are equivalent:

(i) L is ∗-extensible.

(ii) The rules Ext∗ are L-admissible.

(iii) L can be axiomatized over K4 by (substitution instances of ) axioms each of which has

the form

(5) 2β ∧2(2α→ α)→ 2α

if ∗ = •, and one of the forms

(6) β ∧2α→ α

or

(7) 2γ ∧2(2α→ β) ∧2(2β → α) ∧2(α ∨ β)→ 2α

if ∗ = ◦.

Proof: The equivalence of (i) and (ii) is from [12, Thm. 3.5]. (iii) → (i): It is straightforward

to check that a valuation in
(∑

i<n Fi
)∗

that makes an axiom of such form true in each Fi also

makes it true in the root.

(ii) → (iii): First, assume ∗ = •. Even though [12, Thm. 3.11] is stated only for extensible

logics, the argument (using Claim 1) applies directly to •-extensible logics, showing they are

axiomatizable over K4 by Zakharyaschev’s canonical formulas α(F,D,⊥) (see [4, §9.4] and

[12, 3.6–3.10]) where the root of F is reflexive. Considering that ·2 commutes with ∧, such a

canonical formula can be brought to the syntactic form

(8) ·2β ∧ ·2(2α→ α)→ α

for some formulas α and β (in fact, with α being just a variable). Now, for a given α and β, (8)

is equiderivable with (5) over K4: on the one hand, we can derive (5) from (8) by (Nec) and

distributing the boxes; on the other hand, (5)→ (8) is a classical tautology.

If ∗ = ◦, then [12, Thm. 3.11] shows that L is axiomatizable by canonical formulas α(F,D,⊥)

where the root cluster of F is either proper or irreflexive. In the former case, the canonical

formula has the form

·2γ ∧ ·2(2α→ β) ∧ ·2(2β → α) ∧ ·2(α ∨ β)→ α,

which is equiderivable with (7) similarly to the argument for ∗ = •. In the latter case, the

canonical formula has the form

β ∧ ·2(α ∨2α)→ α,

which is equivalent to (6). 2
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In contrast to DP, the extension rules are not equivalent to their restrictions with bounded n.

For a fixed n, the L-admissibility of Ext•n or Ext◦n is equivalent to the closure of the class

of rooted L-frames under taking
(∑

i<n Fi
)•

or
(∑

i<n Fi
)◦

(respectively), thus for example,

K4BBk admits Ext•n and Ext◦n for n ≤ k, but not for any larger n.

On the other hand, since ∧ commutes with 2 and ·2, Ext•n is (feasibly) equivalent to Ext•n,1.

The reflexive case is more involved, but it was shown in [13] that Ext◦n is equivalent to Ext◦n,2,

and in fact, to its special case

·2(χ↔ 2χ)→ 2ϕ0 ∨ · · · ∨2ϕn−1 / ·2χ→ ϕ0, . . . , ·2χ→ ϕn−1.

However, the reduction as given in [13, L. 3.3] involves formulas of size doubly exponential in m,

hence we prefer to state the rules in the more general form above for computational purposes.

The disjunction property gives rise to several computational problems, in particular:

• Given a proof of 2ϕ ∨2ψ, decide if ϕ or ψ is provable.

• Given a proof of 2ϕ ∨2ψ, find a proof of ϕ or of ψ.

More generally, let P be a proof system for a logic L, and R a (polynomial-time recognizable)

multi-conclusion L-admissible rule. The R-decision problem for P , denoted Dec(R,P ), is the

total search problem

• given an instance {ϕi : i < n} / {ψj : j < m} of R, and for each i < n, a P -proof of ϕi,

find a j < m such that ψj is P -provable.

The R-proof-construction problem for P , Cons(R,P ), is the total search problem

• given an instance {ϕi : i < n} / {ψj : j < m} of R, and for each i < n, a P -proof of ϕi,

find a P -proof of some ψj .

(Formally, we make Dec(R,P ) and Cons(R,P ) total by allowing the output 0 if the input does

not have the stated syntactic form.) We say that P has feasible R if Dec(R,P ) ∈ FP, and

constructive feasible R if Cons(R,P ) ∈ FP.

The extension rules Ext∗ have the remarkable feature that they are constructively feasible

for Frege, EF, and CF systems whenever they are admissible at all. This was proved in [12,

Thm. 4.8]. (The result is stated as a p-simulation of Frege systems for extensible logics using

additional single-conclusion admissible rules as new rules of inference, but the proof, specifically

Claims 2 and 3, applies to multi-conclusion rules as well, and only needs the logic to be ∗-
extensible. As is the nature of Frege systems, the original formulation allows for repeated

applications of the rules, which is something we will not need here.)

Since this is a central tool in this paper, and we will need to adapt the argument later on

anyway, we include a self-contained proof.

If R is a rule, and S a set of formulas, let S-restricted R be the rule consisting of instances

Γ / ∆ of R such that Γ ∪∆ ⊆ S.

Theorem 2.15 Let ∗ ∈ {•, ◦}, and L ⊇ K4 be a ∗-extensible logic. Then L-F and L-CF have

constructive feasible Ext∗, and therefore constructive feasible DP.
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Proof: Assume first ∗ = •. By Theorem 2.14 and Corollary 2.3, we may assume L is axiomatized

by the usual axioms and rules of K4, and substitution instances of axioms

2βj →
(
2(2αj → αj)→ 2αj

)
, j < k,

for some k and formulas α0, β0, . . . , αk−1, βk−1. Given an L-CF proof π = 〈θ0, . . . , θz〉 of

θz =
∧
j<m

2χj →
∨
i<n

2ϕi,

let Π be the closure of π ∪ {χj : j < m} under (MP) and Sub(π)-restricted (Nec).

Clearly, all circuits in Π are subcircuits of some θi. There are only polynomially many such

subcircuits, and then it is easy to see that Π can be computed in polynomial time. Also, Π

can be arranged into an L-CF derivation from χj , j < m, as additional axioms. If π consists of

formulas only, then so does Π, i.e., it is an L-F derivation.

Let v : Form→ 2 be a Boolean propositional assignment to modal formulas such that v(pi)

is chosen arbitrarily for each variable pi, and

v(2ϕ) = 1 ⇐⇒ ϕ ∈ Π.

We claim that

(9) v(θi) = 1

for all i ≤ z, which we prove by induction on i. If θi is inferred by an axiom or rule of CPC, (9)

follows from v being a Boolean assignment. If θi is an instance of (K) or (4), then (9) follows

from the closure of Π under (MP) or (Nec) (respectively).

Assume that θi is

(10) 2β′j →
(
2(2α′j → α′j)→ 2α′j

)
,

where j < k, and α′j = σ(αj), β
′
j = σ(βj) for some substitution σ. If v(2β′j) = 1 and

v
(
2(2α′j → α′j)

)
= 1, then β′j and 2α′j → α′j are in Π. By closure under (Nec), Π also contains

2β′j and 2(2α′j → α′j), thus in view of θi ∈ Π, closure under (MP) gives 2α′j ∈ Π, hence (using

2α′j → α′j ∈ Π) also α′j ∈ Π. Thus, v(2α′j) = 1.

Taking i = z in (9), v(2χj) = 1 for each j implies v
(∨

i<n2ϕi
)

= 1, i.e., there exists i < n

such that ϕi ∈ Π. Thus, Π is an L-CF derivation of ϕi from {χj : j < m}, and we can turn it

into an L-CF proof of
∧
j<m

·2χj → ϕi by Lemma 2.7.

Now, assume ∗ = ◦. By Theorem 2.14, we may assume L is axiomatized over K4 by

substitution instances of axioms

βj ∧2αj → αj , j < k,(11)

2γj →
(
2(2αj → βj)→

(
2(2βj → αj)→

(
2(αj ∨ βj)→ 2αj

)))
, j < l.(12)

Given an L-CF proof π = 〈θ0, . . . , θz〉 of

θz =
∧
j<m

(χj ↔ 2χj)→
∨
i<n

2ϕi,
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define Π as above. Again, Π is computable in polynomial time, and it is a valid L-CF derivation

from axioms χj , j < m. We define a Boolean assignment v such that

v(2ϕ) = 1 ⇐⇒ ϕ ∈ Π and v(ϕ) = 1.

Again, we prove (9) by induction on i ≤ s. Axioms and rules of K4 are handled as before, and

(9) holds trivially for instances

(13) β′j ∧2α′j → α′j

of (11), as v(2α′j) = 1 implies v(α′j) = 1 by definition. Assume that θi is

(14) 2γ′j →
(
2(2α′j → β′j)→

(
2(2β′j → α′j)→

(
2(α′j ∨ β′j)→ 2α′j

)))
,

where j < l, α′j = σ(αj), β
′
j = σ(βj), and γ′j = σ(γj) for some substitution σ. If v satisfies

the four boxed antecedents of θi, the corresponding unboxed circuits are in Π, hence their

boxed counterparts as well by closure under (Nec), hence 2α′j ∈ Π by closure under (MP).

In view of 2α′j → β′j ∈ Π, this gives β′j ∈ Π, hence 2β′j ∈ Π by (Nec), hence α′j ∈ Π using

2β′j → α′j ∈ Π. Moreover, v(α′j ∨ β′j) = 1. If v(α′j) = 1, then v(2α′j) = 1 and we are done.

Otherwise, v(β′j) = 1, thus (using β′j ∈ Π) v(2β′j) = 1. Since also v(2β′j → α′j) = 1, we obtain

v(α′j) = 1 and v(2α′j) = 1 again.

Since χj ∈ Π, we have v(χj ↔ 2χj) = 1 for each j < m. Thus, v(θz) = 1 implies

v
(∨

i<n2ϕi) = 1, that is, Π is an L-CF derivation of some ϕi from {χj : j < m}, and we can

turn it into an L-CF proof of
∧
j<m

·2χj → ϕi. 2

We stress that this “automatic feasibility” of Ext∗ essentially relies on the presence of

Ext∗n for all n. Indeed, the main part of this paper will be a study of the complexity of

Dec(Ext∗k, L-CF) for logics L involving the BBk axiom.

3 Summary of main results

This is a long paper proving a sequence of theorems some of which gradually improve the

previous ones, and it is easy to get lost. For this reason, we provide an overview of the main

results, grouping related theorems together, and omitting some of the more complicated details.

The results follow two main threads: first, estimates on the complexity of the search problems

associated with DP and extension rules for basic logics of bounded branching, and second,

conditional superpolynomial speed-ups of L-SF over L-EF under complexity assumptions.

As for the first thread, the following statement summarizes Theorem 4.1, part of Theo-

rem 5.8, and Theorem 8.5:

Theorem 3.1 Let ∗ ∈ {•, ◦}, L0 be a ∗-extensible logic, k ≥ t ≥ 2, and L = L0 ⊕ BBk.

Then Dec(Ext∗t , L-CF), and therefore Dec(DP, L-CF), is subsumed by a total coNP search

problem. More precisely, Dec(Ext∗t , L-CF) ≡s Dec(Rk,t,CPC-CF) and Cons(Ext∗t , L-CF) ≡
Cons(Rk,t,CPC-CF). Likewise, Dec(Vt,Tk-CF) ≡s Dec(Rk,t,CPC-CF).
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Here, Rk,t is a certain propositional rule introduced in Definition 5.4, whose decision problem

reduces to the interpolation problem (Lemma 5.5). The superintuitionistic Gabbay–de Jongh

logics Tk and the Visser rules Vt are defined in Section 8.

Another result in this thread is a form of Hrubeš-style monotone interpolation in Theo-

rem 6.1, whose statement is rather technical.

As for the second thread, the following statement summarizes Theorem 4.6, Corollary 5.11,

and Theorem 6.3 as generalized in Theorem 7.7 (or rather, Example 7.8), and Theorems 8.12

and 8.15.

Theorem 3.2 If K4 ⊆ L ⊆ S4.2GrzBB2, K4 ⊆ L ⊆ GL.2BB2, or IPC ⊆ L ⊆ T2 + KC,

then L-SF has superpolynomial speed-up over L-EF unless the following happen:

• PSPACE = NP = coNP.

• The disjoint NP pair version of Dec(R2,2,CPC-CF), and consequently the interpolation

NP pair for CPC-EF, are complete disjoint PSPACE pairs under nonuniform poly-time

reductions.

• For every monotone PSPACE language P , there exists a sequence of polynomial-size

monotone Boolean circuits C∀n, C∃n in variables {pi : i < n} and {sl,r : l < mn, r < 3} that

satisfy certain conditions spelled out in Theorem 6.3 (for modal L) or Theorem 8.15 (for

superintuitionistic L).

4 Disjunction properties for logics of bounded branching

In this section, we will start investigating the complexity of the decision problems for DP and

extension rules for basic logics of bounded branching; more precisely, our results will apply to

logics of the form L = L0⊕BBk where L0 is a •-extensible or ◦-extensible logic. We try to apply

the same method as in the proof of Theorem 2.15, using Boolean assignments constructed from

polynomial-size closures of the given proof under (MP) and some other rules. In order to handle

instances of the BBk axiom, we need to introduce extra “rules” that are not really sound, hence

we will not get a valid proof in the end; nevertheless, the combinatorics of these rules leads to

a reduction of the decision problem for Ext∗t to a certain total coNP search problem (albeit

a rather unnatural one). Even though this does not give a polynomial-time algorithm, it still

considerably lowers the trivial PSPACE upper bound on the complexity of the problem. As

a consequence, we will obtain a superpolynomial speed-up of L-SF over L-EF conditional on

PSPACE 6= NP.

Theorem 4.1 Let ∗ ∈ {•, ◦}, L0 be a ∗-extensible logic, k ≥ t ≥ 2, and L = L0 ⊕BBk. Then

Dec(Ext∗t , L-CF), and therefore Dec(DP, L-CF), is subsumed by a total coNP search problem.

Proof: Let π = 〈θ0, . . . , θz〉 be a given L-CF proof of

(15)
∧
v<s

B∗(χv)→
∨
u<t

2ϕu,
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we need to find a u < t such that

(16) `L
∧
v<s

·2χv → ϕu

using a total coNP search problem.

We assume that L0 is axiomatized as in the proof of Theorem 2.15. Let {Al : l < m} be the

list of instances of the BBk axiom invoked in π, where

(17) Al = 2

[∨
i≤k

2

(
·2ψl,i →

∨
j 6=i

·2ψl,j
)
→
∨
i≤k

·2ψl,i
]
→
∨
i≤k

2
∨
j 6=i

·2ψl,j , l < m.

Let Ξπ be a set of auxiliary circuits consisting of∨
i≤k

2
∨
j 6=i

·2ψl,j →
∨
i≤k

2

(
·2ψl,i →

∨
j 6=i

·2ψl,j
)
, l < m,(18)

∨
j 6=i

·2ψl,j →
(
·2ψl,i →

∨
j 6=i

·2ψl,j
)
, l < m, i ≤ k,(19)

ψl,i′ → 2ψl,i′ →
∨
j 6=i

·2ψl,j , l < m, i, i′ ≤ k, i 6= i′.(20)

Clearly, Ξπ is polynomial-time constructible, and it consists of K-tautologies.

Let us write [k + 1] = {0, . . . , k}. For any σ ∈ [k + 1]m, let Πσ be the closure of

(21) π ∪ Ξπ ∪ {χv : v < s}

under (MP), Sub(π)-restricted (Nec), and under the rules

(22)
∨
i≤k

·2ψl,i
/ ∨

i 6=r

·2ψl,i, l < m, r = σl.

(We stress that we take (22) only literally, we do not consider its substitution instances.) Like-

wise, let Πσ denote the closure of (21) under (MP), Sub(π)-restricted (Nec), and under the

rules (22) for all l < m and r 6= σl. The sets Πσ and Πσ are computable in polynomial time

given π and σ.

We consider the following coNP-search problem D(π): given an L-CF proof π of (15), find

u < t such that ∀τ ∈ [k + 1]m ϕu ∈ Πτ (with a suitable convention if the input does not have

the right form). We are going to show that D(π) is total, and that it subsumes Dec(DP, L-CF).

As in Theorem 2.14, given σ ∈ [k+1]m, we define a Boolean assignment vσ to modal formulas

such that

vσ(2ϕ) = 1 ⇐⇒

{
ϕ ∈ Πσ, ∗ = •,
ϕ ∈ Πσ & vσ(ϕ) = 1, ∗ = ◦.

Claim 4.1.1 For all g ≤ z, vσ(θg) = 1.

24



Proof: By induction on g. Since Πσ is closed under (MP) and Sub(π)-restricted (Nec), the

proof of Theorem 2.14 shows that the claim holds if θg was derived by an axiom or rule of L0.

Thus, we only need to prove vσ(Al) = 1 for all l < m. Assume that

(23) vσ

(
2

[∨
i≤k

2

(
·2ψl,i →

∨
j 6=i

·2ψl,j
)
→
∨
i≤k

·2ψl,i
])

= 1.

Then the following circuits are in Πσ:∨
i≤k

2

(
·2ψl,i →

∨
j 6=i

·2ψl,j
)
→
∨
i≤k

·2ψl,i definition of vσ,(24)

2

[∨
i≤k

2

(
·2ψl,i →

∨
j 6=i

·2ψl,j
)
→
∨
i≤k

·2ψl,i
]

(Nec),(25)

∨
i≤k

2
∨
j 6=i

·2ψl,j (MP) with (17),(26)

∨
i≤k

2

(
·2ψl,i →

∨
j 6=i

·2ψl,j
)

(MP) with (18),(27)

∨
i≤k

·2ψl,i (MP) with (24),(28)

∨
i 6=σl

·2ψl,i by (22).(29)

If ∗ = •, this means

vσ

(
2
∨
i 6=σl

·2ψl,i
)

= 1

and we are done. If ∗ = ◦, we need more work. We have

(30) vσ

(∨
i≤k

2

(
·2ψl,i →

∨
j 6=i

·2ψl,j
)
→
∨
i≤k

·2ψl,i
)

= 1

from (23). Notice that

(31) ·2ψl,σl →
∨
i 6=σl

·2ψl,i ∈ Πσ

by (29) and (19). Thus, if

(32) vσ

(
·2ψl,σl →

∨
i 6=σl

·2ψl,i
)

= 1,

then vσ
(
2
(
·2ψl,σl →

∨
i 6=σl

·2ψl,i
))

= 1, hence vσ
(∨

i
·2ψl,i

)
= 1 by (30), and

vσ

(∨
i 6=σl

·2ψl,i
)

= vσ

(
2
∨
i 6=σl

·2ψl,i
)

= 1

using (32) and (29).
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On the other hand, if vσ
(
·2ψl,σl →

∨
i 6=σl

·2ψl,i
)

= 0, then vσ( ·2ψl,σl) = 1. This implies

ψl,σl ∈ Πσ, hence 2ψl,σl ∈ Πσ by closure under (Nec). Using (20), we get
∨
j 6=i ·2ψl,j ∈ Πσ and

vσ

(
2
∨
j 6=i

·2ψl,j
)

= 1

for any fixed i 6= σl. 2 (Claim 4.1.1)

Since χv ∈ Πσ, we have vσ
(
B∗(χv)

)
= 1 for all v < s. Thus, Claim 4.1.1 for θz = (15)

implies vσ(2ϕu) = 1 for some u < t, that is,

(33) ∀σ ∈ [k + 1]m ∃u < t ϕu ∈ Πσ.

If σ, τ ∈ [k + 1]m, let us write σ#τ if σl 6= τl for all l < m. We claim that

(34) ∃u < t ∀τ ∈ [k + 1]m ∃σ ∈ [k + 1]m (σ#τ & ϕu ∈ Πσ).

If not, let us fix for each u < t a counterexample τu. Since t < k + 1, there exists σ such that

σ#τ0, . . . , τ t−1, say, σl = min
(
[k+1]r{τul : u < t}

)
for each l < m. But then ϕ0, . . . , ϕt−1 /∈ Πσ,

contradicting (33).

Clearly, Πτ ⊇ Πσ for any σ#τ , thus (34) implies

∃u < t ∀τ ∈ [k + 1]m ϕu ∈ Πτ ,

i.e., D(π) is total. It remains to verify that a solution to D(π) gives a valid solution to

Dec(Ext∗t , L-CF), i.e.,

(35) ∀τ ∈ [k + 1]m ϕu ∈ Πτ =⇒ `L
∧
v<s

·2χv → ϕu.

Apart from {χv : v < s}, the elements of Πτ are L-tautologies, or they are derived by rules of L

(modus ponens, necessitation), or by (22) for r 6= τl. Thus, we see by induction on the length

of the derivation that

ϕ ∈ Πτ =⇒ `L
∧
v<s

·2χv ∧
∧
l<m

(∨
i≤k

·2ψl,i → ·2ψl,τl
)
→ ·2ϕ.

In particular, if ϕu ∈ Πτ for all τ ∈ [k + 1]m, then

`L
∧
v<s

·2χv ∧
∨

τ∈[k+1]m

∧
l<m

(∨
i≤k

·2ψl,i → ·2ψl,τl
)
→ ϕu.

However, ∨
τ∈[k+1]m

∧
l<m

(∨
i≤k

·2ψl,i → ·2ψl,τl
)

is a classical tautology, as it follows from∧
l<m

∨
j≤k

(∨
i≤k

·2ψl,i → ·2ψl,j
)

by distributivity. Thus, we obtain (35). 2
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Our main application of the bounds on the complexity of DP are lower bounds, or more

precisely separations between L-EF and L-SF systems. We will make use of the following

translation of quantified Boolean formulas to modal circuits.

Definition 4.2 Given a quantified Boolean formula Φ(~p) in prenex normal form with bound

propositional variables ~q, we construct a modal circuit AΦ(~p, ~q) as follows:

AΦ = Φ if Φ is quantifier-free,

A∀qΦ = ·2q ∨ ·2¬q → AΦ,

A∃qΦ = 2( ·2q → AΦ) ∨2( ·2¬q → AΦ).

(In order to make a polynomial-size circuit, both disjuncts in the definition of A∃qΦ use the same

copy of AΦ.) Let Φ denote the prenex normal form of ¬Φ obtained by dualizing all quantifiers

and negating the quantifier-free matrix of Φ.

Lemma 4.3 Given a Boolean circuit ϕ(p0, . . . , pn−1), there are poly-time constructible K-CF

proofs of

(36)
∧
i<n

(2pi ∨2¬pi)→ 2ϕ ∨2¬ϕ.

Proof: By induction on the size of ϕ, using instances of the tautologies

2ϕ ∨2¬ϕ→ 2¬ϕ ∨2¬¬ϕ,
(2ϕ ∨2¬ϕ) ∧ (2ψ ∨2¬ψ)→ 2(ϕ ◦ ψ) ∨2¬(ϕ ◦ ψ)

for ◦ ∈ {∧,∨,→}, which have linear-size proofs by Observation 2.2. 2

Lemma 4.4 Given a QBF Φ(p0, . . . , pn−1), there are poly-time constructible K4-SCF proofs of

(37)
∧
i<n

(2pi ∨2¬pi)→ 2AΦ ∨2AΦ.

Proof: By induction on the number of quantifiers. The base case is Lemma 4.3. For the

induction step, we may assume Φ = ∃qΦ0(q, ~p) by swapping the roles of Φ and Φ if necessary.

By the induction hypothesis, we have a proof of∧
i<n

(2pi ∨2¬pi) ∧ (2q ∨2¬q)→ 2AΦ0(q) ∨2AΦ0
(q)

(not showing other variables). Using the substitution rule twice, we obtain∧
i<n

(2pi ∨2¬pi)→
(
2AΦ0(>) ∨2AΦ0

(>)
)
∧
(
2AΦ0(⊥) ∨2AΦ0

(⊥)
)

→
(
2AΦ0(>) ∨2AΦ0(⊥)

)
∨2

(
AΦ0

(>) ∧AΦ0
(⊥)
)

→
(
2( ·2q → AΦ0) ∨2( ·2¬q → AΦ0)

)
∨2( ·2q ∨ ·2¬q → AΦ0

)

→ 2AΦ ∨2AΦ

with the help of Lemma 2.8. 2
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Lemma 4.5 Let Φ be a QBF in free variables ~p, let ~a be a Boolean assignment to ~p, and ~p/~a

be the corresponding substitution. If L is a logic with DP, and

`L AΦ(~p/~a),

then Φ(~a) is true.

Proof: By induction on the number of quantifiers in Φ. If Φ is quantifier-free, then AΦ(~p/~a) is

just Φ(~a). If Φ = ∃qΦ0(~p, q), and

`L 2
(
·2q → AΦ0(~p/~a)

)
∨2

(
·2¬q → AΦ0(~p/~a)

)
,

then by DP,

`L ·2q → AΦ0(~p/~a) or `L ·2¬q → AΦ0(~p/~a),

hence there exists b ∈ {⊥,>} such that

`L AΦ0(~p/~a, q/b).

By the induction hypothesis, Φ0(~a, b) is true, hence so is Φ(~a).

If Φ = ∀qΦ0(~p, q), then `L ·2q ∨ ·2¬q → AΦ0(~p/~a) implies

`L AΦ0(~p/~a, q/⊥) ∧AΦ0(~p/~a, q/>),

hence Φ0(~a,⊥) and Φ0(~a,>) are true, hence so is Φ(~a). 2

We come to our basic separation between EF and SF. We use the same tautologies for all

logics in question, and while we apply Theorem 4.1 to get the EF lower bounds, the SF upper

bounds hold already for the base logic K4. This implies a separation for all sublogics of logics

satisfying the assumptions of Theorem 4.1, which allows us to formulate the result without

explicit reference to ∗-extensible logics L0: the largest •-extensible logic is GL (being complete

w.r.t. finite irreflexive trees), and likewise, the largest ◦-extensible logic is S4Grz. For the same

reason, we only need to refer to the strongest among the BBk axioms, viz. BB2.

Theorem 4.6 If K4 ⊆ L ⊆ S4GrzBB2 or K4 ⊆ L ⊆ GLBB2, then L-SF has superpolyno-

mial speed-up over L-EF unless PSPACE = NP = coNP.

More precisely, if PSPACE 6= NP, there exists a sequence of formulas that have polynomial-

time constructible K4-SF proofs, but require proofs of superpolynomial size in S4GrzBB2-EF

or GLBB2-EF.

Proof: We may work with CF and SCF in place of EF and SF (respectively), and then it is

enough to construct a sequence of circuits rather than formulas by Lemmas 2.5 and 2.6.

Given a QBF Φ without free variables, the circuits

(38) 2AΦ ∨2AΦ

have polynomial-time constructible K4-SCF proofs by Lemma 4.4. Assume for not-quite-a-

contradiction that they have L-CF proofs of size |Φ|c for some constant c, where w.l.o.g. L =
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S4GrzBB2 or L = GLBB2 using Corollary 2.3. By Theorem 4.1, there are coNP predicates

D0 and D1 such that

π is an L-CF proof of 2AΦ ∨2AΦ =⇒ D0(Φ, π) ∨D1(Φ, π),

D1(Φ, π) =⇒ `L AΦ,

D0(Φ, π) =⇒ `L AΦ.

Since

`L AΦ =⇒ Φ is true,

`L AΦ =⇒ Φ is false

by Lemma 4.5, we obtain

Φ is true ⇐⇒ ∀π
(
|π| ≤ |Φ|c → D1(Φ, π)

)
⇐⇒ ∃π

(
|π| ≤ |Φ|c & ¬D0(Φ, π)

)
,

which gives an NP and coNP expression for a PSPACE-complete language. 2

Remark 4.7 We can improve the speed-up to exponential (2n
ε
) under the stronger hypothesis

PSPACE * NSUBEXP.

With some care, we could make sure the formulas had poly-time proofs even in K-SF.

(Basically, in Definition 4.2, we need to replace ·2 with 2d (i.e., 2 . . .2 with d boxes) where d

is the number of quantifiers in Φ, and add an extra 2 in front of the definition of A∀qΦ. We

also replace 2 with 2d+1 in the premise of (37).)

5 The argument internalized

Theorem 4.1 does not satisfactorily determine the complexity of Dec(Ext∗t , L-CF): the upper

bound it gives (total coNP search problem) does not come with a matching lower bound, and in

fact, the true complexity of the problem is most probably strictly weaker. The reason for this

is that there likely exist no complete total coNP search problems (see Pudlák [22] for a detailed

discussion of conjectures related to the nonexistence of complete disjoint NP pairs—recall that

disjoint NP pairs can be identified with two-valued total coNP search problems).

Thus, unlike classes such as NP, the class of total coNP search problems forms an (upwards

directed) preorder of problems of ever growing complexity with no maximum, and any particular

total coNP search problem has complexity strictly smaller than the whole class. For this reason,

it is desirable to gauge the complexity of Dec(Ext∗t , L-CF) more precisely by reducing it to

specific natural and/or previously studied total coNP search problems (more informative than

the opaque ad hoc problem D(π) from the proof of Theorem 4.1), and ideally, to prove it

equivalent to such a problem.

In this section, we are going to reduce Dec(Ext∗t , L-CF) to the well known feasible inter-

polation problem for the classical extended Frege system, and in fact, we will show that it is

equivalent to its special case Dec(Rk,t,CPC-CF), where Rk,t is a certain rule introduced in
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Definition 5.4. Moreover, the equivalence lifts to the corresponding proof-construction prob-

lems. As a consequence, we can improve Theorem 4.6: if, for the logics in question, L-SF

has no speed-up over L-EF, then PSPACE collapses not just to NP, but to the interpolation

disjoint NP pair for CPC-EF (and even to the corresponding problem involving R2,2), albeit

with nonuniform advice.

The argument is based on internalizing parts of the proof of Theorem 4.1: we express some

of the polynomial-time constructions employed in the proof by explicit Boolean circuits, and

we derive some of their properties used in the argument by short CPC-CF or L-CF proofs. As

a bonus, we will obtain additional information on feasibility of some weaker forms of the Ext∗t
rules (see the statement of Theorem 5.8 for details).

From now on, let us fix k ≥ t ≥ 2, ∗ ∈ {•, ◦}, a ∗-extensible logic L0, and L = L0 ⊕BBk.

Moreover, assume we are given an L-CF proof π = 〈θ0, . . . , θz〉 of

(39)
∧
v<s

B∗(χv)→
∨
u<t

2ϕu,

and let {Al : l < m} and Ξπ be as in the proof of Theorem 4.1. Put S = Sub(π ∪ Ξπ) and

N = |S|.
We start by describing the sets Πσ and Πτ from the proof of Theorem 4.1 with (Boolean)

circuits. More generally, if a is any assignment to the propositional variables {sl,r : l < m, r ≤ k}
(which we assume to be distinct from all variables used in π), let Πa ⊆ S be the closure of

π ∪ Ξπ ∪ {χv : v < s} under (MP), S-restricted (Nec), and the rules (22) for l < m and r ≤ k

such that a(sl,r) = 1. We may stratify it by putting Πa,0 = π ∪ Ξπ ∪ {~χ}, and inductively

defining Πa,h+1 as Πa,h plus conclusions of all the above-mentioned rules whose premises are

in Πa,h. We have Πa,N = Πa.

In order to describe Πa,h, we construct monotone Boolean circuits Cϕ,h(~s) for ϕ ∈ S and

h ≤ N + 1 as follows:

Cϕ,0 =

{
>, ϕ ∈ π ∪ Ξπ ∪ {χv : v < s},
⊥, otherwise,

Cϕ,h+1 = Cϕ,h ∨
∨
ψ

(Cψ,h ∧ Cψ→ϕ,h)︸ ︷︷ ︸
for ψ s.t. ψ → ϕ ∈ S

∨ Cψ,h︸ ︷︷ ︸
if ϕ = 2ψ

∨
∨
ψ

(Cψ,h ∧ sl,r)︸ ︷︷ ︸
for ψ =

∨
i
·2ψl,i

s.t. ϕ =
∨
i6=r ·2ψl,i

.

Finally, we define Cϕ = Cϕ,N . It should be clear from the definition that

Cϕ,h(a) = 1 ⇐⇒ ϕ ∈ Πa,h,

Cϕ(a) = 1 ⇐⇒ ϕ ∈ Πa.

We need to internally verify two basic properties of {ϕ : Cϕ = 1}: that it is closed under the

above-mentioned rules, and that its elements are provable from appropriate hypotheses. These

are formalized by the next two lemmas.
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Lemma 5.1 The following have poly-time constructible CPC-CF proofs.

Cϕ,h → Cϕ,h′ , h < h′ ≤ N + 1, ϕ ∈ S,(40) ∧
ϕ∈S

(Cϕ,h+1 → Cϕ,h)→
∧
ϕ∈S

(Cϕ,h+2 → Cϕ,h+1), h < N,(41)

Cϕ,N+1 → Cϕ,N , ϕ ∈ S,(42)

Cϕ, ϕ ∈ π ∪ Ξπ ∪ {χv : v < s},(43)

Cϕ ∧ Cϕ→ψ → Cψ, ϕ→ ψ ∈ S,(44)

Cϕ → C2ϕ, 2ϕ ∈ S,(45)

sl,r ∧ C∨
i
·2ψl,i → C∨

i 6=r ·2ψl,i , l < m, r ≤ k.(46)

Proof: (40) follows by chaining the implications Cϕ,h → Cϕ,h+1, which are immediate conse-

quences of the definition.

(41): For any ϕ′ ∈ S, we can prove∧
ϕ∈S

(Cϕ,h+1 → Cϕ,h)→
(∨

ψ
(Cψ,h+1 ∧ Cψ→ϕ′,h+1)→

∨
ψ

(Cψ,h ∧ Cψ→ϕ′,h)
)
,

and similarly for the other disjuncts in the definition of Cϕ′,h+2, hence∧
ϕ∈S

(Cϕ,h+1 → Cϕ,h)→ (Cϕ′,h+2 → Cϕ′,h+1).

Combining these for all ϕ′ ∈ S gives (41).

(42): In view of (41), it suffices to prove

(47)
∨
h≤N

∧
ϕ∈S

(Cϕ,h+1 → Cϕ,h).

Let αh,ϕ = Cϕ,h+1 ∧ ¬Cϕ,h. Using (40), we can construct a proof of∧
ϕ∈S

h<h′≤N

¬(αh,ϕ ∧ αh′,ϕ),

while obviously

¬
∨
h≤N

∧
ϕ∈S

(Cϕ,h+1 → Cϕ,h)→
∧
h≤N

∨
ϕ∈S

αh,ϕ.

Thus, (47) follows from an instance of PHPN+1
N , which has short CPC-CF proofs [5].

(43) follows from (40), as Cϕ,0 = > by definition.

(44): We derive

Cϕ,N ∧ Cϕ→ψ,N → Cψ,N+1 definition of Cψ,N+1,

→ Cψ,N by (42).

The proofs of (45) and (46) are analogous. 2
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Lemma 5.2 For any ϕ ∈ S and h ≤ N , there are poly-time constructible L-CF proofs of

(48)
∧
l<m
r≤k

(
sl,r ∧ ·2ψl,r →

∨
i 6=r

·2ψl,i
)
∧ Cϕ,h(~s) ∧

∧
v<s

·2χv → ·2ϕ.

Proof: By induction on h. For h = 0, the cases ϕ = χv are trivial, π itself gives a proof of ϕ

(whence ·2ϕ) for all ϕ ∈ π, and it is straightforward to construct short K-CF proofs of ϕ ∈ Ξπ.

For h+ 1, we unwind the definition of Cϕ,h+1, and use short subproofs of

·2ψ ∧ ·2(ψ → ϕ)→ ·2ϕ,
·2ψ → ·22ψ,

sl,r ∧
(
sl,r ∧ ·2ψl,r →

∨
i 6=r

·2ψl,i
)
∧ ·2

∨
i≤k

·2ψl,i → ·2
∨
i 6=r

·2ψl,i,

where the last one employs
∨
i 6=r ·2ψl,i → 2

∨
i 6=r ·2ψl,i. 2

We remark that the same proof shows that if α(p) is a formula such that L proves α(>),

α(p)→ α(2p), and α(p)∧α(p→ q)→ α(q), then there are poly-time constructible L-CF proofs

of ∧
l<m
r≤k

[
sl,r ∧ α

(∨
i≤k

·2ψl,i
)
→ α

(∨
i 6=r

·2ψl,i
)]
∧ Cϕ(~s) ∧

∧
v<s

α(χv)→ α(ϕ).

However, we do not have a use for this more general statement.

The heart of the argument is to show that Cϕu holds for some u < t (under suitable

conditions). To this end, we define Boolean circuits Vϕ(~s) for ϕ ∈ S, representing the Boolean

assignments vσ from the proof of Theorem 4.1: we let Vϕ be arbitrary (say, >) if ϕ is a variable,

and we put

Vc(ϕ0,...,ϕd−1) = c(Vϕ0 , . . . , Vϕd−1
), c ∈ {∧,∨,→,¬,>,⊥},

V2ϕ =

{
Cϕ, ∗ = •,
Cϕ ∧ Vϕ, ∗ = ◦.

Lemma 5.3 There are poly-time constructible CPC-CF proofs of∧
l<m

∨
r≤k

sl,r → Vθg , g ≤ z,(49)

∧
l<m

∨
r≤k

sl,r →
∨
u<t

Cϕu .(50)

Proof: (49): By induction on g, using the structure of π. If θg is derived by (MP) from

θh = θi → θg and θi, we have

Vθh ∧ Vθi → Vθg

from the definition of Vθh . Likewise, if θg is an instance of an axiom of CPC, then Vθg unwinds

to an instance of the same axiom. If θg = 2θh is derived by (Nec), we have

Cθh ∧ Vθh → Vθg
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by the definition of Vθg , while Cθh is provable by (43). If θg is an instance of (K), then depending

on ∗, Vθg is one of

Cϕ→ψ → (Cϕ → Cψ),

Cϕ→ψ ∧ (Vϕ → Vψ)→ (Cϕ ∧ Vϕ → Cψ ∧ Vψ),

which have short proofs using (44). If θg is an instance of (4), Vθg is one of

Cϕ → C2ϕ,

Cϕ ∧ Vϕ → C2ϕ ∧ Cϕ ∧ Vϕ,

which follow from (45). This completes the axioms and rules of K4.

If ∗ = • and θg is (10), Vθg is

Cβ′j → (C2α′j→α′j → Cα′j ).

We can prove

Cβ′j ∧ C2α′j→α′j → C2β′j
∧ C2(2α′j→α′j) by (45),

→ C2α′j
by (43) for θg, and (44),

→ Cα′j by (44).

If ∗ = ◦ and θg is (13), Vθg is the tautology

Vβ′j ∧ Cα′j ∧ Vα′j → Vα′j .

If θg is (14), then Vθg can be proved by formalizing the relevant part of the proof of Theorem 2.15,

which we leave to the reader.

The remaining case is θg = Al for some l < m. Let us abbreviate

δl =
∨
i≤k

·2ψl,i,

δl,i =
∨
j 6=i

·2ψl,j ,

βl =
∨
i≤k

2( ·2ψl,i → δl,i),

so that

Al = 2(βl → δl)→
∨
i≤k

2δl,i.

For any r ≤ k, we prove

V2(βl→δl) → Cβl→δl by definition,

→ C2(βl→δl) by (45),

→ C∨
i 2δl,i

by (43) for Al, and (44),

→ Cβl by (43) for (18), and (44),

→ Cδl by (44),

→ (sl,r → Cδl,r) by (46).
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If ∗ = •, this gives ∨
r≤k

sl,r ∧ V2(βl→δl) →
∨
r≤k

V2δl,r ,

thus (49). If ∗ = ◦, we continue with

sl,r ∧ V2(βl→δl) → C ·2ψl,r→δl,r by (43) for (19), and (44),

→
(
(V ·2ψl,r → Vδl,r)→ Vβl

)
definition of V2( ·2ψl,i→δl,i),

→ (Vβl → Vδl) definition of V2(βl→δl),

→ V ·2ψl,r ∨ Vδl,r using Vδl → V ·2ψl,r ∨ Vδl,r ,
→ V ·2ψl,r ∨ V2δl,r definition of V2δl,r .

We also have for any fixed i 6= r,

V ·2ψl,r → Cψl,r ∧ Vδl,i definitions,

→ C2ψl,r by (45),

→ Cδl,i by (43) for (20), and (44),

→ V2δl,i definition,

thus

sl,r ∧ V2(βl→δl) →
∨
i≤k

V2δl,i

for all r ≤ k, which implies (49).

(50): By applying (49) to θz = (39), we obtain∧
l<m

∨
r≤k

sl,r ∧
∧
v<s

VB∗(χv) →
∨
u<t

V2ϕu .

By definition, V2ϕu implies Cϕu , and VB∗(χv) is one of the circuits Cχv or Vχv ↔ Cχv ∧ Vχv
which follow from (43). Thus, we obtain (50). 2

As we already stated, we intend to reduce Dec(Ext∗t , L-CF) to interpolation problems for

CPC-CF. We formulate feasible interpolation in the following way to fit into our framework

of multi-conclusion rules. If P is a classical proof system, the standard interpolation problem

for P (introduced by Pudlák [21] as a disjoint NP pair rather than the corresponding search

problem) is Dec(Itp2, P ) in our notation.

Definition 5.4 For classical logic, the t-ary interpolation multi-conclusion rule is

(Itpt)
∨
u<t

ϕu

/
ϕ0, . . . , ϕt−1,

where ϕu, u < t, are formulas using pairwise disjoint sets of variables.

For any constants k ≥ t ≥ 2, we introduce the rule

(Rk,t)

∧
l<n

∨
i≤k

pl,i →
∨
u<t

ϕu∧
l<n
i<j≤k

(pl,i ∨ pl,j)→ ϕ0, . . . ,
∧
l<n
i<j≤k

(pl,i ∨ pl,j)→ ϕt−1

,
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where ϕu are monotone formulas or circuits in the (pairwise distinct) variables pl,i (l < n, i ≤ k).

It is well known that Itpt is admissible in CPC (if no ϕu is a tautology, we can combine

assignments refuting each ϕu to an assignment refuting
∨
u ϕu, using the disjointness of their

sets of variables). It is also easy to see that for proof systems P dealing with circuits such as

CPC-CF, we may allow ϕu to be circuits without changing the complexity of Dec(Itpt, P ), as

we can choose disjoint sets of extension variables for each ϕu to express them as formulas.

Lemma 5.5 For any k ≥ t ≥ 2, the rules Rk,t are admissible in CPC. Moreover, if P =

CPC-CF, then Dec(Rk,t, P ) ≤s Dec(Itpt, P ) and Cons(Rk,t, P ) ≤ Cons(Itpt, P ).

Proof: It is enough to prove the latter. Assume we are given a P -proof of

(51)
∧
l<n

∨
i≤k

pl,i →
∨
u<t

ϕu(~p)

where the ϕu are monotone. Using t copies {pul,i : u < t} of each original pl,i variable, it suffices

to construct a P -proof of ∨
u<t

(∧
l<n

∧
i<j≤k

(pul,i ∨ pul,j)→ ϕu(~pu)
)
.

Since this is clearly implied by
∨
u<t ¬

∧
l

∧
i<j(p

u
l,i ∨ pul,j), it is enough to prove

(52)
∧
u<t

∧
l<n

∧
i<j≤k

(pul,i ∨ pul,j)→
∨
u<t

ϕu(~pu).

Now, using n instances of the constant-size tautology∧
u<t

∧
i<j≤k

(qui ∨ quj )→
∨
i≤k

∧
u<t

qui

(a form of PHPk+1
t ), we can construct a proof of∧

l<n

∧
u<t

∧
i<j≤k

(pul,i ∨ pul,j)→
∧
l<n

∨
i≤k

∧
u<t

pul,i,

hence also ∧
l<n

∧
u<t

∧
i<j≤k

(pul,i ∨ pul,j)→
∨
u<t

ϕu

(
. . . ,

∧
v<t

pvl,i, . . .
)

→
∨
u<t

ϕu(~pu)

using a substitution instance of (51) and Lemma 2.9. This establishes (52). 2

Remark 5.6 For P = CPC-CF (or equivalently, P = CPC-EF), the interpolation NP pair

is equivalent to the canonical pair 〈SAT ∗,REF (P )〉 of Razborov [23] by a folklore argument

using the fact that P has polynomial-time constructible proofs of its own reflection principle.
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Lemma 5.7 Under our running assumptions, Dec(Rk,t,CPC-CF) ≤s Dec(Ext∗t , L-CF) and

Cons(Rk,t,CPC-CF) ≤ Cons(Ext∗t , L-CF).

Proof: Assume we are given a CPC-CF proof of

(53)
∧
l<n

∨
i≤k

pl,i →
∨
u<t

ϕu,

where ϕu are monotone circuits. For each l < n and i ≤ k, put

βl,i = ·2ql,i →
∨
j 6=i

·2ql,j ,

αl =
∨
i≤k

2βl,i →
∨
i≤k

·2ql,i.

We can construct for each l < n short L-CF proofs of

B∗(αl)→ 2αl ∨ ¬αl from definition,

→ 2αl ∨
∨
i≤k

2βl,i

→
∨
i≤k

2
∨
j 6=i

·2ql,j ∨
∨
i≤k

2βl,i by BBk,

→
∨
i≤k

2βl,i,

hence of ∧
l<n

B∗(αl)→
∧
l<n

∨
i≤k

2βl,i

→
∨
u<t

ϕu(. . . ,2βl,i, . . . ) substitution instance of (53),

→
∨
u<t

2ϕu(. . . , βl,i, . . . ) Lemma 2.10.

This is our reduction to Dec(Ext∗t , L-CF). We need to show that if u < t is such that L proves

(54)
∧
l<n

·2αl → ϕu(. . . , βl,i, . . . ),

then CPC proves

(55)
∧
l<n
i<j≤k

(pl,i ∨ pl,j)→ ϕu,

and that given an L-CF proof of (54), we can construct a CPC-CF proof of (55).

Using short L-CF proofs of ∨
i≤k

·2ql,i → ·2αl,∨
i≤k

·2ql,i →
(
βl,i →

∨
j 6=i

·2ql,j
)
,
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and Lemma 2.9, (54) yields an L-CF proof of∧
l<n

∨
i≤k

·2ql,i → ϕu

(
. . . ,

∨
j 6=i

·2ql,j , . . .
)
.

By Lemma 2.11, we can construct a CPC-CF proof of∧
l<n

∨
i≤k

ql,i → ϕu

(
. . . ,

∨
j 6=i

ql,j , . . .
)
.

We now substitute
∧
j 6=i pl,j for ql,i in the proof. Using short proofs of∧

i<j≤k
(pl,i ∨ pl,j)→

∨
i≤k

∧
j 6=i

pl,j ,∨
j 6=i

∧
r 6=j

pl,r → pl,i,

and Lemma 2.9, we obtain a CPC-CF proof of (55). 2

We can now put everything together.

Theorem 5.8 Let ∗ ∈ {•, ◦}, L0 be a ∗-extensible logic, k ≥ t ≥ 2, and L = L0 ⊕BBk.

(i) Dec(Ext∗t , L-CF) ≡s Dec(Rk,t,CPC-CF), Cons(Ext∗t , L-CF) ≡ Cons(Rk,t,CPC-CF).

(ii) Given an L-CF proof of

(56)
∧
v<s

B∗(χv)→
∨
u<t

2ϕu

using variables {pi : i < n}, we can construct in polynomial time an L-CF proof of

(57)
∨
u<t

σu
(∧
v<s

·2χv → ϕu

)
,

where we choose pairwise distinct variables {pui : u < t, i < n}, and define σu as the

substitution such that σu(pi) = pui for each i < n.

(iii) Cons(Ext∗1, L-CF) ∈ FP.

Proof: (i): The right-to-left reductions were given in Lemma 5.7. For the left-to-right direc-

tions, assume we are given an L-CF proof of (56) = (39). By Lemma 5.3, we can construct in

polynomial time a CPC-CF proof of (50). We claim that this gives the desired reduction to

Dec(Rk,t,CPC-CF): that is, if u < t is such that

(58)
∧
l<m
i<j≤k

(sl,i ∨ sl,j)→ Cϕu

is a classical tautology, then L proves

(59)
∧
v<s

·2χv → ϕu,
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and moreover, given a CPC-CF proof of (58), we can construct in polynomial time an L-CF

proof of (59).

To see this, let σ be the substitution such that σ(sl,r) = ·2ψl,r →
∨
i 6=r ·2ψl,i for each l < m

and r ≤ k. Applying σ to Lemma 5.2, we can construct in polynomial time an L-CF proof of

(60) σ(Cϕu) ∧
∧
v<s

·2χv → ·2ϕu.

We can also easily construct a proof of the tautology

(61)
∧
l<m
i<j≤k

σ(sl,i ∨ sl,j),

hence by applying σ to a proof of (58), we obtain an L-CF proof of σ(Cϕu), which together

with (60) yields (59).

(ii): Again, we can construct in polynomial time a CPC-CF proof of (50). By the argument

in Lemma 5.5, we can construct a CPC-CF proof of∨
u<t

(∧
l<m

∧
i<j≤k

(sul,i ∨ sul,j)→ Cϕu(~su)
)
.

Applying the substitution σ′ such that σ′(sul,r) = σu(σ(sl,r)) gives∨
u<t

σu(σ(Cϕu)),

using short proofs of σu(61). Using Lemma 5.2 as above, we construct for each u < t an L-CF

proof of

σu(σ(Cϕu))→ σu
(∧
v<s

·2χv → ·2ϕu
)
.

This yields (57).

(iii) follows from (ii), either by noting that the proof above directly works also for t = 1, or

formally by putting ϕ1 = ϕ0, applying (ii) with t = 2, and substituting pi back for p0
i and p1

i .

2

Remark 5.9 Theorems 4.1 and 5.8 put bounds on the complexity of Dec(DPt, L-CF) for t ≤ k.

The rules DPt are in fact L-admissible for all t, and we can derive them by iterating DP2

(or DPk). Nevertheless, we do not directly get any nontrivial bounds on the complexity of

Dec(DPt, L-CF) for t > k: in particular, we cannot simply iterate Theorem 5.8, as we will not

have an L-CF proof at hand for the second iteration.

We could in principle iterate Cons(DP2, L-CF), but this would only work in the unlikely case

that it is polynomially bounded. That is, if CPC-EF has constructive feasible interpolation,

then Cons(DPt, L-CF) ∈ FP for all t; more generally, if Cons(Rk,2,CPC-CF) is polynomi-

ally bounded, then Cons(DPt, L-CF) is polynomially bounded for each t, and it is poly-time

bounded-query Turing reducible to Cons(Rk,2,CPC-CF).
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Remark 5.10 It would be very interesting if we could strengthen (57) to∨
u<t

·2
(∧
v<s

·2χv → ϕu

)
(note that if desired, we could reinsert the σu’s by the form of Theorem 5.8 already proved),

or even better, if we could prove that the following single-conclusion version of the Ext∗t rule is

feasible for L-CF:

(Ext∗,∨t ) 2ω ∨2

(∧
v<s

B∗(χv)→
∨
u<t

2ϕu

) /
·2ω ∨

∨
u<t

·2
(∧
v<s

·2χv → ϕu

)
.

For one thing, this would imply Dec(DPt, L-CF) ≡s Dec(Rk,t,CPC-CF), but the main signifi-

cance of the Ext∗,∨t rules is that they form a basis of schematic single-conclusion admissible rules

of L (see [15]), hence it would follow that all schematic single-conclusion admissible rules of L

are feasible for L-CF. Moreover, if the construction remained polynomial for repeated usage of

such rules, we could generalize to the logics L = L0 ⊕BBk (the EF version of) the main result

of [12]: all extended Frege systems for L are equivalent, where we relax the definition of Frege

and EF systems such that the consequence relation defined by the Frege rules extends `L, and

generates the same set of tautologies, but may include non-derivable rules.

Back to earth, Theorem 5.8 allows us to improve Theorem 4.6:

Corollary 5.11 If K4 ⊆ L ⊆ S4GrzBB2 or K4 ⊆ L ⊆ GLBB2, then L-SF has superpoly-

nomial speed-up over L-EF unless the disjoint-NP-pair version of Dec(R2,2,CPC-CF), and

consequently the interpolation NP pair for CPC-EF, are complete disjoint PSPACE pairs un-

der nonuniform poly-time reductions.

Proof: It is enough to prove hardness w.r.t. complementary PSPACE pairs, i.e., PSPACE

languages. Any such language P ⊆ 2∗ can be defined by a poly-time constructible sequence of

QBFs Φn(p0, . . . , pn−1). By Lemma 4.4, there are poly-time constructible K4-SCF proofs of∧
i<n

(2pi ∨2¬pi)→ 2AΦn ∨2AΦn
.

Assume that these circuits have polynomial-size L-CF proofs πn, where w.l.o.g. L = GLBB2

or L = S4GrzBB2. Then the following makes a poly-time reduction of P to Dec(DP2, L-CF)

with nonuniform advice πn: given ~w ∈ 2n, substitute the bits of ~w for the pi variables in πn,

and derive 2AΦn(~p/~w)∨2AΦn
(~p/~w); pass the resulting proof to Dec(DP2, L-CF) to find which

disjunct is provable, which by Lemma 4.5 tells us whether ~w ∈ P . By Theorem 5.8 and

Lemma 5.5, Dec(DP2, L-CF) ≤s Dec(R2,2,CPC-CF) ≤s Dec(Itp2,CPC-EF). 2

Remark 5.12 With more care, one can prove the following strengthening of Corollary 5.11

which internalizes circuits computing the reduction to Dec(R2,2,CPC-CF): if L-EF weakly

simulates L-SF, then for every language P ∈ PSPACE, there exist poly-size circuits {C0
n, C

1
n :
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n ∈ ω} in variables {pi : i < n} ∪ {sl,r : l < mn, r < 3} that are monotone in ~s such that

w ∈ P ⇐⇒ ∀~s
( ∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j)→ C1
n(w,~s)

)
,

w /∈ P ⇐⇒ ∀~s
( ∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j)→ C0
n(w,~s)

)
,

and there are poly-size CPC-CF proofs of∧
l<mn

∨
r<3

sl,r → C0
n(~p,~s) ∨ C1

n(~p,~s).

We will prove an even stronger result in the next section.

6 Hrubeš-style monotone interpolation

The original idea of utilizing DP to prove lower bounds on the proof complexity of nonclassical

logics comes from Buss and Pudlák [2]: in this setup, feasible DP serves a role analogous

to feasible interpolation for classical proof systems, and in accordance with that, it implies

conditional proof-size lower bounds relying on (unproven) circuit lower bounds. We followed

much the same strategy to derive the conditional separations between L-SF and L-EF from

bounds on the complexity of Dec(DP, L-EF) in Sections 4 and 5.

Hrubeš [8] discovered another setup where DP is replaced by a somewhat different admissible

rule (whose feasibility can be proved using similar methods as for DP) which plays a role

analogous to monotone feasible interpolation for classical proof systems. This enabled him to

prove unconditional proof-size lower bounds, exploiting known exponential lower bounds on

monotone circuit size. (The separations between EF and SF systems for logics of unbounded

branching in Jeřábek [14] that make the starting point for this paper also rely on Hrubeš’s

method.)

This suggests that we should try to adapt our arguments from the previous sections to

Hrubeš’s setup, with the hope that it might improve our conditional separations between L-SF

and L-EF to weaken the required complexity assumptions, or even to make them fully uncon-

ditional.

We pursue this idea in the present section to see how far it can get us. We can, indeed, easily

adapt our method to Hrubeš’s setup, as we will see shortly in Theorem 6.1. Unfortunately, we

do not know how to extract unconditional lower bounds from the result; while it does furnish

an improvement to our conditional lower bounds, the statement it leads to (Theorem 6.3) is

rather complicated, and it is unclear how significant the improvement really is.

Let L = L0 ⊕BBk be as in Section 5. We consider L-tautologies of the form

(62) α(2~p, ~q)→
∨
u<t

2βu(~p, ~r),

where the indicated lists of variables ~p, ~q, and ~r are disjoint, α is a Boolean circuit monotone

in the variables ~p, and the βu’s are arbitrary modal circuits. (We will actually only use t = 1

for the modal lower bounds later on.)
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Theorem 6.1 Given an L-CF proof of (62), we can construct in polynomial time monotone

Boolean circuits {Cu(~p,~s) : u < t} using extra variables {sl,i : l < m, i ≤ k}, a CPC-CF proof

of

(63) α(~p, ~q) ∧
∧
l<m

∨
r≤k

sl,r →
∨
u<t

Cu(~p,~s),

and for each u < t, an L-CF proof of

(64)
∧
l<m
r≤k

(
sl,r ∧ ·2ψl,r →

∨
i 6=r

·2ψl,i
)
∧
∧
i

(pi → 2pi) ∧ Cu(~p,~s)→ ·2βu(~p, ~r)

for some circuits {ψl,i : l < m, i ≤ k}.

Proof: We fix an L-CF proof π of (62), and we modify the argument given in Section 5 as

follows. First, the monotone circuits Cϕ and Cϕ,h will use both ~s and ~p variables; we change

the definition of the base case to

Cϕ,0 =


>, ϕ ∈ π ∪ Ξπ,

pi, ϕ = pi for some i,

⊥, otherwise.

(Since L is consistent, pi /∈ π.) We define the circuits Cu from the statement of our theorem

as Cβu . Lemma 5.1 holds unchanged, except for an obvious adaptation of (43). It is also

straightforward to prove an analogue of Lemma 5.2, stating that for any ϕ ∈ S and h ≤ N ,

there are poly-time constructible L-CF proofs of∧
l<m
r≤k

(
sl,r ∧ ·2ψl,r →

∨
i 6=r

·2ψl,i
)
∧
∧
i

(pi → 2pi) ∧ Cϕ,h(~p,~s)→ ·2ϕ.

As a special case, this implies (64).

Recall that the definition of Vϕ was arbitrary in the case of propositional variables. We now

fix it more specifically: we put Vϕ = ϕ if ϕ is any of the ~p or ~q variables. Since Lemma 5.3

worked for arbitrary choices of Vϕ for propositional variables, the proof of (49) continues to

hold unchanged. Taking g = z, we obtain a CPC-CF proof of∧
l<m

∨
r≤k

sl,r ∧ Vα(2~p,~q) →
∨
u<t

V2βu(~p,~r).

Now, by definition, V2βu implies Cβu , i.e., Cu, and since V commutes with Boolean connectives

and preserves ~q, we have

Vα(2~p,~q) ≡ α(. . . , V2pi , . . . , ~q).

Moreover, V2pi is Cpi or Cpi ∧ pi, and pi implies Cpi by the definition of Cpi,0, hence there are

short proofs of pi → V2pi . By Lemma 2.9, we can thus construct short CPC-CF proofs of

α(~p, ~q)→ α(. . . , V2pi , . . . , ~q).

Putting it all together yields (63). 2
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We will apply Theorem 6.1 with t = 1. In this case, the circuit C0 and the stuff around it

act as a weird sort of interpolant between α(~p, ~q) and β0(~p, ~r) that does not depend on the ~q

or ~r variables. It is thus easy to see that when trying to use it for lower bounds, the optimal

choice for β0 is the circuit A∃~r α(~p,~r)(~p, ~r). Since we are interested in separations between CF

and SF, let us observe that the resulting tautologies have short SF proofs, at least for formulas

in negation normal form.

Lemma 6.2 Given a monotone Boolean circuit α(~p, ~p′, ~q, ~q′), we can construct in polynomial

time a K4-SCF proof of

(65) α(2~p,2¬~p, ~q,¬~q)→ 2A∃~r α(~p,¬~p,~r,¬~r)(~p, ~r).

Proof: By induction on n = |~q|. If n = 0, (65) amounts to α(2~p,2¬~p) → 2α(~p,¬~p), which

is a substitution instance of Lemma 2.10. Going from n to n + 1, we take the q variable that

corresponds to the outermost existential quantifier, and reconsider it as part of ~p; then the

induction hypothesis gives a proof of

α(2~p,2¬~p,2q,2¬q, ~q,¬~q)→ 2A(~p, q, ~r),

where we abbreviate A = A∃~r α(~p,¬~p,q,¬q,~r,¬~r). Substituting > and ⊥ for q, we obtain proofs of

α(2~p,2¬~p,>,⊥, ~q,¬~q)→ 2A(~p,>, ~r)
→ 2

(
·2r → A(~p, r, ~r)

)
,

α(2~p,2¬~p,⊥,>, ~q,¬~q)→ 2A(~p,⊥, ~r)
→ 2

(
·2¬r → A(~p, r, ~r)

)
using Lemma 2.8. Since α is Boolean, there is also a short proof of

α(2~p,2¬~p, q,¬q, ~q,¬~q)→ α(2~p,2¬~p,>,⊥, ~q,¬~q) ∨ α(2~p,2¬~p,⊥,>, ~q,¬~q),

hence we obtain

α(2~p,2¬~q, q,¬q, ~q,¬~q)→ 2
(
·2r → A(~p, r, ~r)

)
∨2

(
·2¬r → A(~p, r, ~r)

)
→ 2

[
2
(
·2r → A(~p, r, ~r)

)
∨2

(
·2¬r → A(~p, r, ~r)

)]
,

where the disjunction inside square brackets is just A∃r∃~r α(~p,¬~p,r,¬r,~r,¬~r). 2

We note that as in Remark 4.7, slightly modified variants of the tautologies have even short

K-SCF proofs.

We come to the final lower bound of this section. The statement of the theorem is somewhat

involved as we try to push the argument as far as possible, but the most important component

is the first part stating the existence of circuits satisfying (66)–(69). In particular, the gap

between (66) and (67) effectively gives a reduction to a certain promise problem (if w ∈ P ,

then C∀(w,~s) holds whenever at least one variable is true in each triple {sl,0, sl,1, sl,2}, while if

w /∈ P , C∀(w,~s) fails under some assignment that makes two variables true in each triple), and

this does not seem to follow from just PSPACE = NP.
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Theorem 6.3 Let K4 ⊆ L ⊆ S4GrzBB2 or K4 ⊆ L ⊆ GLBB2, and assume that L-EF

weakly simulates L-SF.

Then for every monotone PSPACE language P , there exists a sequence of polynomial-size

monotone Boolean circuits {C∀n, C∃n : n ∈ ω} such that C∀n and C∃n use variables {pi : i < n}
and {sl,r : l < mn, r < 3}, and for every w ∈ 2n, we have

w ∈ P ⇐⇒ ∀~s
( ∧
l<mn

∨
r<3

sl,r → C∀n(w,~s)
)

(66)

⇐⇒ ∀~s
( ∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j)→ C∀n(w,~s)
)

(67)

⇐⇒ ∃~s
( ∧
l<mn

∨
r<3

sl,r ∧ C∃n(w,¬~s)
)

(68)

⇐⇒ ∃~s
( ∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j) ∧ C∃n(w,¬~s)
)
.(69)

The circuits

(70)
∧
l<mn

∨
r<3

tl,r ∧ C∃n(~p,¬~t) ∧
∧
l<mn

∨
r<3

sl,r → C∀n(~p,~s)

have poly-size CPC-CF proofs. Moreover, if {αn(~p, ~q) : n ∈ ω} is a sequence of polynomial-size

circuits monotone in ~p such that

(71) w ∈ P ⇐⇒ ∃~q αn(w, ~q),

we can choose C∀n in such a way that there are polynomial-size CPC-CF proofs of

(72) αn(~p, ~q) ∧
∧
l<mn

∨
r<3

sl,r → C∀n(~p,~s),

and if {βn(~p, ~q) : n ∈ ω} are polynomial-size circuits monotone in ~p such that

(73) w ∈ P ⇐⇒ ∀~q βn(w, ~q),

we can choose C∃n such that there are polynomial-size CPC-CF proofs of

(74)
∧
l<mn

∨
r<3

sl,r ∧ C∃n(~p,¬~s)→ βn(~p, ~q).

If P ∈ PSPACE is not necessarily monotone, the above holds with C∀n and C∃n monotone

in ~s, and αn and βn arbitrary.

Proof: Let P ∈ PSPACE be monotone. By Theorem 4.6, P ∈ NP, hence there exists a sequence

of poly-size formulas αn(~p, ~q) satisfying (71). Since P is monotone, we have

w ∈ P ⇐⇒ ∃~p, ~q
(
~p ≤ w ∧ αn(~p, ~q)

)
,

hence we can ensure αn is monotone in ~p. Let us fix such a sequence αn, where we also assume

w.l.o.g. that αn is in negation normal form.

43



By Lemma 6.2 and the assumption, there are poly-size proofs L-CF proofs of

αn(2~p, ~q)→ 2A∃~r αn(~p,~r)(~p, ~r),

where we may assume w.l.o.g. that L = S4GrzBB2 or L = GLBB2. By Theorem 6.1, there

exist poly-size monotone circuits C∀n(~p,~s) such that (72) has poly-size CPC-CF proofs, and

(75)
∧
l<mn
r<3

(
sl,r ∧ ·2ψl,r →

∨
i 6=r

·2ψl,i
)
∧
∧
i<n

(pi → 2pi) ∧ C∀n(~p,~s)→ ·2A∃~r αn(~p,~r)(~p, ~r)

has poly-size L-CF proofs. We claim that this makes

∀~s
( ∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j)→ C∀n(~p,~s)
)
→ ∃~q αn(~p, ~q)

a quantified Boolean tautology, which together with (72) implies (66) and (67). Indeed, let

w ∈ 2n be such that

∀~s
( ∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j)→ C∀n(w,~s)
)

is true. Substituting the bits of w as truth constants into (75), we see that

`L
∧
l<mn
r<3

(
sl,r ∧ ·2ψl,r(~p/w)→

∨
i 6=r

·2ψl,i(~p/w)
)
∧
∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j)→ ·2A∃~r αn(~p,~r)(w,~r).

Further substituting ·2ψl,r(~p/w)→
∨
i 6=r ·2ψl,i(~p/w) for sl,r, we obtain

`L A∃~r αn(~p,~r)(w,~r),

which implies the truth of ∃~q αn(w, ~q) by Lemma 4.5.

The dual language P d =
{
w ∈ 2∗ : (¬w) /∈ P

}
is also monotone, hence by the already

proved part, there exist monotone circuits C∀,dn such that

w ∈ P d ⇐⇒ ∀~s
( ∧
l<mn

∨
r<3

sl,r → C∀,dn (w,~s)
)

⇐⇒ ∀~s
( ∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j)→ C∀,dn (w,~s)
)
.

(The mn here is a priori different from the one for P , but we can enlarge one of them to make

them equal.) Then

C∃n(~p,~s) = ¬C∀,dn (¬~p,¬~s)

is (equivalent to) a monotone circuit, and it satisfies (68) and (69). Moreover, given (73), we

can arrange C∃n to satisfy (74); as a special case, we obtain (70) by taking (66) for (73).

In order to prove the last sentence of the theorem, if P ∈ PSPACE is not necessarily

monotone, it can be still defined as in (71) with αn poly-size Boolean formulas. Writing αn in

negation normal form, we have

w ∈ P ⇐⇒ ∃~q α′n(w,¬w, ~q)
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for α′n(~p, ~p′, ~q) monotone in ~p and ~p′. Thus,

〈w,w′〉 ∈ P ′ ⇐⇒ ∃~q α′n(w,w′, ~q)

defines a monotone language, hence we can apply the results above to P ′, and substitute ¬~p
back for ~p′. 2

Remark 6.4 Since (70) implies∧
l<mn

∨
r<3

sl,r → ¬C∃n(~p,¬~s) ∨ C∀n(~p,~s),

Theorem 6.3 further strengthens Corollary 5.11 and Remark 5.12.

7 Negation-free lower bounds

Our results apply to a fairly limited class of logics. This is unavoidable in Theorem 4.1 as

the Ext∗t rules are not admissible in most other extensions of K4BBk in the first place, but

our separations between EF and SF may in principle be applicable to a broader class of logics.

In this section, we will show how to generalize them to logics such as S4.2BB2 (which does

not even have the disjunction property), using a reformulation of the tautologies we used for

the separations as positive formulas, and a proof-theoretic analogue of preservation of positive

formulas by dense subreductions. A similar approach was used in [14] to generalize separations

from logics of depth 2 to logics of unbounded branching.

Definition 7.1 For any h ≥ 0, let BTh denote the perfect binary tree of height h (where

the tree consisting of a single node has height 0), and let BTh,• (BTh,◦) denote the irreflexive

(reflexive, resp.) Kripke frame with skeleton BTh. We will number the levels of BTh bottom-up

such that the root is at level 0, and leaves at level h.

Lemma 7.2 Let L ⊇ K4 be a logic such that for every h ≥ 0, there exists a dense subreduction

from an L-frame to a Kripke frame with skeleton BTh.

Then there exists ∗ ∈ {•, ◦} such that for every h ≥ 0, there exists a dense subreduction

from an L-frame to BTh,∗.

Proof: Since BTh′,∗ is a generated subframe of BTh,∗ for h′ < h, it is enough if the conclusion

holds for infinitely many h; thus, by the infinitary pigeonhole principle, it suffices to show that

for arbitrarily large h, there exists a dense subreduction from an L-frame to BTh,• or to BTh,◦.

This in turn follows from transitivity of dense subreductions and the fact that any Kripke

frame F with skeleton BT(h+1)(g+1) densely subreduces onto BTh,• or BTg,◦.

To see this, notice that either F includes BTh,• as a dense subframe, or for every x ∈ F of

depth > h, there exists a reflexive y ≥ x at most h levels above x. In the latter case, we can

construct a meet-preserving embedding f : BTg,◦ → F by a bottom-up approach: we map the

root of BTg,◦ to a reflexive point of F at level ≤ h, and if f(u) = x is already defined, u0 and u1

are the immediate successors of u, and x0 and x1 the immediate successors of x, we fix reflexive
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points y0 ≥ x0 and y1 ≥ x1 at most h + 1 levels above x, and we put f(ui) = yi, i = 0, 1. We

extend f−1 to a dense subreduction from F to BTg,◦ as follows: if x ∈ f [BTg,◦]↓, we map x to

min{u ∈ BTh,◦ : x ≤ f(u)}, which exists as f is meet-preserving. 2

Lemma 7.3 Let ∗ ∈ {•, ◦}, and L ⊇ K4 be a logic such that for every h ≥ 0, there exists a

dense subreduction from an L-frame to BTh,∗.

Then for every finite set Φ of variable-free formulas, there exists e : Φ → 2 such that for

every h ≥ 0, there exists an L-frame F and a dense subreduction f from F to BTh,∗ such that

(76) F, u �
∧
ϕ∈Φ

(2ϕ)e(ϕ)

for all u ∈ dom(f), where we write ϕ1 = ϕ, ϕ0 = ¬ϕ.

Proof: By induction on |Φ|. The base case Φ = ∅ is trivial. Assuming the statement holds

for Φ, we will show it holds for Φ ∪ {ψ}; as in Lemma 7.2, it suffices to prove it with reversed

order of quantifiers (for arbitrarily large h, there exists e, etc.).

Let h ≥ 0. By the induction hypothesis, there exist e : Φ → 2, an L-frame F , and a dense

subreduction from F to T2h,∗ satisfying (76). Observe that {u ∈ F : u � 2ψ} is an upper

subset of F . Thus, if there exists v ∈ dom(f) such that v � 2ψ and f(v) is one of the points at

level h of BT2h,∗, the restriction g = f � v↑ is a dense subreduction from the L-frame {v}↑ to

{f(v)}↑ ' BTh,∗ such that, in addition to (76), we have u � 2ψ for all u ∈ dom(g). Otherwise,

let T be the copy of BTh,∗ consisting of the points of BT2h,∗ at levels ≤ h; then g = f �f−1[T ] is

a dense subreduction from F to BTh,∗ that satisfies (76) as well as u � ¬2ψ for all u ∈ dom(g).

2

Theorem 7.4 Let ∗ ∈ {•, ◦}, and L ⊇ K4 be a logic such that for every h ≥ 0, there exists a

dense subreduction from an L-frame to BTh,∗. Put L = GLBB2 if ∗ = •, and L = S4GrzBB2

if ∗ = ◦. Then L-CF weakly simulates L-CF proofs of positive formulas or circuits.

Proof: If S is a set of circuits and e : S → 2, we define a translation ϕe for circuits ϕ such that

{ψ : 2ψ ∈ Sub(ϕ)} ⊆ S as follows: pei = pi for all variables pi, the translation commutes with

Boolean connectives, and

(2ϕ)e =

{
2ϕe, e(ϕ) = 1,

⊥, e(ϕ) = 0.

In other words, we replace top-most occurrences of subcircuits 2ψ such that e(ψ) = 0 with ⊥.

Notice that |ϕe| ≤ |ϕ|.
Assume we are given an L-CF proof π = 〈θ0, . . . , θz〉, where θz is positive. Let ν be the

substitution such that ν(pi) = > for all variables pi, and put Φ = {ν(ϕ) : 2ϕ ∈ Sub(π)}. Let

e : Φ → 2 satisfy the conclusion of Lemma 7.3. Notice that ϕe◦ν is defined for all ϕ ∈ Sub(π),

where e ◦ ν denotes the composite assignment (e ◦ ν)(ϕ) = e(ν(ϕ)).

Since θz is positive, `L ν(ϕ) for all ϕ ∈ Sub(θz), thus we must have e(ν(ϕ)) = 1 whenever

2ϕ ∈ Sub(θz). It follows that θe◦νz = θz, hence it suffices to show that the sequence

θe◦ν0 , . . . , θe◦νz
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can be extended to a polynomially larger L-CF proof.

By Corollary 2.3, we may assume the L-CF system is axiomatized by axioms and rules

of CPC (which are trivially preserved by the (−)e◦ν translation), (Nec), and a single axiom

schema consisting of substitution instances of a formula α. For (Nec), notice that `L ν(θi),

hence e(ν(θi)) = 1, i.e., θe◦νi / (2θi)
e◦ν is again an instance of (Nec).

Concerning instances of α, let X = {β : 2β ∈ Sub(α)}, and if σ is a substitution such

that σ(α) ∈ π, define eσ : X → 2 by eσ = e ◦ ν ◦ σ. Let σe◦ν be the substitution such that

σe◦ν(pi) =
(
σ(pi)

)e◦ν
. Unwinding the definition of the translation, we find(

σ(α)
)e◦ν

= σe◦ν(αeσ).

Since there is only a constant number of choices for eσ, the translations of all instances of α in

the proof are instances of a constant number of axiom schemata, and as such have linear-size

L-CF proofs by Observation 2.2, as long as these schemata are valid in L. Thus, it remains to

show that

`L α
eσ

for all σ such that σ(α) ∈ π.

Let M = 〈V,<, vM 〉 be a finite Kripke L-model, which we may assume to be a (binary) tree;

we will show M � αeσ . We embed the underlying frame 〈V,<〉 as a dense subframe in BTh,∗
for some h, in such a way that the root of 〈V,<〉 is the root of BTh,∗, and all leaves of BTh,∗
are outside V , i.e., every point of V sees an element of BTh,∗ r V . Using Lemma 7.3, let us fix

an L-frame F = 〈W,<,A〉 and a dense subreduction f from F to BTh,∗ that satisfies (76). We

may assume that F is rooted and its root r is mapped to the root of 〈V,<〉 by f , hence f−1[V ]

is a lower subset of W . We endow F with an admissible valuation as follows:

F, u � pi ⇐⇒

{
M,f(u) � pi, if u ∈ f−1[V ],

F, u � ν(σ(pi)), otherwise.

Since W r f−1[V ] is an upper subset of W , we obtain

(77) F, u � ϕ ⇐⇒ F, u � ν(σ(ϕ))

for all ϕ and u /∈ f−1[V ]. We claim that

(78) F, u � β ⇐⇒ M,f(u) � βeσ

for all u ∈ f−1[V ] and β ∈ Sub(α). Since F � α, this implies M � αeσ , finishing the proof.

We prove (78) by induction on the complexity of β. It holds for variables by definition, and

the induction steps for Boolean connectives follow immediately as they commute with (−)eσ .

Assume that (78) holds for β ∈ X, we will prove it for 2β.

If eσ(β) = 1, we have F, r � 2ν(σ(β)) by (76), thus F, v � β for all v /∈ f−1[V ] by (77). It

follows that for any u ∈ f−1[V ], we have

F, u � 2β ⇐⇒ ∀v > u
(
v ∈ f−1[V ] =⇒ F, v � β

)
⇐⇒ ∀v > u

(
v ∈ f−1[V ] =⇒ M,f(v) � βeσ

)
⇐⇒ ∀y > f(u)M,y � βeσ

⇐⇒ M,f(u) � (2β)eσ ,
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using the induction hypothesis and f ’s being a subreduction.

If eσ(β) = 0, (2β)eσ = ⊥ is false in f(u). On the other hand, there exists v > u such that

v ∈ f−1[BTh,∗ r V ], and F, v 2 2ν(σ(β)) by (76), hence there exists w > v such that F,w 2 β
by (77). Thus, F, u 2 2β. 2

In order to apply Theorem 7.4, we need a convenient supply of positive tautologies. In fact,

there is a simple general method of converting any tautology to a positive one:

Definition 7.5 Given a formula or circuit ϕ(~p), we define a positive formula or circuit ϕ+(~p, r)

using a new variable r as follows. We first rewrite all negations ¬ψ inside ϕ as ψ → ⊥, so

that w.l.o.g. ϕ uses only the connectives {∧,∨,→,>,⊥,2}. Let ϕ′(~p, r) be the circuit obtained

from ϕ by replacing ⊥ with r, thus ϕ′ is positive and ϕ(~p) = ϕ′(~p,⊥). Then we put

ϕ+(~p, r) =
∧
i

·2(r → pi)→ ϕ′(~p, r).

Lemma 7.6 Let L be an extension of K4 by positive axiom schemata, and ϕ a circuit.

(i) There is a poly-time constructible L-CF proof of σ(ϕ+) → ϕ, where σ is the substitution

σ(r) = ⊥.

(ii) Given an L-CF or L-SCF proof of ϕ, we can construct in polynomial time an L-CF or

L-SCF proof (respectively) of ϕ+.

Proof: (i) is obvious. Observe that L can be axiomatized by (MP), (Nec), positive axiom

schemata, and the schema ⊥ → ψ. With this in mind, (ii) can be shown by virtually the same

proof as [16, Thm. 3.8]; we leave the details to the reader. 2

Theorem 7.7 Let L ⊇ K4 be a logic such that for every h ≥ 0, there exists a dense subreduction

from an L-frame to a Kripke frame with skeleton BTh.

Then L-SF has superpolynomial speed-up over L-EF, unless PSPACE = NP = coNP, and

unless the conclusion of Theorem 6.3 holds.

Proof: Let ∗ ∈ {•, ◦} be as in Lemma 7.2, and put L = GLBB2 if ∗ = •, and L = S4GrzBB2 if

∗ = ◦. By the proofs of Theorems 4.6 and 6.3, there exists a sequence of tautologies {ϕn : n < ω}
that have polynomial-size K4-SCF proofs, while the conclusion of the theorem holds if they have

polynomial-size L-CF proofs. Now, by Lemma 7.6 (ii), the tautologies ϕ+
n also have polynomial-

size K4-SCF proofs, and if we assume they have polynomial-size L-CF proofs, then they have

polynomial-size L-CF proofs by Theorem 7.4, thus ϕn have polynomial-size L-CF proofs by

Lemma 7.6 (i). 2

Example 7.8 Theorem 7.7 applies to all transitive logics included in S4.2GrzBB2 or in

GL.2BB2: indeed, BTh,• with an extra irreflexive point on top is a GL.2BB2-frame for any h,

and similarly in the reflexive case.

Remark 7.9 Logics L satisfying the assumption of Theorem 7.7 are PSPACE-hard by Theo-

rem 2.12, hence PSPACE 6= NP implies superpolynomial lower bounds on all Cook–Reckhow

proof systems for L, in particular on L-SF.
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8 Superintuitionistic logics

Intuitionistic logic (IPC) and its extensions (superintuitionistic logics) behave in many respects

analogously to transitive modal logics; in particular, many interesting properties are preserved

by the Blok–Esakia isomorphism between extensions of IPC and extensions of S4Grz. We will

now indicate how to transfer our results to the case of superintuitionistic logics. Our basic tool

will be an efficient transformation of proofs from superintuitionistic logics to modal logics by

means of the Gödel–Tarski–McKinsey translation, which reduces the decision problems associ-

ated with DP and similar rules to the modal case; in this way, we will obtain analogues of the

extension rule complexity estimates from Theorem 4.1 and the first equivalence in Theorem 5.8,

and of the conditional separations from Theorem 4.6, Corollary 5.11, and (a monotone form of)

Remark 5.12.

There is not much point in formally introducing an intuitionistic analogue of the class of

∗-extensible logics, as the only such logic is IPC itself (being complete w.r.t. finite trees). The

intuitionistic equivalent of the bounded branching logics are the Gabbay–de Jongh logics6 Tk,

axiomatized by

Tk = IPC +
∧
i≤k

[(
ϕi →

∨
j 6=i

ϕj

)
→
∨
j 6=i

ϕi

]
→
∨
i≤k

ϕj

= IPC +
[∨
i≤k

(
ϕi →

∨
j 6=i

ϕj

)
→
∨
i≤k

ϕi

]
→
∨
i≤k

ϕj .

As in Lemma 2.1, the logic Tk is complete w.r.t. finite trees (or more general finite intuitionistic

Kripke frames) of branching ≤ k, and a frame F validates Tk iff there is no dense subreduction

from F to Ψk+1.

The disjunction property for superintuitionistic logics is defined by L-admissibility of the

multi-conclusion rules

(DPn) ϕ0 ∨ · · · ∨ ϕn−1 / ϕ0, . . . , ϕn−1.

The intuitionistic analogue of the extension rules are Visser’s rules

(Vn)
∧
i<n

(ϕi → ψi)→
∨
i<n

ϕi

/ ∧
i<n

(ϕi → ψi)→ ϕ0, . . . ,
∧
i<n

(ϕi → ψi)→ ϕn−1.

We mention that similarly to Theorem 2.15, Visser’s rules are constructively feasible for IPC-CF

[20, 12] by an argument using an efficient version of Kleene’s slash in place of Boolean assign-

ments.

We assume IPC is formulated in a language using connectives {∧,∨,→,⊥}, with ¬ϕ being

defined as ϕ → ⊥, and > as ¬⊥. The Gödel–McKinsey–Tarski translation of intuitionistic

formulas (or circuits) to modal formulas (circuits, resp.) is defined such that T(pi) = 2pi for

propositional variables pi, T commutes with the monotone connectives ∧, ∨, and ⊥, and

T(ϕ→ ψ) = 2
(
T(ϕ)→ T(ψ)

)
.

6Introduced as Dk−1 in Gabbay and de Jongh [7]. We find the off-by-one error in the subscript too distressing,

hence we follow the notation of [4] instead.
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A modal logic L′ ⊇ S4 is a modal companion of a superintuitionistic logic L if

(79) `L ϕ ⇐⇒ `L′ T(ϕ)

for all formulas ϕ. If L = IPC + {ϕi : i ∈ I}, then τL = S4 ⊕ {T(ϕi) : i ∈ I} is the smallest

modal companion of L, while σL = τL ⊕Grz is the largest modal companion of L. (See [4,

§9.6] for details.) We have τTk = S4BBk and σTk = S4GrzBBk.

Lemma 8.1 Given a formula or circuit ϕ, we can construct in polynomial time an S4-CF proof

of T(ϕ)↔ 2T(ϕ).

Proof: By induction on the complexity of ϕ. 2

Lemma 8.2 Let L′ be a modal companion of a superintuitionistic logic L. Given an L-CF

proof (or L-SCF proof ) of ϕ, we can construct in polynomial time an L′-CF proof (L′-SCF

proof, resp.) of T(ϕ).

Proof: Using Lemma 8.1, the T translation commutes with substitution up to shortly provable

equivalence. This means we can just apply T to the whole proof line by line, and fix it up to

make a valid proof; we leave the details to the reader. 2

Lemma 8.3 Let k ≥ 2. Given n, there are poly(n)-time constructible Tk-F proofs of[∧
l<n

∨
i≤k

(
ql,i →

∨
j 6=i

ql,j

)
→
∧
l<n

∨
i≤k

ql,i

]
→
∧
l<n

∨
i≤k

ql,i.

Proof: Put βl,i = ql,i →
∨
j 6=i ql,j . We prove

(80)
(∧
l<m

∨
i≤k

βl,i →
∧
l<n

∨
i≤k

ql,i

)
→
∧
l<n

∨
i≤k

ql,i

by induction on m ≤ n. The base case m = 0 is trivial. Assuming we have a proof of (80)

for m, we derive it for m+ 1 by(∧
l≤m

∨
i≤k

βl,i →
∧
l<n

∨
i≤k

ql,i

)
→
[∨
i≤k

βm,i →
(∧
l<m

∨
i≤k

βl,i →
∧
l<n

∨
i≤k

ql,i

)]
→
(∨
i≤k

βm,i →
∧
l<n

∨
i≤k

ql,i

)
→
(∨
i≤k

βm,i →
∨
i≤k

qm,i

)
→
∨
i≤k

qm,i

→
∨
i≤k

βm,i

→
∧
l<n

∨
i≤k

ql,i

using an instance of Tk. 2
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Lemma 8.4 For any k ≥ t ≥ 2, Dec(Rk,t,CPC-CF) ≤s Dec(Vt,Tk-CF).

Proof: Assume we are given a CPC-CF proof of∧
l<n

∨
i≤k

pl,i →
∨
u<t

ϕu(~p),

where ϕu are monotone circuits. We can make it an IPC-CF proof by [14, Thm. 3.9], hence we

can construct an IPC-CF proof of the substitution instance

(81)
∧
l<n

∨
i≤k

βl,i →
∨
u<t

ϕu(. . . , βl,i, . . . ),

where βl,i = ql,i →
∨
j 6=i ql,j . Using (81) and Lemma 8.3, we can construct a Tk-CF proof of∧

u<t

(
ϕu(. . . , βl,i, . . . )→

∧
l<n

∨
i≤k

ql,i

)
→
(∧
l<n

∨
i≤k

βl,i →
∧
l<n

∨
i≤k

ql,i

)
→
∧
l<n

∨
i≤k

ql,i

→
∧
l<n

∨
i≤k

βl,i

→
∨
u<t

ϕu(. . . , βl,i, . . . ),

which gives a reduction to Dec(Vt,Tk-CF). In order to see that it is sound, if u < t is such that

`Tk
∧
v<t

(
ϕv(. . . , βl,i, . . . )→

∧
l<n

∨
i≤k

ql,i

)
→ ϕu(. . . , βl,i, . . . ),

then

`Tk
∧
l<n

∨
i≤k

ql,i → ϕu

(
. . . ,

∨
j 6=i

ql,j , . . .
)
.

By substituting
∧
j 6=i pl,j for ql,i, we obtain

`Tk
∧
l<n

∧
i<j≤k

(pl,i ∨ pl,j)→ ϕu(~p)

as in the proof of Lemma 5.7. 2

We note that the same argument also shows Cons(Rk,t,CPC-CF) ≤ Cons(Vt,Tk-CF).

However, we will not obtain any upper bound on the complexity of Cons(Vt,Tk-CF).

Theorem 8.5 If k ≥ t ≥ 2, then Dec(Vt,Tk-CF), and therefore Dec(DPt,Tk-CF), is subsumed

by a total coNP search problem. Specifically, Dec(Vt,Tk-CF) ≡s Dec(Rk,t,CPC-CF).

Proof: In view of Theorems 4.1 and 5.8 and Lemma 8.4, it suffices to construct a reduction of

Dec(Vt,Tk-CF) to Dec(Ext◦t ,S4BBk-CF). Given a Tk-CF proof of∧
u<t

(ϕu → ψu)→
∨
u<t

ϕu,
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we can construct an S4BBk-CF proof of∧
u<t

2
(
2T(ϕu)→ 2T(ψu)

)
→
∨
u<t

2T(ϕu)

by Lemmas 8.2 and 8.1. Using[(
2T(ϕu)→ 2T(ψu)

)
→ 2

(
2T(ϕu)→ 2T(ψu)

)]
→ 2

(
2T(ϕu)→ 2T(ψu)

)
∨2T(ϕu),

we obtain an S4BBk-CF proof of∧
u<t

B◦
(
2T(ϕu)→ 2T(ψu)

)
→
∨
u<t

2T(ϕu).

This is a sound reduction, as

`S4BBk

∧
u<t

2
(
2T(ϕu)→ 2T(ψu)

)
→ T(ϕv) =⇒ `Tk

∧
u<t

(ϕu → ψu)→ ϕv

by (79) and Lemma 8.1. 2

Remark 8.6 The logics Tk in fact admit Visser’s rules in a more general form

(Vt,m)
∧
i<t

(ϕi → ψi)→
∨

i<t+m

ϕi

/ ∧
i<t

(ϕi → ψi)→ ϕ0, . . . ,
∧
i<t

(ϕi → ψi)→ ϕt+m−1

for t ≤ k and all m ≥ 0; it is possible to derive Vt,m by iteration of Vt,0 = Vt. However, as in

Remark 5.9, we do not get any nontrivial bounds on the complexity of Dec(Vt,m,Tk-CF) for

t+m > k.

Remark 8.7 We do not know if a full analogue of Theorem 5.8 holds for Tk. Instead of using

translation to modal logic as in our proof of Theorem 8.5, it is straightforward to give a self-

contained argument with efficient Kleene’s slash taking the role of Boolean assignments as in

[12, 4.11–4.13]. This in turn can be internalized along the lines of Section 5, and we can prove

analogues of Lemmas 5.2 and 5.3 with no particular difficulty. Unfortunately, this does not

seem to lead anywhere, as Tk does not prove the crucial tautology (61), i.e.,∧
l<m

i0<i1≤k

[(
ψl,i0 →

∨
j 6=i0

ψl,j

)
∨
(
ψl,i1 →

∨
j 6=i1

ψl,j

)]
,

just like S4BBk does not prove the boxed version of (61):∧
l<m

i0<i1≤k

[
2

(
2ψl,i0 →

∨
j 6=i0

2ψl,j

)
∨2

(
2ψl,i1 →

∨
j 6=i1

2ψl,j

)]
.

Our inability to circumvent this problem is directly related to our failure to solve Remark 5.10.

We now turn to lower bounds. We define the intuitionistic versions AIΦ of the AΦ circuits

by dropping all boxes from Definition 4.2. It is straightforward to adapt the proofs of Lemmas

4.3, 4.4, and 4.5 (again, by essentially dropping all boxes) to show the following:
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Lemma 8.8 Given a QBF Φ(p0, . . . , pn−1), there are poly-time constructible IPC-SCF proofs

of ∧
i<n

(pi ∨ ¬pi)→ AIΦ ∨AIΦ. 2

Lemma 8.9 Let Φ be a QBF in free variables ~p, let ~a be a Boolean assignment to ~p, and ~p/~a

denote the corresponding substitution. If L is a superintuitionistic logic with DP, and

`L AIΦ(~p/~a),

then Φ(~a) is true. 2

As with the notion of extensible logics, in the superintuitionistic case there is not much

point in considering a complicated condition on logics as in Theorem 7.7: one can check that a

superintuitionistic logic L has the property that for each h there exists a subreduction from an

L-frame to Bh if and only if L ⊆ T2 + KC, where KC is the logic of weak excluded middle

KC = IPC + ¬ϕ ∨ ¬¬ϕ,

hence we may as well just directly state the results for sublogics of T2 + KC.

The superintuitionistic analogues of Lemma 7.6 and Theorem 7.4 were already proved in

Jeřábek [16]. Given a formula or circuit ϕ(~p), let ϕ′(~p, r) be the positive circuit obtained by

replacing all occurrences of ⊥ with r, so that ϕ(~p) = ϕ′(~p,⊥). Then we put ϕ+(~p, r) =
∧
i(r →

pi)→ ϕ′(~p, r). The following is Theorem 3.8 in [16].

Lemma 8.10 Let L be an extension of IPC by positive axioms, and ϕ a circuit.

(i) There is a poly-time constructible IPC-CF proof of σ(ϕ+)→ ϕ, where σ is the substitution

σ(r) = ⊥.

(ii) Given an L-CF or L-SCF proof of ϕ, we can construct in polynomial time an L-CF or

L-SCF proof (respectively) of ϕ+. 2

The next lemma is a special case of Theorem 4.5 in [16].

Lemma 8.11 Given a (T2 +KC)-CF proof of a positive formula or circuit ϕ, we can construct

in polynomial time a T2-CF proof of ϕ. 2

Theorem 8.12 If IPC ⊆ L ⊆ T2 + KC, then L-SF has superpolynomial speed-up over L-EF

unless PSPACE = NP = coNP, and unless the disjoint NP pair version of Dec(R2,2,CPC-CF)

is a complete disjoint PSPACE pair under nonuniform poly-time reductions.

Proof: As before, it suffices to show a conditional separation between L-CF and L-SCF proofs

of circuits using intuitionistic variants of Lemmas 2.5 and 2.6.

For any QBF Φ, the circuits (AIΦ)+ have polynomial-time constructible IPC-SCF proofs

by Lemmas 8.8 and 8.10. Thus, if L-CF weakly simulates L-SCF, then the circuits AIΦ have

polynomial-size T2-CF proofs πΦ by Lemmas 8.11 and 8.10. In view of Theorem 8.5 amd

Lemma 8.9, this implies that PSPACE = NP by guessing πΦ nondeterministically as in the proof

of Theorem 4.6, and that all disjoint PSPACE pairs nonuniformly reduce to Dec(R2,2,CPC-CF)

by using the πΦ as advice as in the proof of Corollary 5.11. 2
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We will also show a monotone lower bound. We are not able to extend the full statement

of Theorem 6.3 to T2 + KC, but we will prove a monotone version of Remark 5.12.

Definition 8.13 If Φ is a QBF in negation normal form, its dual Φd is constructed by replacing

each ∧ with ∨, > with ⊥, ∀ with ∃, and vice versa.

Lemma 8.14

(i) Given a monotone formula or circuit ϕ(p0, . . . , pn−1), we can construct in polynomial time

an IPC-CF proof of ∧
i<n

(pi ∨ qi)→ ϕ(~p) ∨ ϕd(~q).

(ii) Given a QBF Φ(p0, . . . , pn−1) in negation normal form which is monotone in ~p, and uses

quantified variables {ri : i < d}, we can construct in polynomial time an IPC-SCF proof

of ∧
i<n

(pi ∨ qi)→ AIΦ(~p, ~r) ∨AIΦd(~q, ~r).

Proof: (i): By straightforward induction on the complexity of ϕ.

(ii): By induction on d. The base case d = 0 is (i). For the induction step from d to d+ 1,

assume w.l.o.g. that Φ is existentially quantified. We can write Φ(~p) = ∃rd Φ0(~p, rd,¬rd), where

Φ0(~p, r, r′) is monotone in r and r′. It is easy to check that

AIΦ0(~p,rd,¬rd)(~p, rd, ~r) = AIΦ0(~p,r,r′)(~p, rd,¬rd, ~r),

hence

(82) AIΦ(~p, ~r, rd) =
[(
rd → AIΦ0(~p,r,r′)(~p, rd,¬rd, ~r)

)
∨
(
¬rd → AIΦ0(~p,r,r′)(~p, rd,¬rd, ~r)

)]
,

and likewise,

(83) AIΦd(~p, ~r, rd) =
(
rd ∨ ¬rd → AI

Φd
0(~p,r,r′)

(~p, rd,¬rd, ~r)
)
.

By the induction hypothesis, we have an IPC-SCF proof of∧
i<n

(pi ∨ qi) ∧ (r ∨ s) ∧ (r′ ∨ s′)→ AIΦ0
(~p, r, r′, ~r) ∨AI

Φd
0
(~q, s, s′, ~r).

Using the substitution rule, we obtain∧
i<n

(pi ∨ qi)→
(
AIΦ0

(~p,>,⊥, ~r) ∨AI
Φd

0
(~q,⊥,>, ~r)

)
,

∧
i<n

(pi ∨ qi)→
(
AIΦ0

(~p,⊥,>, ~r) ∨AI
Φd

0
(~q,>,⊥, ~r)

)
,
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hence (suppressing the variables ~p, ~r in AIΦ0
and ~q, ~r in AI

Φd
0

for readability)∧
i<n

(pi ∨ qi)→
(
AIΦ0

(>,⊥) ∨AIΦ0
(⊥,>)

)
∨
(
AI

Φd
0
(>,⊥) ∧AI

Φd
0
(⊥,>)

)
→
[(
rd → AIΦ0

(rd,¬rd)
)
∨
(
¬rd → AIΦ0

(rd,¬rd)
)]
∨
(
rd ∨ ¬rd → AI

Φd
0
(rd,¬rd)

)
→ AIΦ(~p, ~r, rd) ∨AIΦd(~p, ~r, rd)

by (82) and (83). 2

Theorem 8.15 Let IPC ⊆ L ⊆ T2 + KC, and assume that L-EF weakly simulates L-SF.

Then for every monotone PSPACE language P , there exists a sequence of polynomial-size

monotone Boolean circuits {C∀n, C∃n : n ∈ ω} such that C∀n and C∃n use variables {pi : i < n}
and {sl,r : l < mn, r < 3}, and for every w ∈ 2n, we have

w ∈ P ⇐⇒ ∀~s
( ∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j)→ C∀n(w,~s)
)

(84)

⇐⇒ ∃~s
( ∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j) ∧ C∃n(w,¬~s)
)
,(85)

while the circuits

(86)
∧
l<mn

∨
r<3

sl,r ∧ C∃n(~p,¬~s)→ C∀n(~p,~s)

have polynomial-size CPC-CF proofs.

If P ∈ PSPACE is not necessarily monotone, the above holds with C∀n and C∃n monotone

in ~s.

Proof: Using Lemmas 8.10 and 8.11 and intuitionistic versions of Lemmas 2.5 and 2.6, we may

assume that T2-CF weakly simulates IPC-SCF on circuits. Let P ∈ PSPACE be monotone.

There exists a polynomial-time constructible sequence of QBF {Φn(p0, . . . , pn−1) : n ∈ ω} in

negation normal form such that Φn is monotone in ~p, and

w ∈ P ⇐⇒ Φn(w)

for all w ∈ 2n. By Lemma 8.14 and the assumption, there are polynomial-size T2-CF proofs of∧
i<n

(pi ∨ qi)→ AIΦn(~p, ~r) ∨AIΦd
n
(~q, ~r),

hence using Lemmas 8.2 and 8.1, there are polynomial-size S4BB2-CF proofs of∧
i<n

(2pi ∨2qi)→ 2T(AIΦn)(~p, ~r) ∨2T(AIΦd
n
)(~q, ~r).

By Theorem 6.1, there exist polynomial-size monotone circuits Cun(~p, ~q,~s), u = 0, 1, polynomial-

size CPC-CF proofs of

(87)
∧
i<n

(pi ∨ qi) ∧
∧
l<mn

∨
r<3

sl,r →
∨
u<2

Cun(~p, ~q,~s),
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and polynomial-size S4BB2-CF proofs of∧
l<m
r<3

(
sl,r ∧2ψl,r →

∨
i 6=r

2ψl,i

)
∧
∧
i<n

(pi → 2pi) ∧
∧
i<n

(qi → 2qi) ∧ C1
n(~p, ~q,~s)→ 2T(AIΦn)(~p, ~r),

∧
l<m
r<3

(
sl,r ∧2ψl,r →

∨
i 6=r

2ψl,i

)
∧
∧
i<n

(pi → 2pi) ∧
∧
i<n

(qi → 2qi) ∧ C0
n(~p, ~q,~s)→ 2T(AIΦd

n
)(~q, ~r),

for some formulas {ψl,i : l < mn, i < 3}. Using the same argument as in the proof of Theo-

rem 6.3, this implies the validity of the QBF

∀~s
( ∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j)→ C1
n(~p, ~q,~s)

)
→ Φn(~p),

∀~s
( ∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j)→ C0
n(~p, ~q,~s)

)
→ Φd

n(~q).

Observe Φd(~p) ≡ ¬Φ(¬~p). Thus, putting C∀n(~p,~s) = C1
n(~p, ~>, ~s), C∃n(~p,~s) = (C0

n)d(~⊥, ~p,~s) ≡
¬C0

n(~>,¬~p,¬~s), and using the monotonicity of Cun , we have

∀~s
( ∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j)→ C∀n(~p,~s)
)
→ Φn(~p),

∀~s
( ∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j)→ ¬C∃n(~p,¬~s)
)
→ ¬Φn(~p),

i.e.,

Φn(~p)→ ∃~s
( ∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j) ∧ C∃n(~p,¬~s)
)
.

Using the monotonicity of Cun , substitution of ¬pi for qi in (87) yields (86). This in turn implies

∃~s
( ∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j) ∧ C∃n(~p,¬~s)
)
→ ∀~s

( ∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j)→ C∀n(~p,~s)
)
,

hence (84) and (85): indeed,∧
l<mn

∧
i<j<3

(tl,i ∨ tl,j) ∧ C∃n(~p,¬~t) ∧
∧
l<mn

∧
i<j<3

(sl,i ∨ sl,j)

→
∧
l<mn

∨
r<3

(sl,r ∧ tl,r) ∧ C∃n
(
~p,¬(~t ∧ ~s)

)
→ C∀n(~p,~t ∧ ~s)
→ C∀n(~p,~s),

using once again the monotonicity of C∃n and C∀n.

For nonmonotone P ∈ PSPACE, we proceed as in Theorem 6.3. 2
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Remark 8.16 That (86) has short proofs, and in particular, is a tautology, is a crucial part

of Theorem 8.15: the existence of C∀n and C∃n satisfying (84) and (85) already follows from

PSPACE = NP. Indeed, if P ∈ coNP is monotone, there exists a polynomial-time constructible

sequence of monotone formulas αn(p0, . . . , pn−1, q0, . . . , qm−1, q
′
0, . . . , q

′
m−1) such that

w ∈ P ⇐⇒ ∀~q αn(w, ~q,¬~q)

for all w ∈ 2n. (Note that αn can be made monotone in ~p as in the beginning of the proof of

Theorem 6.3.) Then

w ∈ P ⇐⇒ ∀~s
(∧
l<m

∧
i<j<3

(sl,i ∨ sl,j)→ C∀n(w,~s)
)
,

where C∀n(~p,~s) is the monotone formula

αn(~p, s0,0, . . . , sm−1,0, s0,1, . . . , sm−1,1) ∨
∨
l<m

(sl,0 ∧ sl,1).

9 Conclusion

We have characterized the decision complexity of extension rules in basic transitive modal logics

of bounded branching and the corresponding superintuitionistic logics, and as a consequence,

we proved superpolynomial separation of EF and SF systems for these logics under plausible

hypotheses, solving Problem 7.1 from [14]. Our work raises a few questions. First, we did not

manage to obtain unconditional separations or lower bounds, but it is not clear if this is a

result of insufficiency of our methods, or if the problems are fundamentally hard (say, as hard

as lower bounds on classical Frege-like systems). Several additional problems were mentioned

in Remark 5.10:

Question 9.1 Let ∗ ∈ {•, ◦}, k ≥ t ≥ 2, and L = L0 ⊕BBk, where L0 is a ∗-extensible logic.

(i) What is the complexity of Dec(DPt, L-CF)? Is it equivalent to Dec(Ext∗t , L-CF)? Is it

feasible?

(ii) Are the single-conclusion extension rules Ext∗,∨t feasible for L-CF? Are all EF (or CF)

systems for L p-equivalent even if allowed to use non-derivable admissible rules?

Similar questions also concern the superintuitionistic logics Tk.

On a more general note, our results only apply to ∗-extensible logics augmented with the

BBk axioms, which are among the weakest logics of bounded branching. They do not show

much light on other logics of bounded branching and unbounded width, especially strong logics

such as the logic of square grids 〈{0, . . . , n} × {0, . . . , n},≤〉 (or the similar logic of “clipped”

grids as in Fig. 1 (a), which even has the disjunction property) and the logic of binary caterpillars

(Fig. 1 (b)).

The results of [14] were consistent with the mental picture of a clear dividing line between

weak logics for which we can prove unconditional exponential separations between EF and SF
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(a) (b)

Figure 1: Some frames of branching two: (a) clipped grid, (b) binary caterpillar.

using some forms of feasible disjunction properties, and strong logics for which—at least if they

are sufficiently well-behaved—SF and EF are p-equivalent, and up to a translation, p-equivalent

to CPC-EF.

The results here rather seem to suggest a more complicated landscape where, as logics get

stronger, the complexity of disjunction properties goes up until it perhaps becomes irrelevant

for separation of proof systems, while perhaps the gap between EF and SF gradually becomes

smaller, or perhaps it becomes dominated by tautologies of a completely different nature than

seen here. In any case, there seems to be a law of diminishing returns at play, as it took us quite

a lot of effort to get a modest improvement over [14], and it appears even more effort would be

needed for further progress; at the same time, we are moving into a territory where the number

of natural modal logics is quite underwhelming.

We now have a decent understanding of the relationship between EF and SF, but we know

nothing much about what happens below or above these proof systems. These might be cur-

rently the most important problems in the proof complexity of nonclassical logics:

Question 9.2 Can we separate L-F from L-EF for some modal or superintuitionistic logics L?

Question 9.3 Can we unconditionally (or at least, less trivially than by assuming PSPACE 6=
NP) prove superpolynomial lower bounds on the lengths of L-SF proofs for some modal or

superintuitionistic logics L?
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