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Chapter 0

Overview

This dissertation comprises eight published papers of the author, each constituting one chapter:

[96, 98, 99, 105, 100, 101, 103, 104]. They have been lightly edited to unify the formatting, but

otherwise left identical to the versions that were accepted for publication.

1 Bounded arithmetic and its origins

The central subject of this dissertation—bounded arithmetic—arose from the confluence of two

seemingly disparate fields: first-order theories of arithmetic, and complexity theory (proposi-

tional proof complexity and computational complexity).

The investigation of theories of arithmetic has been one of the primary fields of research

in modern logic. Arithmetical theories are interesting for both mathematical and metamathe-

matical reasons. Integers are one of the most fundamental mathematical structures, and their

study has been a core mathematical topic for centuries; it is not uncommon for problems from

number theory to have simple and easy to understand statements, and yet be extremely hard

to solve, which has made this subject intriguing for generations of mathematicians.

The best-known first-order theory of arithmetic is the Peano arithmetic (PA), an elegant

and powerful axiomatic system conceived to capture the valid statements of elementary (first-

order) number theory, i.e., true in the structure 〈N, 0, S,+, ·,≤〉. It can be seen as a first-

order approximation to the original second-order axioms of Peano [149] that characterize the

structure of positive integers uniquely up to isomorphism; while first-order Peano arithmetic no

longer has this property, it has the important advantage of enjoying an effectively axiomatized

proof system, which means that it can be actually employed to prove number-theoretic facts

(second-order logic has no complete proof system, hence it is useless in practice for derivation of

arithmetic truths—even though in theory, all true arithmetical statements semantically follow

from the second-order Peano axioms).

An early impetus for logical investigation of arithmetic and related theories was given by

Hilbert’s program, which sought to provide solid foundations for abstract, infinitary mathematics

(“analysis”, though for us it is better to think of it as something like set theory) by showing

its consistency by finitary proof-theoretic methods, as well as its conservativity over finitary

mathematics for simple enough statements. While the extent of finitary methods was not

5
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exactly specified, it is generally assumed that what Hilbert had in mind could be formalized

in PA, or even its weaker fragments such as primitive recursive arithmetic; this was certainly

true for proof-theoretic arguments employed at around that time e.g. in Presburger’s analysis

of the theory of 〈N,+〉.
The original conception of Hilbert’s program was shattered by the seminal work of Gödel [81],

who proved that effectively presented theories that can simulate a strong enough fragment of

arithmetic, such as PA, are incomplete, and cannot even prove their own consistency, let alone

the consistency of a much stronger theory. Yet shortly thereafter, Gentzen [79] discovered how

to analyze PA proofs after all, leading to a proof of consistency of PA in a weak fragment

of arithmetic augmented with primitive recursive transfinite induction up to the ordinal ε0

(whereas PA can prove transfinite induction up to any strictly smaller ordinal). This, in a

sense, pin-points the amount of infinitary reasoning lacking in PA that’s necessary to prove the

consistency of PA.

These results set the stage for much of later developments in the investigation of theories

of arithmetic. Gödel’s theorem led to the understanding that any sufficiently expressive theory

comes with a rich web of statements of varying strengths independent of the theory, and that

provability in such a theory as well as other associated computational problems are undecidable.

But it also showed that finite strings, formulas, proofs, and other syntactic and combinatorial

objects, can be adequately encoded by integers, and reasoned about in first-order theories

of arithmetic; in particular, arithmetical theories can serve as meta-theories to study logical

properties of themselves and of other theories. Gentzen’s work led to development of proof

theory of sequent calculi, which can be used to gauge the strength of theories of arithmetic by

means of ordinal analysis or description of their provably total computable functions, and to

prove conservation results between such theories.

While the essential incompleteness of PA ensures that it has many different extensions, it

turns out that it also has many interesting subtheories. A particularly fruitful way of introducing

a range of subsystems of PA of varying strength is to restrict the scheme of induction only to

formulas from some syntactic class, typically constraining the shape of quantifier prefixes. A

systematic study of such fragments was initiated by Parsons [147], who introduced the theories

now called IΣn and BΣn, and Parikh [142], who introduced the prototypical theory of bounded

arithmetic now denoted I∆0. In I∆0, induction is postulated only for ∆0 formulas, i.e., formulas

(in the basic language of arithmetic) all of whose quantifiers are bounded.

As a part of his original motivation, Parikh relates I∆0 to computational complexity (then

a nascent field). The basic goal of computational complexity is to assess the resources (time,

space, . . . ) required to solve various computational tasks in suitable machine models, and to

classify the complexity of such tasks accordingly. Of particular importance are the class P of

decision problems solvable (deterministically) in time polynomial in the length of the input,

which is taken as an idealized mathematical model of problems that are efficiently solvable

on a computer, and the class NP of problems whose positive instances have polynomial-time

verifiable witnesses, or equivalently, problems solvable nondeterministically in polynomial time.

It is generally assumed that NP-hard problems (problems to which all NP problems can be

reduced) cannot be solved in polynomial time; this is the content of the famous P 6= NP
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conjecture. The class NP can be generalized to the polynomial-time hierarchy PH, which is

included in the class of problems solvable in polynomial space (PSPACE).

Parikh’s reasons for introducing I∆0 stems from consideration of feasibility (efficient com-

putability) of definable functions and predicates. Strong theories of arithmetic such as PA or

IΣ1 prove the totality of fast-growing functions, e.g. exponentiation, that are infeasible. In

contrast, all provably total computable functions in I∆0 are bounded by a polynomial (i.e., a

term of the language; a similar property holds for theories with bounded induction over richer

languages), and evaluation of ∆0 predicates involves only numbers polynomially bounded in the

arguments, i.e., they are computable in deterministic linear space; more precisely, they comprise

the linear-time hierarchy.

For various reasons, one obtains a more convenient and more robust theory by extending

I∆0 with the axiom Ω1 (introduced in the works of Paris and Wilkie [143, 144, 145, 179]),

postulating the totality of the function ω1(x) = xlog x. The computational complexity reason is

that while the provably total computable functions of I∆0 are polynomially bounded in value,

they are only linearly bounded in terms of the length of the input when written in binary

notation (whence the connection to linear-time hierarchy); however, computational classes with

polynomial resource bounds, such as P and NP, are more interesting than linear. The ω1(x)

function grows quadratically (in terms of length in binary), hence its finite iterations give

arbitrarily large polynomial bounds; thus, ∆0(ω1) formulas define predicates from PH, and

the provably total computable functions of I∆0 + Ω1 comprise FPPH. The logically motivated

reason is that when discussing Gödel’s theorems and in other contexts involving formalization

of logical syntax, we need to be able to substitute a term for a variable in a formula; since this

substitution function may quadratically increase the length of the input, it is not provably total

in I∆0, but it works as expected in I∆0 + Ω1.

The realization that P 6= NP is one of the most fundamental mathematical problems owes

much to the seminal paper by Cook [62], who proved the NP-completeness of the propositional

satisfiability problem. It is no coincidence that Cook also became one of the founders of propo-

sitional proof complexity (Cook and Reckhow [69]), and in a development independent of the

work of Wilkie and Paris, he pioneered a form of bounded arithmetic and its connection to

propositional proof complexity in Cook [63].

Propositional proof complexity studies proof systems for (usually) classical propositional

logic, such as the resolution system, Frege (also known elsewhere as Hilbert) systems, or se-

quent calculi; in general, a propositional proof system is any sound and complete scheme for

certification of propositional tautologies by witnesses (“proofs”) that are verifiable in polyno-

mial time (in the lengths of the proof and of the tautology). The basic question is what is

the minimal complexity of proofs of a given tautology in a given proof system, with the most

important complexity measure being the length of the proof; in particular, we are interested if

there are tautologies that require proofs of superpolynomial, or even exponential, length. This

is related to computational complexity: there exists a polynomially bounded proof system (i.e.,

one where every tautology has a polynomial-size proof) if and only if NP = coNP.

In [63], Cook builds upon Parikh’s idea of formalization of feasibly constructive reasoning by

introducing an equational theory PV (for “polynomially verifiable”), which has function symbols
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for polynomial-time algorithms, and a polynomial induction rule. Importantly, he establishes a

prototypical propositional translation of bounded arithmetic: a true equation in the language

of PV can be translated into a sequence of propositional tautologies, and if the equation is

provable in PV , its translations have polynomial-time constructible proofs in the extended

resolution proof system (equivalent to extended Frege, EF ). This result became a precursor to

a more general correspondence between theories of arithmetic and propositional proof systems;

in a sense, bounded arithmetical theories (or at least their low-complexity fragments) may be

considered to be “uniform versions” of propositional proof systems.

A different (though ultimately related) translation of I∆0(R) to bounded-depth Frege was

later introduced by Paris and Wilkie [144]. A first-order variant PV1 of PV was defined by

Kraj́ıček, Pudlák, and Takeuti [121].

Buss [37] reformulated I∆0+Ω1 as the theory T2 in an expanded language including function

symbols bx/2c, |x| (meaning dlog2(x+1)e), and x#y (meaning 2|x|·|y|). An important advantage

of this language is that the individual levels ΣP
i of the polynomial-time hierarchy (including ΣP

1 =

NP) have transparent syntactic descriptions: they correspond to Σb
i formulas of the bounded

quantifier alternation hierarchy (ignoring the so-called sharply bounded quantifiers ∃x ≤ |t|,
∀x ≤ |t|). This makes the connections of the theory to computational complexity classes much

tighter, and provides a good motivation to shift focus from full bounded arithmetic T2 to its

fragments with induction restricted to Σb
i formulas. Buss introduced two main sequences of

such fragments: the theories T i2 = Σb
i -IND with usual induction, and Si2 = Σb

i -PIND using the

polynomial induction schema; they form an intertwined hierarchy S1
2 ⊆ T 1

2 ⊆ S2
2 ⊆ T 2

2 ⊆ S3
2 ⊆

T 3
2 ⊆ · · · . It is often convenient to extend the language of Buss’s theories further by including

all function symbols of PV , which are Σb
1-definable in S1

2 . This unifies this set-up of bounded

arithmetic with Cook’s PV ; the theory S1
2(PV ) is a conservative extension of PV , and in fact,

a ∀Σb
1-conservative extension of PV1 = T 0

2 (PV ) as a consequence of Buss’s witnessing theorem.

Buss’s one-sorted (“first-order”) theories became one of the two most commonly studied

frameworks for theories of bounded arithmetic. The other one is the framework of two-sorted

(“second-order”) theories with a sort of small/unary integers, and a sort of finite sets of these,

also viewed as binary strings, or as large/binary integers. These theories were in fact also

originally introduced by Buss [37], but current usage follows the considerably simpler set-up

due to Zambella [182]. The one-sorted and two-sorted theories are related by the RSUV -

isomorphism (Takeuti [170]), which identifies the second (set/string/binary) sort of the two-

sorted theories with numbers of the one-sorted theories, and the first (number/unary) sort with

logarithmically small numbers. In this way, the theories Si2 and T i2 are bi-interpretable with two-

sorted theories V i and TV i (for i ≥ 1). While the one-sorted theories are formally simpler, the

advantage of two-sorted theories is that one can easily introduce theories corresponding to small

complexity classes that do not necessarily include (binary) integer multiplication; in particular,

the base theory V 0 corresponds to the important complexity class (DLOGTIME-uniform) AC0.
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2 Our contribution

The work presented in this dissertation is an investigation of several themes in the subject of

bounded arithmetic and related complexity theory. While each chapter was published as a

separate paper, they are connected in various ways. We will now give brief introductions of the

individual topics.

2.1 Approximate counting

The first two chapters of the dissertation (originally published as [96, 98]) are devoted to ap-

proximate counting. Here, counting refers to determination of the cardinality of a finite set.

In the context of theories of arithmetic, we consider definable bounded sets X (i.e., subsets of

intervals [0, a) = {x : x < a} for some parameters a), and ideally, we would like to define the

cardinality |X| ≤ a in such a way that we can conveniently manipulate it in the theory. Such a

notion of definable cardinality can be useful for formalization of all kinds of counting arguments

or probabilistic arguments in combinatorics, complexity theory, number theory, etc., and for

presentation of randomized algorithms in theories of arithmetic.

It is not difficult to show that the cardinality of all bounded definable sets has a well-

behaved definition in PA. In fragments of arithmetic with restricted induction schema, we

cannot expect this to work for arbitrary sets, only for sets whose definitions have a sufficiently

low complexity; with this caveat, counting still works well in the “strong fragments” IΣk for

k ≥ 1 (where we can count ∆0(Σk)-definable sets), down to the theory I∆0 + EXP , where we

can count ∆0(exp)-definable sets. Perhaps the best way to think about it is that a very weak

fragment of bounded arithmetic (PV1, or even VTC 0) has a well-behaved definition of counting

for sets explicitly encoded as sequences of elements, and then strong fragments of arithmetic

prove bounded comprehension principles that ensure that a bounded definable set of suitable

complexity can be arranged into a sequence: I∆0 + EXP proves this form of comprehension for

∆0(exp) sets, and IΣk proves comprehension for Σk (and consequently, ∆0(Σk)) sets.

However, this set-up essentially requires the presence of exponentiation, as subsets of [0, a)

need more than a bits to encode, which is exponential in the bit-length of a. In fact, there are

good reasons to think that exact counting of, say, polynomial-time bounded sets is not possible

to define in any reasonable way in theories of bounded arithmetic (say, subtheories of Buss’s T2):

if we could define it (in a provably total way) by a Σ1 formula, then using Parikh’s theorem,

we could define it by a bounded formula, i.e., Σb
i for some i. Thus, it would belong to the

complexity class FPΣP
i . However, counting of polynomial-time sets is #P-complete, and this

class is PH-hard by Toda’s theorem [174]; thus, we would get the collapse of the polynomial-time

hierarchy (and in fact the whole counting hierarchy CH) to ∆P
i+1, which is generally assumed

to be quite unlikely. It fact, it is outright disprovable for often-considered “relativized” variants

of bounded arithmetic with an uninterpreted new predicate. A similar argument applies even

to modular counting, i.e., determination of |X| modulo a fixed constant m.

This leaves open the possibility that bounded arithmetic can define an approximation of |X|,
up to a polynomially small error ε. Here, we may consider either additive error, i.e., we want

to compute s such that |X| − εa ≤ s ≤ |X| + εa, where X ⊆ [0, a), or multiplicative error, in
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which case we want s such that |X|(1−ε) ≤ s ≤ |X|(1+ε). (Counting with multiplicative error

is more precise than with additive error, especially when X is rather sparse.) It is known that

approximate counting can be accomplished within the polynomial-time hierarchy, hence there

is no a priori complexity obstacle to formalization in bounded arithmetic.

The pigeonhole principle PHPa+1
a (f) asserts that a function f : [0, a + 1) → [0, a) cannot

be injective. This amounts to a “passive” form of (exact) counting: the most natural way of

witnessing that a bounded set X has size s is to provide a bijection X → [0, s); while PHP

does not (at least in an obvious way) imply that such bijections exist, it ensures that if they

exist for a given X, then s is unique. In a similar way, a passive form of approximate counting

is provided by the weak pigeonhole principle PHP b
a(f) where b is much larger than a. (The

exact meaning of “much” depends on the context. Common choices include b = a2 or b = 2a;

below, we will take b = a(1 + 1/|a|), which corresponds to counting with polynomially small

error ε ≈ 1/|a|. That is, if Φ is a class of definable functions, WPHP(Φ) denotes the schema

∀aPHP
(1+1/|a|)a
a (f) for f ∈ Φ.)

In bounded arithmetic, PHP is as intractable as other forms of exact counting; in particular,

the relativized theory T2(α) does not prove PHP(α) [3, 24]. But crucially, it does prove the weak

pigeonhole principle, as shown by Paris, Wilkie, and Woods [146]; more precisely, T i+1
2 (α) `

WPHP(Σb
i(α)) for i ≥ 1 by Maciel, Pitassi, and Woods [125]. This already shows that bounded

arithmetic is capable of approximate counting to some extent. Besides being an interesting

principle in its own right, WPHP can be used to simulate certain counting arguments in T2:

the very reason it was introduced in [146] was to prove the unboundedness of primes, and for

another important example, Pudlák [152] used it to prove Ramsey’s theorem.

Although it may look less intuitive at first sight, the surjective (or dual) weak pigeon-

hole principle happens to be more useful for formalization of counting arguments in bounded

arithmetic than the usual injective principle: for a < b, sPHPa
b (f) says that f : [0, a) → [0, b)

cannot be onto, and sWPHP(Φ) denotes ∀a sPHPa
a(1+1/|a|) for each f ∈ Φ. We are partic-

ularly interested in the case of Φ being the set of all PV -functions. By [125], we still have

T 2
2 ` sWPHP(PV ), and more generally, T i+1

2 ` sWPHP(Σb
i) for i ≥ 1. From now, we will de-

note the original injective form of the weak pigeonhole principle as iWPHP rather than WPHP

to distinguish it from sWPHP .

The basic idea of emulating counting arguments by iWPHP is that we witness |X| ≤ s by

providing an injective function (efficient, say, computable in polynomial time or by polynomial-

size circuits) X → [0, s), whereas if we work with sWPHP , we use a surjection [0, s) → X. It

turns out that such counting surjections are easier to construct and manipulate than injections1.

Another reason suggesting a close connection of sWPHP to counting or probabilistic argu-

ments is Wilkie’s witnessing theorem (first published in Kraj́ıček [116]): the ∀Σb
1 consequences of

S1
2 +sWPHP(PV ) can be witnessed in randomized polynomial time (equivalently, the NP-search

problems provably total in S1
2 + sWPHP(PV ) are included in TFZPP). The basic intuition for

1A similar phenomenon occurs in set theory without the axiom of choice, where comparing cardinalities by

existence of surjections sometimes works in a more robust way than with injections: e.g., the most natural

definition of inaccessible cardinals in ZF renders κ being strong limit as “there is no surjection from Vα to κ for

any α < κ” [32, 167].
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this result is that if we are given a poly-time function f : [0, a)→ [0, b) with b� a, we can find

an element outside the range of f with high probability by considering a random element of

[0, b).

In contrast, witnessing iWPHP(PV ) is computationally hard: e.g., it is at least as hard as

integer factoring [95]. Strictly speaking, sWPHP(PV ) and iWPHP(PV ) are (presumably) in-

comparable; nevertheless, sWPHP(PV ) is weaker than iWPHP(PV ) in that S1
2 +sWPHP(PV )

is ∀Σb
1-conservative over S1

2 + iWPHP(PV ). More precisely, the ∀Σb
1 consequences of S1

2 +

sWPHP(PV ) are axiomatized by PV1 + rWPHP(PV ), where the retraction-pair weak pigeon-

hole principle rWPHP(PV ) asserts that it is impossible for two PV -functions f : [0, a)→ [0, b)

and g : [0, b)→ [0, a) to satisfy f ◦ g = id[0,b) if b� a [172, 93]. Clearly, rWPHP is implied by

iWPHP .

As we already mentioned, some counting arguments were formalized in bounded arithmetic

using variants of WPHP for example in [146, 152]. Both papers rely on ingenious (and, at least

in the case of [146], quite complicated) constructions of counting functions designed ad hoc to

make the arguments go through. They do not give any suggestions how to turn this into a

general method; as a case in point, the tournament principle (due to Erdős [77]) can be proved

by a simple counting argument quite similar to a proof of Ramsey’s theorem, but it stood open

for a long time whether it can be proved in a bounded arithmetic (this problem, along with

a certain generalization relevant to relating the collapse of Buss’s hierarchy to the collapse of

the polynomial-time hierarchy, originated in Kraj́ıček, Pudlák, and Takeuti [121]; it was stated

explicitly in Clote and Kraj́ıček [55]).

The main goal of Chapters I and II is to develop a systematic framework for formalization

of approximate counting and probabilistic arguments in bounded arithmetic using sWPHP ,

including a toolbox of basic facts.

Chapter I (originally [96]) is devoted to approximate counting with additive error, working

in the theory PV1 + sWPHP(PV ), also called APC1 in [45]. (It partially builds on [93], which

is however not included in this dissertation.) The basic idea is that if X,Y ⊆ [0, 2n) are sets

defined by Boolean circuits (or equivalently, by PV -functions with parameters), we witness that

|X| ≤ |Y | by the existence of a circuit that computes a surjection Y � X, but we weaken it in

two ways to make it much easier to construct such circuits: first, we actually consider surjections

Y × [0, v) � X × [0, v) for some v > 0, and second, instead of Y , we take its disjoint union

with [0, ε2n) for some rational ε > 0. We denote the resulting concept by X �ε Y , spelled out

as the size of X is approximately less than the size of Y with error ε. We also write X ≈ε Y if

X �ε Y and Y �ε X.

The crucial result that makes this definition well behaved is that PV1 +sWPHP(PV ) proves

that any set “has a size”: that is, given X ⊆ [0, 2n) as above, and ε at least inverse polynomial

in n (or more generally, in a length of something), there exists s ≤ 2n such that X ≈ε [0, s). (The

witnessing surjections also have inverse injections computable by small circuits.) This is shown

by formalization of the analysis of the Nisan–Wigderson pseudorandom generator [135]: supplied

with the truth-table of a sufficiently hard Boolean function (whose non-uniform existence follows

from sWPHP(PV )), the NW generator can compute the approximate size s by sampling X, and

the proof of “correctness” of this estimate can be turned into a construction of the witnessing
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counting functions.

Besides basic consequences of the definition (such as monotonicity), we show that it behaves

in the expected way with respect to disjoint unions and Cartesian products (the latter generalizes

to a formalization of the averaging principle: if Prx∈X,y∈Y [P (x, y)] ≥ p, there exists x ∈ X such

that Pry∈Y [P (x, y)] ≥ p). For more sophisticated counting arguments, we prove a form of the

inclusion–exclusion principle and a Chernoff–Hoeffding bound.

In the second half of Chapter I, we apply this machinery to develop the theory of various

randomized complexity classes in PV1+sWPHP(PV ): specifically, we look at the classes of FRP

and TFRP search problems, BPP languages and promise problems, APP real-valued functions

(introduced by Kabanets, Rackoff, and Cook [111]), MA languages and promise problems,

and—upgrading the theory by one level of the hierarchy to T 1
2 + sWPHP(PV2)—the classes

of AM languages and promise problems. For each class, we indicate how to formally define

algorithms from the class in bounded arithmetic using the approximate counting framework,

and we prove basic properties of the class in the theory, such as amplification of the success

probability, simulation of randomness by nonuniformity, and standard inclusions between the

classes. (Along the way, we solve an open problem from [111] on the recursive enumerability

of APP, and find a proof of success amplification for APP which is much simpler than the

original one as given in [111].)

We now turn to Chapter II (originally published as [98]), devoted to approximate counting

with multiplicative error. In contrast to Chapter I, we work in the theory T 1
2 + sWPHP(PV2)

(called APC2 in [45]), which is up one level of the hierarchy from PV1+sWPHP(PV ). The basic

idea is taken from Sipser’s coding lemma [166], which employs a universal family of hashing

functions (specifically, F2-linear functions, represented by matrices) to distinguish sets X of size

≤ s from sets of size Ω(s log s). We consider here bounded sets X definable by Σb
1-formulas

(i.e., NP/ poly). In order to get the error down to εs for a polynomially small ε, we apply

Sipser’s definition to a suitable Cartesian power Xc in place of X itself; we write X -ε s for

the resulting notion (note the difference from �ε). The key result is that, up to relative error ε,

X -ε s is equivalent to the existence of PV2-surjections sc � Xc for some c: we prove this in

T 1
2 + sWPHP(PV2) by formalization of Sipser’s lemma, using the machinery from Chapter I for

probabilistic reasoning.

Again, we provide a toolbox showing that the definition of X -ε s interacts in the expected

way with finite unions, Cartesian products, and more generally, unions of parameterized families,

i.e., averaging principles. (Due to the asymmetry of the X -ε s relation, all these results need

to have upper bound and lower bound versions, rather different from each other.) We also

prove that any bounded Σb
1-definable X has an “almost bijective” increasing enumeration by a

PV2-function, in a suitable sense.

As applications, we show how the general framework can be used to formalize various count-

ing arguments in combinatorics and complexity theory. We prove Ramsey’s theorem (using a

much simpler proof than Pudlák [152]) and the tournament principle (solving the open problem

from [55]). In fact, we prove a multi-dimensional generalization of the tournament principle

with several applications. First, we use it to directly formalize in bounded arithmetic the ar-

gument from [121] relating collapse of the T2 hierarchy to collapse of PH, which improves the
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previously known results in this area [121, 39, 182, 67]: specifically, we show that if T i2 = Si+1
2 ,

then T i2 = T2 proves that Σb
∞ = B(Σb

i+1) ⊆ ∆b
i+1/poly and Σb

∞ ⊆ Σb
i+1/O(1). Second, even

in the two-dimensional case, our generalized tournament principle applies to arbitrary directed

graphs rather than just tournaments; we use this to formalize in T 1
2 + sWPHP(PV2) the result

SP2 ⊆ ZPPNP due to Cai [47]. We also use our approximate counting machinery to prove that

any interval in a model of T2 admits a nontrivial approximate Euler characteristic in the sense

of Kraj́ıček [118], and we prove in T 1
2 + sWPHP(PV2) that graph isomorphism is in coAM.

Let us mention some follow-up work. Buss, Ko lodziejczyk, and Thapen [45], besides intro-

ducing the names APC1 and APC2 for the theories PV1+sWPHP(PV ) and T 1
2 +sWPHP(PV2),

prove ∀Σb
1-separations of several fragments of APC2 from APC2 itself and from T 2

2 in the rel-

ativized setting. (One case they left open was solved by Atserias and Thapen [15].) The

separations are based on the fact that (using the approximate counting machinery and the

tournament principle) APC2 proves the ordering principle, which states that any partial order

on a nonempty bounded domain has a minimal element.

Using our approximate counting, Buss, Ko lodziejczyk, and Zdanowski [46] formalize Toda’s

theorem on the collapse of Modp PH to BP · ⊕pP in bounded arithmetic relativized with a ⊕pP
oracle, specifically showing that APC

⊕pP
2 = T2(⊕pP). Using the Paris–Wilkie translation, they

obtain a collapse for propositional proof systems: the constant-depth Frege system with ⊕p
gates is quasipolynomially simulated by its depth 3 fragment (using

∧
of ⊕p of polylogarithmic∧

of literals). We recall that proving superpolynomial lower bounds for constant-depth Frege

with ⊕p gates is one of the longest-standing open problems in proof complexity.

Pich [150] formalizes the exponential PCP theorem in APC1 using our approximate counting,

and proceeds to prove the full PCP theorem (scaled logarithmically down, whence the weaker

theory) in PV1. Müller and Pich [129] employ approximate counting to formalize in APC1

several prominent super-polynomial circuit lower bounds: AC0 lower bounds for Parity, AC0[p]

lower bounds for Modq, and monotone lower bounds for Clique. They also formalize the

Razborov–Rudich [157] theorem on natural proofs.

2.2 Abelian groups, quadratic residues, and factoring

Chapter III (originally published as [99]) is devoted to a formalization of several inter-related

problems from modular arithmetic, elementary number theory, and algebra in suitable fragments

of bounded arithmetic. As a follow-up, some of these results are used in Chapter IV (originally

published as [105]) to draw consequences in pure computational complexity that are not a priori

connected to bounded arithmetic, specifically about the complexity of integer factoring.

The first motivating problem (still unresolved) for Chapter III is whether some fragment

of bounded arithmetic T2 proves Fermat’s little theorem (FLT ): ap ≡ a (mod p) for all a and

prime p. This is a basic principle of modular arithmetic which admits a number of simple

elementary proofs (to name a few, using Lagrange’s theorem, by counting necklaces, or by

induction on a using the binomial theorem), nevertheless all seem to require exact counting or

exponential-size sums or objects, and as such resist formalization in bounded arithmetic. On
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the other hand, there is no evidence that it is hard for bounded arithmetic2. We mention that,

as shown in [93], a natural formalization of the Rabin–Miller coRP primality testing algorithm

in APC1 using approximate counting has the property that its correctness is provably equivalent

to FLT (in other words, APC1 proves that ∀a
(
0 < a < p → ap−1 ≡ 1 (mod p)

)
is a coRP

predicate of p).

More generally, we may ask about the structure of the multiplicative groups F×p for prime p.

FLT asserts that these groups have exponent p− 1. Another important property is that these

groups are cyclic, which is expressed by the formula ∃g < p∀a
(
0 < a < p → ∃u gu ≡ a

(mod p)
)
. Like FLT, it is an open problem whether the cyclicity of F×p for all primes p is provable

in T2. Cyclicity and FLT together are equivalent over S1
2 + iWPHP(PV ) to the statement that

primes have Pratt’s primality certificates (while the theory unconditionally proves the converse),

making primality Σb
1.

Another elementary principle related to FLT is Euler’s criterion, stating that(
a

p

)
≡ a(p−1)/2 (mod p)

for all a and odd primes p, where
(
a
p

)
or (a|p) denotes the Legendre symbol

(
a

p

)
=


1 if p - a and a is a quadratic residue modulo p,

−1 if p - a and a is a quadratic nonresidue modulo p,

0 if p | a.

Clearly, Euler’s criterion implies FLT, and we may ask how much stronger (if at all) it is. This

brings us to properties of quadratic residues and of the Legendre symbol. The most fundamental

properties of the Legendre symbol are its multiplicativity(
a

p

)(
b

p

)
=

(
ab

p

)
(which is implied by Euler’s criterion), and the celebrated quadratic reciprocity theorem (QRT )(

p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4

for odd primes p 6= q, together with the supplementary laws(
−1

p

)
= (−1)(p−1)/2,(

2

p

)
= (−1)(p2−1)/8.

2Kraj́ıček and Pudlák [120] show that FLT is not provable in S1
2 if RSA is secure against polynomial-time

attacks, and Thapen [171] points out the same applies to APC1 assuming security of RSA against randomized

polynomial time. In fact, it follows from [93] that the weaker assumption that factoring is not possible in

randomized polynomial time suffices. However, all these results are misleading in that they actually show the

unprovability of the much weaker statement that any a not divisible by a prime p has a finite order mod p. This

is a consequence of FLT, but it is also provable in S1
2 + iWPHP(PV ); thus, the results really show the conditional

independence of iWPHP(PV ) from APC1 (which is also mentioned in [95]), and do not say anything about the

provability of FLT in T2, or even in S1
2 + iWPHP(PV ).
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These properties also imply the corresponding statements for the Jacobi symbol (a|n), which

extends the Legendre symbol to all odd n > 0 such that it is completely multiplicative in n; one

consequence is that it leads to simple polynomial-time algorithms (similar to the Euclidean or

binary GCD algorithms) for computing the Jacobi, and therefore Legendre, symbol.

QRT was originally proved by Gauss (who found no less than eight proofs in his lifetime),

and until today, well over 300 proofs (not all essentially different, of course) were published

by various authors; see Lemmermeyer [123] for the history. In the context of weak theories

of arithmetic, Cornaros [70] proved QRT in IE2
∗ (a fragment of arithmetic with induction for

LinSpace predicates), and Berarducci and Intrigila [29] proved the supplementary laws in I∆0

extended with modular counting principles. (They also proved multiplicativity of the Legendre

symbol in I∆0 + WPHP(∆0); their proof works in PV1 + iWPHP(PV ), too.) D’Aquino and

Macintyre [73, 74] developed the basic theory of quadratic forms in I∆0 + Ω1 with a vision of

eventually formalizing a proof of QRT along the lines of Gauss’s second proof, but so far this

did not materialize.

We tackle the problems introduced above in Chapter III in the following ways. As a first

step towards clarifying the structure of the multiplicative groups F×p of prime fields, we look

at the structure of arbitrary finite abelian groups (more precisely, Σb
1-definable groups with a

bounded domain): we prove the fundamental theorem that any such group is a direct sum of

(essentially unique) cyclic groups of prime power order in the theory S2
2 + iWPHP(Σb

1); if the

group operation is defined by a PV -function, S2
2 + iWPHP(PV ) is enough.

It is a basic observation that iWPHP implies that any element of a finite abelian group has

a finite order, from which it easily follows that any finite abelian group is a direct sum of its

p-primary components (this is already noted by D’Aquino and Macintyre [72] for I∆0 +Ω1). On

the other hand, S2
2 (the Σb

2-LMAX principle) implies the existence of maximal independent sets

in finite structures such as modules, as long as they are a priori of logarithmic size: e.g., this

shows in the presence of iWPHP (which gives the logarithmic bound) that any finite Fp-linear

space has a basis, as noted by Riis [160]. Usually, proofs of the fundamental theorem for finite

abelian groups proceed by first establishing the decomposition to primary components, and

then proving the theorem for p-groups by induction on |G| (passing from G to its subgroups or

quotients). It’s not immediately clear how to set up such inductive arguments so that we do not

need to quantify over exponentially large objects (all groups of a given size; recall that the size

is given in “binary”, thus our groups are too large to be represented by a multiplication table).

We manage to overcome this issue by finding a more direct proof, generalizing the maximal

independent set argument to show the existence of a “basis” of any finite abelian group, again

using iWPHP to get a logarithmic size bound.

Returning to Fermat’s little theorem, if p is a prime, then F×p is a group with domain [1, p);

by the structure theorem, there is an isomorphism f : F×p → G =
⊕

i<k C(peii ) (defined by a

PV -function) for some sequence 〈peii : i < k〉 of prime powers. Here, G is a group with domain

[0, a) where a =
∏
i p
ei
i , and it has exponent a, thus so does F×p . The FLT would follow if

a = p− 1. The weak pigeonhole principle applied to f ensures that a ≈ p, and we know that a

is even, but other than that, it seems quite difficult to rule out that, say, a = p+1, in which case

the FLT spectacularly fails. Thus, we only obtain a proof of FLT if we add to S2
2 +iWPHP(PV )
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the strong pigeonhole principle PHP(PV ), which is likely not provable in T2. All in all, this

argument seems to suggest that FLT is not provable in T2, but the evidence is very weak.

Concerning the cyclicity of F×p , the structure theorem implies (over S2
2 + iWPHP(PV )) that

it is equivalent to there not being too many qth roots of unity in Fp for any prime q 6= p. More

precisely, we obtain an interesting dichotomy: either F×p is cyclic, and for any prime q 6= p, [0, q)

PV -surjects onto {x ∈ Fp : xq = 1}; or F×p is not cyclic, and there exists a prime q 6= p such

that [0, q2) PV -injects into {x ∈ Fp : xq = 1}. (Both functions also have suitable PV inverses.)

Thus, one way to prove the cyclicity of F×p in bounded arithmetic might be to formalize the

principle that a degree-q sparse polynomial (here, xq − 1) may only have at most q roots in a

finite field, in the sense of approximate counting. Usual proofs of this fact require the existence

of exponentially large objects (e.g., a proof by induction on the degree of the polynomial would

need the induction hypothesis to apply to non-sparse polynomials as well), but there is a distinct

possibility that this can be circumvented somehow.

Next, we look at Euler’s criterion. We first show that the Legendre symbol (−|p) is multi-

plicative whenever F×p is a torsion group (this improves the result of Berarducci and Intrigila [29]

on its being provable from iWPHP(PV )). We use this to show that Euler’s criterion is equiv-

alent over S1
2 to the conjunction of FLT with the statement ∃a a(p−1)/2 ≡ −1 (mod p). In

particular, Euler’s criterion is provable in S2
2 + iWPHP(PV ) + PHP(PV ). We also observe

that, assuming FLT, the assertion ∃a a(p−1)/2 ≡ −1 (mod p) amounts to the sparse polynomial

x(p−1)/2−1 having less than p−1 roots, hence we are in a similar situation as with the cyclicity

of F×p .

The last section of Chapter III is devoted to quadratic reciprocity. Our starting point is

the observation that elementary proofs of QRT often distinctly involve some form of counting

modulo 2 (e.g., proofs based on Gauss’s or Zolotarev’s lemmas, or Eisenstein’s proof); in the

context of arithmetic, as we already mentioned, Berarducci and Intrigila used counting modulo

4 and 8 (in the form of so-called equipartition principles) to prove the supplementary laws.

Since modular counting (much like exact counting) is not available in T2, this suggests that we

should look at some extension of bounded arithmetic, but that perhaps some form of counting

principles mod 2 is all we need. The weakest modular counting principle we thought of expresses

that we cannot partition an odd-size domain [0, 2a + 1) into a disjoint union of two-element

sets, where the partition is represented in a very explicit way by a PV -function f that maps

each element to its partner. In other words, f is a fixpoint-free involution. Thus, our counting

principle Count2(PV ) states that every involution on [0, 2a+ 1) defined by a PV -function has

a fixpoint. Interestingly, this principle was used outside the formalism of bounded arithmetic

in slick proofs of Fermat’s theorem on sums of two squares (related to the first supplementary

law of QRT) by Heath-Brown [89] and Zagier [181].

We find a short proof of QRT (as well as the supplementary laws, and multiplicativity of

the Legendre symbol) using only simple manipulations of involutions, which can be formalized

in PV1 + Count2(PV ) or I∆0 + Count2(∆0) (more precisely, IE 1 + Count2(∇1)). The proof is

loosely based on Gauss’s third proof, but we replace the key Gauss’s lemma by a formulation

with explicit involutions. Strengthening the base theory from PV1 to S1
2 , we can also prove

the corresponding statements about the Jacobi symbol, leading to its being polynomial-time
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computable (i.e., equivalent to a PV -function).

This brings us to Chapter IV, which is devoted to the computational complexity of integer

factoring, and the closely related problem of computing modular square roots. Factoring is

one of the most fundamental problems in mathematical computation, going back to classical

antiquity. In modern times, it has significant applications in cryptography. In particular, various

cryptographic protocols rely on the computational hardness of factoring: it is generally assumed

it has no deterministic or randomized algorithms running faster than in exponential time (with

polynomial exponent); the best currently known general-purpose factoring algorithm (GNFS)

has running time 2Õ(n1/3). It also has an efficient quantum algorithm.

Factoring is closely related to the problem of computing square roots modulo a given integer.

There are randomized poly-time algorithms for computation of square roots modulo primes;

using Hensel’s lifting and the Chinese remainder theorem, this gives a randomized reduction of

square roots with general moduli to factoring. One can also give randomized reductions in the

opposite direction.

When formulated as a decision problem, factoring sits somewhere inside NP ∩ coNP (more

precisely, UP ∩ coUP) and in BQP. However, here we study the complexity of factoring as a

total NP-search problem, which is arguably a more natural setting than as a decision problem.

The influential paper by Papadimitriou [140] introduced several classes of NP-search problems

(subclasses of TFNP) that are based on “combinatorial proofs” of totality: in particular, he

defined a class PPP corresponding to the (injective) pigeonhole principle, and several classes

based on “parity arguments”—we are interested here in the class PPA, whose defining complete

problem is, given a circuit representing an undirected graph of degree 2, and a vertex of degree 1,

find another such vertex. Papadimitriou posed the question whether Factoring belongs to

some of his classes. The first progress on this problem was made by Buresh-Oppenheim [35],

who proved that factoring of integers of a certain special form is in PPA, and has a randomized

reduction to a PPP problem.

We prove in Chapter IV that the general Factoring problem has a randomized reduction to

a PPA problem, and to a problem in the subclass PWPP of PPP corresponding to iWPHP . We

can derandomize the reductions under the assumption of the Riemann hypothesis for quadratic

Dirichlet L-functions. Moreover, we prove unconditionally that PPA contains the problems

of computing modular square roots, and finding square nonresidues (the latter problem is not

really hard, as it can be done in randomized polynomial time; however, an efficient determin-

istic algorithm is not even known modulo primes, hence a deterministic reduction to PPA is

nontrivial).

Our basic strategy is to apply a witnessing theorem to the results of Chapter III on

provability of the quadratic reciprocity theorem. First, it is easy to show that the theory

S1
2 + Count2(PV ) corresponds to PPA, in the sense that NP-search problems witnessing its

∀Σb
1 consequences are in PPA (the Count2 principle is virtually identical to an alternative PPA-

complete problem Lonely from Beame et al. [23]). Since the theory proves that the Jacobi

symbol (a|n) is computable by a PV -function, say J(a, n), it also proves the ∀Σb
1 sentence ex-

pressing “if J(a, n) = 1, then a is a quadratic residue mod n, unless n is composite”. Thus,

PPA contains the following problem FacRoot: given a, n such that (a|n) = 1, find a square
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root of a mod n, or a proper divisor of n.

In order to make the original paper self-contained and accessible to an audience of complexity

researchers not necessarily familiar with bounded arithmetic, we include a direct combinatorial

proof of FacRoot ∈ PPA. Its main part is a rather complicated dynamic programming algo-

rithm. We believe the bounded arithmetic proof is much more transparent; this seems to be a

not-so-common case where witnessing applied to a bounded arithmetic proof yields a genuinely

new algorithm (the more usual situation is that one needs to know an algorithm in the first place

before formalizing a result in bounded arithmetic; the typical use case for witnessing theorems

is to show unprovability in arithmetical theories).

Now, to reduce Factoring to FacRoot, it suffices to choose a at random: we show easily

that if n is odd and not a prime power, then with a probability ≥ 1/4, we have (a|n) = 1, but

a is not a quadratic residue, hence FacRoot(a, n) must split n. On the other hand, we can

show that FacRoot can be used (deterministically) to compute square roots mod n. While

our reduction of general factoring to PPA is randomized, we exhibit a class of special cases

of factoring that are deterministically in PPA; this generalizes the original result of Buresh-

Oppenheim.

The reduction of Factoring to PWPP we also include is based on the proof of multiplica-

tivity of the Legendre symbol in PV1 + iWPHP(PV ), which gives the following search problem:

given odd n and a, b, compute a square root of one of a, b, or ab modulo n, or split n. Again,

this leads to a factoring algorithm just by choosing a and b at random.

2.3 Sorting networks and monotone sequent calculus

The material in Chapters V and VI (originally published as [100, 101]) is primarily motivated

by a problem from propositional proof complexity. As we already mentioned, one of the most

fundamental proof systems is the Frege system. This system is quite robust in that it can be

presented in a variety of ways which turn out all to be p-equivalent: as a system operating

with formulas (over any finite functionally complete set of connectives whose choice does not

matter) that allows derivation by means of a finite set of schematic axioms and rules (whose

choice does not matter as long as they are sound and implicationally complete), as a natural

deduction system (again, using a finite complete set of schematic rules), or as a Gentzen-style

sequent calculus LK . It also does not matter whether proofs are required to be tree-like, or

allowed to be dag-like (i.e., sequences).

An interesting variant of the sequent calculus is the monotone sequent calculus MLK (intro-

duced by Pudlák [153]): it operates with two-sided sequents that only use monotone formulas,

i.e., formulas using the connectives ∧, ∨, ⊥, and > (but not ¬ or →); the calculus includes the

usual derivation rules of the sequent calculus (including the cut rule) pertaining to the restricted

language. There is a simple tautologicity-preserving reduction from arbitrary Boolean formulas

(or sequents) to monotone sequents, showing the latter to be coNP-complete, and justifying the

role of MLK as a fully fledged propositional proof system. A natural question to ask (dubbed

the Think Positively Conjecture by Atserias [12]) is whether MLK is p-equivalent to the usual

sequent calculus LK , in the sense that given an LK proof of a monotone sequent, we can con-

struct its MLK proof in polynomial time. MLK is also included in the intuitionistic sequent
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calculus LJ , and we can similarly ask if LJ p-simulates LK for monotone sequents.

A part of the original motivation for studying MLK was that, unlike general circuits, we

know exponential lower bounds on the size of monotone circuits for explicit natural problems,

which suggests that perhaps we could prove unconditional exponential lower bounds on the

size of MLK proofs, separating it from LK . However, it soon turned out that MLK is quite

close to LK : first, Atserias, Galesi, and Gavaldà [13] proved that MLK has quasipolynomial

proofs of the pigeonhole principle, and then Atserias, Galesi, and Pudlák [14] proved that in

general, MLK (and therefore LJ ) quasipolynomially simulates LK for all monotone sequents.

A question remained whether we can improve this simulation to polynomial.

For LJ , the question was resolved by Jeřábek [97], who presented a simple p-simulation of

LK -proofs of monotone sequents in LJ .

For MLK itself, the basic idea of [14] was to use the monotone threshold (slice) functions

θnk (x0, . . . , xn−1) =

{
1 if

∣∣{i < n : xi = 1}
∣∣ ≥ k,

0 otherwise.

In particular, if we assume that exactly k of the variables x0, . . . , xn−1 are true, we can express

¬xi by the monotone function θnk (x0, . . . , xi−1,⊥, xi+1, . . . , xn−1), which can be used to make

formulas in a proof monotone. There is a straightforward construction of quasipolynomial-size

monotone formulas for θnk , and this allowed [14] to prove a quasipolynomial simulation of LK

by MLK . They observed that if we could find a polynomial construction of monotone formulas

for θnk such that certain basic properties of these formulas have polynomial MLK proofs, we

would obtain a polynomial simulation of LK by MLK . But surprisingly, they also showed

that the same conclusion holds if we only assume that the properties of θnk have polynomial

LK proofs, using a sort of boot-strapping argument.

Polynomial-size monotone formulas for θnk do, in fact, exist: first, Ajtai, Komlós, and Sze-

merédi [5, 4] proved that there are sorting networks of depth O(log n), which also gives monotone

formulas of depth O(log n) for θnk , and second, Valiant [175] gave a simple probabilistic con-

struction of such formulas. However, in both cases it’s quite unclear how to prove properties of

the formulas efficiently in LK : Valiant’s construction is randomized, hence it does not even give

a uniformly constructible sequence of θnk formulas, and gives no handle how to reason about

such formulas in LK ; the Ajtai–Komlós–Szemerédi (AKS) sorting network is explicit, but it is

immensely complicated, hence proving the relevant properties in LK is a major undertaking,

and it relies on an expander graph construction, whose formalization is a separate difficult issue

on its own.

The goal of Chapters V and VI is to formalize the AKS sorting network proper (i.e., minus

the expander construction) in a suitable theory of bounded arithmetic, which then yields mono-

tone θnk formulas whose defining properties have polytime-constructible LK proofs by means

of propositional translation of bounded arithmetic, modulo an assumption that the theory can

prove the existence of the necessary expanders.

The most natural theory that translates to LK (Frege) is VNC 1 of Cook and Morioka [61],

which is a basic theory corresponding to fully uniform NC1 (i.e., UE-uniform NC1 in the ter-

minology of Ruzzo [162], or equivalently, ALOGTIME); in particular, its provably total ΣB
1 -
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definable functions are exactly the uniform NC1 functions. As such, the theory can prove that

we can evaluate O(log n)-depth (bounded fan-in) Boolean circuits that are presented by their ex-

tended connection language (ecl) (as defined in [162]). Unfortunately, the intricate construction

of the AKS network, where elements are shuffled around by means of expanders in hard-to-

predict paths, does not seem to lend itself to an efficient description of the extended connection

language; we only have the direct connection language (dcl) available. This precludes formal-

ization in VNC 1, as evaluation of O(log n)-depth circuits presented by their dcl is (likely) not

computable in uniform NC1.

In order to solve this problem, we have to find a suitable theory extending VNC 1 where the

formalization can go through, but such that it still translates to polynomial-size Frege proofs.

This is the purpose of Chapter V. We introduce a theoryVNC 1
∗, axiomatized using a derivation

rule that ensures that we can evaluate any O(log n)-depth circuit whose dcl is definable by a

formula without second-order parameters which is VNC 1
∗-provably ∆B

1 . We also consider its

universal conservative extension VNC 1
∗, whose terms correspond to the ΣB

1 -definable functions

of VNC 1
∗. We develop both theories and establish their basic properties. In particular, we show

that the provably total computable functions of VNC 1
∗ form a class that includes fully uniform

NC1 functions, and is included among L-uniform NC1 functions; we prove thatVNC 1
∗+∃ΣB

1 -AC

is ∀∃ΣB
1 -conservative over VNC 1

∗; and crucially, we establish that propositional translations of

∀Σb
0 theorems of VNC 1

∗ (even in the richer language of VNC 1
∗) have L-uniform polynomial-size

LK proofs.

In Chapter VI, we proceed to formalize the AKS sorting network in VNC 1
∗. Our argument

is actually based on the somewhat simplified construction of Paterson [148] rather than the

original network from [5, 4]; we modified some inessential details to facilitate the formalization,

and we stream-lined the presentation. The whole formalization is done under an assumption

(left to future work) that VNC 1
∗ can prove the existence of suitable expander graphs.

We then apply translation of bounded arithmetic to propositional logic: the VNC 1
∗-function

that defines the AKS network translates to an L-uniform sequence of monotone O(log n)-depth

formulas for the θnk functions, and our VNC 1
∗ proof that the network correctly sorts translates

to L-uniform Frege proofs establishing the defining properties of the θnk formulas. Thus, all in

all, we obtain a proof that MLK polynomially simulates LK on monotone sequents (the Think

Positively Conjecture), modulo our assumption on the existence of expanders in VNC 1
∗.

This assumption was subsequently proved (even in the weaker theory VNC 1) by Buss, Ka-

banets, Kolokolova, and Koucký [44], hence the polynomial simulation of LK by MLK is now

fully settled. (A rudimentary form of some of their results [114] circulated already before our

work here.) By results of Jeřábek [102], this also extends to a p-simulation of LK (on arbitrary

sequents) by the proof system MCLK which allows arbitrary sequents in the proof, but re-

stricts the cut rule to monotone cut formulas (thus, MCLK coincides with MLK when proving

monotone sequents).

We mention that it remains an open problem if tree-like MLK p-simulates MLK (or equiv-

alently, if tree-like MCLK p-simulates LK ).
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2.4 Induction in TC0 theories and root finding

The last two chapters of this dissertation investigate the power of theories of bounded arithmetic

corresponding to (DLOGTIME-uniform) TC0. First, TC0 is not just a random complexity

class, but it has fundamental significance as describing the complexity of elementary arithmetic

operations. The basic integer operations +, −, ·, /, and the < relation, are computable in TC0;

while +, −, and < are even in the subclass AC0 ⊆ TC0, the operations · and / are TC0-

complete under AC0 Turing reductions. We can also compute in TC0 iterated addition
∑

i<nXi

and iterated multiplication
∏
i<nXi; apart from integers, we can also do the corresponding

operations in rationals, Gaussian rationalsQ(i), or number fields, as well as other structures such

as polynomial rings. Using iterated addition and multiplication, we can compute approximations

of analytic functions given by sufficiently nice power series, such as sin, arctan, exp, or log.

It is worth pointing out that the TC0-computability of integer division and iterated mul-

tiplication (and other above-mentioned functions that depend on these) is a quite nontrivial

result of Hesse, Allender, and Barrington [90] (building on Beame, Cook, and Hoover [25], who

showed that these problems are reducible to each other, and are in P-uniform TC0, and Chiu,

Davida, and Litow [52], who proved they are in L-uniform TC0).

The basic theory of bounded arithmetic corresponding to TC0 is the Zambella-style two-

sorted theory VTC 0 introduced by Nguyen and Cook [133]. We may interpret provability in

VTC 0 as a formalization of feasible reasoning about elementary arithmetic operations +, ·, <:

what can we prove about them while only referring to concepts that do not exceed their com-

plexity? (Note that we are concerned here with operations on binary integers, i.e., the second

sort of VTC 0; operations on unary integers have much lower complexity.) More precisely, we ask

what sentences in the basic language of arithmetic {+, ·, <} are provable in VTC 0 if we interpret

them over the binary integer sort. (This is a particular case of the RSUV isomorphism.)

We are particularly interested if VTC 0 proves any nontrivial instances of induction for

binary integers. (Of course, VTC 0 includes ΣB
0 -induction for unary integers, but a priori it

does not seem to prove any induction on the second sort.) The specific question we tackle

in Chapters VII and VIII is whether VTC 0 (or some extension thereof that still corresponds

to TC0) proves open (i.e., quantifier-free) induction, that is, the RSUV -translation of the theory

IOpen introduced by Shepherdson [164].

We first observe that the provability of IOpen in VTC 0, even extended with arbitrary true

universal (i.e., ∀ΣB
0 ) sentences, has nontrivial computational consequences: if f(X) is any poly-

nomial (with integer or rational coefficients given by second-sort parameters), induction for the

formula f(X) < 0 is a ∀ΣB
1 statement, where the witness to the existential quantifier solves the

following search problem: given a (fixed-degree) polynomial f and an integer X > 0 such that

f(0) < 0 ≤ f(X), find an integer Y < X such that f(Y ) < 0 ≤ f(Y + 1). Thus, if this instance

of induction is provable in VTC 0 + Th∀ΣB0
(N), the corresponding search problem is computable

by a TC0 function. We can then easily manipulate it to obtain, for each constant d, a TC0 root

approximation algorithm for degree-d univariate polynomials: given such a polynomial f and a

rational ε > 0, compute rational approximations within additive error ε of all real roots of f ,

or even Gaussian rational approximations of all complex roots of f . (One can show that this

is, in fact, equivalent to provability of IOpen in VTC 0 + Th∀ΣB0
(N).)
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Another way to look at it is to consider Shepherdson’s criterion stating that (the non-

negative part of) a discretely ordered ring D satisfies IOpen iff D is an integer part of a real-

closed field, specifically of the real closure of (the fraction field of) D. Here, an integer part of

a real-closed field R is a discrete subring D ⊆ R such that every element of R is within distance

1 of D. Since elements of the real closure rcl(D) are just the “real” roots of polynomials from

D[X], this says that such roots can be arbitrarily well approximated in the fraction field of D,

and witnessing functions for ∀∃ statements expressing this property amount to constant-degree

root approximation algorithms.

We tackle the computational complexity problem as a first step: in Chapter VII (originally

published as [103]), we prove that TC0 degree-d root approximation algorithms exist for any

constant d. The argument uses tools from complex analysis. The basic idea is that if a is “close”

to a root α of a polynomial f , then f has an analytic inverse function g on a neighbourhood

of f(a) including 0, and g(0) = α. The coefficients of the power series of g can be determined

by the Lagrange inversion formula (LIF ), which makes them TC0-computable, and then g(0)

can be approximated in TC0 by computing a partial sum of the power series.

The exact meaning of a being “close” to α can be quantified using the Cauchy integral

formula; the criterion is based on the ratio of |a − α| to the distance from a to the set of

critical points of f (i.e., roots of f ′). Using this, and bounds on the roots, we can set up a

polynomial-size set of sample points a (in patterns centred around critical points of f , which

can be approximated by induction on d) such that each root of f is close enough to some sample

point; thus, locally inverting f (as explained above) near all sample points in parallel, we obtain

a TC0 algorithm that computes approximations of all roots of f .

The existence of such algorithms implies that the RSUV translation of IOpen is provable

in VTC 0 + Th∀ΣB0
(N). The argument does not allow to restrict the usage of true universal

statements to something provable in a reasonable fragment of bounded arithmetic, as it relied

on fancy tools from complex analysis that would be difficult to even formulate, let alone prove,

in bounded arithmetic.

One consequence of our results is that for any algebraic constant α, we can compute the

nth digit of α in TC0 given n in unary (hence we can compute it in the counting hierarchy CH

when n is given in binary).

The provability of IOpen (and more) in a mild extension of VTC 0 is demonstrated in

Chapter VIII (originally published as [104]). The reason it does not go through in VTC 0

proper is that we need iterated multiplication (and division) all over the place, but formalization

of the Hesse, Allender, and Barrington algorithm is a serious problem in itself that’s mostly

tangential to the question of constant-degree root finding. Thus, we work in the theory VTC 0 +

IMUL, where the IMUL axiom is a suitable formalization of the totality of iterated integer

multiplication.

Again, one idea we use is to locally invert polynomials by power series whose coefficients are

given by LIF. We can prove a suitable version of LIF in VTC 0+IMUL by direct manipulation of

multinomial coefficients; in absence of other complex-analytic tools, this allows us to formalize

root approximation for polynomials f such that, roughly speaking, the constant coefficient of f

is very small w.r.t. the remaining coefficients.
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We complement this with a model-theoretic argument based on properties of valued fields.

Any ordered field F , such as the fraction field of a model M of arithmetic, carries a natural

valuation; the completion F̂ of F as a valued field coincides with the Scott completion of F ,

which is the largest ordered field extension of F in which F is dense. Using Shepherdson’s

criterion, M � IOpen iff F̂ is a real-closed field. By basic properties of valued fields, one can

show that F has a real-closed completion iff its value group is divisible, its residue field is real-

closed, and F is almost henselian (i.e., all proper quotients of its valuation ring are henselian).

In the case of F induced from a model of VTC 0 + IMUL, the divisibility of the value group is

easy, and we can arrange the residue field to be R if the model is sufficiently saturated. Crucially,

the condition of F being almost henselian follows from root approximation of polynomials with

small constant coefficients that we proved earlier using LIF.

In this way, we prove IOpen in VTC 0 + IMUL. However, we can actually leverage the

argument to get quite a bit more: we can formalize in VTC 0 + IMUL a suitable version of a

result of Mantzivis [127] on the structure of sets defined by sharply bounded (Σb
0) formulas, using

root approximation for constant-degree polynomials for the base case of atomic formulas; thus,

VTC 0 + IMUL proves the RSUV translation of induction and minimization for Σb
0 formulas in

Buss’s language (and even in certain extensions of the language).

We remark that Jeřábek [106] recently succeeded to formalize a suitable version of the

Hesse–Allender–Barrington algorithm in the base TC0-theory VTC 0, showing that VTC 0 proves

IMUL. Thus, by the results of Chapter VIII, the RSUV translation of Σb
0-MIN (including

IOpen) is provable in VTC 0.
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Chapter I

Approximate counting in bounded

arithmetic

Abstract

We develop approximate counting of sets definable by Boolean circuits in bounded arith-

metic using the dual weak pigeonhole principle (sWPHP(PV )), as a generalization of results

from [93]. We discuss applications to formalization of randomized complexity classes (such

as BPP, APP, MA, AM) in PV1 + sWPHP(PV ).

1 Introduction

One of the most important aspects of bounded arithmetic is its close connection to compu-

tational complexity. There is a correspondence between arithmetical theories, and complexity

classes: Buss’s theories Si2 and T i2 [37] correspond to levels of the polynomial-time hierarchy,

and various second-order theories were constructed for weak classes such as TC0; Cook [65]

presents a uniform way of constructing “minimal theories” associated to complexity classes

below P . Consequently, fundamental problems from complexity theory are tied to similar ques-

tions about the arithmetical theories; for instance, the hierarchy of Buss’s theories collapses if

and only if bounded arithmetic proves the collapse of the polynomial hierarchy.

Our main motivation for studying approximate counting is the problem whether we can

associate theories to randomized complexity classes, like BPP or AM. The problem is a loose

research program rather than an exact question. On one hand, the concept of correspondence

between theories and complexity classes does not admit a general definition; the way in which

T 1
2 corresponds to PNP is rather different from the correspondence of U1 to NC. On the other

hand, many probabilistic classes like BPP are “semantic classes”, which means that attempts to

characterize them as provably total functions of some kind in a recursively axiomatized theory

are bound to failure. Nevertheless, we will try to provide evidence that PV1 + sWPHP(PV )

(i.e., PV1 extended by the dual (surjective) weak pigeonhole principle for poly-time computable

functions) is the “right” theory for reasoning about randomized algorithms.

The connection of sWPHP(PV ) to probabilistic computation was first noticed by A. Wilkie,

who proved that Σb
1-consequences of S1

2 + sWPHP(PV ) are witnessed by TFRP-functions, and
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in particular, predicates provably ∆b
1 in S1

2 + sWPHP(PV ) are in ZPP (the result was pub-

lished in Kraj́ıček [116]). Jeřábek [93] considered the converse problem of formalizing prob-

abilistic algorithms in S1
2 + sWPHP(PV ), and introduced a way to define FRP-functions in

S1
2 + sWPHP(PV ) which covered at least the witnessing functions from Wilkie’s theorem; how-

ever, the method used was seemingly ad hoc, and it was not clear how it could be generalized

to other complexity classes like BPP.

In this paper, we will show that the dual weak pigeonhole principle is strong enough to

provide a general method of approximating probabilities. More precisely, if X is a subset of an

interval [0, a) definable by a PV -formula, we can estimate Prx<a(x ∈ X) within a polynomially

small error in PV1 + sWPHP(PV ), and events of higher complexity can be dealt with by

appropriate relativization. This allows us to treat various randomized classes like BPP, APP,

AM, in a uniform and intuitive way—in fact, once we have a reasonable notion of (approximate)

probability, the usual definitions of these classes can be formalized almost literally. As we have

already mentioned, provably total functions are not an appropriate standard for establishing

correspondence of theories to probabilistic complexity classes: for semantic classes there is no

hope, and as we will see, for syntactic classes the problem is either meaningless or trivial (with

the notable exception of APP). Instead, we will show that PV1 + sWPHP(PV ) proves basic

properties of the relevant probabilistic algorithms, such as amplification of success, or simulation

of randomness by nonuniformity.

Estimating probabilities in uniform distributions is only a fancy name for approximate

counting of bounded sets. Approximate counting has other applications besides randomized

algorithms; most importantly, counting arguments are often used to prove various combinato-

rial theorems. We will provide basic counting tools like the inclusion-exclusion principle, but

the overall utility of our methods in this area seems rather limited. Proofs of combinatorial

statements such as the Ramsey theorem or the tournament principle typically rely on counting

of sparse sets, which is impossible in our setup. We can only approximate the size of a set

X ⊆ [0, 2n) within a polynomial fraction of 2n, whereas here we would need to approximate it

within a polynomial fraction of |X|.
The paper is organized as follows. In Section 2 we provide elementary background on basic

arithmetic, and fix notational conventions. In Section 3 we introduce approximate counting of

sets defined by circuits in PV1+sWPHP(PV ), and formalize a toolbox of counting principles. In

Section 4 we discuss in detail the development of several randomized complexity classes (FRP,

BPP, APP, MA, and promise variants) in PV1 + sWPHP(PV ). In Section 5 we indicate how

to relativize our approach, and we discuss the class AM.

2 Preliminaries

We assume some degree of familiarity with first-order bounded arithmetic, however the basic

definitions are summarized below. More background can be found in [116, 40, 86].

Buss’s Si2 and T i2 [37] are first-order theories with equality in the language L = 〈0, S,+, ·,≤,
#, |x|,

⌊
x
2

⌋
〉, where the function |x| is intended to designate dlog2(x+ 1)e (the number of digits

in the binary representation of x), and x # y is 2|x|·|y|. Bounded quantifiers are expressions of
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the form

∃x ≤ t . . . := ∃x (x ≤ t ∧ . . .),
∀x ≤ t . . . := ∀x (x ≤ t→ . . .),

where t is a term without an occurrence of x. A bounded quantifier is sharply bounded, if t has

the form |s| for some term s. A formula ϕ is sharply bounded, if all quantifiers in ϕ are sharply

bounded. The hierarchy of Σb
i - and Πb

i -formulas is defined inductively: Σb
0 = Πb

0 is the set

of sharply bounded formulas, Σb
i+1 is the closure of Πb

i under bounded existential and sharply

bounded universal quantifiers, and Πb
i+1 is the closure of Σb

i under bounded universal and sharply

bounded existential quantifiers. Bounded formulas capture the polynomial-time hierarchy (PH).

More precisely, for any i ≥ 1 the class ΣP
i coincides with sets of natural numbers definable by

Σb
i -formulas in N (the standard model of arithmetic), and dually ΠP

i = Πb
i(N), in particular

NP = Σb
1(N).

The theory Si2 consists of a finite list of open axioms denoted by BASIC , and the polynomial

induction schema

(Σb
i -PIND) ϕ(0) ∧ ∀x ≤ a (ϕ(

⌊
x
2

⌋
)→ ϕ(x))→ ϕ(a),

where ϕ ∈ Σb
i . The theory T i2 is axiomatized by BASIC and the induction schema

(Σb
i -IND) ϕ(0) ∧ ∀x ≤ a (ϕ(x)→ ϕ(x+ 1))→ ϕ(a).

PV is a purely equational theory introduced by Cook [63]. Its language contains a few

basic function symbols, and it is inductively expanded by symbols for functions defined from

previously introduced functions by composition, and limited recursion on notation. PV is

axiomatized by equations defining all the function symbols, and a derivation rule similar to

open PIND . In the standard model, PV -functions define exactly the class of polynomial-time

computable functions (FP). We will slightly abuse the notation and denote by PV also the

language of PV (the set of all PV -functions).

PV1 (also called QPV ) is an extension of PV to first-order logic [121, 39, 64]. It has an

axiomatization by purely universal sentences, and it is conservative over PV . The hierarchy of

Σb
i(PV )- and Πb

i(PV )-formulas is defined similarly to Σb
i and Πb

i , but in the language of PV .

PV1 proves IND and PIND for Σb
0(PV )-formulas.

S1
2(PV ) is the combination of S1

2 and PV1: i.e., it has the language of PV , and it is

axiomatized by PV and Σb
1(PV )-PIND . All PV -functions have well-behaved provably total ∆b

1-

definitions in S1
2 ; it follows that S1

2(PV ) is an extension of S1
2 by definitions, and in particular,

S1
2(PV ) is conservative over S1

2 . Thus there is little practical difference between S1
2 and S1

2(PV ),

and we will simply identify these two theories. Buss’s witnessing theorem [37] implies that S1
2

is Σb
1-conservative over PV1, and in fact, we may identify PV1 with ∀Σb

1(S1
2).

The theories PVi+1 for i > 0, introduced in [121], are defined similarly to PV1, except that

the basic functions of their language include the characteristic functions of all Σb
i -predicates,

thus PVi+1-functions correspond to FPΣPi in the standard model. PVi+1 is a conservative

extension of T i2 (contrary to popular belief, essentially the same also holds for i = 0 [94]), and
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S1
2(PVi+1) is a conservative extension of Si+1

2 . Si+1
2 is Σb

i+1-conservative over PVi+1 and T i2 by

Buss’s witnessing theorem.

All these theories can be relativized. We consider the language L(α) = L∪{α}, where α is a

new predicate, and define Σb
i(α) and Πb

i(α) in the same way as Σb
i and Πb

i , but extended to the

new language. The theories Si2(α) and T i2(α) are axiomatized by BASIC and Σb
i(α)-PIND resp.

Σb
i(α)-IND , with no other axioms about α. PV (α) and PVi(α) can be defined similarly (the

characteristic function of α is allowed to appear in functions constructed by limited recursion

on notation). PV (α)-functions correspond to polynomial-time algorithms with an oracle. We

write ϕα and fα when we want to stress the dependence of an L(α)-formula or PV (α)-function

on α; in that case, ϕψ or fψ denotes the result of substitution of a formula ψ for α. We may

generalize L(α) by allowing an arbitrary set of new predicates and function symbols instead of

α; in the case of functions, we have to include axioms enforcing an explicit polynomial bound

on the length of the output of the function.

For any function f we define the formula

sPHPx
y(f) := ∃v < y ∀u < x f(u) 6= v,

where f may involve other parameters not explicitly shown. The dual (or surjective) weak

pigeonhole principle for f , written as sWPHP(f), is the universal closure of the formula

x > 0→ sPHP
x|y|
x(|y|+1)(f),

and if Γ is a set of functions, sWPHP(Γ) denotes the schema {sWPHP(f) | f ∈ Γ}. We will

mostly work with sWPHP(PV ), i.e., the dual weak pigeonhole principle for poly-time functions.

sWPHP(PV ) is over S1
2 equivalent to the more usual schema

x > 1→ sPHPx
x2(f),

but it is not clear whether this reduction also works over PV1. sWPHP(PV ) is provable in T 2
2

[146, 116, 125], but sWPHP(α) is not provable in S2
2(α) [160]. The schema sWPHP(PV ) is

finitely axiomatizable: PV1 proves that any PV -function is computable by a poly-size circuit

on any bounded domain, thus sWPHP(PV ) is equivalent to its instance sWPHP(eval), where

eval(C, x) is a two-place PV -function which evaluates a circuit C on an input x.

We will often work with bounded definable sets, which are collections of numbers of the form

X = {x < a | ϕ(x)},

where ϕ is a formula. Bounded sets are not genuine objects in our arithmetical theories, but

a figure of speech: x ∈ X is an abbreviation for x < a ∧ ϕ(x). When used in a context which

asks for a set, a number a is assumed to represent the integer interval [0, a); thus, for example,

X ⊆ a means that all elements of X are less than a. We will use simple set-theoretic operations,

whose meaning should be generally clear from the context; for example, if X ⊆ a and Y ⊆ b,

we may define

X × Y := {bx+ y | x ∈ X, y ∈ Y } ⊆ ab,
X ∪̇ Y := X ∪ {y + a | y ∈ Y } ⊆ a+ b.
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The sets we will encounter most often will be defined by Boolean circuits: a circuit C : 2n → 2

defines the set {x < 2n | C(x) = 1}. (Here again, 2n denotes the interval [0, 2n), which may be

identified with the set of binary strings of length n; thus C is a circuit with n Boolean input

variables.)

We will use the shorthand notation

x ∈ Log↔ ∃y x = |y|,
x ∈ LogLog↔ ∃y x = ||y||.

If f is a function of two variables, f(a,−) denotes the function of one variable which results

from f by fixing its first argument to a. The set of natural numbers will be denoted by ω (in

the metatheory).

We will also work with rational numbers in PV , which are assumed to be represented by

pairs of integers in the natural way. The expression x−1 ∈ Log is a shorthand notation meaning

that x is a positive rational number, whose inverse is bounded from above by a natural number

n ∈ Log.

Many of our results take place inside formal theories like PV1 + sWPHP(PV ). If T is a

theory, a parenthesized expression “in T” after the heading of a definition or theorem indicates

that the definition is introduced in T , or that the theorem is formulated and proved inside T .

However, we will slightly abuse this convention for reasons of compactness: when we write e.g.

“for every PV -function f . . . ” in a formalized context, it is assumed that the quantification

over PV -functions takes place in the metatheory, and only parameters of the function are

quantified inside T . Formulas, definable sets, and other non-first-order objects are treated

similarly. Expressions like “a pair of PV -functions 〈f, g〉” also fit in this category; inside T , no

actual pairing operation is involved.

3 Counting

Our definition of approximate counting in bounded arithmetic is based on the following observa-

tion: if X and Y are sets, and there exists a circuit which maps X onto Y , then the cardinality of

Y is at most the cardinality of X. We need to make sure that such a definition is well-behaved,

i.e., that it satisfies common properties we expect from a cardinality function. In particular, it

is conceivable that a large but complicated set X cannot be disentangled by a polynomial-size

circuit and mapped onto an interval [0, s) approaching its size; we must show that such cases

do not happen. The natural way to guarantee sufficient precision of these counting circuits is

to consider a two-sided comparison: if we find a mapping of X onto [0, s − e), and a mapping

of [0, s+ e) onto X, we know that the size of X is s within error e.

It turns out that an extra complication is necessary: rather than mapping X onto Y directly,

we will take several copies of both sets, i.e., map v ×X onto v × Y for some v > 0. With this

modification, we are able to prove in PV1 + sWPHP(PV ) that there exists a pair of counting

circuits which estimates the size of X within a polynomially small error (relative to the size of the

ambient interval containing X), for any X defined by a circuit. We will construct such counting

circuits by analysis of the Nisan-Wigderson pseudorandom generator [135]; formalization of the



30

Nisan-Wigderson generator in S1
2 + sWPHP(PV ) was already considered in [93] for a different

goal. We start by overview of the relevant concepts.

Definition 3.1 (in PV1) Let f : 2k → 2 be a truth-table of a Boolean function (f is encoded

as a string of 2k bits, hence k ∈ LogLog). We say that f is (worst-case) ε-hard, written as

Hardε(f), if there does not exist a circuit C of size at most 2εk which computes f . The function

f is average-case ε-hard, written as HardAε (f), if there does not exist a circuit C of size at most

2εk such that ∣∣{u < 2k | C(u) = f(u)}
∣∣ ≥ (1

2 + 2−εk
)
2k.

Notice that Hardε(f) and HardAε (f) are Πb
1-formulas.

Lemma 3.2 ([93]) For every constant ε < 1/3 there exists a constant c such that PV1 +

sWPHP(PV ) proves: for every k ∈ LogLog such that k ≥ c, there exist average-case ε-hard

functions f : 2k → 2.

Moreover, there exists a PV -function g : 2n−m → 2n such that any f < 2n outside the range

of g is average-case ε-hard, where n = 2k, and m ≥ n1−2ε.

Definition 3.3 ([135]) (in PV1) Let k, `, t,m ∈ Log, k ≤ ` ≤ t. A 〈k, `, t,m〉-design is a se-

quence 〈Si〉i<m of subsets Si ⊆ t, such that |Si| = ` and |Si ∩ Sj | ≤ k for all i < j < m.

Lemma 3.4 ([93]) Let 0 < γ < 1. There are constants δ > 0, c > 1, and a PV -function d

such that

PV1 ` d(x) is a 〈γ`, `, c`, 2δ`〉-design, where ` = ||x||.

Definition 3.5 ([135]) (in PV1) Let x < 2t, and X ⊆ t, |X| = `. Let {si}i<` be the increasing

enumeration of the set X. Then we put x �X := y, where y < 2` and bit(y, i) = bit(x, si) for

all i < `.

If f : 2` → 2, and S = 〈Si〉i<m is a 〈k, `, t,m〉-design, the Nisan-Wigderson generator is a

function NWf,S : 2t → 2m defined by

bit(NWf,S(x), i) = f(x � Si).

Definition 3.6 (in PV1) We adopt a few conventions on functions computed by circuits. Let

C : 2n → 2m be a circuit, and X and Y definable sets. We say that C computes a function from

X to Y , written as

C : X → Y,

if X ⊆ 2n, Y ⊆ 2m, and C[X] ⊆ Y . We write

C : X ↪→ Y

if, in addition, the function computed by C is injective on X.

We write

C : X � Y
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if X ⊆ 2n, Y ⊆ 2m, and C[X] ⊇ Y . Notice that this does not imply C : X → Y . An equivalent

condition is C : X ′ → Y and C[X ′] = Y for some X ′ ⊆ X.

(This way of introducing � is mostly a technicality, needed to overcome the annoying fact

that a non-empty set cannot be mapped onto the empty set.)

We are ready for the main theorem of this section, which guarantees the existence of suitable

counting circuits. It is an extension of [93, Prop. 4.7].

Theorem 3.7 (in PV1 + sWPHP(PV )) Let C : 2n → 2 be a Boolean circuit, and ε−1 ∈ Log.

Denote

X := {x < 2n | C(x) = 1}.

There exist s ≤ 2n, v ≤ poly(nε−1|C|), and circuits Gξ, Hξ, ξ = 0, 1, of size poly(nε−1|C|) such

that

G0 : v(s+ ε2n)� v ×X H0 : v ×X ↪→ v(s+ ε2n)

G1 : v × (X ∪̇ ε2n)� vs H1 : vs ↪→ v × (X ∪̇ ε2n)

and such that

Gξ ◦Hξ = id

on their respective domains.

Proof: Let δ and c be the constants from Lemma 3.4 for γ := 1/12. Put

` := max
{

4|nε−1|, 12|n|, 1
δ |n|, 4(||C||+ 1)

}
,

and k := γ`, t := c`, v := 2t. As n ≤ 2δ`, there exists a 〈k, `, t, n〉-design S = 〈S0, . . . , Sn−1〉.
By Lemma 3.2, there exists an average-case 1/4-hard Boolean function f : 2` → 2. We define

Y := {x < 2t | C(NWf,S(x)) = 1},
s := 2n−t|Y |.

(We may count |Y | directly, as t ∈ LogLog.)

For any i ≤ n, we define

Mi = {〈~r, x〉 ∈ 2n × 2t | C(f(x � S0), . . . , f(x � Si−1), ri, . . . , rn−1) = 1}.

Notice that M0 = X × 2t, and Mn = 2n × Y . Suppose we find a sequence of circuits Gξ,i, Hξ,i,

where ξ = 0, 1 and i < n, such that

G0,i : Mi+1 ∪̇ (i+ 1)a2n+t−` �Mi ∪̇ ia2n+t−`

H0,i : Mi ∪̇ ia2n+t−` ↪→Mi+1 ∪̇ (i+ 1)a2n+t−`

G1,i : Mi ∪̇ (n− i)a2n+t−` �Mi+1 ∪̇ (n− i− 1)a2n+t−`

H1,i : Mi+1 ∪̇ (n− i− 1)a2n+t−` ↪→Mi ∪̇ (n− i)a2n+t−`

Gξ,i ◦Hξ,i = id
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where a = 23`/4. Then we can define

G0 = G0,0 ◦G0,1 ◦ · · · ◦G0,n−1 H0 = H0,n−1 ◦H0,n−2 ◦ · · · ◦H0,0

G1 = G1,n−1 ◦G1,n−2 ◦ · · · ◦G1,0 H1 = H1,0 ◦H1,1 ◦ · · · ◦H1,n−1

Notice that vε2n ≥ na2n+t−`, as nε−1 ≤ 2`/4. For any x ∈ X × 2t and y ∈ 2n× Y , we can show

((G0,0 ◦G0,1 ◦ · · · ◦G0,i) ◦ (H0,i ◦ · · · ◦H0,1 ◦H0,0))(x) = x,

((G1,n−1 ◦G1,n−2 ◦ · · · ◦G1,n−i) ◦ (H1,n−i ◦ · · · ◦H1,n−2 ◦H1,n−1))(y) = y

by straightforward induction on i, in particular Gξ ◦ Hξ = id, which also implies that Gξ are

surjective, and Hξ are injective.

It thus suffices to construct Gξ,i and Hξ,i. There exists an easily computable bijection

between pairs 〈y, u〉 ∈ 2t−` × 2`, and numbers x ∈ 2t, so that x maps to 〈x � (t r Si), x � Si)〉.
If j < n, y < 2t−`, u < 2`, and x < 2t is such that 〈y, u〉 = 〈x � (t r Si), x � Si)〉, we define

f i,yj (u) = f(x � Sj). Notice that f i,yi (u) = f(u). Then

Mi ≈ 2i ×M ′i ,

where

M ′i := {〈ri+1, . . . , rn−1, y, r, u〉 ∈ 2n−i−1 × 2t−` × 2× 2` |

C(f i,y0 (u), . . . , f i,yi−1(u), r, ri+1, . . . , rn−1) = 1},

and A ≈ B means that there exists a bijection g of A onto B such that g and g−1 are computable

by a polynomial-size circuit. In a similar way we have

Mi+1 ≈ 2i ×M ′i+1,

where

M ′i+1 := {〈ri+1, . . . , rn−1, y, r, u〉 | C(f i,y0 (u), . . . , f i,yi−1(u), f(u), ri+1, . . .) = 1}.

Fix y < 2t−`, and ri+1, . . . , rn−1 < 2. Define

U~r,y := {〈r, u〉 ∈ 2× 2` | C(f i,y0 (u), . . . , f i,yi−1(u), r, ri+1, . . . , rn−1) = 1}
= {〈r, u〉 ∈ 2× 2` | 〈~r, y, r, u〉 ∈M ′i},

V ~r,y := {〈r, u〉 ∈ 2× 2` | C(f i,y0 (u), . . . , f i,yi−1(u), f(u), ri+1, . . . , rn−1) = 1}
= {〈r, u〉 ∈ 2× 2` | 〈~r, y, r, u〉 ∈M ′i+1},

Aη(u) := C(f i,y0 (u), . . . , f i,yi−1(u), η, ri+1, . . . , rn−1),

where η < 2. As ` ∈ LogLog, we can directly count the sets U~r,y and V ~r,y; an easy calculation
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shows

|V ~r,y| − |U~r,y| = 2
∣∣{u | f(u) ∧A1(u)}

∣∣+ 2
∣∣{u | ¬f(u) ∧A0(u)}

∣∣
−
∣∣{u | A1(u)}

∣∣− ∣∣{u | A0(u)}
∣∣

=
∣∣{u | f(u) ∧A1(u)}

∣∣− ∣∣{u | ¬f(u) ∧A1(u)}
∣∣

+
∣∣{u | ¬f(u) ∧A0(u)}

∣∣− ∣∣{u | f(u) ∧A0(u)}
∣∣

=
∣∣{u | f(u) ∧A1(u)}

∣∣+
∣∣{u | ¬f(u) ∧ ¬A1(u)}

∣∣
+
∣∣{u | ¬f(u) ∧A0(u)}

∣∣+
∣∣{u | f(u) ∧ ¬A0(u)}

∣∣− 2`

=
∣∣{u | f(u)↔ A1(u)}

∣∣− ∣∣{u | f(u)↔ A0(u)}
∣∣

On the other hand, for any j 6= i, f i,yj (u) depends only on |Si ∩ Sj | ≤ k variables of u, and is

thus computable by a circuit of size 2k. Therefore, Aη and ¬Aη are computable by circuits of

size at most

1 + |C|+ i2k ≤ |C|+ n2k ≤ 2`/4−1 + 2`/122`/12 ≤ 2`/4.

As f is average-case 1/4-hard, we have∣∣|{u | Aη(u) = f(u)}| − 2`−1
∣∣ ≤ 2`−`/4 = a,

thus ∣∣|V ~r,y| − |U~r,y|∣∣ ≤ 2a.

We may arrange the sets U~r,y and V ~r,y in increasing sequences, match their initial parts, and

pad to get functions

g~r,y0 : U~r,y ∪̇ 2a� V ~r,y h~r,y0 : V ~r,y ↪→ U~r,y ∪̇ 2a

g~r,y1 : V ~r,y ∪̇ 2a� U~r,y h~r,y1 : U~r,y ↪→ V ~r,y ∪̇ 2a

such that g~r,yξ ◦ h~r,yξ = id. As this construction is uniform in ~r and y, we may construct

polynomial-size circuits

G′0 : M ′i ∪̇ a2n−i+t−` �M ′i+1 H ′0 : M ′i+1 ↪→M ′i ∪̇ a2n−i+t−`

G′1 : M ′i+1 ∪̇ a2n−i+t−` �M ′i H ′1 : M ′i ↪→M ′i+1 ∪̇ a2n−i+t−`

and from these we obtain Gξ,i, Hξ,i as required. �

We formally introduce the concept of approximate size comparison, as described in the

introductory paragraph of this section. Notice that the definition applies to a more general

situation than what is permitted by Theorem 3.7. The main reason is that we will occasionally

need to express that a set is exponentially small, even though Theorem 3.7 cannot provide

counting with exponential precision.

Definition 3.8 (in PV1 + sWPHP(PV )) Let X,Y ⊆ 2n be definable sets, and ε ≤ 1. We say

that the size of X is approximately less than the size of Y with error ε, written as

X �ε Y,
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if there exists a circuit G, and v 6= 0, such that

G : v × (Y ∪̇ ε2n)� v ×X.

The sets X and Y have approximately the same size with error ε, written as

X ≈ε Y,

if X �ε Y and Y �ε X.

We recall that we identify a number s with the interval [0, s), thus as a special case, X ≈ε s
means that the size of X is equal to s with error ε.

Remark 3.9 In this definition, “error ε” is somewhat a misnomer. The counting is not exact

even if we take ε = 0, there is always some error present due to the fact that only the weak

pigeonhole principle is available. In fact, we will often conveniently use �0 for approximate size

comparisons.

The lemma below summarizes elementary properties of Definition 3.8.

Lemma 3.10 (in PV1) Let X,Y,X ′, Y ′, Z ⊆ 2n and W,W ′ ⊆ 2m be definable sets, and ε, δ ≤ 1.

(i) X �ε Y , ε ≤ δ ⇒ X �δ Y .

(ii) X ⊆ Y ⇒ X �0 Y .

(iii) X �ε Y , Y �δ Z ⇒ X �ε+δ Z.

(iv) If X �ε X ′, Y �δ Y ′, and X ′ and Y ′ are separable by a circuit, then X ∪Y �ε+δ X ′∪Y ′.

(v) X �ε X ′, W �δ W ′ ⇒ X ×W �ε+δ+εδ X ′ ×W ′.

Proof: Exercise. �

The next lemma exploits consequences of Theorem 3.7.

Lemma 3.11 (in PV1 + sWPHP(PV )) Let X,Y ⊆ 2n be definable by circuits, s, t, u ≤ 2n,

ε, δ, η, ξ ≤ 1, ξ−1 ∈ Log.

(i) There exists s ≤ 2n such that X ≈ξ s.

(ii) s �ε X �δ t ⇒ s ≤ t+ (ε+ δ + ξ)2n.

(iii) X �ξ Y or Y �ξ X.

(iv) X �ε Y ⇒ 2n r Y �ε+ξ 2n rX.

(v) X ≈ε s, Y ≈δ t, X ∩ Y ≈η u ⇒ X ∪ Y ≈ε+δ+η+ξ s+ t− u.
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Proof:

(i) follows from Theorem 3.7.

(ii): by transitivity, it suffices to show that s �0 t implies s ≤ t + ξ2n, which follows from

sWPHP(PV ).

(iii) follows from (i) and the linearity of ≤.

(iv): let ζ = ξ/11, and choose s, t, s′, t′ such that X ≈ζ s, Y ≈ζ t, 2nrX ≈ζ s′, 2nrY ≈ζ t′.
We have s ≤ t + (ε + 3ζ)2n by (ii). As t + t′ �2ζ 2n by Lemma 3.10 (iv), we have also

t′ ≤ 2n−t+3ζ2n by (ii), and in a similar way, 2n−s ≤ s′+3ζ2n. This implies t′ ≤ s′+(ε+9ζ)2n,

thus 2n r Y �ε+11ζ 2n rX.

(v): fix r such that X r Y ≈ξ/2 r. By Lemma 3.10 (iv), we have X ≈η+ξ/2 r + u, and

X ∪ Y ≈δ+ξ/2 r + t. The former implies s ≈ε+η+ξ/2 r + u, thus s + t − u ≈ε+η+ξ/2 r + t, and

s+ t− u ≈ε+δ+η+ξ X ∪ Y . �

The definition of �ε is problematic, if we wish to use it in induction formulas in more

sophisticated arguments. As it stands, it is an unbounded ∃Πb
2-formula; even if we restrict its

usage to the case covered by Theorem 3.7, and include the relevant bounds, we cannot do much

better than Σb
2. We can solve this problem by working in a suitable conservative extension of

PV1 + sWPHP(PV ), introduced in [93].

Definition 3.12 The theory HARDA is an extension of PV1(α) + sWPHP(PV (α)) by the

axioms

α(x) is a truth-table of a Boolean function in ||x|| variables,

x ≥ c→ HardA1/4(α(x)),

||x|| = ||y|| → α(x) = α(y),

where c is the constant from Lemma 3.2.

Theorem 3.13 HARDA is a conservative extension of PV1 + sWPHP(PV ). More generally,

for any i ≥ 1, HARDA + Si2(α) and HARDA + T i2(α) are conservative extensions of Si2 +

sWPHP(PV ) and T i2 + sWPHP(PV ), respectively.

Proof: This was shown in [93] with S1
2 as a base theory. It is easy to modify the proof so that

it works over PV1. �

We note that the axiom sWPHP(PV (α)) is redundant in HARDA+S1
2(α); i.e., the existence

of functions hard on average implies sWPHP(PV ) over S1
2 [93]. We do not know whether this

also holds over PV1.

Lemma 3.14 There is a PV (α)-function Size such that HARDA proves: if X ⊆ 2n is definable

by a circuit C, then

X ≈ε Size(C, 2n, e),

where ε = |e|−1. The “witnessing circuits” Gξ, Hξ from Theorem 3.7 are also constructible by

PV (α)-functions.
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Proof: By inspection of the proof of Theorem 3.7, we see that the only non-uniformity was in

the choice of the hard function f . �

We will abuse the notation and write Size(X, ε) instead of Size(C, 2n, e).

The advantage of HARDA is that the complexity of approximate counting drops from Σb
2

to PV (α), which means that we can use approximate counting freely in induction, and we can

count parametric families of sets uniformly. Some of the results below illustrate these techniques.

We begin by showing that the size of the disjoint union of a sequence of sets is the sum of sizes

of the sets.

Proposition 3.15 (Disjoint union) (in PV1 + sWPHP(PV )) Let {Xi | i < m} be subsets of

2n, defined by a sequence of circuits. Let ε, ξ ≤ 1, ξ−1 ∈ Log, and {si | i < m} a sequence of

numbers such that Xi �ε si for every i < m. Then⋃̇
i<m

Xi �ε+ξ
∑
i<m

si,

where the disjoint sum
⋃̇
i<mXi :=

⋃
i<m(Xi × {i}) ⊆ 2n ×m is considered a subset of 2n+|m|.

The same holds for � in place of �.

Proof: We may work in HARDA by Theorem 3.13. First, notice that the error in � is relative

to the ambient set size, thus if we reconsider Xi as a subset of 2n×m, we have Xi �ε/m si. Put

ζ = ξ/(3m+ 1). We will show

Size
(⋃̇
i<k

Xi, ζ
)
≤
∑
i<k

si + (ε/m+ 3ζ)k

by induction on k ≤ m. Assume that the statement is true for k. We have⋃̇
i<k

Xi ≈ζ Size
(⋃̇
i<k

Xi, ζ
)
�δ
∑
i<k

si,

where δ = (ε/m+ 3ζ)k. As Xk �ε/m sk, we obtain

Size
(⋃̇
i≤k

Xi, ζ
)
≈ζ
⋃̇
i≤k

Xi �ε/m+ζ+δ

∑
i≤k

si

by Lemma 3.10 (iv), thus

Size
(⋃̇
i≤k

Xi, ζ
)
≤
∑
i≤k

si + (ε/m+ 3ζ)(k + 1)

by Lemma 3.11 (ii).

For k = m, we get ⋃̇
i<m

Xi ≈ζ Size
( ⋃̇
i<m

Xi, ζ
)
�ε+3mζ

∑
i<m

si. �
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We can apply Proposition 3.15 only to sequences of sets encoded by a number, in particular,

the length of the sequence is in Log. We present a variant which applies to larger families of

sets, whose sizes are uniformly bounded. We can also read it contrapositively as an averaging

argument: if we have a family of at most t sets, such that the size of their union is more than

st, then one of the sets must be larger than st/t = s.

Proposition 3.16 (Averaging) (in PV1 + sWPHP(PV )) Let X ⊆ 2n × 2m and Y ⊆ 2m be

definable by circuits, Y �δ t, and Xy �ε s for every y ∈ Y , where Xy := {x | 〈x, y〉 ∈ X}. Then

X ∩ (2n × Y ) �ε+δ+εδ+ξ st

for any ξ−1 ∈ Log.

Proof: By Lemma 3.14, there are PV (α)-functions f, v such that

f(y,−) : v(y)× (Size(Xy, ξ) + ξ2n)� v(y)×Xy.

We may easily arrange v(y) = v to be independent on y, while increasing the error slightly.

Also, if y ∈ Y , we have Size(Xy, ξ) ≤ s+ (ε+ ξ)2n, thus we obtain a function f ′ such that

f ′(y,−) : v × (s+ (ε+ 3ξ)2n)� v ×Xy

for every y ∈ Y . There is a function g and number w such that

g : w × (t+ δ2m)� w × Y,

and suitable composition of g with f ′ gives a function

vw(t+ δ2m)(s+ 3ξ2n)� vw × (X ∩ (2n × Y )).

We have

(t+ δ2m)(s+ 3ξ2n) ≤ st+ (ε+ δ + εδ + 6ξ)2n+m,

thus X ∩ (2n × Y ) �ε+δ+εδ+6ξ st. �

The next task is to formalize a suitable version of Chernoff’s bound, which is sine qua non

for development of randomized algorithms. The proof consists of two parts. The number-

theoretic part is a bound on certain sums of binomial coefficients; we reduce it to a special case

which was formalized in [93]. The combinatorial part of Chernoff’s bound relies on the fact

that we can construct counting circuits for a set X and its complement 2nrX so that the sizes

approximately add up to 2n.

Lemma 3.17 There is a constant c such that PV1 proves: for any n > 0, x > 0, y ≤ x, and

δ, ε ∈ [0, 1], such that n ∈ Log,∑
j≤n(yx−δ)

(
n

j

)
(y + εx)j(x− y + εx)n−j ≤ c xn4n(cε−δ2).
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Proof: Put

k :=

⌊
n

y + εx

(1 + 2ε)x

⌋
, i := k −

⌊
n
(y
x
− δ
)⌋
.

We assume k > i ≥ 0, the remaining borderline cases are left as an exercise. The left-hand side

is at most

S :=
∑
j≤k−i

(
n

j

)
(k + 1)j(n− k)n−j

(
x(1 + 2ε)

n

)n
≤ c xn

(
1 +

1

k

)k
(1 + 2ε)n4−i

2/n

by [93, Prop. A.5]. We also have (
1 +

1

k

)k
≤ 4.

Assume for simplicity ε ≤ 1/4, and put ` := b1/(2ε)c. Then

(1 + 2ε)n ≤
(

1 +
1

`

)n
≤
(

1 +
1

`

)`dn/`e
≤ 4dn/`e,

and
n

`
≤ n

1/(2ε)− 1
=

2εn

1− 2ε
≤ 4εn,

thus (1 + 2ε)n ≤ 4 · 44εn.

We have

n
y

x
− k ≤ 1 + n

(
y

x
− y + εx

(1 + 2ε)x

)
= 1 + n

ε(2y − x)

(1 + 2ε)x
≤ 1 + nε,

thus

i ≥ k − n
(y
x
− δ
)

= δn−
(
n
y

x
− k
)
≥ δn− (1 + εn),

and

− i
2

n
≤ −(δn− (1 + εn))2

n
≤ −δ2n+ 2δ(1 + εn) ≤ 2− δ2n+ 2εn.

Putting everything together, we have

S ≤ 44c xn46εn−δ2n. �

Proposition 3.18 (Chernoff’s bound) (in PV1 + sWPHP(PV )) Let X ⊆ 2n be defined by

a circuit, m ∈ Log, 0 ≤ ε, δ, p ≤ 1, and X �δ p2n. Then{
w ∈ (2n)m

∣∣ |{i < m | wi ∈ X}| ≤ m(p− ε)
}
�0 c4

m(cδ−ε2)2nm

for some constant c, where w is treated as a sequence of m numbers less that 2n, and wi is its

ith member.



I. Approximate counting in bounded arithmetic 39

Proof: Let ξ = 1/m, and s = Size(X, ξ). There is a v > 0 and functions f, g such that

f : v(s+ ξ2n)� v ×X,
g : v(2n − s+ ξ2n)� v × (2n rX).

We can construct a function h by taking f and g coordinatewise so that

h(I,−) : vm(s+ ξ2n)j(2n − s+ ξ2n)m−j � vm × {w | I = {i < m | wi ∈ X}}

for every I ⊆ m of size j. (The straightforward way of showing the surjectivity of h uses BBΣb
1

to collect preimages under f or g into a sequence. The choice schema BBΣb
1 is not available

in PV1, but we can avoid it as f and g have coretractions computable by poly-size circuits by

Theorem 3.7.) We combine h with enumeration of small subsets of m, and obtain a function

vm
∑

j≤m(p−ε)

(
m

j

)
(s+ ξ2n)j(2n − s+ ξ2n)m−j

� vm ×
{
w ∈ (2n)m

∣∣ |{i < m | wi ∈ X}| ≤ m(p− ε)
}
.

Notice that p2n ≤ s + (δ + 2ξ)2n by Lemma 3.11 (ii). We invoke Lemma 3.17 with “x” = 2n,

“y” = s+ (δ + 2ξ)2n, and “δ” = 3ξ + δ, which gives∑
j≤m(p−ε)

(
m

j

)
(s+ ξ2n)j(2n − s+ ξ2n)m−j ≤ c2nm4m(3c/m+cδ−ε2) = 64cc2nm4m(cδ−ε2).

�

Another widely used property of counting is the inclusion-exclusion principle, which we

formalize below. Notice that the assumptions on k and m are necessary so that the bounded

sum in the statement of the principle is well-defined; thus it is not an additional restriction on

applicability of the principle.

Proposition 3.19 (Inclusion-exclusion principle) (in PV1 + sWPHP(PV )) Let {Xi | i <
m} be subsets of 2n, defined by a sequence of circuits. Let k ≤ m be such that k ∈ LogLog and

(m/k)k ∈ Log. Assume ⋂
i∈I

Xi ≈εI sI

for every I ⊆ m of size at most k, and define

s =
∑
I⊆m

0<|I|≤k

(−1)|I|+1sI , ε =
∑
I⊆m

0<|I|≤k

εI .

Then ⋃
i<m

Xi �ε+ξ s

if k is even, and ⋃
i<m

Xi �ε+ξ s

if k is odd, for any ξ−1 ∈ Log.
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Proof: The sums are well-defined, as(
m

≤ k

)
:=
∑
i≤k

(
m

i

)
≤ (4m/k)k ∈ Log

can be shown by easy induction on k, using (1 + 1/k)k ≤ 4. For any i ≤ ` < m, we define

X`
i :=

{
Xi, i < `,⋃m−1
j=` Xj , i = `.

Assume k > 0 is even, the case of odd k is similar. Let η−1 ∈ Log. We will show

Size
(⋃
i<m

Xi, η
)

+ 5η

(
`

≤ k

)
2n ≥

∑
I⊆`+1

0<|I|≤k

(−1)|I|+1 Size
(⋂
i∈I

X`
i , η
)

by induction on ` < m. The base case ` = 0 is trivial. Assume that the statement holds for

`− 1. We have

(∗) :=
∑
I⊆`

0<|I|≤k

(−1)|I|+1 Size
(⋂
i∈I

X`−1
i , η

)

=
∑
I⊆`−1

0<|I|≤k

(−1)|I|+1 Size
(⋂
i∈I

Xi, η
)
−

∑
I⊆`−1

0≤|I|<k

(−1)|I|+1 Size
(⋂
i∈I

Xi ∩X`−1
`−1 , η

)
.

By Lemma 3.11 (v), we have

Size
(⋂
i∈I

Xi ∩X`−1
`−1 , η

)
= Size

(( ⋂
i∈I∪{`−1}

X`
i

)
∪
( ⋂
i∈I∪{`}

X`
i

)
, η
)

= Size
( ⋂
i∈I∪{`−1}

X`
i , η
)

+ Size
( ⋂
i∈I∪{`}

X`
i , η
)

− Size
( ⋂
i∈I∪{`−1,`}

X`
i , η
)
± 5η2n,

thus

(∗) + 5η

(
`− 1

≤ k − 1

)
2n ≥

∑
I⊆`+1

0<|I|≤k

(−1)|I|+1 Size
(⋂
i∈I

X`
i , η
)

+ (−1)k
∑
I⊆`−1

|I|=k−1

Size
( ⋂
i∈I∪{`−1,`}

X`
i , η
)

≥
∑
I⊆`+1

0<|I|≤k

(−1)|I|+1 Size
(⋂
i∈I

X`
i , η
)
.
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Using the induction hypothesis, we get

Size
(⋃
i<m

Xi, η
)

+ 5η

((
`− 1

≤ k

)
+

(
`− 1

≤ k − 1

))
2n ≥

∑
I⊆`+1

0<|I|≤k

(−1)|I|+1 Size
(⋂
i∈I

X`
i , η
)
,

and we can easily derive (
`− 1

≤ k

)
+

(
`− 1

≤ k − 1

)
=

(
`

≤ k

)
from

(
`
i+1

)
=
(
`−1
i+1

)
+
(
`−1
i

)
.

We take ` = m− 1. We have∑
I⊆m

0<|I|≤k

(−1)|I|+1 Size
(⋂
i∈I

Xi, η
)

+

(
ε+ 2η

(
m

≤ k

))
2n ≥ s

by Lemma 3.11 (ii), thus ⋃
i<m

Xi �ε+ξ s,

where ξ ≤ 7η
(
m
≤k
)
. As

(
m
≤k
)
∈ Log, we can make ξ arbitrarily small by choosing a suitable

η−1 ∈ Log. �

Approximate counting, and estimation of probability with respect to the uniform distribution

are two sides of the same coin, thus we can introduce probabilities in PV1 + sWPHP(PV ) as in

the following definition. All the results of Section 3 can be naturally restated in probabilistic

terms, which we leave to the reader’s imagination.

Definition 3.20 (in PV1 + sWPHP(PV )) Let X be a definable subset of 2|t|, and 0 ≤ ε, p ≤ 1.

We define

Prx<t(x ∈ X) �ε p ⇐⇒ X ∩ t �ε pt,

and similarly for �, ≈. If X is defined by a circuit and ε−1 ∈ Log, we put

Prx<t(x ∈ X)ε :=
1

t
Size(X ∩ t, ε).

4 Randomized algorithms

Our main application of approximate counting is in the formalization of probabilistic algorithms

in PV1 + sWPHP(PV ). We will consider in turn the classes FRP, BPP, APP, MA, including

their promise versions (prBPP, prMA). For each class we present a natural way to define

algorithms from the class in PV1 + sWPHP(PV ) (and its extensions), and we prove in PV1 +

sWPHP(PV ) basic properties of the class (such as success amplification, or simulation by

circuits). We also discuss the problem whether all algorithms from the class can be defined

in PV1 + sWPHP(PV ): in general, algorithms from “syntactic classes” (like prBPP or APP)

are always definable, whereas “semantic classes” (like BPP) cannot be shown to be captured



42

by PV1 + sWPHP(PV ) (or in fact, any recursively axiomatizable theory), without nontrivial

progress in their derandomization. In the case of semantic classes we pinpoint the problem

by showing that definability of any particular algorithm is equivalent to provability of a ∀Σb
1-

sentence. (We show that the class APP is recursively enumerable, thus it can be considered a

syntactic class even if that is not apparent from its definition.)

4.1 NP search problems

The first class of algorithms we mention are probabilistic solvers to NP search problems.

Definition 4.1 An NP search problem S is given by a poly-time computable relation R(x, y)

such that

R(x, y)⇒ |y| ≤ p(|x|)

for some polynomial p. Any y such that R(x, y) is a solution of S for x, and x is called an

instance of S in this context. The search problem S is total if every instance of S has a solution.

A deterministic algorithm solves S if it computes a solution for any given solvable instance

of S. A probabilistic algorithm A solves S if

Pr(A(x) is a solution for x) ≥ 1/2

for every solvable instance x. (The constant 1/2 is rather arbitrary.)

The class of NP search problems solvable in probabilistic polynomial time is called FRP.

The class of total search problems from FRP is denoted TFRP.

Notice that we may require without loss of generality that an algorithm solving an NP search

problem rejects all unsolvable instances. The class of randomized poly-time algorithms which

solve NP search problems under this requirement can be defined directly, without any reference

to search problems: a probabilistic algorithm A computes an FRP-function, if for every input x,

either A(x) rejects with probability 1, or accepts and outputs a value with probability at least

1/2. FRP can thus be thought of as a class of partial multifunctions. Notice that a language

L is in ZPP iff its characteristic function is in FRP, and L ∈ RP iff it is the domain of an

FRP-function, thus FRP generalizes the classes ZPP and RP.

Formalization of FRP in PV1 + sWPHP(PV ) was studied in [93]. We can restate the main

definition of [93] in the present notation as follows.

Definition 4.2 (in PV1 +sWPHP(PV )) A β-definable randomized algorithm is given by a pair

of PV -functions 〈A, r〉 such that

∃w < r(~x)A(~x,w) 6= ∗ → Prw<r(~x)(A(~x,w) = ∗) �0 β,

where ∗ is a special symbol signalling a rejecting computation, and 0 < β < 1. If unspecified,

we take β = 1/2.

Various properties of FRP were proved in PV1 + sWPHP(PV ) in [93]. We will not re-

peat these here, but instead we will concentrate on the question of which FRP-algorithms are
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definable in PV1 + sWPHP(PV ). This is actually two questions: Which FRP-functions are

provably 1/2-definable in PV1 + sWPHP(PV ), and which TFRP-functions are provably total in

PV1 + sWPHP(PV ). We begin with the latter.

For any NP search problem S, the statement “S is total” is a ∀Σb
1-sentence. Conversely,

for any ∀Σb
1-sentence ϕ, we can construct an NP search problem Sϕ such that ϕ holds iff

S is total, thus description of provably total NP search problems of a theory is equivalent

to characterization of its Σb
1-consequences. Wilkie’s witnessing theorem (see [116]) states that

provably total NP search problems of PV1 +sWPHP(PV ) (or S1
2 +sWPHP(PV )) are in TFRP,

and it was shown in [93] that these witnessing TFRP-functions are definable and provably total

in PV1 + sWPHP(PV ):

Theorem 4.3 ([93]) Assume S1
2 + sWPHP(PV ) ` ∀x ∃y ϕ(x, y) with ϕ ∈ Σb

1, and let S be the

corresponding search problem. There exists a probabilistic algorithm A such that PV1 proves

(i) A is 1/2-definable,

(ii) A solves S,

and PV1 + sWPHP(PV ) proves that A is total.

It is not clear whether all TFRP-functions are provably total in PV1 + sWPHP(PV ), or

in any its r.e. extension for that matter, even if we restrict ourselves to univalued functions

with values in {0, 1}, i.e., ZPP-predicates. On one hand, such a result cannot be shown by

a relativizing technique: it would imply that ZPP has a complete language due to Thapen

[172], and there exist oracles A such that ZPPA has no complete language [34]. On the other

hand, TFRP is widely believed to coincide with FP, in which case all TFRP-functions (but not

necessarily all TFRP-algorithms) are trivially definable in PV1.

We can obtain a more precise characterization of provably total search problems of PV1 +

sWPHP(PV ), if we consider “nonintensional” representations instead of particular TFRP-

algorithms.

Definition 4.4 A PV -formula ϕ represents a search problem S, if the following hold (in the

standard model):

(i) if ϕ(x, y), then y is a solution of S for x,

(ii) if x is a solvable instance of S, then ∃y ϕ(x, y).

WPHPWIT is the following NP search problem: given a pair of circuits G : 2n → 22n and

H : 22n → 2n, find an x < 22n such that G(H(x)) 6= x.

Let S and S′ be NP search problems. S is reducible to S′, if there are poly-time functions

f and g such that:

(i) if x is a solvable instance of S, then f(x) is a solvable instance of S′,

(ii) if y is a solution of S′ for f(x), then g(x, y) is a solution of S for x.
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Theorem 4.5 Let S be an NP search problem. The following are equivalent:

(i) S has a provably total representation in PV1 + sWPHP(PV ).

(ii) S is reducible to WPHPWIT .

Proof:

(i)→ (ii) follows from Thapen’s proof of Wilkie’s witnessing theorem [173].

(ii) → (i): assume that S is given by a poly-time relation R(x, y), and f and g form a

reduction of S to WPHPWIT . We may easily modify f so that its output f(x) = 〈Gx, Hx〉
consists of a pair of circuits as in Definition 4.4, provably in PV1 + sWPHP(PV ). Put

ϕ(x, y) = R(x, y) ∨
(
Gx(Hx(y)) 6= y ∧ ¬R(x, g(x, y))

)
.

The second disjunct never holds in the standard model by the definition of reduction, thus ϕ

represents S. PV1 + sWPHP(PV ) proves ∀x ∃y ϕ(x, y), as Gx(Hx(y)) 6= y implies ϕ(x, g(x, y))

or ϕ(x, y). �

As noticed in [93], WPHPWIT can also be used as an axiomatic description of Σb
1-theorems

of PV1+sWPHP(PV ), which is again implicit in Thapen’s proof of Wilkie’s witnessing theorem.

Proposition 4.6 The statement “WPHPWIT is total” axiomatizes ∀Σb
1-consequences of PV1+

sWPHP(PV ) over PV1.

We return to the question which FRP-algorithms (not necessarily total) are definable in a

given theory T . Perhaps surprisingly, this question is essentially equivalent to a ∀Σb
1-sentence,

it thus reduces to the problem of the provably total TFRP-functions discussed above. (The

constants 1/2 and 2/3 below are arbitrary.)

Theorem 4.7 Let A be a FRP-algorithm with error 1/2. There exists a true ∀Σb
1-sentence ϕ

such that PV1 + sWPHP(PV ) proves

(i) if ϕ, then A is 2/3-defined,

(ii) if A is 1/2-defined, then ϕ.

Moreover, the (total) NP search problem Sϕ associated with ϕ is in TFRP: there exists a

randomized algorithm B such that PV1 + sWPHP(PV ) proves

(iii) if A is 1/2-defined, then B is 1/2-defined, total, and solves Sϕ.

Proof: The idea is to consider the PV (α)-formula

ψα(x, y) =
(
y < r(x) ∧A(x, y) 6= ∗ → Prw<r(x)(A(x,w) = ∗)1/50 ≤ 5/8

)
,

where ∗ is as in Definition 4.2. Clearly, HARDA proves

∀x, y ψα(x, y)→ A is 2/3-defined,

A is 1/2-defined → ∀x, y ψα(x, y).
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We need to eliminate α from the formula. In the proof of Theorem 3.7 (resp. Lemma 3.14),

the exact choice of the function f is not relevant: the behaviour of Pr(. . .)1/50 is preserved if

we replace α by any average-case 1/4-hard Boolean function f in the right number of variables.

We thus define

ϕ′(x, y, f) =
(
(f : 2`(x) → 2) ∧HardA1/4(f)→ ψf (x, y)

)
,

where `(x) ∈ LogLog is chosen as in Theorem 3.7. Then ϕ′ is a Σb
1-formula, and PV1 +

sWPHP(PV ) proves

∀x, y, f ϕ′(x, y, f)→ A is 2/3-defined,

A is 1/2-defined → ∀x, y, f ϕ′(x, y, f).

We use a witnessing argument to show that Sϕ is solvable in randomized polynomial

time. Notice that the only non-sharply bounded existential quantifier in ϕ′ is the one from

¬HardA1/4(f). PV1 + sWPHP(PV ) proves the Σb
1-formula

(f, g : 2`(x) → 2) ∧ Prfw<r(x)(A(x,w) = ∗)1/50 > 5/8 ∧ Prgw<r(x)(A(x,w) = ∗)1/50 ≤ 9/16

→ ¬HardA1/4(f) ∨ ¬HardA1/4(g).

By Wilkie’s witnessing theorem there exists a probabilistic algorithm h(x, y, f, g) ∈ TFRP such

that

(f, g : 2`(x) → 2) ∧ Prfw<r(x)(A(x,w) = ∗)1/50 > 5/8 ∧ Prgw<r(x)(A(x,w) = ∗)1/50 ≤ 9/16

→Wit¬HardA1/4(f)(h(x, y, f, g)) ∨Wit¬HardA1/4(g)(h(x, y, f, g))

holds with high probability. As A has error at most 1/2, the implication

y < r(x) ∧A(x, y) 6= ∗ ∧HardA1/4(g)→ Prgw<r(x)(A(x,w) = ∗)1/50 ≤ 9/16

is true. Let B(x, y, f) be the probabilistic algorithm which generates a random function g, and

applies h(x, y, f, g). As most Boolean functions are average-case 1/4-hard, we have

y < r(x) ∧A(x, y) 6= ∗ ∧ (f : 2`(x) → 2) ∧ Prfw<r(x)(A(x,w) = ∗)1/50 > 5/8

→Wit¬HardA1/4(f)(B(x, y, f))

with high probability. This construction can be easily formalized in PV1 + sWPHP(PV ), using

Theorem 4.3 and Lemma 3.2. �

4.2 The classes BPP and promise BPP

BPP, introduced by Gill [80], is arguably the most popular randomized complexity class. It is

generally considered a good approximation to the class of problems which are efficiently solvable

in practice.
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Definition 4.8 A language L is in BPP, if there exists a probabilistic poly-time decision algo-

rithm A such that for every x,

x ∈ L⇒ Pr(A(x)) ≥ 3/4,

x /∈ L⇒ Pr(A(x)) ≤ 1/4.

A promise problem is a pair L = 〈L+, L−〉 of disjoint languages. An ordinary language L is

identified with the promise problem 〈L, {0, 1}<ω r L〉. A promise problem L is in promise

BPP (L ∈ prBPP for short), if there exists a probabilistic poly-time algorithm A such that for

every x,

x ∈ L+ ⇒ Pr(A(x)) ≥ 3/4,

x ∈ L− ⇒ Pr(A(x)) ≤ 1/4.

Formalizing the definition of prBPP in PV1 + sWPHP(PV ) is a straightforward application

of the approximate counting machinery.

Definition 4.9 (in PV1 + sWPHP(PV )) Let β be a PV -function with values in (0, 1/2), A

a PV -predicate, and r a PV -function. The pair 〈A, r〉 β-defines the prBPP problem LA,r,β =

〈L+
A,r,β, L

−
A,r,β〉, where

x ∈ L+
A,r,β ⇐⇒ Prw<r(x)(¬A(x,w)) �0 β(x),

x ∈ L−A,r,β ⇐⇒ Prw<r(x)(A(x,w)) �0 β(x).

More generally, if L+, L− are disjoint definable sets, the promise problem L = 〈L+, L−〉 is

β-defined by 〈A, r〉 if L+ ⊆ L+
A,r,β and L− ⊆ L−A,r,β.

The pair 〈A, r〉 β-defines a BPP language if ∀x (x ∈ L+
A,r,β ∨ x ∈ L

−
A,r,β).

If unspecified, we take β = 1/4.

Lemma 4.10 (in PV1 + sWPHP(PV )) Let L be a definable prBPP-problem, and n ∈ Log.

There exists a Boolean circuit C : 2n → 2 such that

x ∈ L+ ⇒ C(x) = 1,

x ∈ L− ⇒ C(x) = 0,

for every x < 2n.

Proof: Work in HARDA. By Lemma 3.14, there is a PV (α)-predicate P (x) such that

x ∈ L+ ⇒ P (x),

x ∈ L− ⇒ ¬P (x).

We may compute P on a bounded interval by an oracle-free circuit, as α(x) only depends on

the length of x. �
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Proposition 4.11 (in PV1 + sWPHP(PV )) Let t, s be PV -functions such that t(x), s(x) > 0,

and 1/s(x) + 1/|t(x)| ≤ 1/2. Let L = 〈L+, L−〉 be a promise problem. The following are

equivalent.

(i) L is a (1/2− 1/|t|)-definable prBPP-problem,

(ii) L is a 1/4-definable prBPP-problem,

(iii) L is a 1/s-definable prBPP-problem.

Proof: The only interesting implication is (i)→ (iii). Assume that L is (1/2−1/|t|)-defined by

〈A, r〉. Let c be the constant from Proposition 3.18, put m(x) = |t(x)|2|cs(x)|, r′(x) = r(x)m(x),

and

A′(x,w′)↔
(
|{i < m(x) | A(x,wi)}| ≥ m(x)/2

)
,

where w′ < r′(x) is viewed as a sequence 〈wi | i < m(x)〉 of numbers less than r(x). Then L is

1/s-defined by 〈A′, r′〉 due to Chernoff’s bound (Proposition 3.18). �

Notice that prBPP is defined by a purely syntactic condition: in other words, every pair

〈A, r〉 of PV -functions (provably) defines a prBPP-problem.

Corollary 4.12 Every prBPP-algorithm is definable in PV1 + sWPHP(PV ).

Definable BPP-languages are essentially “provably total” prBPP-problems. As in the case

of TFRP, we do not know whether all BPP-languages are definable in PV1 + sWPHP(PV ) or

its r.e. extension; again, relativizing techniques cannot work, as Thapen’s result is applicable

to BPP, and an oracle with respect to which BPP does not have a complete language was

constructed in [88]. We show that the totality of a BPP-algorithm is essentially equivalent to a

∀Σb
1-sentence, thus the characterization of the BPP-languages definable in a particular theory

can be reduced to the characterization of its provably total TFRP-functions.

Theorem 4.13 Let A be a BPP-algorithm. There exists a true ∀Σb
1-sentence ϕ such that

PV1 + sWPHP(PV ) proves

(i) if ϕ, then A 1/3-defines a BPP-language,

(ii) if A 1/4-defines BPP-language, then ϕ.

Moreover, the NP search problem Sϕ associated with ϕ is in TFRP. There is a randomized

algorithm B such that PV1 + sWPHP(PV ) proves

(iii) if A 1/4-defines BPP-language, then B is 1/2-defined, total, and solves Sϕ.

Proof: We define

ϕ = ∀x ∀f
(
(f : 2`(x) → 2) ∧HardA1/4(f)

→ Prfw<r(x)(A(x,w))1/50 < 7/24 ∨ Prfw<r(x)(¬A(x,w))1/50 < 7/24
)
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with suitably chosen `(x) ∈ LogLog, and proceed as in the proof of 4.7.

There is a minor complication in the construction of the probabilistic solver to Sϕ: the

algorithm cannot directly decide which of the disjuncts in ϕ should hold, as we do not know

whether BPP = ZPP. The solution is to try both possibilities, and check whether either of

them leads to a correct witness for ¬HardA1/4(f). �

A similar argument can be used to prove that prBPP lies on the second level of the polyno-

mial hierarchy. The original result (formulated for BPP only) is due to Sipser and Gács [166],

and it was simplified by Lautemann [122]. We follow an alternative proof due to Nisan and

Wigderson [135].

Proposition 4.14 Let A be a PV -predicate, and r a PV -functions. There are Σb
2-formulas

σ+(x), σ−(x) and Πb
2-formulas π+(x), π−(x) such that PV1 + sWPHP(PV ) proves

x ∈ L+
A,r,1/4 → π+(x)→ σ+(x)→ x ∈ L+

A,r,1/3,

x ∈ L−A,r,1/4 → π−(x)→ σ−(x)→ x ∈ L−A,r,1/3.

In particular, any definable BPP-language is in Σb
2 ∩Πb

2.

Proof: It suffices to define

π+(x) = ∀f
(
f : 2`(x) → 2 ∧HardA1/4(f)→ Prfw<r(x)(¬A(x,w))1/50 ≤ 7/24

)
,

σ+(x) = ∃f
(
f : 2`(x) → 2 ∧HardA1/4(f) ∧ Prfw<r(x)(¬A(x,w))1/50 ≤ 7/24

)
,

π−(x) = ∀f
(
f : 2`(x) → 2 ∧HardA1/4(f)→ Prfw<r(x)(A(x,w))1/50 ≤ 7/24

)
,

σ−(x) = ∃f
(
f : 2`(x) → 2 ∧HardA1/4(f) ∧ Prfw<r(x)(A(x,w))1/50 ≤ 7/24

)
.

The quantifiers over f are bounded as f ≤ 22`(x) and `(x) = O(||x||). �

To complete the picture we mention an elegant alternative description of definable BPP-

languages, based on implicit definability in (extensions of) HARDA. The intuition behind this

characterization stems from the well-known result BPP = almost-P (cf. [27, 135]).

Definition 4.15 Let T be a simple extension of PV1 + sWPHP(PV ), and T+(α) := T +

HARDA. A PV (α)-predicate Pα(x) is a T+-definable implicitly poly-time predicate, if

T+(α) + T+(β) ` Pα(x)↔ P β(x).

Theorem 4.16 Let T be a simple extension of PV1 + sWPHP(PV ).

(i) Every T -provably total BPP-language is in T+ equivalent to a T+-definable implicitly

poly-time predicate.

(ii) Every T+-definable implicitly poly-time predicate is in T+ equivalent to a T -provably total

BPP-language.
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Proof:

(i): let L be a definable BPP-language. By Lemma 3.14, there exists a PV (α)-predicate Pα

such that

T+(α) ` Pα(x)↔ x ∈ L.

Then clearly

T+(α), T+(β) ` Pα(x)↔ P β(x).

(ii): assume that

T+(α), T+(β) ` Pα(x)↔ P β(x).

Let c be a constant such that Pα(x) only accesses the value of α(y) for ||y|| ≤ c||x||. Work

in T+(α). Fix x, let f = 〈fi | i ≤ c||x||〉 be a sequence of average-case 1/4-hard functions

fi : 2i → 2, and define

β(y) =

{
f||y||, ||y|| ≤ c||x||,
α(y), otherwise.

Then β defines a (parametric) interpretation of T+(β) in T+(α), and consequently Pα(x) ↔
P f (x).

We thus have

T+(α) ` ∀i ≤ c||x||
(
fi : 2i → 2 ∧HardA1/4(fi)

)
→ (Pα(x)↔ P f (x)).

Let A be the formalization of the following randomized algorithm: on input x, generate a

random sequence f = 〈fi | i ≤ c||x||〉 of functions fi : 2i → 2, and output P f (x). By [93,

L. 4.10], PV1 + sWPHP(PV ) proves

Prf
(
¬∀i ≤ c||x|| HardA1/4(fi)

)
�0 1/4,

thus

T+(α) ` Prf
(
A(x, f)↔ ¬Pα(x)

)
�0 1/4.

In particular,

T+(α) ` Prf (A(x, f)) �0 1/4 ∨ Prf (¬A(x, f)) �0 1/4,

i.e., A is a 1/4-defined BPP-algorithm in T+(α), and by Theorem 3.13, also in T . If L denotes

the BPP-language defined by A, clearly

T+(α) ` Pα(x)↔ x ∈ L

as required. �

4.3 The class APP

The class APP is a generalization of BPP introduced by Kabanets, Rackoff, and Cook [111].

It comprises a representative class of algorithms which can be derandomized using the current

methods for proving P = BPP (viz. hardness-randomness tradeoffs), and unlike BPP, it is

known to have a complete problem. A unique feature of APP is that it does not consist of

languages (or promise problems), but functions with real values in the interval [0, 1].
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Definition 4.17 A real-valued function f : ω → [0, 1] is in APP, if there exists a probabilistic

poly-time function g(x, y) with values in [0, 1]Q such that

Pr
(
|f(x)− g(x, 2k)| ≤ 1/k

)
≥ 3/4

for all x and k.

We cannot directly talk about real numbers in bounded arithmetic, we thus have to formalize

APP-algorithms without an explicit reference to the functions which they compute. The idea

is similar to methods used in constructive analysis (cf. [31]).

Definition 4.18 (in PV1 +sWPHP(PV )) Let β(x, y) be a PV -function with rational values in

(0, 1/2). A β-definable APP-algorithm is given by a pair of PV -functions g(x, y, w) and r(x, y),

where r has positive integer values, g has rational values in [0, 1], and

∀x ∀k, ` ∈ Log ∃a ∈ [0, 1]
(
Prw<r(x,2k)

(
|g(x, 2k, w)− a| > 1/k

)
�0 β(x, 2k)

∧ Prw<r(x,2`)
(
|g(x, 2`, w)− a| > 1/`

)
�0 β(x, 2`)

)
.

When unspecified, we take β = 1/4.

Let 〈g′, r′〉 be a β′-definable APP-algorithm. We say that 〈g, r〉 and 〈g′, r′〉 compute the

same function if

∀x ∀k ∈ Log ∃a ∈ [0, 1]
(
Prw<r(x,2k)

(
|g(x, 2k, w)− a| > 1/k

)
�0 β(x, 2k)

∧ Prw<r′(x,2k)

(
|g′(x, 2k, w)− a| > 1/k

)
�0 β

′(x, 2k)
)
.

Proposition 4.19 (in PV1 + sWPHP(PV )) Let t(x, y) and s(x, y) be PV -functions with pos-

itive integer values. If 〈g, r〉 is a (1/2 − 1/|t|)-definable APP-algorithm, there exists a 1/s-

definable APP-algorithm 〈g′, r′〉 which computes the same function as 〈g, r〉.

Proof: Let c be the constant from Proposition 3.18, and let m(x, y) := |cs(x, y)||t(x, y)|2 ∈ Log.

Put

r′(x, y) = r(x, y)m(x,y),

g′(x, y, w′) = Median(g(x, y, w0), . . . , g(x, y, wm−1)),

where w′ < r′(x, y) is considered as a sequence of m = m(x, y) numbers wi < r(x, y). Fix x,

k ∈ Log, and a ∈ [0, 1] such that

Prw<r
(
|g(x, 2k, w)− a| > 1/k

)
�0 1/2− 1/|t|.

By Proposition 3.18 (Chernoff’s bound), we have

Prw′<r′
(∣∣{i < m

∣∣ |g(x, 2k, wi)− a| > 1/k
}∣∣ ≥ m/2) �0 c4

−m/|t|2 ≤ 1/s.

The median of a set of numbers falls into the interval I = [a−1/k, a+1/k] whenever more than

half of the numbers are in I, thus

Prw′<r′
(
|g′(x, 2k, w′)− a| > 1/k

)
�0 1/s. �



I. Approximate counting in bounded arithmetic 51

Definition 4.20 An APP-function f : ω → [0, 1] is representable in a theory T , if there exists

a pair of PV -functions 〈g, r〉 which, provably in T , 1/4-defines an APP-algorithm, and for any

x and k,

Prw<r(x,2k)

(
|g(x, 2k, w)− f(x)| > 1/k

)
≤ 1/4

is true in N.

We want to show that all APP-functions are representable in PV1 + sWPHP(PV ). Notice

that for any reasonable model of computation (such as APP), the class of algorithms repre-

sentable in a given recursively axiomatizable theory is recursively enumerable. We thus need

to establish recursive enumerability of APP as a necessary prerequisite (it was left as an open

problem in [111]).

Definition 4.21 Let f, g : ω → [0, 1] be real-valued functions. We say that f is (poly-time

many-one approximately) reducible to g, if there is a poly-time function r such that for every x

and k,

|f(x)− g(r(x, 2k))| ≤ 1/k.

The Circuit Acceptance Probability Problem (CAPP) is the real-valued function fCAPP such

that for every Boolean circuit C : 2n → 2,

fCAPP (C) = Pru<2n(C(u) = 1).

Theorem 4.22 ([111]) A function f is in APP if and only if f is reducible to fCAPP .

Theorem 4.23 The class APP is recursively enumerable. I.e., there exists a recursive sequence

{Ae | e ∈ ω} such that

• each Ae is a description of an APP-algorithm approximating a function fe,

• for every f ∈ APP, there is an e such that f = fe.

Proof: Let {ge | e ∈ ω} be a recursive enumeration of all clocked poly-time algorithms g(x, y),

such that the output of g(x, y) is a description of a Boolean circuit. Let Cutqp be the cut-off

function

Cutqp(x) := max{p,min{q, x}} =


q, x ≥ q,
x, p ≤ x ≤ q,
p, x ≤ p.

Let Ae(x, 2
k) be the algorithm described in Figure 4.1. Clearly, Ae is a probabilistic poly-time

algorithm. Fix e and x, and define

Ci := ge(x, 2
i),

ai := Pru(Ci(u) = 1),

bk := Cut1
0

(
a1 +

k∑
i=2

Cut
1/(2i2)
−1/(2i2)

(ai − ai−1)
)
.
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input: x, 2k

for i = 1, . . . , k do:

Ci ← ge(x, 2
i)

whp, compute ci such that |ci − Pru(Ci(u) = 1)| ≤ 1/(4k2) by random sampling

output Cut1
0

(
c1 +

k∑
i=2

Cut
1/(2i2)
−1/(2i2)

(ci − ci−1)
)

Figure 4.1: The APP-algorithm Ae.

For any k < `, we have

|b` − bk| ≤
∣∣∣ ∑̀
i=k+1

Cut
1/(2i2)
−1/(2i2)

(ai − ai−1)
∣∣∣ ≤ ∑̀

i=k+1

1

2i2
≤ 1

2

∞∑
i=k+1

1

(i− 1)i
=

1

2k
,

thus the sequence {bk | k ∈ ω} is Cauchy, and converges to a number fe(x) := b ∈ [0, 1] such

that

|b− bk| = lim
`→∞
|b` − bk| ≤

1

2k
.

Fix k, and consider a computation of Ae on input 〈x, 2k〉. For all i = 1, . . . , k, let ci ∈ [0, 1] be

as in Figure 4.1. With high probability, we have

|ci − ai| ≤
1

4k2

for every i. Let

d := Cut1
0

(
c1 +

k∑
i=2

Cut
1/(2i2)
−1/(2i2)

(ci − ci−1)
)

be the output of the algorithm. Addition, subtraction, and the cut-off function are 1-Lipschitz,

thus

|d− bk| ≤ |c1 − a1|+
k∑
i=2

|(ci − ci−1)− (ai − ai−1)|

≤ |c1 − a1|+
k∑
i=2

(
|ci − ai|+ |ci−1 − ai−1|

)
≤ (2k − 1)

1

4k2
≤ 1

2k
,

and

|d− b| ≤ |d− bk|+ |bk − b| ≤
1

k
.

This means that Ae is an APP-algorithm for fe.

Let f be an arbitrary APP-function. By APP-completeness of CAPP, there is a poly-time

function g such that for any x and k, C := g(x, 2k) is a Boolean circuit satisfying

|f(x)− Pru(C(u) = 1)| ≤ 1

k
.
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Choose e such that

ge(x, 2
k) = g(x, 24(k+1)2).

Fix x, and define the sequences Ci, ai, and bi as above. We have

|ai − ai−1| ≤
1

4(i+ 1)2
+

1

4i2
≤ 1

2i2
,

thus

bk = Cut1
0

(
a1 +

k∑
i=2

(ai − ai−1)
)

= Cut1
0(ak) = ak,

which means

fe(x) = lim
k→∞

bk = lim
k→∞

ak = f(x).

As x was arbitrary, fe = f . �

Lemma 4.24 CAPP is representable in PV1 + sWPHP(PV ).

Proof: Let 〈g, r〉 be the formalization of the following algorithm: given C and 2k, choose a

random Boolean function f in a suitable number of variables, and output Prfu(C(u) = 1)1/(3k).

Fix C : 2n → 2, k < ` ∈ Log, and let ξ = 1/(3`), Pru(C(u) = 1) ≈ξ a. As PV1 +

sWPHP(PV ) proves

Prf (¬HardA1/4(f)) �0 1/4

(Lemma 3.2), we have

Prf
(
|g(C, 2k, f)− a| > 1/(3k) + ξ + ξ

)
�0 1/4

and

Prf
(
|g(C, 2`, f)− a| > 1/(3`) + ξ + ξ

)
�0 1/4

by Lemma 3.11 (ii). �

We remark that the combinatorial core of Theorem 4.22 can also be formalized in PV1 +

sWPHP(PV ) with no difficulty. However, we do not know how to sensibly formulate the

statement of Theorem 4.22 in PV1 + sWPHP(PV ), due to absence of real numbers in bounded

arithmetic.

Theorem 4.25 Every APP-function f is representable in PV1 + sWPHP(PV ).

Proof: The basic idea is to partially formalize Theorem 4.23 in PV1 + sWPHP(PV ).

As in Theorem 4.23, choose a PV -function h(x, y) such that for every x and k we have

|f(x)− Pru(C(u) = 1)| ≤ 1/(8k2),

where C = h(x, 2k). Let 〈gCAPP , rCAPP 〉 be the representation of CAPP from Lemma 4.24,

amplified by Proposition 4.19 so that the error on input 〈C, 2k〉 is at most 1/k. We may assume

that rCAPP (x, 2k) is always a power of 2. Define g(x, 2k, w) as in Figure 4.2, and let r(x, 2k)

be a power of 2 large enough to accommodate all calls to gCAPP inside g. The functions 〈g, r〉
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input: x, 2k, w

for i = 1, . . . , k do:

Ci ← h(x, 2i)

ci ← gCAPP

(
Ci, 2

1/(8k2),
(
w mod rCAPP (Ci, 2

1/(8k2))
))

output Cut1
0

(
c1 +

k∑
i=2

Cut
1/(2i2)
−1/(2i2)

(ci − ci−1)
)

Figure 4.2: The function g, formalizing Ae.

represent f by the proof of Theorem 4.23, it remains to prove in PV1 + sWPHP(PV ) that 〈g, r〉
is a 1/4-defined APP-algorithm.

Work in HARDA. Fix x, and k < ` ∈ Log. Define

Ci := h(x, 2i),

ai := Pru(Ci(u) = 1)1/(10`2),

a := Cut1
0

(
a1 +

∑̀
i=2

Cut
1/(2i2)
−1/(2i2)

(ai − ai−1)
)
,

a′ := Cut1
0

(
a1 +

k∑
i=2

Cut
1/(2i2)
−1/(2i2)

(ai − ai−1)
)

for every i ≤ `. Consider first the computation of d := g(x, 2`, w) on a random input w, and let

ci be as in Figure 4.2. For every i ≤ ` and suitably chosen small ξ, we have

|ci − ai| ≤
1

8`2
+

1

10`2
+ ξ ≤ 1

4`2

with probability at least 1− 1/(8`2), thus

∀i ≤ ` |ci − ai| ≤ 1/(4`2)

with probability 1− `/(8`2)− ξ ≥ 3/4 by Proposition 3.15. When this happens, we have

|d− a| ≤ |c1 − a1|+
∑̀
i=2

(
|ci − ai|+ |ci−1 − ai−1|

)
≤ 2`− 1

4`2
<

1

2`

as in Theorem 4.23, thus

Prw
(
|g(x, 2`, w)− a| > 1/`

)
�0 1/4.

Now consider the computation of d′ := g(x, 2k, w). We have

|d′ − a′| < 1

2k

with probability at least 3/4 by the same reasoning as above. Moreover,

|a′ − a| ≤
∑̀
i=k+1

∣∣Cut
1/(2i2)
−1/(2i2)

(ai − ai−1)
∣∣ ≤ ∑̀

i=k+1

1

2(i− 1)i
=

1

2

(
1

k
− 1

`

)
,
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where the last equality follows by induction on `. Consequently

|g(x, 2k, w)− a| ≤ 1

2k
+

1

2k
− 1

2`
<

1

k

holds with probability at least 3/4. �

4.4 The classes MA and promise MA

Babai [16] (cf. [17]) introduced a hierarchy of complexity classes based on public-coin random-

ized interactive proof systems, Arthur-Merlin games. The game is played by the omniscient but

untrustworthy wizard Merlin, and king Arthur, who may flip coins, but otherwise his computa-

tional power is polynomially limited. The players exchange messages in turn, and the goal for

Merlin is to convince mistrustful Arthur to accept the input string. MA is the lowest level of

the hierarchy, where the game is restricted to one round, with Merlin playing first.

Definition 4.26 A promise problem L is in promise MA (prMA for short), if there exists a

probabilistic poly-time algorithm A(x, y) such that

A(x, y)⇒ |y| ≤ p(|x|)

for some polynomial p, and

x ∈ L+ ⇒ ∃y Pr(A(x, y)) ≥ 3/4,

x ∈ L− ⇒ ∀y Pr(A(x, y)) ≤ 1/4.

A language is in MA if the corresponding promise problem is in prMA.

Definition 4.27 (in PV1 + sWPHP(PV )) Let β be a PV -function with values in (0, 1/2),

A a PV -predicate, and q, r PV -functions. The triple 〈A, q, r〉 β-defines a prMA-problem

L = 〈L+, L−〉 if L+ ⊇ L+∃
A,q,r,β and L− ⊇ L−∀A,q,r,β , where

x ∈ L+∃
A,q,r,β ⇐⇒ ∃y ≤ q(x) Prw<r(x)(¬A(x, y, w)) �0 β(x),

x ∈ L−∀A,q,r,β ⇐⇒ ∀y ≤ q(x) Prw<r(x)(A(x, y, w)) �0 β(x).

〈A, r, s〉 β-defines an MA-language, if ∀x (x ∈ L+∃
A,r,s,β ∨ x ∈ L

−∀
A,r,s,β). If unspecified, we take

β = 1/4.

Corollary 4.28 (in PV1 + sWPHP(PV )) Let t and s be as in Proposition 4.11, and let

L = 〈L+, L−〉 be a promise problem. The following are equivalent.

(i) L is a (1/2− 1/|t|)-definable prMA-problem,

(ii) L is a 1/4-definable prMA-problem,

(iii) L is a 1/s-definable prMA-problem.

Moreover, every definable prMA-problem is in (the natural formalization of ) prNP/poly.

Proof: This follows from Proposition 4.11 and Lemma 4.10, as the definable prMA-problems

are just existentially quantified definable prBPP-problems. �
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Trivially, every prMA-problem is representable in PV1 + sWPHP(PV ). For MA-languages,

we again have a reduction to a Σb
1-problem.

Proposition 4.29 Let A be an MA-algorithm. There exists a true ∀Σb
1-sentence ϕ such that

PV1 + sWPHP(PV ) proves

(i) if ϕ, then A 1/3-defines an MA-language,

(ii) if A 1/4-defines an MA-language, then ϕ.

Proof: We may take the formula

ϕ = ∀x ∀f ∀y ∃z
(
¬HardA1/4(f) ∨ Prfw(A(x, y, w))1/50 ≤ 7/24 ∨ Prfw(¬A(x, z, w))1/50 ≤ 7/24

)
as in Theorem 4.13. �

We do not know whether the NP search problem associated with ϕ is solvable in probabilistic

polynomial time. It holds at least for languages from NPBPP ⊆ MA.

Proposition 4.30 Let A, q and r be PV -functions. There are Σb
2-formulas σ+(x), σ−(x) and

Πb
2-formulas π+(x), π−(x) such that PV1 + sWPHP(PV ) proves

x ∈ L+∃
A,q,r,1/4 → π+(x)→ σ+(x)→ x ∈ L+∃

A,q,r,1/3,

x ∈ L−∀A,q,r,1/4 → π−(x)→ σ−(x)→ x ∈ L−∀A,q,r,1/3.

In particular, any definable MA-language is in Σb
2 ∩Πb

2.

Proof: Similar to Proposition 4.14. The extra quantifiers do no harm:

π+(x) = ∀f
(
¬HardA1/4(f) ∨ ∃y ≤ q(x) Prfw<r(x)(¬A(x, y, w))1/50 ≤ 7/24

)
,

σ+(x) = ∃f ∃y ≤ q(x)
(
HardA1/4(f) ∧ Prfw<r(x)(¬A(x, y, w))1/50 ≤ 7/24

)
,

π−(x) = ∀f ∀y ≤ q(x)
(
¬HardA1/4(f) ∨ Prfw<r(x)(A(x, y, w))1/50 ≤ 7/24

)
,

σ−(x) = ∃f
(
HardA1/4(f) ∧ ∀y ≤ q(x) Prfw<r(x)(A(x, y, w))1/50 ≤ 7/24

)
,

where f is bounded as in Proposition 4.14. �

5 Relativization and AM

The content of Section 3 can be relativized in a straightforward way: we work with PV (R)

instead of PV , where R is a new predicate, and we replace circuits with oracle circuits. The

relativized version of Theorem 3.7 then provides approximate counting of sets defined by oracle

circuits in PV1(R) + sWPHP(PV (R)). The other results relativize in a similar way.

In particular, counting of sets higher in the polynomial hierarchy may be achieved by sub-

stitution of Σb
i -predicates for R. Namely, approximate counting of PΣbi -definable sets (or more

generally, sets defined by circuits with Σb
i oracles) is possible in T i2 + sWPHP(FPΣbi ) ⊆ T i+2

2 .
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Relativization of Section 4 provides the formalization of FRPΣbi , prBPPΣbi , APPΣbi , and prMAΣbi

in T i2 + sWPHP(FPΣbi ).

Approximate counting of NP sets also permits formalization of Babai’s class AM [16], which

is defined by one-round Arthur-Merlin games where Arthur plays first.

Definition 5.1 A promise problem L is in promise AM (prAM for short), if there exists a

probabilistic poly-time algorithm A(x, y) such that

A(x, y)⇒ |y| ≤ p(|x|)

for some polynomial p, and

x ∈ L+ ⇒ Pr(∃y A(x, y)) ≥ 3/4,

x ∈ L− ⇒ Pr(∃y A(x, y)) ≤ 1/4.

A language is in AM if the corresponding promise problem is in prAM.

Definition 5.2 (in T 1
2 + sWPHP(PV2)) Let β be a PV -function with values in (0, 1/2). A

pair 〈ϕ, r〉, where ϕ(x,w) is a Σb
1-formula, and r is a PV -function, β-defines a prAM problem

L = 〈L+, L−〉 if L+ ⊇ L+
ϕ,r,β and L− ⊇ L−ϕ,r,β, where

x ∈ L+
ϕ,r,β ⇐⇒ Prw<r(x)(¬ϕ(x,w)) �1

0 β(x),

x ∈ L−ϕ,r,β ⇐⇒ Prw<r(x)(ϕ(x,w)) �1
0 β(x),

and �iε denotes �ε relativized with a Σb
i -complete oracle. The pair 〈ϕ, r〉 β-defines an AM-

language, if ∀x (x ∈ L+
ϕ,r,β ∨ x ∈ L

+
ϕ,r,β).

If unspecified, we take β = 1/4.

Proposition 5.3 (in T 1
2 + sWPHP(PV2)) Let t and s be as in Proposition 4.11, and let

L = 〈L+, L−〉 be a promise problem. The following are equivalent:

(i) L is a (1/2− 1/|t|)-definable prAM-problem,

(ii) L is a 1/4-definable prAM-problem,

(iii) L is a 1/s-definable prAM-problem.

Proof: As prAM ⊆ prBPPNP, the result follows from relativization of Proposition 4.11, ob-

serving that the formula ϕ′(x,w) defined by∣∣{i < m(x) | ϕ(x,wi)}
∣∣ ≥ m(x)/2

is Σb
1, as it is equivalent to

∃I ⊆ m(x)
(
|I| ≥ m(x)/2 ∧ ∀i ∈ I ϕ(x,wi)

)
. �
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Babai’s Collapse Theorem [16] states that AM coincides with the class of languages rec-

ognized by an Arthur-Merlin protocol with a bounded number of rounds. It is not clear how

to define general Arthur-Merlin games in bounded arithmetic; the next theorem shows that

prMAM = prAM, which implies that any class obtained by a constant number of applications

of the ∃ and BP operators to prP is contained in prAM.

Theorem 5.4 (in T 1
2 + sWPHP(PV2)) Let L = 〈L+, L−〉 be a 1/4-definable prAM-problem,

and q a PV -function. Define a promise problem L∃ = 〈L+∃, L−∀〉 by

x ∈ L+∃ ⇐⇒ ∃y < q(x) 〈x, y〉 ∈ L+,

x ∈ L−∀ ⇐⇒ ∀y < q(x) 〈x, y〉 ∈ L−.

Then L∃ is a 1/4-definable prAM-problem.

In particular, every definable prMA-problem is a definable prAM-problem.

Proof: By Proposition 5.3, there exists a 1/(4q(x))-definition 〈ϕ, r〉 of L. Define

ϕ′(x,w) ⇐⇒ ∃y < q(x)ϕ(x, y, w).

Then 〈ϕ′, r〉 is a 1/4-definition of L∃: if x ∈ L+∃, there is y < q(x) such that Prw(¬ϕ(x, y, w)) �1
0

1/(4q(x)), and a fortiori

Prw(¬∃y < q(x)ϕ(x, y, w)) �1
0 1/(4q(x)) ≤ 1/4.

Assume x ∈ L−∀. Then Prw(ϕ(x, y, w)) �1
0 1/(4q(x)) for every y < q(x), and we would like to

argue that

Prw(∃y < q(x)ϕ(x, y, w)) �1
0 1/4.

We cannot do it directly (say, by application of Proposition 3.19), as q(x) /∈ Log in general, but

we can explore the fact that the proof of Proposition 5.3 is sufficiently uniform.

We work in the relativized version of HARDA, which we denote HARDA(Σb
1). Let 〈ψ, s〉 be a

1/6-definition of L, and we assume that 〈ϕ, r〉 was constructed from 〈ψ, s〉 as in Proposition 5.3.

Keep x fixed. By the relativization of Lemma 3.14 there exist v and FPα,Σ
b
1-functions f, g, h

such that

f(y) < 1/6,

g(y,−) : v(1/50 + f(y))s(x)� v × {w < s(x) | ψ(x, y, w)},
h(y,−) : v(1/50 + 1− f(y))s(x)� v × {w < s(x) | ¬ψ(x, y, w)}

for all y < q(x). By the proof of Proposition 5.3 and the relativization of Proposition 3.18 there

exists a v′ and an FPα,Σ
b
1-function g′ such that

g′(y,−) : v′(r(x)/(4q(x)))� v′ × {w < r(x) | ϕ(x, y, w)}

for all y < q(x). We define g′′(u) = g′(u mod q(x),
⌊
u
q(x)

⌋
), and observe that

g′′ : v′(r(x)/4)� v′ × {w < r(x) | ∃y < q(x)ϕ(x, y, w)},

thus

Prw(∃y < q(x)ϕ(x, y, w)) �1
0 1/4. �
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Proposition 5.5 (in T 1
2 + sWPHP(PV2)) 1/4-definable prAM-problems are in prNP/poly.

I.e., if L = 〈L+, L−〉 is a 1/4-definable prAM-problem, and n ∈ Log, then there exists a poly-

size nondeterministic circuit C : 2n → 2 such that

x ∈ L+ ⇒ C(x) = 1,

x ∈ L− ⇒ C(x) = 0

for every x < 2n.

Proof: Let 〈ϕ, r〉 be a 1/4-definition of L. Using twice the relativized version of Lemma 4.10,

there exists a circuit D : 2n → {0, 1, ∗} with an NP-oracle such that

x ∈ L+
ϕ,r,1/4 → D(x) = 1→ x ∈ L+

ϕ,r,1/3,

x ∈ L−ϕ,r,1/4 → D(x) = 0→ x ∈ L−ϕ,r,1/3.

for every x < 2n. Let 〈ψ, s〉 be a 2−2n-definition of Lϕ,r,1/3, available by Proposition 5.3. For

simplicity, we may assume that s(x) = s is constant for all x < 2n. Then

Prw<s
(
(D(x) = 1 ∧ ¬ψ(x,w)) ∨ (D(x) = 0 ∧ ψ(x,w))

)
�1

0 2−2n

for every x < 2n. Using the uniformity of the proof of Propositions 5.3 and 3.18, we obtain

Prw
(
∃x < 2n (D(x) = 1 ∧ ¬ψ(x,w)) ∨ (D(x) = 0 ∧ ψ(x,w))

)
�1

0 1/2

by the same reasoning as in Theorem 5.4. By sWPHP(FPΣb1) there exists w < s such that

D(x) = 1→ ψ(x,w),

D(x) = 0→ ¬ψ(x,w)

for every x < 2n, and then it suffices to define C(x)↔ ψ(x,w). �

As AM ⊆ BPPNP, the relativized version of Proposition 4.14 implies that every definable

AM-predicate is in Σb
3 ∩ Πb

3. We will formalize the stronger result AM ⊆ coRPNP[1] ⊆ Πb
2 from

[16]. The proof is based on [122].

Theorem 5.6 (in T 1
2 + sWPHP(PV2)) Let L = 〈L+, L−〉 be a 1/4-definable prAM-problem.

There exists a Σb
1-formula ϕ(x, y) and a PV -function r(x) such that for every x,

x ∈ L+ ⇒ ∀y ≤ r(x)ϕ(x, y),

x ∈ L− ⇒ Pry≤r(x)(ϕ(x, y)) �1
0 1/2.

Proof: In Proposition 5.3, the number of random bits increases polynomially in the number of

iterations, but the probability of error decreases exponentially. Thus there exists 〈ψ, s〉 which

is a 1/(4|s(x)|)-definition of L. We may assume s(x) is a power of two. We define

r(x) := s(x)|s(x)|,

ϕ(x, y)↔ ∃w < s(x) ∀i < |s(x)|ψ(x,w ⊕ yi),
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where y is decomposed as a sequence of |s(x)| numbers yi < s(x), and ⊕ is bitwise XOR.

Let x ∈ L+, and fix y < r(x). We have Prw<s(x)(¬ψ(x,w)) �1
0 1/(4|s(x)|), and − ⊕ yi is a

poly-time computable involution on 2|s(x)|, thus

Prw(¬ψ(x,w ⊕ yi)) �1
0

1

4|s(x)|

for every i < |s(x)|. We obtain

Prw(∃i < |s(x)| ¬ψ(x,w ⊕ yi)) �1
1/4

1

4

from relativization of Proposition 3.19, thus ϕ(x, y) by sWPHP(FPΣb1).

Let x ∈ L−, and write s = s(x). We have Prw(ψ(x,w)) �1
0 1/(4|s|) ≤ 1/4, thus there exists

a circuit C1 with an NP oracle such that

C1 : v(s/4)� v × {u < s | ψ(x, u)}

for some v > 0. As w ⊕ − is a poly-time involution, we have a circuit C2 such that for any

w < s(x),

C2(w,−) : v(s/4)� v × {u < s | ψ(x,w ⊕ u)}.

We apply |s| copies of C2 in parallel to obtain a circuit C3 such that

C3(w,−) : v|s|(s/4)|s| � v|s| × {y < s|s| | ∀i < |s|ψ(x,w ⊕ yi)},

and rearranging the domain yields a circuit C4 such that

C4 : v|s|(s/4)|s|s� v|s| × {y < s|s| | ∃w < s ∀i < |s|ψ(x,w ⊕ yi)},

thus

Pry(ϕ(x, y)) �1
0

s

4|s|
≤ 1

2
. �
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Chapter II

Approximate counting by hashing in

bounded arithmetic

Abstract

We show how to formalize approximate counting via hash functions in subsystems of

bounded arithmetic, using variants of the weak pigeonhole principle. We discuss several

applications, including a proof of the tournament principle, and an improvement on the

known relationship of the collapse of the bounded arithmetic hierarchy to the collapse of

the polynomial-time hierarchy.

1 Introduction

Counting the number of elements of a finite set is one of the most fundamental operations

in discrete mathematics. However, exact counting is not available in weak systems of first-

order arithmetic where exponentiation is not a total operation unless the polynomial hierarchy

collapses, because of Toda’s theorem [174]. This does not exclude the possibility of approximate

counting, which is sufficient in many counting applications: we estimate the size of the set up

to a negligible error (where the meaning of “negligible” depends on the context).

A popular way of simulating approximate counting arguments in bounded arithmetic is to

apply variants of the weak pigeonhole principle, see e.g. [146, 152, 136]. A systematic approach

was taken in Chapter I: we have proved in the theory PV1 + sWPHP(PV ) (defined below

in Section 2) that for any bounded set defined by a Boolean circuit, there exist suitable kind

of surjective “counting functions” (also definable by circuits) which allow us to coherently

define the approximate size of the set up to a polynomially small error. This framework admits

smooth development of basic counting and probability arguments (including, e.g., the inclusion-

exclusion principle, and the Chernoff bounds), and provides a suitable means to define and

discuss randomized algorithms in bounded arithmetic. However, it also suffers from a significant

defect: if X is a subset of [0, a], we can only estimate the size of X up to an error polynomially

small relative to a—the size of the ambient interval—rather than relative to the size of X itself.

(One of the reasons being that the size of X is estimated by sampling it with a pseudorandom

number generator.) Sufficiently “sparse” sets are thus indistinguishable from the empty set.

61
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This precludes more sophisticated combinatorial counting arguments (in particular, inductive

arguments such as in the proof of the Ramsey theorem), and it is at odds with what usually

goes by the name “approximate counting” in theoretical computer science.

Sipser’s Coding Lemma [166], which is an application of Carter–Wegman 2-universal families

of hash functions [49], shows that the polynomial-time hierarchy is closed under a stronger form

of approximate counting: if X is the finite set we want to count, and n is a parameter given

in unary, we can find s such that s ≤ |X| ≤ s(1 + ε) for any ε ≤ n−O(1). Our aim is to show

that Sipser’s definition makes a well-behaved concept of approximate counting in bounded

arithmetic. We work in the theory T 1
2 + sWPHP(PV2) (i.e., the one as before, but relativized

with an NP-oracle; it is a subtheory of T 3
2 ), or in the slightly weaker theory T 1

2 + rWPHP(PV2)

(see Section 2). The key technical result (which can be thought of as formalization of the

Coding Lemma in bounded arithmetic) states that Sipser-style approximate counting in terms

of hash functions is (more or less) equivalent to the existence of certain surjective functions

(Corollary 3.5 and Theorem 3.8). Armed with this “implementation-independent” view of

hashing, we are able to prove basic properties of counting (Section 3), such as the size of a

disjoint union is (approximately) the sum of sizes of the summands.

In Section 4 we mention some applications, intended as examples demonstrating how the

methods developed in Section 3 may be used to formalize counting arguments in bounded

arithmetic. We solve an open problem of Kraj́ıček, Pudlák, and Takeuti [55, 116] by showing

that T 1
2 +rWPHP(PV2) (hence also T 3

2 ) proves Erdős’s [77] tournament principle (Theorem 4.2).

We also prove a generalization of the tournament principle (Theorem 4.3), which allows us

to strengthen the results of [121, 39] showing that the collapse of the bounded arithmetic

hierarchy implies collapse of the polynomial-time hierarchy (Theorem 4.6 and Corollary 4.7). We

observe that approximate counting provides an approximate Euler characteristic (in the sense

of Kraj́ıček [118]) for models of S2(α) (Theorem 4.10). We also include two applications from

computational complexity: we formalize in bounded arithmetic Cai’s [47] result SP2 ⊆ ZPPNP

(Theorem 4.11), and the existence of an AM-algorithm for graph nonisomorphism by Goldwasser

and Sipser [83] (Theorem 4.12).

We remark that the “new” approximate counting method does not make the “old” counting

of Chapter I superfluous: while the method in the present paper allows for better approximation

(we can estimate the size of a set X up to an error which is a polynomially small fraction of |X|,
rather than of the size of the ambient universe) which also agrees with the established usage

of the term “approximate counting” in computer science, the price we pay is an increase in

the complexity of the counting functions, which requires an increase of the strength of the base

theory by one level of the bounded arithmetic hierarchy. To put it differently, T 1
2 +sWPHP(PV2)

can count PNP/poly-sets using the old method, but only NP/poly-sets using the new method.

Moreover, some results from Chapter I are used in an essential way in Section 3.

2 Preliminaries

We assume some degree of familiarity with first-order bounded arithmetic, however the basic

definitions are summarized below. More background can be found in [116, 40, 86].
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Buss’s theories are formulated in the language L = 〈0, S,+,×,≤,#, |x|,
⌊
x
2

⌋
〉. The intended

meaning of the symbols are the usual arithmetical operations on non-negative integers, and

|x| = dlog2(x+ 1)e, x# y = 2|x|·|y|. Bounded quantifiers are introduced by

∃x ≤ t ϕ⇔ ∃x (x ≤ t ∧ ϕ),

∀x ≤ t ϕ⇔ ∀x (x ≤ t→ ϕ),

where t is a term without an occurrence of the variable x. Such a quantifier is sharply bounded,

if t has the form |s| for some term s. A formula ϕ is bounded (sharply bounded) if all quantifiers

in ϕ are bounded (sharply bounded). A formula is Σb
1 if it is constructed from sharply bounded

formulas by means of ∧, ∨, sharply bounded, and existential bounded quantifiers. In general,

Σb
i -formulas consist of i alternating blocks of bounded quantifiers followed by a sharply bounded

formula, where the first block is existential, and we ignore sharply bounded quantifiers which

are allowed to appear anywhere in the quantifier prefix. Πb
i -formulas are defined similarly, but

the first block is universal; in other words, Πb
i -formulas are negations of Σb

i -formulas. The class

of Boolean combinations of Σb
i -formulas is denoted by B(Σb

i). Bounded formulas capture the

polynomial-time hierarchy (PH). More precisely, for any i ≥ 1 the class ΣP
i coincides with

sets of natural numbers definable by Σb
i -formulas in N (the standard model of arithmetic), and

dually ΠP
i = Πb

i(N), in particular NP = Σb
1(N).

The theory T i2 is axiomatized by a finite set of open axioms denoted by BASIC , which state

elementary properties of the symbols of L, and the schema of induction

(IND) ϕ(0) ∧ ∀x < a (ϕ(x)→ ϕ(x+ 1))→ ϕ(a)

for Σb
i -formulas ϕ. The theory Si2 is axiomatized over BASIC by the polynomial induction

schema

(PIND) ϕ(0) ∧ ∀x ≤ a (ϕ(
⌊
x
2

⌋
)→ ϕ(x))→ ϕ(a)

for Σb
i -formulas ϕ. Alternatively, Si2 can be axiomatized over BASIC by the length induction

schema

(LIND) ϕ(0) ∧ ∀x < |a| (ϕ(x)→ ϕ(x+ 1))→ ϕ(|a|),

or by the length maximization schema

(LMAX ) ϕ(|a|)→ ∃b ≤ |a| (ϕ(b) ∧ ∀c < b¬ϕ(c))

for Σb
i -formulas ϕ. We have Si2 ⊆ T i2 ⊆ Si+1

2 , the full bounded arithmetic is thus S2 =
⋃
i S

i
2 =⋃

i T
i
2. The theory Si+1

2 is ∀Σb
i+1-conservative over T i2 by Buss’s witnessing theorem [37] (in the

case of i = 0 we need a minor adjustment of the language of T 0
2 , see [94]).

PV is an equational theory introduced by Cook [63]. Its language contains function symbols

for all polynomial-time algorithms, introduced inductively using limited recursion on notation

(cf. Cobham [57]). It is axiomatized by defining equations of its function symbols, and a

derivation rule similar to PIND . PV1, also known as QPV , T 0
2 (�p1), or ∀Σb

1(S1
2), is a first-order
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variant of PV . It can be axiomatized by equations provable in PV together with the axioms

0 6= 1 and
⌊
x
2

⌋
= 0 → x = 0 ∨ x = 1, and it proves the PIND and IND schemata for sharply

bounded formulas. We will also use the symbol PV to denote the set of function symbols of

PV .

The theories PVi+1 for i > 0, introduced in [121], are defined similarly to PV1, except that

the basic functions of their language include the characteristic functions of all Σb
i -predicates, thus

PVi+1-functions correspond to FPΣPi in the standard model. Again, we will also use PVi+1 to

denote the class of PVi+1-functions. The class of PVi+1-predicates (which corresponds to ∆P
i+1

in the standard model) is denoted by ∆b
i+1; it coincides with predicates provably Σb

i+1 ∩ Πb
i+1

in either T i2 or Si+1
2 .

As PVi+1 is a conservative extension of T i2 by definitions, we will simply identify PVi+1 with

T i2, and work freely with PVi+1-functions in T i2. The theory S1
2(PVi+1), which is axiomatized

by PVi+1 and Σb
1(PVi+1)-PIND , is a conservative extension of Si+1

2 for the same reason, hence

we will also identify Si+1
2 = S1

2(PVi+1).

All these theories can be relativized in a straightforward way. We include a new predicate

α in the language, and define Σb
i(α) as before, but allowing α to be used in atomic formulas.

The theory T i2(α) consists of BASIC and Σb
i(α)-IND (i.e., there are no axioms involving α

apart from the induction axioms), and similarly Si2(α) = BASIC + Σb
i(α)-PIND . In the case of

PV (α) and PVi(α), we allow the characteristic function of α to appear in functions constructed

by limited recursion on notation, so that function symbols of PV (α) correspond to polynomial-

time oracle algorithms. More generally, if Γ is a set of formulas, we define Σb
i(Γ), T i2(Γ), Si2(Γ),

and PVi(Γ) by substituting Γ-formulas for α in Σb
i(α), T i2(α), Si2(α), and PV i(α). (Notice that

T 1
2 (Σb

i) = T i+1
2 , and so on.) The main point of relativization is that this kind of substitution

preserves derivability. Hence, e.g., if we prove a statement about counting of Σb
1(α)-sets in

T 1
2 (α) + sWPHP(PV2(α)), it also applies to counting of Σb

i -sets in T i2 + sWPHP(PVi+1) for

every i > 0.

The choice schema (aka bounded collection, or replacement) BBΓ for a set of formulas Γ is

defined by

∀x < |a| ∃y ≤ b ϕ(x, y)→ ∃w ∀x < |a|ϕ(x, (w)x),

where ϕ ∈ Γ, and (w)x denotes the xth member of the sequence encoded by w. BBΣb
i(α) is

provable in Si2(α).

For any functions f, g, the surjective (also called dual), injective, and retraction pigeonhole

principles are defined by

sPHPa
b (f)⇔ ∃v < b ∀u < a f(u) 6= v,

iPHPa
b (g)⇔ ∃v < b g(v) ≥ a ∨ ∃v < b ∃v′ < v g(v) = g(v′),

rPHPa
b (f, g)⇔ ∃v < b (g(v) ≥ a ∨ f(g(v)) 6= v).

(Recall that a retraction pair is a pair of functions f, g such that f ◦ g = id; the function f is

called a retraction, and g is its coretraction.) Note that the functions f, g may involve other
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parameters not explicitly shown. The weak pigeonhole principles are defined by

?WPHP(f) = ∀
(
x > 0→ ?PHP

x|y|
x(|y|+1)(f)

)
,

?WPHP(Γ) = {?WPHP(f) : f ∈ Γ},

where ∀ denotes universal closure, Γ is a set of functions, and ? ∈ {s, i, r}. In the case of

rWPHP(PV (Γ)) and iWPHP(PV (Γ)), the principles thus introduced are equivalent to the

more usual variants with bounds ?PHPx
2x or ?PHPx

x2 over PV1(Γ). This however does not hold

for sWPHP (we need S1
2(Γ) to prove the equivalence, see [95] for details), we thus need to state

the principle in the strong form as above.

As T i2(α) proves that every PVi+1(α)-function is on a bounded domain computable by

a polynomial-size circuit with a Σb
i(α)-oracle, the schema ?WPHP(PVi+1(α)) is over T i2(α)

equivalent to its single instance where f is the evaluation function for Σb
i(α)-oracle circuits, for

any ?.

Clearly rWPHP(f, g) follows from either sWPHP(f) or iWPHP(g). The weak pigeonhole

principles sWPHP(f) and iWPHP(f) are provable in T 2
2 (f) [146, 116, 125] (in particular,

sWPHP(PV2(α)) is contained in T 3
2 (α)), but no variant of WPHP is provable in S2

2(f) [115, 160].

We will often use (for i = 1) the following connection between rWPHP and sWPHP , which

follows by relativization of [93, Cor. 1.15, 4.12].

Theorem 2.1 The theory Si+1
2 (α)+BBΣb

i+2(α)+sWPHP(PVi+1(α)) is ∀Σb
i+1(α)-conservative

over T i2(α) + rWPHP(PVi+1(α)) for any i ≥ 0. �

We will often work with bounded definable sets, which are collections of numbers of the form

X = {x < a : ϕ(x)},

where ϕ is a formula. Bounded sets are not genuine objects in our arithmetical theories, but a

figure of speech: x ∈ X is an abbreviation for x < a ∧ ϕ(x). We will write X ∈ Σb
1(α) if X is a

bounded set defined by a Σb
1(α)-formula. When used in a context which asks for a set, a number

a is assumed to represent the integer interval [0, a); thus, for example, X ⊆ a means that all

elements of X are less than a. We will use simple set-theoretic operations, whose meaning

should be generally clear from the context; for example, if X ⊆ a and Y ⊆ b, we may define

X × Y = {bx+ y : x ∈ X, y ∈ Y } ⊆ ab,
X ∪̇ Y = X ∪ {y + a : y ∈ Y } ⊆ a+ b.

On the other hand, we will occasionally (especially in the applications) need to refer to

“small” sets directly encoded by a number. They should be distinguishable from definable sets

by the context; in particular, by the absence of a complexity measure (as in “a Σb
1(α)-set”). If

X is such a small set, we denote by |X| its cardinality, defined in a natural way (e.g., as in

Corollary 3.10). This notation should not be confused with the length (or logarithm) function

|a| from the basic language of bounded arithmetic.
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Due to general absence of BB in our base theory, we will often need to work with a strength-

ened notion of surjectivity. We will call a function f : X → Y a smooth surjection, written as

f : X � Y,

if for every sequence w of elements of Y , there exists a sequence v of elements of X, such

that lh(v) = lh(w), and f(vi) = wi for every i < lh(v), where lh(v) denotes the length of the

sequence v. (Note that the length of w is implicitly polynomially bounded as lh(w) ≤ |w|, but

we do not impose other restrictions on it.) We also extend the definition so that the empty

partial function is considered a smooth surjection from any set X on the empty set Y . In many

situations, a surjection is automatically smooth (in particular, we will often use (i) without

explicit mention):

Observation 2.2 (in T 1
2 (α)) Let X ∈ Σb

1(α). A surjective PV2(α)-function f : X → Y is

smooth whenever at least one of the following holds:

(i) f has a PV2(α)-coretraction,

(ii) f has a Σb
1(α)-graph,

(iii) BBΣb
2(α),

(iv) f is a composition of two smooth surjections. �

(Note in particular that all surjections are smooth in the standard model of arithmetic. Smooth-

ness is only a technical condition needed to compensate for the lack of appropriate instances of

BB .) We will write just X � Y if there exists a function f : X � Y (of suitable complexity,

which should be clear from the context).

We will use the shorthand notation

x ∈ Log⇔ ∃y x = |y|.

We will also work with rational numbers, which are assumed to be represented by pairs of

integers in a natural way. The expression x−1 ∈ Log is a shorthand notation meaning that x is

a positive rational number, whose inverse is bounded above by an integer n ∈ Log. The symbol

QLog denotes the set of rationals whose nominator and denominator belong to Log.

Many of our results take place inside formal theories like T 1
2 + rWPHP(PV2). If T is a

theory, a parenthesized expression “in T” in the heading of a definition or theorem indicates

that the definition is introduced in T , or that the theorem is formulated and proved inside T .

However, we will slightly abuse this convention for reasons of compactness: when we write e.g.

“for every PV2-function f . . . ” in a formalized context, it is assumed that the quantification over

PV2-functions takes place in the metatheory, and only parameters of the function are quantified

inside T . Formulas, definable sets, and other non-first-order objects are treated similarly.

In fact, in most cases the sets or functions thus quantified will only have a bounded domain.

As already mentioned above, speaking of (say) PV2(α)-functions, or Σb
1(α)-sets in such a context

is equivalent to using circuits with a Σb
1(α)-oracle, or non-deterministic Boolean circuits with
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an oracle α, respectively. We will, however, generally use the former expression, as we believe

it is easier to read (even though the latter may be formally more correct). We point out that

the reader should think about Σb
1-sets as corresponding to NP/poly, rather than just NP as is

usual in bounded arithmetic.

We will also need some notation and results from Chapter I. For convenience, we state it in

a relativized version (which is the one we will actually use); in particular, what we denote �ε
below is closer to what is denoted by �1

ε in Chapter I.

Let X,Y ⊆ a be definable sets, and ε ≤ 1. We say that the size of X is approximately less

than the size of Y with error ε, written as X �ε Y , if there exists a PV2(α)-function C, and

v 6= 0, such that

C : v × (Y ∪̇ εa)� v ×X.

The sets X and Y have approximately the same size with error ε, written as X ≈ε Y , if X �ε Y
and Y �ε X. (We recall that we identify a number s with the interval [0, s), thus as a special

case, X ≈ε s means that the size of X is equal to s with error ε.)

If p is a rational, we also write

Prx<a(ϕ(x)) �ε p ⇐⇒ {x < a : ϕ(x)} �ε pa,

and similarly for �, ≈. We will often omit the mention of a when it is clear from context. For

example, a sequence ~A = 〈Ai : i < k〉 of t×n binary matrices is encoded by a number x < 2ktn,

hence we write Pr ~A(ϕ( ~A)) instead of Prx<2ktn(ϕ(the sequence of matrices encoded by x)).

Theorem 2.3 (Thm. I.3.7) (in T 1
2 (α) + sWPHP(PV2(α))) Let X ⊆ a, X ∈ ∆b

2(α), and

ε−1 ∈ Log. There exists a number s ≤ a such that X ≈ε s, moreover the surjections required

by the definition of ≈ have PV2(α)-coretractions, and the numbers v from the definition belong

to Log. �

The reader may find it helpful to familiarize her/himself with basic properties of �ε from

§I.3.

We will occasionally use some results from Chapter I on definable randomized algorithms, in

particular, AM. Recall that a promise problem is a pair L = 〈L+, L−〉 of disjoint sets of strings

(a language L ⊆ Σ∗ is identified with the promise problem 〈L,Σ∗ r L〉). A promise problem

L is in promise AM(α) (prAM(α) for short), if there exists a probabilistic polynomial-time

algorithm A(x, y) with oracle α such that

A(x, y)⇒ |y| ≤ p(|x|)

for some polynomial p, and

x ∈ L+ ⇒ Pr(∃y A(x, y)) ≥ 3/4,

x ∈ L− ⇒ Pr(∃y A(x, y)) ≤ 1/4.

A language is in AM(α) if the corresponding promise problem is in prAM(α).
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We formalize this definition in T 1
2 (α)+sWPHP(PV2(α)) as follows. Let β be a PV -function

with values in (0, 1/2). A pair 〈ϕ, r〉, where ϕ(x,w) is a Σb
1(α)-formula, and r is a PV -function,

β-defines a prAM(α) problem L = 〈L+, L−〉 if L+ ⊇ L+
ϕ,r,β and L− ⊇ L−ϕ,r,β, where

x ∈ L+
ϕ,r,β ⇐⇒ Prw<r(x)(¬ϕ(x,w)) �0 β(x),

x ∈ L−ϕ,r,β ⇐⇒ Prw<r(x)(ϕ(x,w)) �0 β(x).

The pair 〈ϕ, r〉 β-defines an AM(α)-language, if ∀x (x ∈ L+
ϕ,r,β ∨ x ∈ L

−
ϕ,r,β). If unspecified, we

take β = 1/4.

The definition is insensitive on the choice of β in the following sense: if t, s are PV -functions

such that t(x), s(x) > 0 and 1/s(x) + 1/|t(x)| ≤ 1/2, then T 1
2 (α) + sWPHP(PV2(α)) proves

that L is a definable prAM(α)-problem iff it is a (1/2 − 1/|t|)-definable prAM(α)-problem iff

it is a 1/s-definable prAM(α)-problem (Proposition I.5.3). We could also use an asymmetric

definition with different bounds for L+ and L−, but we will not write it down explicitly.

We will need the following statement, formalizing the result that AM ⊆ NP/poly.

Theorem 2.4 (Prop. I.5.5) (in T 1
2 (α) + sWPHP(PV2(α))) If L is a 1/4-definable prAM(α)-

problem, and n ∈ Log, then there exists a polynomial-size nondeterministic oracle circuit

C : 2n → 2 such that

x ∈ L+ ⇒ C(x) = 1,

x ∈ L− ⇒ C(x) = 0

for every x < 2n. �

If L0, L1 are definable prAM(α)-problems, it is easy to see that L0∩L1 := 〈L+
0 ∩L

+
1 , L

−
0 ∪L

−
1 〉

and L0 ∪ L1 := 〈L+
0 ∪ L

+
1 , L

−
0 ∩ L

−
1 〉 are also definable prAM(α)-problems. More importantly,

definable prAM(α)-problems are in T 1
2 (α) + sWPHP(PV2(α)) closed under bounded existential

quantification (Theorem I.5.4): if q is a PV -function, and L is a definable prAM(α)-problem,

then so is L∃ := 〈L+∃, L−∀〉, where

x ∈ L+∃ ⇐⇒ ∃y < q(x) 〈x, y〉 ∈ L+,

x ∈ L−∀ ⇐⇒ ∀y < q(x) 〈x, y〉 ∈ L−.

3 The toolbox

We begin with a definition of approximate counting based on Sipser [166]. Rather than defining

what is a size of a set, we introduce a predicate X -ε s which means that the size of X is

bounded above by s (approximately, with relative error ε). (This - should not be confused

with �.)

The basis of the construction is to use linear hash functions. The idea is as follows. Let

X ⊆ 2n, s = |X|, and choose a parameter t. We consider a random linear function A : 2n → 2t

(which is given by a matrix, thus a polynomial-size object). Ideally, we would like A to be

injective on X, which would witness that s ≤ 2t. This is rather unlikely to happen unless t is
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really huge, but it is possible that A is injective at least on a sizable part of X. Let thus X ′ be

the set of all elements x ∈ X such that A(x) 6= A(y) for all y ∈ X different from x, so that A is

injective on X ′. Elements of X ′ are called separated by A. The probability that A(x) = A(y)

for x 6= y is 2−t, hence any x ∈ X is not separated by A with probability at most s2−t ≤ 1/2,

as long as 2t ≥ 2s. The expected size of X ′ is thus at least s/2. In order to cover all of X,

we choose independently random linear functions Ai : 2n → 2t for i < t. The probability that

x ∈ X is not separated by Ai is at most 1/2, hence the probability that it is not separated by

any Ai, i < t, is at most 2−t. The expected number of x ∈ X not separated by any Ai is thus at

most s2−t ≤ 1/2, hence there exist matrices A0, . . . , At−1 such that every x ∈ X is separated by

some Ai. However, the existence of such ~A does not conversely guarantee that |X| ≤ s. Each

Ai injects a part of X to 2t, hence we can inject X into t2t. We may choose 2t ≤ 4s, hence we

obtain only an injection of X to 4s log 4s.

This form of hashing thus directly distinguishes sets of size s from roughly 4s log s. We

want to distinguish size s from s(1 + ε) for polynomially small ε; we achieve this by considering

Cartesian powers. Instead of our set X, we apply the hashing to Xc for some c. We can

distinguish its size sc from 4sc log sc = 4csc log s, and the latter is less than (s(1 + ε))c as long

as (1 + ε)c ≥ 4c log s. We have (1 + ε)c1 ≥ 2 for c1 ≥ ε−1, and 2c2 ≥ 4c log s for c2 about

log log s+log c, hence it suffices to take roughly c = Ω(ε−1(log log s+log ε−1)). We will actually

use somewhat larger (but still polynomial in ε−1 and log s) c for convenience to simplify some

computations below.

Definition 3.1 Let X ⊆ 2n, and x < 2n. A matrix A ∈ 2t×n (i.e., a t-by-n matrix over GF (2))

separates x from X if Ax 6= Ay for all y ∈ X r {x} (where we view elements of 2n as column

vectors over GF (2)). A sequence ~A = 〈Ai : i < k〉 of matrices isolates X, written as

~A : X # 2t,

if every x ∈ X is separated from X by some Ai. Let ε−1 ∈ Log. If s > 0, we write

X -ε s

if there exist 〈Ai : i < t〉 such that ~A : Xc # 2t, where c = 12|S|dε−1e2, and t = |Sc| + 1 for

some 0 < S ≤ s. We also define X -ε 0 iff X is empty. We write X - s if X -ε s for every

ε−1 ∈ Log.

Remark 3.2 If X is Σb
1(α), then the properties “A separates x from X”, and “ ~A isolates X”

are Πb
1(α), hence X -ε s is Σb

2(α).

The definition makes - monotone: if Y ⊆ X -ε s ≤ t, then Y -ε t.
If X ⊆ 2n, n < m, ~A ∈ 2t×m, and ~B ∈ 2t×n is the sequence of restrictions of Ai’s to the first

n columns, then ~A isolates X iff ~B does. The definition of X -ε s thus does not depend on the

choice of n.

A moment’s reflection will persuade the reader that it is next to impossible to work directly

with the hash functions. For example, if ~A : X # 2t, and ~B : Y # 2t, there is apparently no

way of constructing ~C such that, say, ~C : X ∪Y # 2t+1. In the real world, this is no problem as
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we have a well-behaved preexisting notion of cardinality, and we merely observe that the hashes

agree with it. Obviously, this does not work in bounded arithmetic if we want to use the hashes

to define (approximate) cardinality in the first place. We get around the problem by showing

that X -ε s is, up to ε, equivalent to the existence of suitable surjections from a power of s to

a corresponding power of X; these surjections will be much easier to handle. The key result is

Theorem 3.4 (the other direction will be much simpler), which is essentially a formalization of

Sipser’s Coding Lemma in bounded arithmetic.

Lemma 3.3 (in T 0
2 ) If c ∈ Log, there exists a PV -bijection

f :
⋃̇
i≤c

(
c

i

)
×Xi × Y c−i ' (X ∪̇ Y )c

with a PV -inverse.

Proof: Let u <
(
c
i

)
, 〈xj : j < i〉 ∈ Xi, and 〈yj : j < c− i〉 ∈ Y c−i. We can enumerate subsets of

c of size i by
(
c
i

)
, let thus U ⊆ c be the uth set. Let 〈πj : j < i〉 be an increasing enumeration

of U , and 〈%j : j < c − i〉 an increasing enumeration of c r U . We define f(u, ~x, ~y) = ~z, where

zπj = xj , z%j = yj . It is easy to see that f is a bijection. �

Theorem 3.4 (in T 1
2 (α) + sWPHP(PV2(α))) Let d, r > 0, d ∈ Log, and f : rsd � r × Xd,

where X is Σb
1(α), and f is PV2(α). Then there exists 〈Ai : i < t〉 such that ~A : X # 2t, where

t = |s|+ 1, and moreover,

Pr ~A
(
~A does not isolate X

)
�0 2/3.

Proof: Let B be the set of sequences 〈Ai : i < t〉, Ai ∈ 2t×n, such that ~A does not isolate X.

We define a PV -function

g0 : (2n r {0})× 2n−1 → 2n

as follows. Let i < n be the index of the first set bit of x. We decompose w = w0
aw1, where

w0 < 2i and w1 < 2n−i−1, and we put g0(x,w) = w0
abaw1, where b = xT(w0

a0aw1). Clearly,

g0(x, ·) is a surjection of 2n−1 onto {a ∈ 2n : aTx = 0} whenever x 6= 0. Then we can define a

PV -function

g : (2n r {0})× 2(n−1)t → 2t×n

so that g(x, 〈w0, . . . , wt−1〉) is the matrix A such that the jth row of A is g0(x,wj)
T for every

j < t. It follows that

g(x, ·) : 2(n−1)t � {A ∈ 2t×n : Ax = 0}

for every x 6= 0.

We define a PV2(α)-function

h : rt+1
(
st+12(n−1)t2

)d → rt+1(2t×n)td

as follows. We interpret the input to h as sequence consisting of u, 〈vi : i < t〉, and 〈wi,j : i < t,

j < d〉, where u, vi < rsd, wi,j < 2(n−1)t. We compute f(u) = 〈p, xj : j < d〉 ∈ r ×Xd, and in a
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similar way, f(vi) = 〈qi, yi,j : j < d〉. For each i < t and j < d, we define Ai,j = g(xj + yi,j , wi,j)

(where + is vector addition) if xj 6= yi,j , and Ai,j = 0 otherwise. We let 〈p, qi, Ai,j : i < t, j < d〉
be the output of h.

We claim that h is a surjection of rt+1
(
st+12(n−1)t2

)d
onto rt+1 × Bd. Indeed, consider a

sequence 〈p, qi, Ai,j : i < t, j < d〉 ∈ rt+1 × Bd. For each j < d, there exists an xj ∈ X which

is not separated from X by 〈Ai,j : i < t〉; we can collect them to a sequence 〈xj : j < d〉 by

BBΣb
1(α) ⊆ T 1

2 (α). Likewise, there exists a sequence 〈yi,j : i < t, j < d〉 of witnesses to the

non-separation of xj by Ai,j , i.e., yi,j 6= xj , and Ai,jxj = Ai,jyi,j . The latter is equivalent to

Ai,j(xj + yi,j) = 0, and as xj + yi,j 6= 0, we can use the properties of g to find a sequence

〈wi,j : i < t, j < d〉 such that g(xj + yi,j , wi,j) = Ai,j . As f is surjective, we can find a u < rsd

such that f(u) = 〈p, xj : j < d〉. We construct suitable vi in a similar way, using smoothness of

f . Then h(u,~v, ~w) = 〈p, ~q, ~A〉.
As s ≤ 2t−1, we have

rt+1
(
st+12(n−1)t2

)d ≤ 2−drt+12nt
2d,

thus sWPHP(PV2(α)) implies that h is not onto rt+1 × (2t×n)td, hence B 6= (2t×n)t. Any
~A ∈ (2t×n)t rB isolates X.

As B is Σb
1(α), and we assume T 1

2 (α)+sWPHP(PV2(α)), there exists a b such that B ≈1/20 b

by Theorem 2.3. By definition, there exists 0 < e ∈ Log, and a PV2(α)-surjection

e×
(
B ∪̇ 1

202nt
2
)
� eb.

For any k ∈ Log, we can thus construct a chain of surjections

r(t+1)dk/deek
k∑
i=0

(
k

i

)
2(nt2−1)ddi/de

(
1
202nt

2
)k−i

= ek
k∑
i=0

(
k

i

)(
rt+12(nt2−1)d

)di/de (
rt+1

)dk/de−di/de ( 1
202nt

2
)k−i

� ek
⋃̇
i≤k

(
k

i

)
r(t+1)dk/deBi

(
1
202nt

2
)k−i

' r(t+1)dk/de
⋃̇
i≤k

(
k

i

)
(eB)i

(
1
20e2

nt2
)k−i

� r(t+1)dk/de
(
e
(
B ∪̇ 1

202nt
2
))k
� r(t+1)dk/deekbk,

where the surjection from the second to the third line is constructed using h : rt+12(nt2−1)d �
rt+1Bd, and the last but one surjection follows from Lemma 3.3. We have

k∑
i=0

(
k

i

)
2(nt2−1)ddi/de

(
1
202nt

2
)k−i

≤ 2nt
2(k+d)

k∑
i=0

(
k

i

)
2−i20−(k−i)

= 2nt
2(k+d)(11/20)k =

(
11
202nt

2
)k

2nt
2d ≤ 1

2

(
12
202nt

2
)k

as long as k ≥ 8(nt2d+ 1), hence b ≤ (12/20)2nt
2

by sWPHP(PV2(α)). As B �1/20 b, we have

B �0 b+ (1/20)2nt
2
< (2/3)2nt

2
. �
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Corollary 3.5 (in T 1
2 (α)+sWPHP(PV2(α))) Let d, r > 0, d, ε−1 ∈ Log, and f : rsd � r×Xd,

where X is Σb
1(α), and f is PV2(α). Then X - s, and moreover,

Pr ~A
(
~A does not isolate Xc

)
�0 2/3,

where c = 12|s|dε−1e2, t = |sc| + 1, X ⊆ 2n, and ~A = 〈Ai : i < t〉 is a sequence of matrices

Ai ∈ 2t×n as in Definition 3.1. �

Remark 3.6 If we assume that f has a PV2(α)-coretraction, the existence of ~A in Theorem 3.4

and Corollary 3.5 is provable even in T 1
2 (α) + rWPHP(PV2(α)), as the statement becomes

∀Σb
2(α). This is quite typical behaviour. To avoid unnecessary cluttering of the text, we will

only indicate provability in T 1
2 (α) + rWPHP(PV2(α)) below if it applies to an unmodified

statement of a theorem, or if it does not directly follow from Theorem 2.1.

Lemma 3.7 (in T 1
2 (α) + sWPHP(PV2(α))) Let s, ε−1, c ∈ Log, c > 0, X ∈ Σb

1(α). If there

exists a PV2(α)-surjection f : b(s+1−ε)cc� Xc, then there exists a surjection s� X (encoded

by a sequence, hence PV -definable).

Proof: Let k ≤ s + 1 be maximal such that there exists a sequence of length k of pairwise

distinct elements of X (by Σb
1(α)-LMAX ⊆ T 1

2 (α)). If k ≤ s, we have s � X. Otherwise

X � s+ 1, which implies

(s+ 1)c
(

1− ε

s+ 1

)
≥ (s+ 1− ε)c � Xc � (s+ 1)c,

contradicting sWPHP . �

Theorem 3.8 (in T 1
2 (α) + rWPHP(PV2(α))) If X is Σb

1(α), and X -ε s, there exists a

PV2(α)-function f such that f : bs(1 + ε)cc � Xc (with a PV2(α)-coretraction), where 0 <

c ≤ 12|s|dε−1e2.

Proof: W.l.o.g. s = S in the notation of Definition 3.1. The case s ≤ 1 is left to the reader,

we assume s ≥ 2. Let a = 4|s|dε−1e, c = 3dε−1ea, and fix x0 ∈ Xc, and ~A : Xc # 2t, where

t = |sc|+ 1. We define a mapping f : t× 2t → Xc by

f(i, u) =

{
x if x ∈ Xc, Aix = u and Ai separates x from Xc,

x0 otherwise.

The definition of # ensures that f is onto; it has a PV2(α)-coretraction defined by

g(x) = 〈i, Aix〉, i = min{i < t : Ai separates x from Xc}.

The function f is itself PV2(α), as it is computable by the following algorithm: if

¬∃x ∈ XcAix = u ∨ ∃x, x′ ∈ Xc (Aix = Aix
′ = u ∧ x 6= x′)

(these are Σb
1(α) oracle calls), output x0. Otherwise there exists a unique x satisfying the

Σb
1(α)-condition x ∈ Xc ∧Aix = u, and we can find it by binary search.
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As a ≥ 4|s| ≥ 8, we have 2a ≥ 3a2 + 4. Moreover (1 + ε/3)d3/εe ≥ 2, hence

t2t ≤ 4sc(|sc|+ 1) ≤ 4sc(c|s|+ 1) = sc
(
12|s|dε−1ea+ 4

)
≤ sc(3a2 + 4) ≤ sc2a ≤ sc(1 + ε/3)d3ε

−1ea ≤ (s(1 + ε/3))c.

If s ≥ 3/(2ε), we obtain

(s(1 + ε/3))c ≤ (s(1 + ε)− 1)c ≤ bs(1 + ε)cc.

If s ≤ 3/(2ε), we have s(1 + ε/3) ≤ s + 1/2, and s ∈ Log, hence s � X by Lemma 3.7 (which

works in T 1
2 (α) + rWPHP(PV2(α)), as our surjection has a PV2(α)-coretraction). �

The proof of Theorem 3.8 actually shows the following:

Corollary 3.9 (in T 1
2 (α)+rWPHP(PV2(α))) If X ∈ Σb

1(α) and X # 2t, there exists a PV2(α)-

surjection f : t2t � X with a PV2(α)-coretraction. �

The corollary below states the important principle that approximate counting with small

error reduces to exact counting whenever the latter is possible.

Corollary 3.10 (in T 1
2 (α) + rWPHP(PV2(α))) Let X ∈ Σb

1(α), and s ≤ ε−1 ∈ Log. We have

X -ε s iff there exists a sequence of length at most s which includes all elements of X.

Proof: If w is such a sequence, then w : s � X, hence X - s by Corollary 3.5. (We can use

sWPHP by Theorem 2.1.) On the other hand, X -ε s implies the existence of w by the proof

of Lemma 3.7 and Theorem 3.8. �

The following corollary serves several purposes. First, it shows the basic counting principle

that upper bounds on cardinality are preserved by surjections. Second, it shows that the present

approximate counting generalizes the method of Chapter I in the following sense: if Y ⊆ 2n

and Y �ε s, then Y - s + 2ε2n. Finally, we will often use the special case when f is the

identity function to reduce the error of approximation in favor of worse bounds: X -ε s implies

X -δ bs(1 + ε)c for every δ−1 ∈ Log.

Corollary 3.11 (in T 1
2 (α) + sWPHP(PV2(α))) Let X,Y ∈ Σb

1(α), f ∈ PV2(α), d, ε−1 ∈ Log,

d, r > 0. If X -ε s, and f : r ×Xd � r × Y d, then Y - bs(1 + ε)c.

Proof: We have bs(1 + ε)cc � Xc for some c by Theorem 3.8, hence rcbs(1 + ε)ccd � rcXcd �
rcY cd, thus Y - bs(1 + ε)c by Corollary 3.5. �

The next two results state fundamental counting principles for computing upper bounds on

the size of Cartesian products and unions.

Corollary 3.12 (in T 1
2 (α) + rWPHP(PV2(α))) If X,Y ∈ Σb

1(α), X -ε s, and Y -ε t, then

X × Y - bst(1 + ε)2c.

Proof: Use Corollary 3.5, and Theorems 3.8 and 2.1. �
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Theorem 3.13 (in T 1
2 (α) + rWPHP(PV2(α))) If X,Y ∈ Σb

1(α), X -ε s, and Y -ε t, then

X ∪ Y - b(s+ t)(1 + 2ε)c.

Proof: We can use sWPHP by Theorem 2.1. Take PV2(α)-functions f : Sc � Xc, and g : T d �
Y d by Theorem 3.8, where S = bs(1 + ε)c, T = bt(1 + ε)c. Put k = 3(c|s| + d|t|)dε−1e. Using

Lemma 3.3, we can construct smooth PV2(α)-surjections

(X ∪ Y )k �
⋃̇
i≤k

(
k

i

)
XiY k−i �

∑
i≤k

(
k

i

)
Scdi/ceT dd(k−i)/de ≤ ScT d

∑
i≤k

(
k

i

)
SiT k−i

= ScT d(S + T )k ≤ 2c|S|+d|T |(S + T )k ≤
(
(1 + ε/3)(S + T )

)k
as (1 + ε/3)d3ε

−1e ≥ 2. If

(1 + ε/3)(1 + ε)(s+ t) ≤ (s+ t)(1 + 2ε)− 1 ≤ b(s+ t)(1 + 2ε)c,

we are done by Corollary 3.5. Otherwise s, t ∈ Log, in which case b(s+ t)(1 + 2ε)c� X ∪ Y by

Lemma 3.7. �

Theorem 3.13 is one of the most important elementary counting principles. Its dual, which

says that the size of a disjoint union X ∪̇ Y is (approximately) bounded below by the sum of

the sizes of X and Y (it has to be formulated contrapositively, see Theorem 3.17), is just as

fundamental, but it is considerably harder to prove in our setting. To see why, consider the case

where X ∪̇Y = [0, a): the obvious fact that X ∪Y -ε a does not give us any useful information,

hence we must be ready to produce out of thin air a function witnessing that the size of X or

Y is (approximately) at most a/2. Theorem 2.3 comes to our rescue, as production of magic

surjections is exactly what it is good for.

But first we state another consequence of Chapter I. It allows us to reduce the complexity

of -ε from Σb
2(α) to Πb

1(α) in many situations, which is indispensable in proofs by induction

(notice that our favourite theory has induction only for B(Σb
1(α))-formulas). We recall that this

does not imply any fancy derandomization of AM, as Πb
1(α) here has the meaning of coNP/poly,

not coNP (see Section 2).

Recall Definition 3.1.

Lemma 3.14 (in T 1
2 (α) + sWPHP(PV2(α))) Let c ∈ Log, X ⊆ a × 2n, X ∈ Σb

1(α), and put

Xx = {y < 2n : 〈x, y〉 ∈ X} for each x < a. There exists a Πb
1(α)-predicate C such that

C(x, t)⇒ Xx # 2t,

¬C(x, t)⇒ PrA0,...,At−1∈2t×n
(
~A isolates Xx

)
�0 1/4

for every x < a, t < c.

Proof: The promise problem L = 〈L+, L−〉, where

〈x, t〉 ∈ L+ ⇔ Pr ~A
(
~A isolates Xx

)
�0 1/8,

〈x, t〉 ∈ L− ⇔ Pr ~A
(
~A isolates Xx

)
�0 1/4,

is a definable prAM(α)-problem, hence the existence of C follows from Theorem 2.4. �
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Lemma 3.15 (in T 1
2 (α) + sWPHP(PV2(α))) Let X ∈ Σb

1(α), X 6= ∅. There exists a t ∈ Log

such that X # 2t+2, and for every ε−1 ∈ Log there exists a positive r ∈ Log, and a smooth

PV2(α)-surjection f : r × (X ∪̇ ε2t)� r2t with a PV2(α)-coretraction.

Proof: Assume X ⊆ 2n. Let C be as in Lemma 3.14, find the minimal k ≤ n such that

C(k) = 1 by PV2(α)-induction, and put t = k− 2. We have X # 2k. Take g : k2k � X and its

coretraction h : X → k2k from Corollary 3.9, and define

A = {u < k2k : h(g(u)) = u} = rng(h).

Let η = ε/4n, and A ≈η a by Theorem 2.3. We have g : A ' X with inverse h : X ' A, and

there exists a PV2(α)-surjection r(a+ ηk2k)� rA with a PV2(α)-coretraction for some r > 0,

r ∈ Log, hence

r(a+ ηk2k)� r ×X.

By minimality of k, and Theorem 3.4 we have

a+ ηk2k ≥ 2t.

There exists a PV2(α)-surjection r(A ∪̇ηk2k)� ra with a PV2(α)-coretraction by Theorem 2.3.

We compose it with h to obtain r(X ∪̇ ηk2k)� ra, hence

r(X ∪̇ ε2t) ⊇ r(X ∪̇ 2ηk2k)� r(a+ ηk2k) ≥ r2t. �

Theorem 3.16 (in T 1
2 (α) + rWPHP(PV2(α))) If X,Y ∈ Σb

1(α), and X × Y -ε st, then

X - bs(1 + ε)c, or Y - bt(1 + ε)c.

Proof: We can use sWPHP by Theorem 2.1. Assume that X 6= ∅ 6= Y , and take a PV2(α)-

function f : bst(1+ε)cd � (X×Y )d by Theorem 3.8. Let 0 < c ∈ Log, and take k, `, r ∈ Log such

that Xcd # 2k+2, r(Xcd ∪̇ η2k)� r2k, Y cd # 2`+2, r(Y cd ∪̇ η2`)� r2` by Lemma 3.15, where

η = (8(k+`+4))−1. By Corollary 3.9, there are smooth PV2(α)-surjections (k+2)2k+2 � Xcd,

(`+ 2)2`+2 � Y cd. As

η(k + 2)2k+`+2 + η(`+ 2)2k+`+2 + η22k+` ≤ 5
82k+`,

we can construct smooth PV2(α)-surjections

r2(Xcd × Y cd ∪̇ 5
82k+`)� r2(Xcd × Y cd ∪̇ η2kY cd ∪̇ η2`Xcd ∪̇ η22k+`)

' r(Xcd ∪̇ η2k)× r(Y cd ∪̇ η2`)� r22k+`.

On the other hand, f (c) : bst(1 + ε)ccd � Xcd × Y cd, hence

r2
(
bst(1 + ε)ccd + 5

82k+`
)
� r22k+`,

which implies

(st(1 + ε))cd ≥ 2k+`(1− 6
8) = 2k−12`−1
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by sWPHP(PV2(α)). Therefore (s(1 + ε/2))cd ≥ 2k−1 or (t(1 + ε/2))cd ≥ 2`−1, hence

8(s(1 + ε/2))cd
(
cd|s(1 + ε/2)|+ 3

)
≥ 8(s(1 + ε/2))cd|4(s(1 + ε/2))cd| ≥ 2k+2(k + 2)

or

8(t(1 + ε/2))cd
(
cd|t(1 + ε/2)|+ 3

)
≥ 8(t(1 + ε/2))cd|4(t(1 + ε/2))cd| ≥ 2`+2(`+ 2),

which implies

8(s(1 + ε/2))cd
(
cd|s(1 + ε/2)|+ 3

)
� Xcd or 8(t(1 + ε/2))cd

(
cd|t(1 + ε/2)|+ 3

)
� Y cd.

We may fix c ∈ Log so that

8
(
cd|max{s, t}(1 + ε/2)|+ 3

)
≤ (1 + ε/4)cd,

hence there exists a PV2(α)-function(
s
(
1 + 7

8ε
))cd

≥
(
s(1 + ε/2)(1 + ε/4)

)cd
� Xcd

or(
t
(
1 + 7

8ε
))cd

≥
(
t(1 + ε/2)(1 + ε/4)

)cd
� Y cd.

Then

X - bs(1 + ε)c or Y - bt(1 + ε)c

by Corollary 3.5 and Lemma 3.7. �

Theorem 3.17 (in T 1
2 (α) + rWPHP(PV2(α))) If X,Y ∈ Σb

1(α), and X ∪̇ Y -ε s+ t+ 1, then

X - bs(1 + 2ε)c, or Y - bt(1 + 2ε)c.

Proof: We can use sWPHP(PV2(α)) and BBΣb
3(α) by Theorem 2.1. W.l.o.g. assume s ≤ t.

Put S = s(1 + ε), T = (t+ 1)(1 + ε). We fix a surjection bS+T cc � (X ∪̇Y )c by Theorem 3.8.

Let d ∈ Log be such that 8cd|6(S + T )| ≤ (1 + ε/4)cd, and put η = 1/4. For each i ≤ cd, we fix

ki ≤ cd|S+T | such that Xi×Y cd−i # 2ki+2, and PV2(α)-functions fi : r(X
i×Y cd−i ∪̇ η2ki)�

r2ki , by Lemma 3.15 and BBΣb
3(α). Then we can construct surjections

r

(
(S + T )cd + η

∑
i

(
cd

i

)
2ki
)
� r

⋃̇
i

(
cd

i

)
(Xi × Y cd−i ∪̇ η2ki)� r

∑
i

(
cd

i

)
2ki

using Lemma 3.3. By sWPHP(PV2(α)),

(1− η/4)r
∑
i

(
cd

i

)
2ki ≤ r

(
(S + T )cd + η

∑
i

(
cd

i

)
2ki
)
,

hence ∑
i

(
cd

i

)
2ki ≤ (S + T )cd(1 + 2η) =

∑
i

(
cd

i

)
SiT cd−i(1 + 2η)
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by sWPHP(PV2(α)), which implies

2ki ≤ SiT cd−i(1 + 2η) ≤ 3
2S

iT cd−i

for some i ≤ cd. It follows that

3
4S

iT cd−i(1 + ε/4)cd ≥ 6SiT cd−i|6SiT cd−i| ≥ (ki + 2)2ki+2 � Xi × Y cd−i

using Corollary 3.9, hence Xi × Y cd−i - 3
4S

iT cd−i(1 + ε/4)cd by Corollary 3.5, which implies

Xi - (S(1 + ε/4))i or Y cd−i - (T (1 + ε/4))cd−i

by Theorem 3.16. We obtain a PV2(α)-function(
s(1 + ε)(1 + ε/3)

)ie
� Xie or

(
(t+ 1)(1 + ε)(1 + ε/3)

)(cd−i)e
� Y (cd−i)e

for some e ∈ Log by Theorem 3.8, hence

X - bs(1 + 2ε)c or Y - b(t+ 1)(1 + 9
5ε)c

by Corollary 3.5 and Lemma 3.7. If

(t+ 1)(1 + 9
5ε) ≤ t(1 + 2ε),

we are done. Otherwise s ≤ t < 5ε−1 + 9 ∈ Log, hence the result follows by exact counting,

using Corollary 3.10. �

We formulated the key theorems 3.12, 3.13, 3.16, and 3.17 for binary sums and products. It

is straightforward to generalize them to sums and products of logarithmically many sets, using

simple induction.

Corollary 3.18 (in T 1
2 (α) + sWPHP(PV2(α))) Let n, ε−1, δ−1 ∈ Log, and let {Xi : i < n} be

a Σb
1(α) parametric family of subsets of some 2m.

(i) If Xi -ε si for every i < n, then
⋃
i<nXi -

⌊
(1 + 2ε)

∑
i<n si

⌋
.

(ii) If Xi -ε si for every i < n, then
∏
i<nXi -

⌊
(1 + ε)n+1

∏
i<n si

⌋
.

(iii) If
⋃̇
i<nXi -ε

∑
i<n si − 1, there exists i < n such that Xi - bsi(1 + 2ε)c − 1.

(iv) If n > 0, and
∏
i<nXi -ε

∏
i<n si, there exists i < n such that Xi - bsi(1 + ε)c.

Proof: (i): Let X =
⋃
iXi, and s =

∑
i si. We have Xi -η bsi(1 + ε)c by Corollary 3.11, hence

X -η
⌊
s(1 + ε)(1 + 2η)n−1

⌋
by induction on n from Theorem 3.13 (we can make the induction hypothesis Πb

1(α) using

Lemma 3.14). We choose η = ε/(12n) so that (1 + 2η)n ≤ (1 + ε/3). We have(
s(1 + ε)(1 + ε/3)

)c
� Xc

by Theorem 3.8, hence X - bs(1 + 2ε)c by Corollary 3.5 and Lemma 3.7.

The other items are proved in a similar way, using Corollary 3.12, and Theorems 3.16

and 3.17. �
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We also prove versions of Theorems 3.13 and 3.17 which apply to a “large” number of

summands with a uniform description. They can be thought of as averaging arguments: if

there are more than st objects in a rectangle of length s, some column must hold at least the

average, which is more than st/s = t.

Theorem 3.19 (in T 1
2 (α) + sWPHP(PV2(α))) If X,Y, Z ∈ Σb

1(α), Z ⊆ X × Y , X -ε s, and

{y ∈ Y : 〈x, y〉 ∈ Z} -ε t for every x ∈ X, then Z - bst(1 + 4ε)c.

Proof: Assume X ⊆ 2n, and fix η−1 ∈ Log such that (1 + η)6n+2 ≤ 1 + ε/4. We denote

Za..b = {〈x, y〉 ∈ Z : a ≤ x < b}

for every a < b ≤ 2n, and Za = Za..a+1. By Lemma 3.14, Corollary 3.5 and Theorem 3.8, there

exist Πb
1(α)-predicates C(u, v, a), D(u, v, a) such that

C(u, v, a)→ Zu..v -η a→ C(u, v, ba(1 + η)c),
D(u, v, a)→ X ∩ [u, v) -η a→ D(u, v, ba(1 + η)c).

We prove

(1) ∀u < v ≤ 2n ∀a ≤ 2n
(
v − u = 2k ∧D(u, v, a)→ C

(
u, v, bat(1 + ε)(1 + η)6k+1c

))
by induction on k ≤ n. The case k = 0 is clear, let thus k > 0. Assume D(u, v, a). Put

w = (u+v)/2, and find b, c ≤ 2n such that D(u,w, b), ¬D(u,w, b−1), D(w, v, c), ¬D(w, v, c−1)

using induction (where “D(. . . ,−1)” counts as false). By (1) for k − 1, we have

Zu..w -η bbt(1 + ε)(1 + η)6k−5c,
Zw..v -η bct(1 + ε)(1 + η)6k−5c,

hence

Zu..v -η b(b+ c)t(1 + ε)(1 + η)6k−3c

by Theorem 3.13. On the other hand, we have X ∩ [u,w) 6-η db(1 + η)−1e − 1, X ∩ [w, v) 6-η
dc(1 + η)−1e − 1, thus

X ∩ [u, v) 6-η
⌈

b

(1 + η)3

⌉
+

⌈
c

(1 + η)3

⌉
− 1

by Theorem 3.17. As X ∩ [u, v) -η a, we obtain a ≥ (b+ c)(1 + η)−3, i.e., b+ c ≤ ba(1 + η)3c.
Hence

Zu..v -η bat(1 + ε)(1 + η)6kc,

which implies C
(
u, v, ba(1 + ε)(1 + η)6k+1c

)
.

Take k = n. We have D(0, 2n, bs(1 + ε)(1 + η)c), hence C
(
0, 2n, bst(1 + ε)2(1 + η)6n+2c

)
by (1), which gives

Z = Z0..2n -η bst(1 + ε)2(1 + η)6n+2c ≤ bst(1 + 4ε)c.
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As it stands, the proof needs Πb
2(α)-LIND . The theorem is unfortunately not ∀Σb

2(α),

we thus cannot directly use Theorem 2.1. Nevertheless, we can decrease the complexity of

the induction as follows. Let a(u, v) be a PV2(α)-function which computes a ≤ 2n such that

D(u, v, a) ∧ ¬D(u, v, a − 1) by binary search. We define a PV2(α)-function f(k) (where k ≤ n

is given in unary) by

f(0) = 0,

f(k + 1) =

{
f(k) + 2n−k−1, C

(
u, u+ 2n−k−1, ba(u, u+ 2n−k−1)t(1 + ε)(1 + η)6(n−k)−5c

)
,

f(k) otherwise.

If we assume for contradiction Z 6-η bst(1 + ε)2(1 + η)6n+2c, we can prove

¬C
(
f(k), f(k) + 2n−k, ba(f(k), f(k) + 2n−k)t(1 + ε)(1 + η)6(n−k)+1c

)
by PV2(α)-LIND on k ≤ n, using the same argument as above. Taking k = n, we have

a(f(k), f(k) + 1) ≤ 1, and we obtain a contradiction with the assumptions. �

Theorem 3.20 (in T 1
2 (α) + rWPHP(PV2(α))) If X,Y, Z ∈ Σb

1(α), Z ⊆ X × Y , and Z -ε st,
then X - s− 1, or there exists x ∈ X such that {y ∈ Y : 〈x, y〉 ∈ Z} - bt(1 + 2ε)c.

Proof: Let n ∈ Log be such that X ⊆ 2n. Fix η ∈ Log such that (1 + η)6n ≤ (1 + ε/2), and

assume X 6-η s− 1. By induction on k ≤ n, we will show

∃u < v ≤ 2n ∃a ≤ 2n
(
v − u ≤ 2n−k ∧ a 6= 0 ∧ (X ∩ [u, v)) 6-η a− 1(2)

∧ Zu..v -η bat(1 + ε)(1 + η)6kc
)
,

where Zu..v is as in the proof of Theorem 3.19. If k = 0, we may take u = 0, v = 2n, a = s.

Assume that (2) holds for k < n. Put w = d(u+v)/2e, and find b, c such that X∩[u,w) 6-η b−1,

X ∩ [u,w) -η bb(1 + η)c, X ∩ [w, v) 6-η c − 1, X ∩ [w, v) -η bc(1 + η)c. Assume b 6= 0 6= c,

the other cases are easy. We have X ∩ [u, v) -η b(b + c)(1 + η)3c by Theorem 3.13, hence

a ≤ b(b+ c)(1 + η)3c, which implies Zu..v -η bbt(1 + ε)(1 + η)6k+4c+ bct(1 + ε)(1 + η)6k+4c+ 1.

By Theorem 3.17, we obtain Zu..w -η bbt(1+η)6(k+1)c or Zw..v -η bct(1+η)6(k+1)c, which gives

(2) for k + 1.

Take u, v, a which witness (2) for k = n. Then v−u ≤ 1, and X∩[u, v) 6= ∅, hence v = u+1,

u ∈ X, a = 1, and Zu -η bt(1 + ε)(1 + η)6nc, which implies Zu - bt(1 + 2ε)c.
As in the proof of Theorem 3.19, we can replace -η by a Πb

1(α)-formula in (2), thus the

argument formalizes in S2
2(α) + sWPHP(PV2(α)). The result is ∀Σb

2(α), hence it is provable in

T 1
2 (α) + rWPHP(PV2(α)) by Theorem 2.1. (We can also eliminate the instance of Σb

2(α)-LIND

explicitly as in Theorem 3.19.) �

In the special case Z = X × Y , Theorem 3.20 implies a variant of Theorem 3.16 with

slightly different parameters, which may be favourable in some applications (e.g., see the proof

of Theorem 4.3): if X × Y -ε st, then X - s− 1 or Y - bt(1 + 2ε)c.
The next theorem shows that we can construct almost counting functions for any set X.

Moreover, the conditions imposed on f and g make them very well-behaved: the “local defects”
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by which the functions differ from true counting functions (i.e., monotone bijections) are small,

and evenly distributed across the domain. A possible use of the theorem is that we can apply

various results of Chapter I to relatively dense subsets of a sparse set X, as we can lift the whole

situation to an interval. (Lifting a Σb
1(α)-set by a PV2(α)-function increases its complexity to

∆b
2(α), which is fine as T 1

2 (α) + sWPHP(PV2(α)) can count ∆b
2(α)-sets in the framework of

Chapter I.)

The main idea of the construction was suggested by Neil Thapen.

Theorem 3.21 (in T 1
2 (α) + rWPHP(PV2(α))) Let X ∈ Σb

1(α), and ε−1 ∈ Log. There exist

numbers t, s such that s ≤ t ≤ bs(1 + ε)c, and non-decreasing PV2(α)-functions

t
f−−−→←−−−
f ′

X
g−−−→←−−−
g′

s

such that f ◦ f ′ = idX , g ◦ g′ = ids (hence f, g are onto, and f ′, g′ are injective), f, g are

≤ 2-to-1, and ⌊s
t
u
⌋
≤ g(f(u)) ≤

⌈s
t
u
⌉

for every u < t.

Proof: Fix n ∈ Log such that X ⊆ 2n, and η−1 ∈ Log such that (1 + η)8n ≤ 1 + ε. Let C be a

Πb
1(α)-predicate such that

C(u, v, w)→ X ∩ [u, v) -η w → C(u, v, bw(1 + η)c)

for all u, v, w ≤ 2n. Using binary search, we can define a PV2(α)-function S such that

C(u, v, S(u, v)) ∧ ¬C(u, v, S(u, v)− 1)

for all u, v ≤ 2n. Put a = S(0, 2n). If a < η−1, then a ∈ Log, hence the required functions

exist by Corollary 3.10. We thus assume a ≥ η−1. Consider the following algorithm (where

u, uk, vk, wk are rationals):

input: either u ∈ [0, 1), or x ∈ X
x0 ← 0, y0 ← 2n, u0 ← 0, v0 ← 1, r0 ← a

for k = 0, . . . , n− 1 do:

zk ← (xk + yk)/2, pk ← S(xk, zk), qk ← S(zk, yk)

wk ← (qkuk + pkvk)/(pk + qk)

if u < wk or x < zk then 〈xk+1, yk+1, uk+1, vk+1, rk+1〉 ← 〈xk, zk, uk, wk, pk〉
else 〈xk+1, yk+1, uk+1, vk+1, rk+1〉 ← 〈zk, yk, wk, vk, qk〉

If it is necessary to indicate the input, we will write pk(u) for the value of pk assigned by the

algorithm on input u, and so on.
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Claim 3.21.1 Let u ≤ u′ < 1, x ≤ x′ ∈ X, and ` ≤ k ≤ n.

(i) yk = xk + 2n−k.

(ii) uk(u) ≤ u < vk(u), xk(x) ≤ x < yk(x).

(iii) rk = S(xk, yk) 6= 0, and pk + qk 6= 0 (hence the division step makes sense).

(iv) x` ≤ xk, y` ≥ yk, u` ≤ uk, v` ≥ vk.

(v) Either 〈xk(u), yk(u), uk(u), vk(u)〉 = 〈xk(u′), yk(u′), uk(u′), vk(u′)〉, or yk(u) ≤ xk(u
′),

vk(u) ≤ uk(u′).

(vi) Either 〈xk(x), yk(x), uk(x), vk(x)〉 = 〈xk(x′), yk(x′), uk(x′), vk(x′)〉, or yk(x) ≤ xk(x
′),

vk(x) ≤ uk(x′).

(vii) If xk(u) ≤ x < yk(u) or uk(x) ≤ u < vk(x), then

〈xk(u), yk(u), uk(u), vk(u)〉 = 〈xk(x), yk(x), uk(x), vk(x)〉.

(viii) (1 + η)−3rk ≤ pk + qk ≤ (1 + η)3rk.

(ix) (1 + η)−3krk ≤ a(vk − uk) ≤ (1 + η)3krk.

Proof: (i)–(vii): Straightforward induction on k.

(viii): As pk = S(xk, zk), we have ¬C(xk, zk, pk − 1), thus X ∩ [xk, zk) 6-η dpk(1 + η)−1e− 1.

Similarly X ∩ [zk, yk) 6-η dqk(1 + η)−1e − 1, hence

X ∩ [xk, yk) 6-η
⌈
dpk(1 + η)−1e(1 + η)−2

⌉
+
⌈
dqk(1 + η)−1e(1 + η)−2

⌉
− 1

≥ d(pk + qk)(1 + η)−3e − 1

by Theorem 3.17. On the other hand, rk = S(xk, yk), hence C(xk, yk, rk), and X∩[xk, yk) -η rk.
This implies rk ≥ d(pk + qk)(1 + η)−3e, hence rk(1 + η)3 ≥ pk + qk. In a similar way we

have X ∩ [xk, zk) -η pk, X ∩ [zk, yk) -η qk, and X ∩ [xk, yk) 6-η drk(1 + η)−1e − 1, hence

drk(1 + η)−1e ≤ b(pk + qk)(1 + η)2c by Theorem 3.13, thus (1 + η)−3rk ≤ (pk + qk).

(ix): By induction on k, using (viii), and the identities

wk − uk =
pk

pk + qk
(vk − uk), vk − wk =

qk
pk + qk

(vk − uk). � (Claim 3.21.1)

Let t = da(1 + η)3ne, s = ba(1 + η)−3nc, f(u) = xn(u/t), f ′(x) = dtvn(x)e − 1, g(x) =

dsvn(x)e − 1, g′(v) = xn(v/s) for any integers u < t, v < s, x ∈ X. We have t ≤ a(1 + η)4n ≤
ba(1 + η)−3nc(1 + η)8n ≤ s(1 + ε). Notice that rn = 1 (hence xn ∈ X) by (i) and (iii), thus

1

2s
≤ 1

t
≤ vn − un ≤

1

s
≤ 2

t

by (ix) (in particular, f ′(x), g(x) ≥ 0). Clearly f : t → X, f ′ : X → t, g : X → s, g′ : s → X,

and all the functions are monotone by (v), (vi).
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If u = f ′(x), we have un(x) ≤ vn(x)−1/t ≤ u/t < vn(x), hence f(u) = xn(u/t) = xn(x) = x

by (vii), thus f ◦ f ′ = id. If f(u) = x, then tun(x) = tun(u/t) ≤ u < tvn(u/t) = tvn(x) by (vii).

As there are at most two integers in [tun(x), tvn(x)), we have |f−1(x)| ≤ 2.

If x = g′(v), then svn(x) − 1 ≤ sun(x) = sun(v/s) ≤ v < svn(v/s) = svn(x) by (vii),

hence v = g(x), thus g ◦ g′ = id. Assume that x, x′, x′′ ∈ X, x < x′ < x′′. We have yn(x) =

x + 1 ≤ xn(x′) = x′ by (i) and (ii), hence svn(x) ≤ sun(x′) ≤ svn(x′) − 1/2 by (vi). Similarly

svn(x′) ≤ svn(x′′) − 1/2, hence g(x′′) = dsvn(x′′)e − 1 ≥ dsvn(x)e > g(x). It follows that

|g−1(v)| ≤ 2 for any v < s.

Let u < t, and put x = f(u), v = g(x). We have vn(x) − 1/s ≤ un(x) = un(u/t) ≤
u/t < vn(u/t) = vn(x) by (vii) and (ii), and vn(x) − 1/s ≤ v/s < vn(x) by definition, hence

−1/s < u/t− v/s < 1/s. �

4 Applications

We begin with a classical theorem which cannot be avoided by any self-respecting theory of

counting.

Theorem 4.1 (Ramsey theorem) (in T 1
2 (G)+rWPHP(PV2(G))) An undirected graph G on

N vertices contains a clique or independent set of size at least |N |/2.

Proof: We formalize the following well-known proof. We pick a node a0, and let c0 be the

majority colour among edges incident with a0. We continue with nodes connected to a0 by a

c0-coloured edge, and repeat the process. In this way, we construct a sequence a0, . . . , ak−1 of

nodes and a sequence c0, . . . , ck−1 of colours such that the edge from ai to aj is ci-coloured for

i < j, and there are at least (roughly) N/2k nodes connected to every ai by a ci-coloured edge.

We can carry on as long as k < log2N , obtaining a prehomogeneous set of size log2N , from

which we select a homogeneous set of size log2N/2 by taking the majority colour among ~c. We

proceed with the formal details.

We can use sWPHP by Theorem 2.1. For every a 6= b, we define C(a, b) < 2 so that C(a, b) =

1 iff there is an edge between a and b in G. Let ε−1 ∈ Log be such that (1− 2ε)|N | ≥ 1/2. By

induction on k ≤ |N | − 2, we prove that there exists a sequence 〈ci : i < k〉 of ci < 2, and a

sequence 〈ai : i < k〉 of pairwise distinct ai < N such that C(ai, aj) = ci whenever i < j < k,

and

S(~a;~c) := {x : ∀i < k C(ai, x) = ci} 6-ε
⌊
N

2k
(1− 2ε)k+1

⌋
− 1.

(We can make the induction hypothesis Σb
1(G) by Lemma 3.14, as in the proof of Theorem 3.19.)

The base step k = 0 amounts to N 6-ε bN(1 − 2ε)c − 1, which follows from Theorem 3.8 and

rWPHP . Assume the statement holds for k, we will show it for k + 1. We have S(~a;~c) 6= ∅,

we may thus pick any ak ∈ S(~a;~c). The set S(~a;~c) can be divided into nodes x such that

C(ak, x) = 0, nodes such that C(ak, x) = 1, and node ak itself, hence

S(~a;~c) = {ak} ∪ S(~a, ak;~c, 0) ∪ S(~a, ak;~c, 1).
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We have 1 -ε 1, and⌊
(1 + 2ε)

(
1 + 2

(
bN2−(k+1)(1− 2ε)k+2c − 1

))⌋
≤
⌊
2(1 + 2ε)N2−(k+1)(1− 2ε)k+2 − (1 + 2ε)

⌋
≤ bN2−k(1− 2ε)k+1 − 1c,

hence

S(~a, ak;~c, ck) 6-ε
⌊
N

2k+1
(1− 2ε)k+2

⌋
− 1

for some ck < 2 by Theorem 3.13.

Let ~a, ~c be the sequences given by the statement above for k = |N |−2. We have S(~a;~c) 6-ε 0,

hence there exists ak ∈ S(~a;~c). There exists c < 2 such that |{i < k : ci = c}| ≥ dk/2e, then

{ai : ci = c} ∪ {ak} is a homogeneous set of size d|N |/2e. �

The Ramsey theorem was, of course, proved in bounded arithmetic by Pudlák [152]. The

point of Theorem 4.1 is that (apart from a few ε sprinkled here and there) the argument follows

almost literally the usual combinatorial proof of the theorem, without the need to resort to ad

hoc functions for simulation of counting by WPHP .

Our first real result will be the tournament principle (originally discovered by Erdős [77]),

whose provability in bounded arithmetic was posed as a problem by Kraj́ıček [55, 116]. Recall

that a tournament is a directed graph G in which there exists exactly one directed edge between

any pair of distinct vertices (“players”); if there is an edge going from a to b, we write a → b,

and say that a beats b. A dominating set is a set D of vertices such that every player outside

of D is beaten by some player in D.

Theorem 4.2 (Tournament principle) (in T 1
2 (G) + rWPHP(PV2(G))) A tournament G

with N players has a dominating set of size at most |N |.

Proof: Informally, the argument is as follows. There are N(N − 1)/2 edges in the tournament,

hence we may choose a player a0 who beats at least (N − 1)/2 other players. We repeat the

process with the subtournament consisting of the unbeaten players, halving the size at each

step. After at most |N | steps, we reach the empty set, hence we obtaining a dominating set of

size |N |. We now give the formal proof.

We can work in S2
2(G) + sWPHP(PV2(G)) by Theorem 2.1. Choose ε−1 ∈ Log such that

(1 + ε)8(|N |+1) < 2. If 〈ai : i < k〉 is a sequence of vertices, we denote

G(~a) = {x < N : ∀i < k x→ ai}.

By Σb
2(G)-LIND on k ≤ |N | + 1, we will prove that there exists a sequence 〈ai : i < k〉 such

that

(3) G(~a) -ε

⌊
N

2k
(1 + ε)8k

⌋
.

The case k = |N |+ 1 then gives G(~a) = ∅, i.e., ~a is a dominating set of size |N |+ 1. (How to

get rid of the + 1 is left as an exercise. Hint: in real world, the bound |N | is not tight.)
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The base case k = 0 is obvious. Assume that (3) holds for k, we will show it for k+ 1. Find

s such that G(~a) -ε bs(1 + ε)c, G(~a) 6-ε s− 1. Notice that s ≤ N2−k(1 + ε)8k. We have

{〈x, y〉 ∈ G(~a) : x 6= y} ⊆ G(~a)2 -ε bs2(1 + ε)4c ≤ 2

⌊
s2

2
(1 + ε)4

⌋
+ 1

by Corollary 3.12, hence

{〈x, y〉 ∈ G(~a)2 : y → x} -ε
⌊
s2

2
(1 + ε)6

⌋
or {〈x, y〉 ∈ G(~a)2 : x→ y} -ε

⌊
s2

2
(1 + ε)6

⌋
by Theorem 3.17, and properties of the tournament. In the former case, there exists an x ∈ G(~a)

such that

G(~a, x) = {y ∈ G(~a) : y → x} -ε
⌊s

2
(1 + ε)8

⌋
≤
⌊
N

2k+1
(1 + ε)8(k+1)

⌋
by Theorem 3.20. The latter case is symmetric. �

As proved by E. and G. Szekeres [168], every tournament has a dominating set of size

|N |− ||N ||+O(1). We could formalize this stronger result with no additional difficulty; we skip

the proof as it involves lengthy quotes from [168] with no particular benefit for our purpose

(which is to illustrate the machinery developed in Section 3).

For the sake of completeness, we mention that Erdős [77] proved a lower bound of |N | −
2||N || + O(1) on the minimal size of a dominating set in random tournaments, and Razborov

[155] provided tournaments computable by AC0[2]-circuits with the same property. We do not

know how to prove these lower bounds in bounded arithmetic. (Ojakian [136] formalizes Erdős’s

proof in a different setting, where N ∈ Log.) An explicit construction of tournaments without

small dominating sets was given in [85]: if p ≡ −1 (mod 4) is a prime, the tournament with p

players defined by

a→ b ⇐⇒
(
a− b
p

)
= 1

has no dominating set of size 1
2 |p| − ||p||. However, their proof depends on Weil’s Riemann

hypothesis for curves over finite fields, which we cannot expect to prove in bounded arithmetic

by any stretch of imagination.

It turns out that generalizations of the tournament principle are more useful in applications

than the principle itself. We provide such a generalization next. The statement seems to be new

even outside the context of bounded arithmetic; it was inspired by a variant of the tournament

principle introduced in [82] (our Corollary 4.4), and a combinatorial principle implicit in [121]

(Corollary 4.5).

In order to explain it, let us consider first Corollary 4.4, which is a symmetric generalization

of the tournament principle to arbitrary binary relations that may not be tournaments. We

can reformulate it as follows: given a colouring of ordered pairs of points of a by two colours,

there is a colour i < 2, and a set D of size log a with the following property: for any point x,

there is an i-coloured pair whose ith coordinate is x, and the other coordinate belongs to D.

Now we can generalize the statement to higher dimensions as follows (this is the special case of
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Theorem 4.3 with ai = a, pi = 1/d, mi = 1): given a colouring of d-tuples of points of a by d

colours, there exists a colour i < d, and a set D of (d − 1)-tuples of size (d − 1) log a with the

following property: for any point x, there exists an i-coloured d-tuple whose ith coordinate is

x, and the tuple consisting of the remaining coordinates belongs to D.

In order to accommodate Corollary 4.5, we introduce as an extra complication the possibility

that the colouring is not total. We only require that it is “dense”, in the sense that every

hypercube with sufficiently large sides (sets of size m) contains a tuple whose colour is defined.

The conclusion is modified so that the d-tuple only needs to be i-coloured if its colour is defined,

and there will be an exceptional small (of size less than m) set M whose points x ∈ M are

exempt from the existence condition. To guard against trivializing the conclusion, we also

require that any tuple from D can be extended to a d-tuple with defined colour (D ⊆ Si in

the notation below). Finally, we allow each coordinate to use a different value of a and m for

extra generality, as it does not change the proof, and indeed it simplifies the notation used in

the proof in that it allows us to conveniently specify which coordinate in the product ad are we

referring to.

Theorem 4.3 (in T 1
2 (C)+rWPHP(PV2(C))) Let 0 < d ∈ Log. Let 〈ai : i < d〉 and 〈mi : i < d〉

be sequences of positive integers such that mi ∈ Log, 〈pi : i < d〉 a sequence of rationals pi ∈ QLog

such that 0 < pi < 1, and C a partial function from
∏
i<d ai to d.

Assume that
∑

i<d pi ≤ 1, and dom(C) ∩
∏
i<dMi 6= ∅ for every sequence 〈Mi : i < d〉 of

subsets Mi ⊆ ai such that |Mi| = mi. Put

Si =
{
〈xj : j 6= i〉 ∈

∏
j 6=i

aj : ∃xi ∈ ai ~x ∈ dom(C)
}
.

Then there exists an i < d, a set D ⊆ Si of size at most

2 + blog(1−pi)−1(ai/mi)c ≤ 1 + (p−1
i − 1)|bai/mic|,

and a set M ⊆ ai of size |M | < mi with the following property: for every xi ∈ ai rM there

exists 〈xj : j 6= i〉 ∈ D such that C(~x) = i or ~x /∈ dom(C).

Proof: The statement is ∀Σb
2(C), we can thus work in S2

2(C) + sWPHP(PV2(C)). We write

C(~x)↑ for ~x /∈ dom(C). If ~x ∈
∏
j 6=i aj and x ∈ ai, and if i is clear from the context, we will

write C(~x, x) instead of C(x0, . . . , xi−1, x, xi+1, . . . , xd−1).

For each i < d, put ci = 2 + blog(1−pi)−1(ai/mi)c. As ci ∈ Log, and ai(1 − pi)ci−1 < mi,

we can construct δi ∈ QLog such that 0 < δi < pi, and ai(1 − δi)ci < mi. Then there exists an

0 < ε ∈ QLog such that
(
1− pi(1 + ε)−19

)
(1 + ε)3 ≤ 1− δi for every i < d.

By Σb
2(C)-LMAX , we can find the maximal k such that there exist sequences 〈ki : i < d〉,

〈~xi,j : i < d, j < ki〉 satisfying k =
∑

i ki, ki ≤ ci, ~xi,j ∈ Si, and

Mi := {x < ai : ∀j < ki ∃` 6= i C(~xi,j , x) = `} -ε bai(1− δi)kic

for every i < d. If |Mi| < mi for some i < d, the conclusion of the theorem holds with M = Mi,

D = {~xi,j : j < ki}. We thus assume |Mi| ≥ mi (which implies ki < ci by the choice of
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δi) for every i < d, and we intend to reach a contradiction. We put X =
∏
jMj ∩ dom(C),

Xi = {~x ∈ X : C(~x) = i}, Ni = Si ∩
∏
j 6=iMj , and Oi = (Ni ×Mi)rX.

The intuition is as follows. For any i and ~x ∈ Si, we have

|{x ∈Mi : ∃` 6= i C(~x, x) = `}| ≥ ai(1− δi)ki+1 ≥ |Mi|(1− δi)

by maximality of ki, hence Prx∈Mi(C(~x, x)↑ ∨ C(~x, x) = i) ≤ δi. Consequently,

1 =
∑
i

Pr~x∈X(C(~x) = i) ≤
∑
i

Pr~x∈Ni×Mi
(C(~x)↑ ∨ C(~x) = i) ≤

∑
i

δi < 1

using nonemptiness of X, which is a contradiction. Now we formalize this argument using

approximate counting.

By assumption, X 6= ∅, hence we can find a t > 0 such that X -ε bt(1 + ε)c, X 6-ε t − 1

by Σb
2(C)-LIND . Fix i < d, and let wi be such that Mi -ε bwi(1 + ε)c, and Mi 6-ε wi − 1.

Consequently, wi ≤ bai(1− δi)kic.
Take any ~x ∈ Si. By Theorem 3.17, we have

(4) {x ∈Mi : C(~x, x)↑ ∨ C(~x, x) = i} -ε
⌊
bwipi(1 + ε)−18c(1 + ε)2

⌋
≤ bwipi(1 + ε)−16c

or

{x ∈Mi : ∃` 6= i C(~x, x) = `} -ε
⌊(
bwi(1 + ε)c − bwipi(1 + ε)−18c − 1

)
(1 + ε)2

⌋
≤ bwi

(
1− pi(1 + ε)−19

)
(1 + ε)3c ≤ bai(1− δi)ki+1c.

The latter however contradicts the maximality of ki, hence (4) holds for every ~x ∈ Si. Find vi
such that Ni -ε bvi(1 + ε)c, Ni 6-ε vi − 1. We have

(5) Pi := {~x ∈ Ni ×Mi : C(~x)↑ ∨ C(~x) = i} -ε bviwipi(1 + ε)−11c

by Theorem 3.19, and (4). Let Oi -ε bui(1 + ε)c, Oi 6-ε ui − 1. We claim

(6) viwi ≤ b(t+ ui)(1 + ε)6c.

Note that Ni×Mi ⊆ X ∪Oi -ε b(t+ ui)(1 + ε)3c by Theorem 3.13. Assume first vi ≥ 2/ε. We

have Ni 6-ε vi − 1 ≥
⌊
bvi(1 + ε)−2c(1 + 2ε)

⌋
, hence

b(t+ ui)(1 + ε)3c > wibvi(1 + ε)−2c ≥ viwi(1 + ε)−3

by Theorem 3.20. The case wi ≥ 2/ε is symmetric. If vi, wi ≤ 2/ε, then in particular vi, wi ∈
Log, and we can derive Ni ×Mi 6-ε dviwi(1 + ε)−1e − 1 easily by exact counting, which implies

(6) as above.

The definition of Si implies X ⊆ Ni ×Mi, hence Pi = Oi ∪̇Xi. We thus obtain

Oi ∪̇Xi -ε bviwipi(1 + ε)−11c ≤ b(t+ ui)pi(1 + ε)−5c ≤ btpi(1 + ε)−5c+ duipi(1 + ε)−5e

from (5) and (6), which implies

Oi -ε
⌊(
duipi(1 + ε)−5e − 1

)
(1 + ε)2

⌋
≤ dui(1 + ε)−3e − 1 or Xi -ε btpi(1 + ε)−3c
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by Theorem 3.17. The former contradicts the choice of ui, hence the latter holds for every i < d.

As t > 0, we obtain

X =
⋃
i

Xi -ε
⌊
(1 + ε)2

∑
i

tpi(1 + ε)−3
⌋
≤ bt(1 + ε)−1c ≤ t− 1

from Corollary 3.18, which contradicts the definition of t. �

Corollary 4.4 (in T 1
2 (R) + rWPHP(PV2(R))) Let R be a binary relation on a. There exists a

set D ⊆ a of size at most |a|+ 1 such that

∀x < a∃y ∈ DR(x, y) ∨ ∀y < a ∃x ∈ D¬R(x, y).

Proof: Use Theorem 4.3 with d = 2, ai = a, pi = 1/2, mi = 1, and C the (total) characteristic

function of R. �

Corollary 4.5 (in T 1
2 (R) + rWPHP(PV2(R))) Let c ∈ Log, and let a[i] denote the set of i-

element subsets of a. Assume that R ⊆ a[c] × a is a relation satisfying

∀X ∈ a[c+1] ∃x ∈ X R((X r {x}), x).

Then there exists a set D ⊆ a[c] of size |D| ≤ c|a|, and a set M ⊆ a of size at most c, such that

∀x ∈ ar
(
M ∪

⋃
D
)
∃X ∈ DR(X,x).

Proof: Apply Theorem 4.3 with d = mi = c+ 1, ai = a, pi = 1/d, and

C(x0, . . . , xc) =

{
min{i ≤ c : R({xj : j 6= i}, xi)} if xi are pairwise distinct,

undefined otherwise.

Observe that ~x ∈ Si iff the elements of ~x are pairwise distinct. �

The collapse of the bounded arithmetic hierarchy implies the collapse of the polynomial-time

hierarchy. The original result is by Kraj́ıček et al. [121], who prove that T i2 = S2 implies ΣP
i+1 ⊆

∆P
i+1/poly (hence also PH = ΣP

i+2 = ΠP
i+2). Buss [39] formalized a weaker conclusion inside

the bounded arithmetic: if T i2 = Si+1
2 , then T i2 proves Σb

i+1 ⊆ Πb
i+1/poly, and Σb

∞ = B(Σb
i+2)

(cf. also Zambella [182]). We will show that the stronger collapse from [121] can be formalized

in bounded arithmetic as well. Surprisingly, this also allows us to strengthen the collapse to

PH = B(ΣP
i+1), using a result from [67].

Theorem 4.6 If T i2 = Si+1
2 , then T i2 proves Σb

i+1 ⊆ ∆b
i+1/poly.

Proof: It suffices to formalize in T i2 the proofs of [121, Thm. B, L. 2.2], also repeated (with

a slightly different notation) in [116, Thm. 10.2.4, L. 10.2.2]. We assume the reader has one

of these two proofs at hand, but we sketch an outline of the proof here for convenience. We

consider a Σb
i+1-predicate ∃w ≤ v B(v, w), where B ∈ Πb

i , we need to show that there is an

FPΣbi -function g(u, v) and a polynomially bounded advice function h(n) such that

∃w ≤ v B(v, w)→ B(v, g(h(|v|), v)).
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We consider the ∆b
i+1-relation

R(〈v1, . . . , vr〉, 〈w1, . . . , ws〉)⇔ s ≤ r ∧ ∀` ≤ s (w` ≤ v` ∧B(v`, w`)).

By an application of the KPT witnessing theorem to an instance of Σb
i+1-LMAX , provable

in T i2 by assumption, we obtain a combinatorial principle called Ωi which states that we can

compute a length-maximal b such that R(a, b) from a by a certain counterexample computation

in constantly many rounds. Using Ωi, we define a certain algorithm for computing a pair

〈`, w〉 from a = 〈v1, . . . , vk〉. Let V1 = {|v| = n : ∃w ≤ v B(v, w)}. If Q is a (k − 1)-

element subset of V1, and v ∈ V1 r Q, we say that Q helps v [116] or 〈Q, v〉 is good [121], if

there is an ordering {v1, . . . , v`−1, v`+1, . . . , vk} of Q such that the algorithm assigns 〈`, w〉 to

〈v1, . . . , v`−1, v, v`+1, . . . , vk〉, where w is a witness for v (i.e., w ≤ v ∧ B(v, w)). (Here, k is a

constant parameter we obtain along with the principle Ωi.) Using a counting argument, we

constructs sets V1 ⊇ V2 ⊇ · · · ⊇ Vt and Qj ⊆ Vj for some t = O(n) so that Qj have k − 1

elements, Qj helps all elements of Vj r Vj+1, and |Vt| ≤ k. Then we can compute a witness for

v by a FPΣbi -function g given the sets Q1, . . . , Qt, Vt as well as witnesses for all their elements,

which will be encoded in the advice h(n).

Now we turn to the formalization. Notice that the assumption T i2 = Si+1
2 implies T i2 = S2 by

[39], hence we actually work in full bounded arithmetic; in particular, we can apply our results

above to approximately count sets defined by arbitrary bounded formulas.

By inspection of the proof as given in [116] or [121], we see that T i2 proves the principle Ωi

(as the conclusion of the KPT witnessing theorem is provable, not just true), the analysis of the

algorithm constructing 〈`, w〉 (straightforward, as the number of steps is a standard constant),

as well as the final definition of the function g (obvious). The missing part is the construction

the sets Q1, . . . , Qt−1, Vt and the advice string h(n). We close this gap by an application of

Corollary 4.5, where c = k − 1, and R(Q, v) is the “Q helps v” relation. �

Corollary 4.7 If T i2 = Si+1
2 , then T i2 proves Σb

∞ = B(Σb
i+1), and Σb

i+1 ⊆ Πb
i+1/O(1).

Proof: Cook and Kraj́ıček [67] show (in a two-sorted setting) that Theorem 4.6 implies Corol-

lary 4.7 when i = 0. Their results relativize in a straightforward way. �

After showing that PV1 ` NP ⊆ P/poly implies PV1 ` PH = BH (where BH = B(NP) is the

Boolean hierarchy), Cook and Kraj́ıček [67] also asked whether the converse holds. We can

answer their question affirmatively:

Corollary 4.8 If T i2 proves Σb
∞ = B(Σb

i+1), then T i2 proves Σb
i+1 ⊆ ∆b

i+1/poly.

Proof: The assumption implies T i2 = S2 by Zambella [182], which gives the conclusion by

Theorem 4.6. �

The base case i = 0 of Corollary 4.8 was meanwhile independently shown by Beyersdorff and

Müller [30] using a direct proof.

Kraj́ıček [117, 118] has studied connections between validity of variants of PHP in first-order

structures M , and existence of certain types of abstract counting functions which map definable

sets of M to elements of a ring (or semiring), and behave reasonably wrt embeddings, disjoint
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unions, and Cartesian products. In particular, a structure which admits a so-called nontrivial

approximate Euler characteristic (see below) satisfies iWPHP2n
n , and conversely, any structure

which satisfies iWPHP2n
n and an additional principle (any two definable sets are comparable

wrt definable embedding) admits a nontrivial approximate Euler characteristic.

Definition 4.9 If R is a partially ordered commutative ring, we write a ≤̇ b if for every rational

q > 1 there exist k, l ∈ N such that l/k < q and ka ≤ lb. We also put a
.
= b iff a ≤̇ b ∧ b ≤̇ a.

Let M be a first-order structure, and Def(M) the set of all subsets of Mk, k ∈ N, definable

with parameters from M . An approximate Euler characteristic is a function ξ : Def(M) → R,

where R is a partially ordered commutative ring, such that

(i) ξ(A) = |A| for finite A,

(ii) ξ(A ∪̇B)
.
= ξ(A) + ξ(B),

(iii) ξ(A×B)
.
= ξ(A) · ξ(B),

(iv) ξ(A) ≤̇ ξ(B) if A is definably embeddable into B,

for all A,B ∈ Def(M). ξ is trivial if R = 0.

We also consider extra conditions

(v) ξ(A) ≤̇ cξ(B) if ξ(f−1[b]) ≤̇ c for all b ∈ B,

(vi) cξ(B) ≤̇ ξ(A) if c ≤̇ ξ(f−1[b]) for all b ∈ B,

where c ∈ R, and f : A→ B is a definable injection.

Let M be a model of bounded arithmetic formulated in a purely relational language (i.e., we

replace functions with their graphs), and consider an interval [0, a]M as its substructure. Then

definable sets in [0, a] are definable in M by a bounded formula, hence [0, a] satisfies iWPHP2n
n

if M � iWPHP2n
n (Σb

∞). On the other hand, it is not known to satisfy the principle of comparing

cardinalities (and it seems rather unlikely to hold in general). Nevertheless, we can show the

following.

Theorem 4.10 Let M be a model of S2(α), and a ∈ M . Then [0, a]M with the induced struc-

ture admits a (totally ordered) nontrivial approximate Euler characteristic satisfying the extra

conditions (v), (vi).

Proof: W.l.o.g. assume that a is nonstandard. Let R be the totally ordered ring whose non-

negative part is M . Notice that x ≤̇ y iff x ≤ (1 + c−1)y for some c > ω. Fix ε = 1/n, where

n ∈ Log(M) r ω (say, n = |a|). If A is a definable set in [0, a], then A is definable in M by a

Σb
∞(α)-formula, hence there exists an s ∈ M such that M � (A -ε s ∧ A 6-ε s − 1); we define

ξ(A) = s. Then ξ is an approximate Euler characteristic by 3.10, 3.13, 3.17, 3.12, 3.16, and

3.11 (as any injection defined by a bounded formula has a retraction definable by a bounded

formula). The extra conditions hold for ξ because of Theorems 3.19 and 3.20. �
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The class SP2 , defined independently by Russell and Sundaram [161], and Canetti [48], con-

sists of languages L for which there exists a poly-time predicate R such that

x ∈ L⇒ ∃y ∀z R(x, y, z),

x /∈ L⇒ ∃z ∀y ¬R(x, y, z),

where |y|, |z| are implicitly bounded by a polynomial in |x|. The class SP2 occupies an interesting

position inside the second level of PH: obviously SP2 ⊆ ΣP
2 ∩ ΠP

2 , we also know that MA ⊆ SP2
(hence BPP ⊆ SP2 ), and PSP2 = SP2 (hence ∆P

2 ⊆ SP2 ) [161], and the standard proof of the

Karp–Lipton theorem shows that NP ⊆ P/poly implies PH = SP2 . The definition of SP2 does in

no way guarantee abundance of witnesses for the existential quantifiers; surprisingly, Cai [47]

has shown that nevertheless SP2 ⊆ ZPPNP. We will formalize this result in bounded arithmetic.

(The other results mentioned above are also easy to prove in bounded arithmetic, we leave the

details to the reader.)

Theorem 4.11 (in T 1
2 + rWPHP(PV2)) The complexity class SP2 is contained in ZPPNP.

Proof: Let L ∈ SP2 . Fix a constant c, and a poly-time relation R such that

x ∈ L⇒ ∃y < 2|x|
c ∀z < 2|x|

c
R(x, y, z),

x /∈ L⇒ ∃z < 2|x|
c ∀y < 2|x|

c ¬R(x, y, z).

By the relativization of the formalized Wilkie’s witnessing theorem [93, P. 1.16] applied to

Corollary 4.4, there exists a ZPPNP-predicate P definable in T 1
2 + rWPHP(PV2) such that the

same theory proves

P (x)⇒ ∃D ⊆ 2|x|
c ∀z < 2|x|

c ∃y ∈ DR(x, y, z),

¬P (x)⇒ ∃D ⊆ 2|x|
c ∀y < 2|x|

c ∃z ∈ D¬R(x, y, z).

Clearly, the conditions implied by x ∈ L and ¬P (x) are contradictory, and vice versa, hence

x ∈ L iff P (x). �

Another application of approximate counting in computational complexity is the equivalence

of public-coin and private-coin interactive protocols [83]. We illustrate it on the example of

the isomorphism problem: given two structures G0 and G1 (as tables) of the same signature,

determine whether G0 ' G1. (The most prominent, and indeed universal, special case is when

the structures are graphs.) The problem is obviously in NP, and its complement admits a simple

private-coin interactive proof system: the verifier picks randomly an i < 2, and a permutation

π, and sends π(Gi) to the prover, who has to determine i. If G0 6' G1, a (computationally

unlimited) prover can succeed with probability 1, whereas if G0 ' G1, no prover can do any

better (or worse, for that matter) than 1/2. It is much harder to construct a public-coin proof

system (i.e., an AM-algorithm) for the same problem, and it requires approximate counting.

Theorem 4.12 (in T 1
2 + sWPHP(PV2)) The isomorphism problem is in coAM.
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Proof: For simplicity, we will ignore floor and ceiling signs. Put ε = 1/42. As in the proof of

Lemma 3.14, there exists a definable prAM-problem L = 〈L+, L−〉 such that

Xb 6-ε a⇒ 〈a, b〉 ∈ L+,

Xb -ε
42
43a⇒ 〈a, b〉 ∈ L

−

for any parametric family of NP-sets Xb. As prAM is closed under bounded existential quan-

tification, conjunction, and disjunction, we can define a prAM problem L = 〈L+, L−〉 such

that

∃a
((
A0 6-ε a ∨A1 6-ε a

)
∧W0 ∪W1 6-ε

3n!

2a

)
⇒ 〈G0, G1〉 ∈ L+,

∀a
((
A0 -ε 42

43a ∧A1 -ε 42
43a
)
∨W0 ∪W1 -ε

4n!

3a

)
⇒ 〈G0, G1〉 ∈ L−,

where G0, G1 are structures with domain n, and Ai and Wi are the Σb
1-sets

Ai = Aut(Gi) = {π ∈ Sn : π(Gi) = Gi},
Wi = {π(Gi) : π ∈ Sn},

where Sn is the set of all permutations of n. It suffices to show

G0 6' G1 ⇒ 〈G0, G1〉 ∈ L+,

G0 ' G1 ⇒ 〈G0, G1〉 ∈ L−.

Claim 4.12.1

(i) If Ai -ε a, and Wi -ε b, then ab ≥ 5
6n!.

(ii) If Ai 6-ε a, and Wi 6-ε b, then ab ≤ 10
9 n!.

Proof: (i): If H ∈ Wi, and π0 is any permutation such that H = π0(Gi), then the mapping

π 7→ π0 ◦ π is a poly-time bijection of Ai onto M(H) := {π : π(Gi) = H}, with π 7→ π−1
0 ◦ π

being its inverse. It follows that M(H) -ε 43
42a by Corollary 3.11, thus

M := {〈π, π(Gi)〉 : π ∈ Sn} =
⋃̇

H∈Wi

M(H) -ε 9
8ab

by Theorem 3.19. Clearly π 7→ 〈π, π(Gi)〉 is a bijection of Sn onto M . Moreover, there exists a

poly-time enumeration of Sn by n!, hence 7
6ab� n!, which implies n! ≤ 6

5ab by sWPHP .

(ii): Similar. � (Claim 4.12.1)

Assume G0 6' G1, and find a0, a1 such that Ai 6-ε ai, Ai -ε 43
42ai. We have Wi 6-ε 13n!/16ai

by (i). The sets Wi are disjoint, hence

W0 ∪W1 6-ε
3n!

4

(
1

a0
+

1

a1

)
≥ 3n!

2ai

for some i by Theorem 3.17, thus 〈G0, G1〉 ∈ L+.

On the other hand, assume G0 ' G1, and let ai be such that Ai -ε 42
43ai, Ai 6-ε

20
21 . Then

W0 ∪W1 = Wi -ε 7n!/6ai by (ii), as W0 = W1. Consequently 〈G0, G1〉 ∈ L−. �
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Notice that if we change the definition of AM formalized in bounded arithmetic to use -
instead of � (which might be a good idea anyway), the statement of Theorem 4.12 becomes

∀Σb
2, hence we can prove it already in T 1

2 + rWPHP(PV2).
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Chapter III

Abelian groups and quadratic

residues in weak arithmetic

Abstract

We investigate the provability of some properties of abelian groups and quadratic residues

in variants of bounded arithmetic. Specifically, we show that the structure theorem for

finite abelian groups is provable in S2
2 + iWPHP(Σb

1), and use it to derive Fermat’s little

theorem and Euler’s criterion for the Legendre symbol in S2
2 +iWPHP(PV ) extended by the

pigeonhole principle PHP(PV ). We prove the quadratic reciprocity theorem (including the

supplementary laws) in the arithmetic theories T 0
2 + Count2(PV ) and I∆0 + Count2(∆0)

with modulo-2 counting principles.

1 Introduction

Bounded arithmetic is primarily studied because of its connections to complexity theory, see

e.g. Buss [37], Kraj́ıček [116], Cook and Nguyen [68]. However, as with other systems of formal

arithmetic, it is also interesting to note which mathematical (typically, number-theoretic or

combinatorial) theorems are provable in weak arithmetical theories, or to put it differently, to

find as weak a natural theory as possible which proves a given statement. (This approach is

called “bounded reverse mathematics” by Nguyen [132], in analogy with “reverse mathematics”

[78, 165]. However, note that unlike standard reverse mathematics, in bounded arithmetic one

usually does not obtain the equivalence of the statement to the theory.) Examples include the

proof of infinitude of prime numbers in I∆0+WPHP(∆0) by Paris, Wilkie, and Woods [146], the

proof of Lagrange’s four-square theorem in I∆0 + WPHP(∆0) by Berarducci and Intrigila [29],

the proof of the prime number theorem in I∆0 + exp by Cornaros and Dimitracopoulos [71], or

the proof of a discrete version of the Jordan curve theorem in V 0[2] by Nguyen [132].

The first contribution of the present paper is a proof of the structure theorem for finite

abelian groups—stating that every finite abelian group is isomorphic to a direct sum of cyclic

groups (see e.g. Mac Lane and Birkhoff [124])—in the theory S2
2 + iWPHP(Σb

1) (a subtheory of

Buss’s T 2
2 ), where we represent a finite group by a Σb

1-definable binary operation on a bounded

set of numbers. The easy part of the structure theorem, viz. representation of any finite abelian

93
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group as a direct sum of p-groups, was formalized in I∆0 +Ω1 by D’Aquino and Macintyre [72].

Here we prove the full structure theorem, and we find a refined proof with the aim of bringing

the complexity of the theory needed to formalize the argument down as low as possible.

Our motivating example, and main application, for the structure theorem is Fermat’s little

theorem (FLT ), stating

ap ≡ a (mod p)

for a prime p. FLT was considered in the context of bounded arithmetic by Kraj́ıček and

Pudlák [120], who have shown that S1
2 does not prove FLT if the RSA cryptosystem is secure.

(Actually, their argument applies to a weak corollary of FLT stating that multiplication modulo

a prime is a torsion group, which is provable using the weak pigeonhole principle.) Jeřábek [93]

proved that FLT is in S1
2 equivalent to the correctness of the Rabin–Miller probabilistic pri-

mality testing algorithm. It remains an open problem whether FLT is provable in the bounded

arithmetic S2. Here we derive FLT using the structure theorem for finite abelian groups in

the theory S2
2 + iWPHP(PV ) + PHP(PV ), which includes the strong pigeonhole principle for

polynomial-time functions.

Next to Fermat’s little theorem, we consider Euler’s criterion for quadratic residues stating(
a

p

)
≡ a(p−1)/2 (mod p)

for an odd prime p, where (a|p) is the Legendre symbol. We will show in S1
2 that Euler’s

criterion is equivalent to FLT together with a statement ensuring that the quadratic character

a 7→ a(p−1)/2 mod p is nontrivial. In particular, we obtain a proof of Euler’s criterion in S2
2 +

iWPHP(PV ) + PHP(PV ).

Finally, we will discuss another result on quadratic residues: the quadratic reciprocity theo-

rem. Quadratic reciprocity, originally proved by Carl Friedrich Gauss, is one of the most famous

theorems of elementary number theory. Apart from Gauss (who gave no less than eight different

proofs of the theorem), over 200 proofs of quadratic reciprocity have been published by various

authors. As far as bounded arithmetic is concerned, the work of D’Aquino and Macintyre [73]

on quadratic forms aims towards proving quadratic reciprocity or at least some of its special

cases in S2, and Cornaros [70] formalized a standard textbook proof of quadratic reciprocity

in IE2
∗ (a rather strong theory corresponding to the Grzegorczyk class E2 = LinSpace). The

supplementary laws were proved by Berarducci and Intrigila [29] in I∆0 extended with modular

counting principles.

Observe that many elementary proofs of quadratic reciprocity (e.g., proofs based on Gauss’s

lemma or Zolotarev’s lemma, and Eisenstein’s proof) directly or indirectly involve counting the

parity of sets. We will show, using a proof which appears to be new even outside the context of

bounded arithmetic, that rudimentary counting modulo 2 indeed suffices to prove the theorem.

More precisely, we do not even require the existence of modulo-2 counting functions, as we

can witness the parity of all sets we need by explicit functions. We only need to assume the

modulo-2 counting principle Count2; in detail, we can prove the law of quadratic reciprocity

as well as the supplementary laws and multiplicativity of the Legendre symbol in the theories

T 0
2 + Count2(PV ) and I∆0 + Count2(∆0). We also generalize these statements to the Jacobi
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symbol, and prove the soundness of the standard polynomial-time algorithm for the Jacobi

symbol in S1
2 + Count2(PV ).

2 Preliminaries

We review below basic facts about bounded arithmetic, we refer the reader to Kraj́ıček [116]

for more details.

We will work with two kinds of arithmetical systems: theories based on I∆0 (introduced

by Parikh [142]), and Buss’s theories [37]. I∆0 is a theory in the basic language of arithmetic

LPA = 〈0, S,+, ·,≤〉. A formula ϕ is bounded (or ∆0) if every quantifier in ϕ is bounded, i.e.,

it has one of the forms

∃x ≤ t ψ(x) := ∃x (x ≤ t ∧ ψ(x)),

∀x ≤ t ψ(x) := ∀x (x ≤ t→ ψ(x)),

where t is a term not containing the variable x. The axioms of I∆0 include the axioms of

Robinson’s arithmetic Q (which state basic inductive properties of addition, multiplication, and

ordering), and the induction schema ∆0-IND :

(ϕ-IND) ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1))→ ϕ(a).

We formulate Buss’s theories in the language L = 〈0, S,+, ·,≤,#, |x|, bx/2yc〉, where the

intended meaning of the symbols is |x| = dlog2(x + 1)e, x # y = 2|x|·|y|. A bounded quantifier

is called sharply bounded if its bounding term is of the form |t|. A formula is Σb
0 = Πb

0 if all

its quantifiers are sharply bounded. A formula is Σb
i+1 (Πb

i+1) if it is constructed from Σb
i ∪Πb

i -

formulas by means of conjunctions, disjunctions, sharply bounded quantifiers, and existential

(universal, respectively) bounded quantifiers. The set of Boolean combinations of Σb
i -formulas

is denoted by B(Σb
i).

The theory T i2 is axiomatized by a finite set BASIC of open axioms stating basic properties

of the symbols of L, and the schema Σb
i -IND . If i > 0, the theory Si2 consists of BASIC and

the polynomial induction schema Σb
i -PIND

(ϕ-PIND) ϕ(0) ∧ ∀x (ϕ(bx/2c)→ ϕ(x))→ ϕ(a).

Alternatively, Si2 can be axiomatized over BASIC by the length induction schema Σb
i -LIND

(ϕ-LIND) ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1))→ ϕ(|a|),

the length minimization schema Σb
i -LMIN

(ϕ-LMIN ) ϕ(a)→ ∃b ≤ a (ϕ(b) ∧ ∀x (|x| < |b| → ¬ϕ(x))),

or the analogous length maximization schema Σb
i -LMAX .

The theory Si2 also proves the Σb
i -comprehension schema

(ϕ-COMP) ∃b < a# 1 ∀i < |a| (i ∈ b↔ ϕ(i)),
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where we define i ∈ x iff bx/2ic is odd.

The basic relationship of these theories is given by T i2 ⊆ Si+1
2 ⊆ T i+1

2 . Buss’s witnessing

theorem implies that Si+1
2 is a ∀Σb

i+1-conservative extension of T i2. The theory S2 =
⋃
i S

i
2 =⋃

i T
i
2 is an extension of I∆0 + Ω1 by definitions.

All these theories can be relativized by introducing an extra unary predicate α in the lan-

guage. Σb
i(α) and Πb

i(α) formulas in the expanded language L(α) are defined as above. The

theories Si2(α) and T i2(α) include the (polynomial) induction schema for Σb
i(α)-formulas, but no

other axioms about the predicate α.

PV is an equational theory introduced by Cook [63]. Its language contains function symbols

for all polynomial-time algorithms, introduced inductively using limited recursion on notation

(cf. Cobham [57]). It is axiomatized by defining equations of its function symbols, and a

derivation rule similar to PIND . We will denote the set of PV -function symbols also by PV .

All PV -function have provably total Σb
1-definitions in T 0

2 such that T 0
2 proves their defining

equations and Σb
0(PV )-IND (Jeřábek [94]), furthermore every Σb

i(PV )-formula is equivalent to

a Σb
i -formula for i > 0, hence we will use PV -functions freely in T 0

2 and its extensions.

In particular, sequence encoding is available in T 0
2 . We will denote by (s)i and lh(s) PV -

functions which give the ith element of the sequence s, and the length of s, respectively. We will

often write just si instead of (s)i. Conversely, we will write sequences using angle brackets, so

that s = 〈si | i < lh(s)〉 if s encodes a sequence. Notice that always lh(s) ∈ Log as lh(s) ≤ |s|,
where we write x ∈ Log as a shorthand for the formula ∃y x = |y|. If s(i) is given by a

PV -function, then f(x) = 〈s(i) | i < |x|〉 is also definable by a PV -function.

If f is a definable function (possibly with parameters), the injective weak pigeonhole principle

iWPHP(f) is the axiom

a > 0→ ∃x < 2a f(x) ≥ a ∨ ∃x < x′ < 2a f(x) = f(x′).

If Γ is a set of functions (or formulas, meaning the functions with Γ-definable graph), then

we put iWPHP(Γ) = {iWPHP(f) | f ∈ Γ}. The multifunction weak pigeonhole principle

mWPHP(R) is the axiom

a > 0→ ∃x < 2a ∀y < a¬R(x, y) ∨ ∃x < x′ < 2a ∃y < a (R(x, y) ∧R(x′, y)),

where R is a definable binary relation. Again, we put mWPHP(Γ) = {mWPHP(R) | R ∈ Γ} for

a set Γ of formulas. Note that mWPHP(Γ) implies iWPHP(Γ). The schema mWPHP(Σb
i(α))

for i > 0 is provable in T i+1
2 (α) by Maciel, Pitassi, and Woods [125].

3 Finite abelian groups

Definition 3.1 (in S1
2(α)) A definable finite abelian group is a structure 〈G,+〉, where G is a

nonempty subset of an interval [0, t) (which we will denote simply as t), and + is a definable

binary operation on G satisfying the usual axioms of abelian groups:

x+ (y + z) = (x+ y) + z,

x+ y = y + x,

∃v (x+ v = y).
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We will denote the group 〈G,+〉 by just G, if there is no danger of confusion. If Γ is a set of

formulas, and G and + are definable by Γ-formulas (with parameters), we say that 〈G,+〉 is

a Γ-definable finite abelian group, or simply Γ finite abelian group. Observe that a group is

Σb
1(α) iff it is definable by a nondeterministic circuit with oracle α; we may identify the group

with (the number representing) the circuit, hence it makes sense to speak of, e.g., sequences of

groups. Notice that G is automatically Σb
1(α)-definable by the formula ∃y < t x+ x = y if + is

Σb
1(α).

Definition 3.2 (in S1
2(α)) For any positive integer n, C(n) denotes the cyclic group of addition

modulo n. The trivial abelian group C(1) is also denoted 0.

Let 〈Gi | i < k〉 be a sequence of Σb
1(α) abelian groups such that Gi ⊆ ti for each i < k.

(Notice that k ∈ Log, as it is the length of a sequence.) The direct sum
⊕

i<kGi is the Σb
1(α)

group

G = {〈ai | i < k〉 | ∀i < k ai ∈ Gi} ⊆
∏
i<k

ti

with addition defined by

〈ai | i < k〉+ 〈bi | i < k〉 = 〈ai + bi | i < k〉.

Here, a = 〈ai | i < k〉 for definiteness refers to the specific sequence encoding function

ai = ba/
∏
j<i tjc mod ti, whence the bound on the domain of G.

Lemma 3.3 (in S1
2(α)) If G is a Σb

1(α) finite abelian group, there exists a Σb
1(α)-definable func-

tion nx such that 0x = 0, 1x = x, (n+m)x = nx+mx, n(x+ y) = nx+ ny, (nm)x = n(mx),

and (−n)x = −nx for every x, y ∈ G, and integers n,m.

If + is defined by a PV (α)-function, then so is nx for nonnegative n.

Proof: We can define nx for nonnegative n by limited recursion on notation:

0x = 0,

(2n)x = nx+ nx,

(2n+ 1)x = (2n)x+ x.

We put (−n)x = −nx. Verification of the properties is then straightforward. �

Note that the extended Euclidean algorithm can be formalized by a PV -function, and an-

alyzed in a straightforward way in T 0
2 . In particular, coprimeness is ∆b

1 in T 0
2 , and T 0

2 proves

Bézout’s lemma. For the sake of completeness, we include a simpler proof in S1
2 :

Lemma 3.4 (Bézout’s lemma) (in S1
2) For every a, b, there exist integers u, v such that

d = ua+ vb divides both a and b (and therefore d = gcd(a, b)).

Proof: If b = 0, we have gcd(a, b) = a = 1a+ 0b, and similarly if a = 0, hence we may assume

that a, b > 0. Notice that for any 0 ≤ d ≤ a, the property that there exist integers u, v such

that d = ua+ vb is Σb
1, as it is equivalent to

∃u ≤ b∃v ≤ a d = ua− vb.
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Indeed, assume that d = u′a+ v′b, and write u′ = xb+ u, where 0 < u ≤ b. Then d = ua− vb
for v = −(xa+ v′), and 0 = a− a ≤ vb = ua− d ≤ ab, thus 0 ≤ v ≤ a.

We have a = 1a + 0b, hence by Σb
1-LMIN , there exists 0 < d ≤ a of minimal length such

that d = ua+ vb for some integers u, v. We can write a = xd± d′, where 0 ≤ d′ ≤ bd/2c. Then

|d′| < |d|, and d′ = ±(1− xu)a∓ (xv)b, which contradicts minimality of d unless d′ = 0, i.e., d

divides a. By a symmetric argument d divides b, too. �

Recall that a torsion element of a group G is an x ∈ G such that nx = 0 for some n > 0. A

torsion group is an abelian group consisting of torsion elements.

Lemma 3.5 (in S1
2(α)) If x is a torsion element of a Σb

1(α) finite abelian group, there exists a

unique positive integer o(x) (the order of x) such that

ax = 0 ⇐⇒ o(x) | a

for every a.

Proof: By Σb
1(α)-LMIN , there exists o(x) > 0 such that o(x)x = 0 of minimal length. Assume

that ax = 0, and let d = gcd(a, o(x)). By Bézout’s lemma, there exist integers u, v such that

d = ua+vo(x), hence dx = 0. If d is a proper divisor of o(x), then |d| < |o(x)|, which contradicts

the choice of o(x). Therefore d = o(x), and o(x) | a. Uniqueness of o(x) is obvious. �

Lemma 3.6 (in S1
2(α) + iWPHP(Σb

1(α))) Any Σb
1(α) finite abelian group is a torsion group.

Proof: Let x ∈ G ⊆ t. By iWPHP , there exist a < b < 2t such that ax = bx, hence (b−a)x = 0.

�

Remark 3.7 Similarly to Lemma 3.6, S1
2(α)+iWPHP(Σb

1(α)) also proves that any finite struc-

ture with a Σb
1(α)-definable associative, commutative, and cancellative binary operation is an

abelian group.

Before we turn to the main structure theorem, we prove the simpler decomposition to p-

primary components below. It is a consequence of the structure theorem, but we prove it

separately because we can formalize the proof in a weaker theory than the full structure theorem.

The decomposition to p-primary components was proved in I∆0+Ω1 by D’Aquino and Macintyre

[72] (formulated for multiplicative groups of the prime fields Fp, but the argument works for

general abelian groups).

Definition 3.8 (in S1
2(α)) If 〈G,+〉 is a Σb

1(α) finite abelian group, and p is a prime, then the

p-primary component of G is defined by

Gp = {x ∈ G | ∃e p|e|x = 0}.

Notice that Gp is a subgroup of G. If G is a torsion group with o(x) ≤ t for every x, then Gp
is Σb

1(α), as we can bound e by t.

A p-group is a Σb
1(α) finite abelian group 〈G,+〉 such that G = Gp.
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Theorem 3.9 (in S1
2(α) + iWPHP(Σb

1(α))) Let 〈G,+〉 be a Σb
1(α) finite abelian group. There

exists a sequence 〈pi | i < k〉 of pairwise distinct primes, such that the mapping

ϕ :
⊕
i<k

Gpi → G

defined by ϕ(〈xi | i < k〉) =
∑

i<k xi is an isomorphism. If a prime p does not appear in

{pi | i < k}, then Gp = 0.

Proof: Let G ⊆ t. By Σb
1(α)-LMAX , there exists the maximal k with the property that

k ≤ |t| + 1 and there exists a sequence 〈zi | i < k〉 of nonzero elements of G, and a sequence

〈pi | i < k〉 of pairwise coprime integers pi ≤ 2t such that pizi = 0. (Notice that coprimeness is

Σb
1 by Bézout’s lemma, and all other universal quantifiers in this definition are sharply bounded,

hence the property is indeed Σb
1(α).) By Σb

1(α)-LMIN , there exists the smallest l such that there

exist ~z and ~p as above with
∑

i|pi| ≤ l. Fix the witnesses ~z and ~p.

By the choice of l, all pi are primes: if pi = mn is a nontrivial factorization, then either

mzi = 0, or y = mzi is a nonzero element such that ny = 0. We can thus replace pi with m or

n, which contradicts the minimality of l. In particular, pi = o(zi) for all i < k.

Define f :
∏
i pi → G by f(〈ai | i < k〉) =

∑
i aizi. We claim that f is injective. Indeed, let∑

i aizi =
∑

i a
′
izi, and fix i < k. Put q =

∏
j 6=i pj . We have 0 = q

∑
j(a
′
j − aj)zj = q(a′i − ai)zi,

hence o(zi) = pi | q(a′i − ai). However, q is coprime to pi, thus pi | a′i − ai. As 0 ≤ a′i, ai < pi,

this implies ai = a′i. By iWPHP(Σb
1(α)), we obtain 2k ≤

∏
i pi < 2t, hence k ≤ |t|.

Consequently, if p 6= pi for all i, then Gp = 0. Indeed, if x 6= 0, and pex = 0, we can extend

~p and ~z by pe and x (respectively), which contradicts the maximality of k.

Clearly, ϕ is a group homomorphism. We claim that ϕ is injective, i.e., ker(ϕ) = 0. Let

thus
∑

i xi = 0, xi ∈ Gpi . Consider i < k, and put q =
∏
j 6=i p

|t|
j . We have 0 = q

∑
j xj = qxi,

and p
|t|
i xi = 0, hence xi = 0, as q and p

|t|
i are coprime.

It remains to show that ϕ is onto. Let thus x ∈ G, and using Σb
1(α)-LMIN find a of minimal

length such that ax ∈ rng(ϕ). We have bx ∈ rng(ϕ) iff a | b, as in the proof of Lemma 3.5. If

a = 1, the proof is finished. Let us assume for contradiction a > 1, and choose a prime p | a.

Put q =
∏
pi 6=p p

|t|
i , and y = (qa/p)x. We have ax =

∑
i xi for some xi ∈ Gpi , hence

py = qax = q
∑
i

xi =

{
qxi p = pi for some i,

0 otherwise.

If p = pi, we have py = qxi ∈ Gp, hence also y ∈ Gp ⊆ rng(ϕ). If p 6= pi for all i, then

y ∈ Gp = 0 ⊆ rng(ϕ). In both cases, we obtain (qa/p)x ∈ rng(ϕ), hence a | (qa/p). This implies

p | q, which contradicts the definition of q. �

Corollary 3.10 (in S1
2(α) + iWPHP(Σb

1(α))) If G is a Σb
1(α) finite abelian group, then there

exists n > 0 such that nG = 0.

Proof: Let n =
∏
i p
|t|
i , where ~p and t is as in Theorem 3.9. Then nx = 0 for all x ∈ G. �
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Corollary 3.11 (in S1
2(α) + iWPHP(PV (α))) If + is definable by a PV (α)-function, then so

is −.

Proof: Under the assumption all instances of iWPHP(Σb
1(α)) used above were actually in-

stances of iWPHP(PV (α)). If n is as in Corollary 3.10, then −x = (n − 1)x is PV (α) by

Lemma 3.3. �

The main result of this section is the structure theorem below.

Theorem 3.12 (in S2
2(α) + iWPHP(Σb

1(α))) Let G be a Σb
1(α) finite abelian group. There

exists a sequence of prime powers P = 〈peii | i < k〉 with ei > 0, and a sequence 〈xi | i < k〉 of

elements of G, such that the Σb
1(α)-function

ϕ :
⊕
i<k

C(peii )→ G

defined by

ϕ(〈αi | i < k〉) =
∑
i<k

αixi

is a group isomorphism. Moreover, P is unique up to permutation of indices.

Remark 3.13 No claim is being made on uniformity of the Σb
1(α)-isomorphism, as the proof

will give no nontrivial estimate on the complexity of finding the sequence ~x.

Proof: Existence: let us say that 〈xi | i < k〉 is an independent sequence with exponents

〈mi | i < k〉 if

(1) ∀i < k (xi ∈ G ∧mi > 1 ∧mixi = 0) ∧ ∀~α ∈
∏
i<k

mi

(∑
i<k

αixi = 0→ ~α = ~0
)
.

Notice that (1) is a B(Σb
1(α)) ⊆ Σb

2(α)-formula, as the quantifier ∀i < k is sharply bounded. If ~x

is an independent sequence with exponents ~m, then the mapping ϕ :
⊕

i<k C(mi)→ G defined

by

ϕ(〈αi | i < k〉) =
∑
i<k

αixi

is easily seen to be a homomorphism, and ker(ϕ) = 0, hence ϕ is injective. As ϕ is Σb
1(α), we

can apply iWPHP(ϕ), which implies that
∏
imi ≤ 2t, where G ⊆ t. In particular,

k ≤
∣∣∣∏
i<k

mi

∣∣∣ ≤ |t|+ 1.

We apply the Σb
2(α)-LMAX principle to fix the maximal k such that there exists an independent

sequence of length k. Then we apply Σb
2(α)-LMAX once more to find an independent sequence

〈xi | i < k〉 with exponents 〈mi | i < k〉 such that |
∏
imi| is maximal.
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Claim 3.13.1 Each mi is a prime power.

Proof: Assume for contradiction that mi is not a prime power. By Claim 2 in [93, Ex. 1.13],

we can write mi = ab, where a, b > 1 are coprime. By Bézout’s lemma, we can choose integers

u, v such that ua + vb = 1. Put y = uaxi, z = vbxi. Clearly, by = 0 = az. We will show that

〈y, z, xj | j 6= i〉 is an independent sequence with exponents 〈b, a,mj | j 6= i〉, contradicting the

definition of k.

Let thus α < b, β < a, αj < mj be such that αy + βz +
∑

j 6=i αjxj = 0. By the definition

of y, z, we have

(αua+ βvb)xi +
∑
j 6=i

αjxj = 0,

thus the independence of ~x implies that αj = 0 for j 6= i, and mi | αua + βvb. In particular,

a | βvb, and as a is coprime to vb, a | β, hence β = 0. We can show α = 0 by a symmetric

argument. � (Claim 3.13.1)

We write mi = peii , where pi is prime, and define the mapping ϕ as above.

Claim 3.13.2 ϕ is surjective.

Proof: Assume for contradiction that there exists an element x ∈ G such that x /∈ rng(ϕ). By

Lemma 3.6 and a generalization of Lemma 3.5, there exists an a > 0 such that bx ∈ rng(ϕ) iff

a | b for any integer b. As a > 1, there is a prime p | a. If x′ = (a/p)x, then bx′ ∈ rng(ϕ) iff

p | b, hence we may simply assume that a = p is prime. Write

px =
∑
i

βixi.

If i is such that p 6= pi, then mi is coprime to p, hence there exists u such that umi ≡ −βi
(mod p). Putting β′i = βi + umi, we have β′ixi = βixi, and p | β′i. We may thus replace βi with

β′i, and assume that

p 6= pi → p | βi

for every i. We have

px′ := p

(
x−

∑
p|βi

βi
p
xi

)
=
∑
p-βi

βixi,

and x′ /∈ rng(ϕ), hence we may replace x with x′. This means that we can assume that βi = 0

whenever p | βi; putting our constraints together, we have

(2) βi 6= 0→ p = pi ∧ p - βi.

We need to distinguish two cases.

Case 1: px = 0. We will show that 〈x, xi | i < k〉 is an independent sequence with exponents

〈p,mi | i < k〉, contradicting the choice of k. Take α < p, αi < mi such that αx+
∑

i αixi = 0.

If α = 0, then ~α = ~0 by the independence of ~x. On the other hand, if α 6= 0, then there exists

u such that uα ≡ 1 (mod p). Then x = uαx = −
∑

i uαixi, which contradicts x /∈ rng(ϕ).
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Case 2: px 6= 0. We can find i0 such that βi0 6= 0, and ei0 ≥ ei for all i such that βi 6= 0. In

order to simplify the notation, we assume that i0 = 0. As all i that βi 6= 0 have p = pi by (2),

we obtain pe0+1x =
∑

i p
e0βixi = 0. We claim that 〈x, xi | i > 0〉 is an independent sequence

with exponents 〈pe0+1,mi | i > 0〉. The sequence has length k; as pe0+1 = pm0, the length of∏
imi strictly increases, hence we obtain a contradiction with the choice of ~x and ~m. So, take

α < pe0+1 and αi < mi such that αx +
∑

i 6=0 αixi = 0. Multiplying the equation by p and

expanding px we get

αβ0x0 +
∑
i 6=0

(αβi + pαi)xi = 0.

By the independence of ~x, we have pe0 | αβ0. As β0 is coprime to p by (2), we obtain pe0 | α,

and in particular, p | α. Using the expression of px in term of ~x once again, we have

α

p
β0x0 +

∑
i 6=0

(
α

p
βi + αi

)
xi = 0.

By the independence of ~x, we have pe0 | (α/p)β0, hence pe0+1 | α, which implies α = 0. Then

~α = ~0 by the independence of ~x. � (Claim 3.13.2)

We recall that ϕ is an injective homomorphism, hence the two claims imply that ϕ is an

isomorphism of the form required in the theorem.

Uniqueness: assume that

ϕ′ :
⊕
i

C(p
′ e′i
i ) ' G

is another Σb
1(α)-isomorphism. Let pe be any prime power. We have

{x ∈ C(peii ) | pex = 0} =


0 pi 6= p,

C(peii ) pi = p, ei ≤ e,
pei−ei C(pei ) ' C(pei ) pi = p, ei > e.

It follows that ϕ induces a Σb
1(α)-bijection

{x ∈ G | pex = 0} '
⊕
pi=p

C(pmin(e,ei)) ≈ pλ(pe),

where λ(pe) =
∑

pi=p
min(e, ei). Similarly, ϕ′ induces a bijection of the same set and pλ

′(pe),

thus λ(pe) = λ′(pe) by iWPHP(Σb
1(α)). However, we have

λ(pe+1)− λ(pe) = |{i | pi = p, ei > e}|,

and similarly for λ′, hence

|{i | pi = p, ei = e}| = 2λ(pe)− λ(pe+1)− λ(pe−1) = |{i | p′i = p, e′i = e}|.

It follows that p′i = pπ(i), e
′
i = eπ(i) for some permutation π. �
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We can vary the strength of the weak pigeonhole principle needed to prove the theorem

depending on the complexity of the representation of the group. We give two examples.

Corollary 3.14 The structure theorem 3.12 for Σb
1(α) finite abelian groups 〈G,+〉 such that +

is given by a PV (α)-function is provable in S2
2(α) + iWPHP(PV (α)).

Proof: If + is PV (α), then all instances of iWPHP used in the proofs of Lemma 3.6 and

Theorem 3.12 are instances of iWPHP(PV (α)). �

Definition 3.15 (in S1
2(α)) A Γ-definable finite abelian group with nonabsolute equality is a

structure 〈G,+,≈〉, where G is a nonempty Γ-definable subset of some t, + is a Γ-definable

ternary relation on G, and ≈ is a Γ-definable equivalence relation on G, such that

∃w ∈ G+(x, y, w),

x ≈ x′ ∧ y ≈ y′ ∧+(x, y, z) ∧+(x′, y′, z′)→ z ≈ z′

for all x, x′, y, y′, z, z′ ∈ G, and appropriate versions of the axioms of abelian groups hold, e.g.,

commutativity is expressed as

+(x, y, z) ∧+(y, x, w)→ z ≈ w.

Example 3.16 Let 〈G,+〉 be a Σb
1(α) finite abelian group, and H its Σb

1(α) subgroup. We can

represent the quotient group G/H as a Σb
1(α) finite abelian group with nonabsolute equality

〈G,+,≈〉, where x ≈ y iff x− y ∈ H.

Corollary 3.17 The structure theorem 3.12 for Σb
1(α)-definable finite abelian groups with non-

absolute equality is provable in S2
2(α) + mWPHP(Σb

1(α)).

Proof: The proof of Theorem 3.12 works without change, except that now we need to apply

the weak pigeonhole principle to multivalued functions. �

We remind the reader that S2
2(α) + iWPHP(Σb

1(α)) and S2
2(α) + mWPHP(Σb

1(α)) are con-

tained in T 2
2 (α). On the other hand, the structure theorem implies that a finite vector space

over F2 encoded by α has a basis, and this statement is not provable in S2
2(α) [116, Cor. 11.3.5].

Thus, some version of the weak pigeonhole principle is indispensable to prove the structure

theorem.

The unique representation of finite abelian groups in Theorem 3.12 in terms of cyclic p-

groups is known as the primary decomposition. There is also another unique representation of

finite abelian groups as sums of cyclic groups, known as invariant factor decomposition. We

will describe it next, we can prove it easily from Theorem 3.12.

Lemma 3.18 (in T 0
2 ) Let n =

∏
i<k ni, where ni are pairwise coprime. Then the mapping

ϕ : C(n)→
⊕
i<k

C(ni)

defined by

ϕ(α) = 〈α mod ni | i < k〉

is an isomorphism, and its inverse is poly-time computable.
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Proof: Easy, cf. Claim 1 in the proof of [93, Ex. 1.13]. �

Theorem 3.19 (in S2
2(α) + iWPHP(Σb

1(α))) Let G be a Σb
1(α) finite abelian group. There

exists a unique sequence 〈ni | i < k〉 of natural numbers ni > 1 satisfying ni+1 | ni for every

i < k, such that there exists a Σb
1(α)-definable isomorphism

ϕ :
⊕
i<k

C(ni) ' G

of the same form as in Theorem 3.12.

Proof: Existence: consider the isomorphism⊕
i

C(peii ) ' G

from Theorem 3.12. We can collect powers of the same prime together, put each collection in

nonincreasing order, and pad it with trivial factors p0
i = 1 so that all collections have the same

length. We obtain a representation ⊕
i<k
j<l

C(p
ei,j
j ) ' G,

where pj are distinct primes, and ei,j ≥ ei+1,j . Put ni =
∏
j p

ei,j
j . Clearly ni+1 | ni, and we have⊕

i

C(ni) ' G

using Lemma 3.18.

Uniqueness: let

ϕ′ :
⊕
i

C(n′i) ' G

be another such isomorphism. We may arrange the sequences ~n, ~n′ to have the same length by

padding the shorter one with ~1. We denote by op(n) the maximal e ≤ |n| such that pe | n. Let

pe be any prime power. As in the proof of Theorem 3.12, we can establish

{x ∈ G | pex = 0} '
⊕
i

C(gcd(pe, ni)) ≈ p
∑
i min(e,op(ni)),

and conclude

(3) |{i | op(ni) = e}| = |{i | op(n′i) = e}|.

We observe that the sequence op(ni) is nonincreasing in i, as ni+1 | ni. We can thus prove

op(ni) = op(n
′
i) by induction on i, using (3). This implies ni = n′i. �

Remark 3.20 Theorem 3.19 has also variants for PV (α)-groups or groups with nonabsolute

equality similar to Corollaries 3.14 and 3.17.
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4 Fermat’s little theorem and Euler’s criterion

Definition 4.1 If f is a definable function (possibly with parameters), then PHP(f) states

that f is not a bijection of a onto b for any a 6= b, i.e.,

a 6= b→ ∃x < a f(x) ≥ b ∨ ∃x < x′ < af(x) = f(x′) ∨ ∃y < b ∀x < a f(a) 6= b.

If Γ is a set of definable functions, PHP(Γ) denotes the schema {PHP(f) | f ∈ Γ}.

Notice that iWPHP(f) is based on a somewhat different variant of the pigeonhole principle

than our PHP(f), hence PHP(PV ) does not seem to imply iWPHP(PV ) over, say, S2
2 .

Theorem 4.2 S2
2 + iWPHP(PV ) + PHP(PV ) proves Fermat’s little theorem:

xp ≡ x (mod p)

for every prime p and integer x.

Proof: Let G = F×p (i.e., the multiplicative group of units of the finite field Fp of residues

modulo p). By Corollary 3.14, there exists an isomorphism

ϕ :
⊕
i<k

C(peii )→ G

defined by a PV -function (as “+” of the group, i.e., modular multiplication, is poly-time). Let

n =
∏
i p
ei
i . Clearly nx = 0 (i.e., xn = 1 in multiplicative notation) for every x ∈ G. As ϕ

induces a bijection of n and p− 1, we must have n = p− 1 by PHP . �

PHP is a rather strong axiom, but in this case it seems unavoidable. If F×p is cyclic, it is easy to

see that Fermat’s little theorem is in S2
2 + iWPHP(PV ) equivalent to the instance of PHP(PV )

used in the proof of Theorem 4.2. In the absence of PHP , we see no reason why F×p could not

be isomorphic to, say, C(p + 1), in which case Fermat’s little theorem fails spectacularly. In

view of this discussion, we conjecture that the answer to the following problem is negative.

Question 4.3 Is Fermat’s little theorem provable in S2?

Fermat’s little theorem can be strengthened to Euler’s criterion. Recall that the Legendre

symbol is defined by

(
a

p

)
=


1 if p - a and a is a quadratic residue modulo p,

−1 if p - a and a is a quadratic nonresidue modulo p,

0 if p | a,

for any integer a, and an odd prime p. Euler’s criterion states that(
a

p

)
≡ a(p−1)/2 (mod p)
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for every such a, p. We are going to characterize the relationship of Euler’s criterion to Fermat’s

little theorem in S1
2 , and in particular, we will show that Euler’s criterion is provable in S2

2 +

iWPHP(PV ) + PHP(PV ).

Berarducci and Intrigila [29] have shown multiplicativity of the Legendre symbol(
a

p

)(
b

p

)
=

(
ab

p

)
in I∆0 + iWPHP(∆0) (their proof also works in T 0

2 + iWPHP(PV ), cf. [95]). We will use a

different proof to get multiplicativity under a weaker assumption (cf. Lemma 3.6).

Lemma 4.4 (in T 0
2 ) If p is an odd prime such that F×p is a torsion group, then (·|p) is multi-

plicative.

Proof: We make a few observations about multiplication in F×p :

Claim 4.4.1

(i) For any x, there are y, z such that x = yz and y2k = 1 = zm for some k and odd m. We

have (z|p) = 1 and (x|p) = (y|p).

(ii) If y2k = 1, then either y = 1, or y2l = −1 for some l < k.

(iii) If z2k = −1 and y2k+1
= 1, there exists a such that za = y.

(iv) If y2k = −1, then (y|p) = 1 if and only if ∃z z2k+1
= −1.

Proof:

(i): We have xn = 1 for some n > 0, and we can write n = 2km where m is odd. Pick u, v

such that um+ v2k = 1, and put y = xum and z = xv2k . Then x = yz, and y2k = 1, zm = 1. If

m = 2r + 1, we have (zr+1)2 = z, thus (z|p) = 1. It follows that y = w2 iff x = (wzr+1)2, and

symmetrically x = w2 iff y = (wz−(r+1))2, hence (y|p) = (x|p).
(ii) follows immediately from the fact that the only square roots of 1 are ±1.

(iii): We show by reverse induction on l ≤ k+1 that ∃a < 2k+1 y2l = za. The induction step:

we assume y2l+1
= za by the induction hypothesis. We have (−1)a = za2k = y2k+l+1

= 1, hence

a is even. Thus y2l = ±za/2, which equals either za/2 or za/2+2k . As stated, the proof used

Σb
1-LIND ; however, we can clearly construct a explicitly by a PV -function, hence T 0

2 suffices.

(iv): If there exists such a z, then y = za for some a by (iii). We have 1 = y2k+1
= z2k+1a =

(−1)a, hence a is even, and y = (za/2)2. On the other hand, if y = z2, then z2k+1
= −1.

� (Claim 4.4.1)

We have (xx′|p) = (x|p)(x′|p) whenever (x|p) = 1 or (x′|p) = 1, as in the proof of (i). Let

thus (x|p) = (x′|p) = −1, we want to show (xx′|p) = 1. We may assume x2r = x′2
r

= 1 for

some r by (i). We can fix k, k′ such that x2k = x′2
k′

= −1 by (ii). We must have k = k′ by (iv).

We obtain (xx′)2k = 1, hence xx′ = 1 or (xx′)2l = −1 for some l < k by (ii), which implies

(xx′|p) = 1 by (iv). �
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Lemma 4.5 (in S1
2) Let G be a Σb

1(α) finite abelian group such that nG = 0 for some n > 0,

and p be a prime. If pG = G, then Gp = 0.

Proof: Write n = pem, where p - m. Let x ∈ G be such that pkx = 0 for some k. Using pG = G

and Σb
1(α)-LIND , there exists y ∈ G such that pey = x, thus mx = ny = 0. As gcd(m, pk) = 1,

we obtain x = 0. �

Theorem 4.6 (in S1
2) For any odd prime p, Euler’s criterion

∀a
(
a

p

)
≡ a(p−1)/2 (mod p)

is equivalent to the conjunction of Fermat’s little theorem

∀a ap ≡ a (mod p)

and the statement

∃a a(p−1)/2 ≡ −1 (mod p).

Proof: Right-to-left: if (a|p) = 1, there exists a b such that b2 = a, thus a(p−1)/2 = bp−1 = 1.

If (a|p) = −1, we choose a b such that b(p−1)/2 = −1; then (b|p) = −1, thus (ab|p) = 1 by

Lemma 4.4, hence (ab)(p−1)/2 = 1, which implies a(p−1)/2 = −1.

Left-to-right: FLT is clear. If G = F×p , then −1 ∈ G2 6= 0, hence G2 6= G by Lemma 4.5,

i.e., there exists a square nonresidue a. By Euler’s criterion, a(p−1)/2 = −1. �

Theorem 4.7 S2
2 + iWPHP(PV ) + PHP(PV ) proves Euler’s criterion.

Proof: We have Fermat’s little theorem by Theorem 4.2. Fix an isomorphism of F×p and⊕
i<k C(peii ) by Corollary 3.14, where pi are primes. We have p − 1 =

∏
i p
ei
i by PHP . As F×p

contains only two square roots of 1, only one of the pi is 2; assume p0 = 2, and put e = e0. Then

(p− 1)/2e is an odd integer, and as C(2e) is cyclic, there exists a b ∈ F×p such that b2
e−1

= −1.

We have b(p−1)/2 = (−1)(p−1)/2e = −1, hence we obtain Euler’s criterion by Theorem 4.6. �

In connection to Fermat’s little theorem, it is natural to ask

Question 4.8 Does S2 + PHP(PV ) (or a similar theory) prove that the multiplicative group

of Fp is cyclic for every prime p?

Consider an isomorphism

ϕ :
⊕
i<k

C(peii ) ' G = F×p

as in Theorem 4.2. If pi 6= pj for every i 6= j, then G ' C(n) is cyclic by Lemma 3.18, where

n =
∏
i p
ei
i . If q is a prime, then elements of C(n) satisfying qx = 0 form a cyclic subgroup H

of order 1 (if q - n) or q (if q | n, in which case H = (n/q)C(q)).

On the other hand, if pi = pj for some i 6= j, we can put q = pi. The element a = qei−1

generates a subgroup isomorphic to C(q) in C(qei), and similarly there is an element b ∈ C(qej )

generating a subgroup isomorphic to C(q). Then {a, b} generates a subgroup isomorphic to

C(q)⊕C(q), all elements of which satisfy qx = 0. Lifting the situation to G using ϕ, we obtain

the following dichotomy:
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Lemma 4.9 (in S2
2 + iWPHP(PV )) Let p be a prime, and let G be the multiplicative group of

units in Fp.

(i) If G is cyclic, then for every prime q, there exists a PV -surjection of q onto the set

{x ∈ G | xq = 1}.

(ii) If G is not cyclic, there exists a prime q, and a PV -injection of q2 to {x ∈ G | xq = 1}.

�

The usual proof of cyclicity of F×p relies on the fact that the degree q polynomial xq − 1

can have only q roots in the field Fp; the latter is proved by induction on the degree of the

polynomial. Unfortunately, the intermediate polynomials needed for the induction are not

sparse, hence they are exponentially sized objects, and cannot be used in bounded arithmetic

(even extended by pigeonhole principles or counting functions). On the other hand, if we could

manage to match the roots against the degree using a different counting argument, there is a

good chance that a weak pigeonhole principle would suffice because of the large gap given by

Lemma 4.9.

Notice that the same principle can be applied to the relationship of Fermat’s little theorem

to Euler’s criterion: assuming the former, the extra condition ∃a a(p−1)/2 ≡ −1 (mod p) from

Theorem 4.6 is equivalent to asking the degree (p − 1)/2 polynomial x(p−1)/2 − 1 to have less

than p − 1 roots in Fp, hence a solution to the degree-vs-roots problem would also answer the

following problem:

Question 4.10 Does Fermat’s little theorem imply Euler’s criterion over S2?

5 Quadratic reciprocity

In this section we prove the quadratic reciprocity theorem (including the supplementary laws)

from the modulo-2 counting principle Count2 (cf. [116]). Our proof is loosely based on Gauss’s

third proof of reciprocity, however we have streamlined the argument so that it only uses

counting modulo 2 instead of bounded sums and products, and we made sure that we can

construct explicit functions witnessing the parity of the sets we want to count modulo 2.

The basic form of the modulo-2 counting principle (also called the equipartition principle

in [29]) states that we cannot partition an odd-length interval 2a + 1 = [0, 2a + 1) into two-

element blocks. We can weaken the principle by representing the partition in a more explicit

way. We do so by requiring a function f which assigns to each element of 2a+ 1 its partner in

its block. Such a function f defines a partition into blocks of size at most two if and only if f is

an involution (i.e., f ◦ f = id), and the partition has no blocks of size one iff f has no fixpoint.

We thus state the counting principle as “every involution on 2a+ 1 contains a fixpoint”:

Definition 5.1 If f is a function (possibly with parameters), Count2(f) is the axiom

∃x ≤ 2a (f(x) > 2a ∨ f(f(x)) 6= x ∨ f(x) = x).

If Γ is a set of definable functions, we define the schema Count2(Γ) = {Count2(f) | f ∈ Γ}.
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Notice that Count2(∆0) is in I∆0 equivalent to the original version of the mod-2 counting

(equipartition) principle: given a ∆0 equivalence relation with two-element blocks, we can easily

define the neighbourhood function f by a ∆0-formula. We will, however, also use the principle

for PV -functions in T 0
2 , and in this context our version of the principle appears to be genuinely

weaker. Note also that I∆0 + Count2(∆0) is contained in the two-sorted theory V 0[2].

Mod-2 counting by involutions was used to prove Fermat’s theorem on sums of two squares

by Heath-Brown [89] and Zagier [181]. Similar mod-4 and mod-8 counting principles were

employed by Berarducci and Intrigila [29] to prove the two supplementary laws of quadratic

reciprocity.

Definition 5.2 If p is an odd prime and p - a, we put[
a

p

]
=

{
0, a ≡ � (mod p),

1, a 6≡ � (mod p),

so that (a|p) = (−1)[a|p]. Unless stated otherwise, all functions are assumed to be defined

by PV -functions (i.e., circuits) when we work over T 0
2 , and ∆0-definable when we work over

I∆0. Residues modulo p are usually taken from P = [−(p − 1)/2, (p − 1)/2]. We also put

P+ = [1, (p − 1)/2], P− = [−(p − 1)/2,−1], and P+
0 = P+ ∪ {0}. We treat P and friends as

sets of residues rather than integers, so that, e.g., the formula ax ∈ P+ means (ax mod p) ∈
[1, (p− 1)/2]. We also use x−1 to refer to multiplicative inverse modulo p.

We begin with a version of Gauss’s Lemma.

Lemma 5.3 (in T 0
2 or I∆0) Let p be an odd prime, and p - a. There exists an involution on

P− ∪ {x ∈ P+ | ax ∈ P+} with [a|p] fixpoints.

Proof: We define

f(x) =


−x, (x, ax ∈ P+ ∧ x−1 ∈ P−) ∨ (x, ax ∈ P− ∧ x−1 ∈ P+),

x−1, x, x−1 ∈ P−,
a−1x−1, ax, x−1 ∈ P+.

It is easy to see that the three conditions define a partition of P− ∪ {x ∈ P+ | ax ∈ P+}, and

f is an involution on each part. f has no fixpoints in the first part, and one (x = −1) in the

second part. A fixpoint in the third part is an x such that x−1 is a positive square root of a,

which is unique if it exists. In total, f has one fixpoint if [a|p] = 1, and two if [a|p] = 0. In the

latter case, we modify f so that the original fixpoints are mapped to each other. �

Definition 5.4 If X ⊆ t, and Y ⊆ s, we use X ∪̇ Y to denote disjoint union: if X and Y are

disjoint, we may take X ∪̇ Y = X ∪ Y ; in general, we put

X ∪̇ Y := X ∪ {t+ y | y ∈ Y } ⊆ t+ s.

If f : X → Z and g : Y → Z, then f ∪̇ g : X ∪̇ Y → Z is defined in the obvious way.
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Lemma 5.5 (in T 0
2 or I∆0) If p and q are distinct odd primes, there exists an involution on

(p+ 3)(q + 3)/4− 4 with [p|q] + [q|p] fixpoints.

Proof: Let f(x) = 〈x, bqx/pc〉. Then f is a bijection

f : {x ∈ P+ | qx ∈ P+} ≈ {〈x, y〉 ∈ P+
0 ×Q

+
0 | 0 < qx− py < p/2},

with left projection as its inverse. Symmetrically, there is an invertible bijection

g : {y ∈ Q+ | py ∈ Q+} ≈ {〈x, y〉 ∈ P+
0 ×Q

+
0 | −q/2 < qx− py < 0}.

By Lemma 5.3, there exists an involution h on

(P− ∪̇Q−) ∪̇ {x ∈ P+ | qx ∈ P+} ∪̇ {y ∈ Q+ | py ∈ Q+}

with [p|q] + [q|p] fixpoints, thus i = (id ∪̇ f ∪̇ g) ◦ h ◦ (id ∪̇ f ∪̇ g)−1 is an involution on

(P− ∪̇Q−) ∪̇
{
〈x, y〉 ∈ (P+

0 ×Q
+
0 )r {〈0, 0〉} | −q/2 < qx− py < p/2

}
with [p|q] + [q|p] fixpoints. As

q

(
p− 1

2
− x
)
− p

(
q − 1

2
− y
)

=
p− q

2
− (qx− py),

the function j(〈x, y〉) = 〈(p− 1)/2− x, (q − 1)/2− y〉 is an involutive bijection

j : {〈x, y〉 ∈ P+
0 ×Q

+
0 | qx− py < −q/2} ≈ {〈x, y〉 ∈ P

+
0 ×Q

+
0 | p/2 < qx− py}.

Therefore i ∪̇ j is an involution on

P− ∪̇Q− ∪̇
(
(P+

0 ×Q
+
0 )r {〈0, 0〉}

)
≈ p− 1

2
+
q − 1

2
+
p+ 1

2

q + 1

2
− 1 =

(p+ 3)(q + 3)

4
− 4

with [p|q] + [q|p] fixpoints. �

Lemma 5.6 (in T 0
2 or I∆0) Let p be an odd prime, and p - a, b. There exists an involution on

2(p− 1) ∪̇ {x ∈ P+ | abx ∈ P−} with [a|p] + [b|p] fixpoints.

Proof: By Lemma 5.3, there exist involutions on

P− ∪̇ {x ∈ P+ | a−1x ∈ P+}

and

P− ∪̇ {x ∈ P+ | bx ∈ P+} ≈ P+ ∪̇ {x ∈ P− | bx ∈ P−}

with [a−1|p] and [b|p] fixpoints, respectively. Their union f is an involution on

(P+ ∪ P−) ∪̇ {x | x, a−1x ∈ P+ ∨ x, bx ∈ P−}
= (p− 1) ∪̇ {x | a−1x ∈ P+, bx ∈ P−} ∪̇ {x | x, a−1x, bx ∈ P+ ∨ x, a−1x, bx ∈ P−}.
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The function x 7→ −x is an involutive bijection between the disjoint sets

{x ∈ P+ | a−1x ∈ P− ∨ bx ∈ P−} ≈ {x ∈ P− | a−1x ∈ P+ ∨ bx ∈ P+},

and its union with f is thus an involution on

(p− 1) ∪̇ {x | a−1x ∈ P+, bx ∈ P−} ∪̇ (P+ ∪ P−) = 2(p− 1) ∪̇ {x | a−1x ∈ P+, bx ∈ P−}.

We may lift it using the function x 7→ a−1x, which is an invertible bijection

{x | a−1x ∈ P+, bx ∈ P−} ≈ {x ∈ P+ | abx ∈ P−},

to obtain an involution on

2(p− 1) ∪̇ {x ∈ P+ | abx ∈ P−}.

The number of fixpoints is [a−1|p] + [b|p] = [a|p] + [b|p], as obviously (a−1|p) = (a|p). �

Theorem 5.7 T 0
2 + Count2(PV ) and I∆0 + Count2(∆0) prove the law of quadratic reciprocity(

p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4,(4)

the supplementary laws (
−1

p

)
= (−1)(p−1)/2,(5) (

2

p

)
= (−1)(p2−1)/8,(6)

and multiplicativity of the Legendre symbol(
a

p

)(
b

p

)
=

(
ab

p

)
,(7)

where p, q are distinct odd primes, and a, b are integers.

Proof: (4) follows from Lemma 5.5, as (p+ 3)(q + 3)/4− 4 ≡ (p− 1)(q − 1)/4 (mod 2).

(5) is an immediate consequence of Lemma 5.3 for a = −1, as {x ∈ P+ | −x ∈ P+} = ∅.

(6): By Lemma 5.3, there exists an involution with [2|p] fixpoints on

P− ∪ {x ∈ P+ | 2x ∈ P+} ≈ p− 1

2
+

⌊
p

4

⌋
= p− 1−

⌈
p− 1

4

⌉
,

thus [
2

p

]
≡
⌈
p− 1

4

⌉
≡

{
0, p ≡ ±1 (mod 8)

1, p ≡ ±3 (mod 8)

}
≡ (p2 − 1)

8
(mod 2).

(7): The identity holds trivially if p divides a or b, thus assume p - a, b. By Lemmas

5.3 and 5.6, there exists an involution on 3(p − 1) with [a|p] + [b|p] + [ab|p] fixpoints, thus

[a|p] + [b|p] ≡ [ab|p] (mod 2). �
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We remark that the proof of Lagrange’s four-square theorem in I∆0 + iWPHP(I∆0) by

Berarducci and Intrigila [29] only used multiplicativity of the Legendre symbol (apart from

I∆0). Consequently, Lagrange’s four-square theorem is also provable in I∆0 + Count2(∆0).

Recall that the Jacobi symbol (a|n) is defined for any integer a and an odd natural number

n by (
a

n

)
=
∏
i

(
a

pi

)
,

where

n =
∏
i

pi

is a prime factorization of n. We can introduce it in bounded arithmetic as follows.

We assume that we have fixed an efficient sequence coding function such that

|w| = O

(
lh(w) +

∑
i<lh(w)

|(w)i|
)

for any sequence w. In particular, there is an LPA-term s(n) such that w ≤ s(n) for every

sequence w such that (w)i > 1 for every i < lh(w), and n =
∏
i<lh(w)(w)i. (Recall that bounded

products of natural numbers are ∆0-definable in I∆0 by Berarducci and D’Aquino [28].) Then

an easy ∆0-induction on n shows that

∃p ≤ s(n)

(
Seq(p) ∧ ∀i < lh(p) Prime((p)i) ∧

∏
i<lh(p)

(p)i = n

)
,

and furthermore p is unique up to permutation of indices. Then we can define the Jacobi symbol

by the ∆0-formula(
a

n

)
= ε⇔ ∃p, w ≤ s(n)

[
Seq(p) ∧ Seq(w) ∧ lh(p) = lh(w)

∧ ∀i < lh(p)

(
Prime((p)i) ∧ (w)i =

(
a

(p)i

))
∧ n =

∏
i<lh(p)

(p)i ∧ ε =
∏

i<lh(w)

(w)i

]
.

Note that the product
∏
i<lh(w)(w)i may involve negative integers; however, it has logarithmic

length, hence it can be easily evaluated by counting the number of minus signs in w. It readily

follows that I∆0 proves the existence and uniqueness of (a|n).

In the case of S1
2 , we proceed in a similar way. Prime factorization of natural numbers

is provable in S1
2 by Jeřábek [93]. Given a sequence p of primes such that n =

∏
i(p)i, we

can define the sequence w such that (w)i = (a|(p)i) using Σb
1-comprehension, as the Legendre

symbol is B(Σb
1)-definable. Then it is easy to see that the above formula gives a provably total

Σb
2-definition of the Jacobi symbol in S1

2 .

Theorem 5.8 The Jacobi symbol has a provably total Σb
2-definition in S1

2 , and a ∆0-definition

in I∆0. For any integers a, b, and odd positive m,n, S1
2 + Count2(PV ) and I∆0 + Count2(∆0)
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prove

a ≡ b (mod n)→
(
a

n

)
=

(
b

n

)
,(

a

n

)(
b

n

)
=

(
ab

n

)
,(

a

n

)(
a

m

)
=

(
a

nm

)
,

gcd(a, n) 6= 1↔
(
a

n

)
= 0,(

n

m

)
=

(
m

n

)
(−1)(n−1)(m−1)/4,(

−1

n

)
= (−1)(n−1)/2,(

2

n

)
= (−1)(n2−1)/8,

n ≡ m (mod 4a)→
(
a

n

)
=

(
a

m

)
.

Proof: We will show the reciprocity law, the other properties can be proved easily using a similar

strategy. If gcd(n,m) 6= 1 then (n|m) = (m|n) = 0, hence we may assume gcd(n,m) = 1. Pick

a sequence p of primes such that n =
∏
i(p)i.

Assume first that m = q is prime. Using Σb
1-comprehension (in the case of S1

2) or ∆0-

comprehension (in the case of I∆0), we find sequences e and w such that (e)i = ((p)i|q),
(w)i = (q|(p)i). Using Theorem 5.7, we have(

n

q

)(
q

n

)
=
∏
i

(e)i
∏
i

(w)i =
∏
i

(−1)
(q−1)((p)i−1)

4 = (−1)
q−1
2

∑
i
(p)i−1

2 = (−1)
q−1
2

n−1
2 ,

as
∑

i<k
1
2((p)i − 1) ≡ 1

2

(∏
i<k(p)i − 1

)
(mod 2) by induction on k.

In general, we fix a sequence q of primes such that m =
∏
j(q)j . As above, we find a sequence

w such that (w)j = (n|(q)j). In the case of I∆0, we find a sequence e such that (e)j = ((q)j |n)

in the same way. In the case of S1
2 , we cannot do it directly, as ((q)j |n) is only Σb

2. However, we

can use Σb
1-comprehension to find a sequence s of length lh(p) lh(q) such that (s)i,j = ((q)j |(p)i),

and then (e)j =
∏
i(s)i,j is constructible by a PV -function from s. Then we compute(

n

m

)(
m

n

)
=
∏
j

(w)j
∏
j

(e)j =
∏
j

(−1)
(n−1)((q)j−1)

4 = (−1)
n−1
2

∑
j

(q)j−1

2 = (−1)
n−1
2

m−1
2

as before. �

Theorem 5.9 S1
2 + Count2(PV ) proves that the Jacobi symbol is polynomial-time computable.

Proof: Consider a PV -function formalizing the standard algorithm for computing (a|b) (see

Figure 5.1). As two odd numbers are subtracted on line 12, a is even on line 5 in every but
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input: integer a, odd positive b

1 r ← 1

2 if a < 0 then:

3 a← −a
4 r ← −r if b ≡ −1 (mod 4)

5 while a > 0 do:

6 while a is even do:

7 a← a/2

8 r ← −r if b ≡ ±3 (mod 8)

9 if a < b then:

10 〈a, b〉 ← 〈b, a〉
11 r ← −r if a ≡ b ≡ −1 (mod 4)

12 a← a− b
13 if b > 1 then output 0 else output r

Figure 5.1: An algorithm for the Jacobi symbol

possibly the first iteration of the outer loop, in which case the division on line 7 is executed

at least once. It follows that the total number of iterations is bounded by |a| + |b|, and the

algorithm is polynomial-time.

Let 〈ai, bi, ri | i ≤ k〉 be the sequence of values of a, b, and r during the execution of the

algorithm. We find a prime factorization of
∏
i bi, and use it to compute a sequence p = 〈pi,j |

i < k, j < d(i)〉 of primes such that bi =
∏
j<d(i) pi,j for every i. Using Σb

1-comprehension, there

is a sequence w = 〈wi,j | i < k, j < d(i)〉 such that wi,j = (ai|pi,j). Then we can compute the

sequence v = 〈vi | i < k〉 by vi =
∏
j<d(i)wi,j , so that vi = (ai|bi). Put e = (a|b). Armed

with v, we can prove e = rivi by induction on i ≤ k using Theorem 5.8, which implies that the

algorithm gives the correct output. �
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Chapter IV

Integer factoring and modular

square roots

Abstract

Buresh-Oppenheim proved that the NP search problem to find nontrivial factors of inte-

gers of a special form belongs to Papadimitriou’s class PPA, and is probabilistically reducible

to a problem in PPP. In this paper, we use ideas from bounded arithmetic to extend these

results to arbitrary integers. We show that general integer factoring is reducible in ran-

domized polynomial time to a PPA problem and to the problem WeakPigeon ∈ PPP.

Both reductions can be derandomized under the assumption of the generalized Riemann

hypothesis. We also show (unconditionally) that PPA contains some related problems, such

as square root computation modulo n, and finding quadratic nonresidues modulo n.

1 Introduction

Integer factoring is one of the best-known problems in complexity theory which is in NP, but is

not known to be polynomial-time computable. In particular, the assumed hardness of factoring

has various applications in cryptography. Papadimitriou [140] introduced several classes of

search problems based on parity arguments and related combinatorial principles. He showed

that many natural search problems from diverse areas of mathematics belong to one of these

classes, and he posed as an open problem whether the same holds for integer factoring.

The first step to answer Papadimitriou’s question was taken by Buresh-Oppenheim [35]. He

proved that factoring of “good” integers (odd integers n such that −1 is not a quadratic residue

modulo n) such that n ≡ 1 (4) belongs to the search class PPA, and factoring of good integers

is probabilistically poly-time reducible to a PPP problem. (Note that an odd integer is good iff

it has a prime divisor p ≡ −1 (4).)

The purpose of this paper is to exhibit similar reductions for factoring of arbitrary integers.

We show that factoring is probabilistically poly-time reducible to a PPA problem, as well as to

WeakPigeon, which is a PPP problem. (A similar probabilistic reduction of factoring to PPP

was also independently found by Buresh-Oppenheim [36].) We isolate a convenient intermediate

problem, which we call FacRoot: given integers n and a such that the Jacobi symbol (a|n) = 1,

115
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find either a proper divisor of n, or a square root of a modulo n. It is not hard to show that

factoring is probabilistically poly-time reducible to FacRoot.

The main technical ingredient of our work is to demonstrate that FacRoot ∈ PPA. The

high-level idea of the proof comes from bounded arithmetic. Chapter III introduced an arith-

metical theory S1
2 + Count2(PV ) related to PPA, and established that this theory can prove

the quadratic reciprocity theorem and other properties of the Jacobi symbol, which together

imply the soundness of the usual poly-time algorithm for the Jacobi symbol. In particular,

S1
2 + Count2(PV ) proves the totality of FacRoot, and then an application of a garden-variety

witnessing theorem yields FacRoot ∈ PPA. However, since this paper is intended for a general

computational complexity audience, we include a self-contained direct proof of this result, we

do not assume any prior knowledge (or posterior, for that matter) of bounded arithmetic on

the part of the reader.

All probabilistic reductions in this paper can be derandomized if we assume the generalized

Riemann hypothesis (GRH ). In particular, GRH implies that factoring is in PPA ∩ PPP (and

moreover, it is poly-time reducible to WeakPigeon). We also show unconditionally that several

problems concerning quadratic residues have deterministic Turing reductions to FacRoot, and

as such are in PPA: for one, given n and a, we can find either a square root of a modulo n, or

a suitable witness that a is a quadratic nonresidue. For another, given an odd n which is not a

perfect square, we can find an a such that (a|n) = −1 (in particular, a is a quadratic nonresidue

modulo n).

The paper is organized as follows. In Section 2, we review basic concepts used in the paper

to fix the notation. Section 3 presents our main results, except for the somewhat complex proof

of FacRoot ∈ PPA, which is given separately in Section 4. Some concluding remarks follow in

Section 5.

2 Preliminaries

An NP search problem is given by a poly-time computable relation R(x, y) such that R(x, y)

implies ‖y‖ ≤ ‖x‖c for some constant c, the problem is to find a y satisfying R(x, y) given x.

(We use ‖x‖ to denote the length of x; most of our algorithms work with integers, and we

reserve |x| for the absolute value of x. We also warn the reader that we will often call our

binary integers n, we will not use the convention that n implicitly denotes the length of the

input.) For brevity, we may use R to denote the search problem itself. A search problem R

is total if for every x there exists a y such that R(x, y). Unless indicated otherwise, all search

problems below will be assumed to be total NP search problems.

We will often specify NP search problems in the form “given an x such that P (x), find a y

satisfying R(x, y)”, where P is a poly-time condition. In order to make it formally a total search

problem, this formulation will be understood to denote the problem associated with the relation

(¬P (x) ∧ y = 0) ∨ (P (x) ∧R(x, y)).

A search problem R is many-one reducible to a search problem S, written as R ≤m S,

if there are poly-time functions f, g such that S(f(x), y) implies R(x, g(x, y)). R is Turing-

reducible to S, written as R ≤T S, if there exists a poly-time oracle Turing machine M (where
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the oracle returns strings rather than yes/no answers) such that on input x, M computes a y

solving R(x, y) whenever all answers of the oracle are correct solutions of S. The class of all

search problems R such that R ≤T S will be denoted FPS . If C is a class of search problems,

we write R ≤m C if R ≤m S for some S ∈ C, and similarly for R ≤T C, FPC , as well as other

reduction notions mentioned below.

Let a circuit C : 2n → 2n (here, 2 = {0, 1}) encode an undirected graph G = 〈V,E〉, where

V = 2n r {0n}, and {u, v} ∈ E iff u, v ∈ V , u 6= v, C(u) = v, and C(v) = u. Notice that G is

a partial matching. Lonely is the following search problem: given C, find u ∈ V unmatched

by G. The class PPA (for “polynomial parity argument”) consists of all search problems many-

one reducible to Lonely. (This is not Papadimitriou’s definition of PPA, it comes from [23],

where it is shown to be equivalent to the original one.) By abuse of notation, we will also use

Lonely to denote the following variant of the problem. Let f(a, x), g(a) be poly-time functions

such that for every a, g(a) is an odd natural number, and the function fa(x) := f(a, x) is an

involution (i.e., fa(fa(x)) = x) on the integer interval [0, g(a)). Then the problem is, given a to

find an x < g(a) which is a fixpoint of fa (i.e., fa(x) = x). We will often use the fact that PPA

is closed under Turing reductions:

Theorem 2.1 (Buss and Johnson [43]) FPPPA = PPA. �

The class PPP (for “polynomial pigeonhole principle”) consists of problems many-one re-

ducible to Pigeon, which is the following problem: given a circuit C : 2n → 2n, find either a

pair u 6= v such that C(u) = C(v), or a u such that C(u) = 0n. If p(n) is any polynomial

such that p(n) > n for every n, let WeakPigeon2p(n)
2n denote the following problem: given

a circuit C : 2p(n) → 2n, find u 6= v such that C(u) = C(v). We define WeakPigeon :=

WeakPigeon2n+1

2n ; the choice of n+ 1 here does not matter:

Lemma 2.2 For any polynomial p as above, WeakPigeon ≡m WeakPigeon2p(n)
2n .

Proof: Given a circuit C(~x, u) : 2n × 2→ 2n, we put m = p(n)− n, and we construct a circuit

D : 2n × 2m → 2n by D(~x, u0, . . . , um−1) = C(· · · (C(C(~x), u0), u1) . . . , um−1). Given 〈~x, ~u〉 6=
〈~x′, ~u′〉 such that D(~x, ~u) = D(~x′, ~u′), we find the largest i < m such that 〈~y, ui〉 6= 〈~y′, u′i〉,
where ~y(′) = C(· · · (C(C(~x(′)), u

(′)
0 ), u

(′)
1 ) . . . , u

(′)
i−1). Then C(~y, ui) = C(~y′, u′i). �

The class of all search problems many-one reducible to WeakPigeon does not seem to have an

established name in the literature, although it clearly deserves one. In analogy with PPP, we can

call it PWPP for “polynomial weak pigeonhole principle”. Note that neither PPP nor PWPP is

known to be closed under Turing reductions. The proof of Lemma 2.2 also implies that problems

of the following kind belong to PWPP; we will denote them all as WeakPigeon by abuse of

notation. Let ε > 0 be a constant, and f, g poly-time function such that for any a, g(a) > 0,

and fa(x) := f(a, x) maps the interval
[
0, d(1 + ε)g(a)e

)
into

[
0, g(a)

)
. Then the problem is,

given a, to find u < v < d(1 + ε)g(a)e such that fa(u) = fa(v).

Apart from ≤m and ≤T , we will also need randomized reductions. We will use several

different versions to be able to state our results precisely; the definitions below are not standard,

but we believe they are quite natural.
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For any constant 0 < ε < 1, we say that R is probabilistically many-one reducible to S

with error ε, written as R ≤RP,ε
m S, if there is a polynomial p and poly-time functions f(x, r)

and g(x, r, y) such that for every x,

Pr‖r‖=p(‖x‖)[∀y [S(f(x, r), y)⇒ R(x, g(x, r, y))]] ≥ 1− ε.

We say thatR is probabilistically many-one reducible to S with controlled error, written asR ≤RP
m

S, if there is a polynomial p and poly-time functions f(x, 1k, r) and g(x, 1k, r, y) such that for

every x and k,

Pr‖r‖=p(‖x‖,k)[∀y [S(f(x, 1k, r), y)⇒ R(x, g(x, 1k, r, y))]] ≥ 1− 2−k.

R is probabilistically Turing-reducible to S, written as R ≤RP
T S, if there exists a polynomial p

and a poly-time oracle Turing machine M such that

Pr‖r‖=p(‖x‖)[every sound run of M(x, r) solves R(x, y)] ≥ 1/2,

where a run is sound if all oracle answers are correct solutions of S. Note that the constant 1/2

here is arbitrary, as we can decrease the error from any constant ε > 0 to any other constant (or

to controlled error as above) in the usual way: we can check solutions of R, hence we can run

the machine several times with independent choices of r, and return the first correct solution to

the search problem. We denote by TFRPS the class of all R such that R ≤RP
T S. We observe

that we can split a randomized Turing reduction as a randomized many-one reduction followed

by a deterministic Turing reduction; this is particularly useful when S is from a Turing-closed

class such as PPA.

Lemma 2.3 TFRPS ≤RP
m FPS.

Proof: Assume that R ≤RP
T S and MS is the Turing machine from the definition. Let T be the

following search problem: given x and r, find a sound run of MS(x, r). It is easy to see that T

is a total NP search problem, and R ≤RP
m T ≤T S. �

Lemma 2.4 TFRPTFRPS = TFRPS.

Proof: In view of Lemma 2.3 and the obvious transitivity of ≤RP
m , it suffices to show that

TFRPS is closed under deterministic Turing reductions. Let thus T ∈ TFRPS , and MT be a

poly-time oracle machine solving R(x, y). Since answers of the oracle have polynomial length,

the total number of sound runs of M on input x is bounded by 2‖x‖
c

for some constant c. Using

the above-mentioned amplification of success rate, we can find a randomized poly-time machine

NS solving T with error 2−‖x‖
c+1

. If we then use N to answer M ’s oracle queries while reusing

the same pool of random bits for every call, all but a fraction of 2‖x‖
c
2−‖x‖

c+1 � 1 of the random

choices will be good for every possible run of the combined machine. �

A many-one reduction of R to S is supposed to construct a valid instance of S from whose

solution it can recover a solution to the original problem. In the case of ≤RP
m , the reduction

algorithm succeeds in doing this only with some bounded probability. It will be also useful to
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consider stronger notions of reduction where we can check before consulting the oracle whether

the particular choice of random bits leads to the desired result. The reduction function may

abandon the computation with some bounded probability, but if it does not, then any valid

solution of S gives a solution of R. Alternatively, we could repeat the computation until we find

a “good” instance of S, and only then pass the query to the oracle; in this way, the reduction

always succeeds, but only its expected running time is polynomial.

Formally, R is probabilistically zero-error many-one reducible to S, written as R ≤ZPP
m S,

if there is a polynomial p, poly-time functions f(x, r) and g(x, r, y), and a poly-time predicate

h(x, r), such that

(i) Pr‖r‖=p(‖x‖)[h(x, r)] ≥ 1/2,

(ii) if h(x, r) and S(f(x, r), y), then R(x, g(x, r, y)).

Similarly, R is probabilistically zero-error Turing-reducible to S, written as R ≤ZPP
T S, if there is

a polynomial p, a poly-time predicate h(x, r), and a poly-time oracle Turing machine M , such

that (i), and if h(x, r), then every sound run of MS(x, r) solves R(x, y). Again, the constant 1/2

is arbitrary, we can amplify the success rate from any constant ε > 0 to 1−2−k (even for many-

one reductions). Let TFZPPS denote the class of all problems R such that R ≤ZPP
T S. Note

that if there is no oracle, TFZPP = TFRP.

Factoring is the following search problem: given a composite integer n, find a nontrivial

divisor of n. We define FullFac to be the following problem: given an integer n > 0, find a

sequence 〈pi : i < k〉 of primes such that n =
∏
i<k pi (here and below, the empty product is

defined to be 1). Note that Factoring and FullFac are total NP search problems as primality

testing is poly-time (Agrawal, Kayal, and Saxena [1]). Clearly, Factoring ≤m FullFac ≤T
Factoring.

We will denote the divisibility relation by d | n, modular congruences by a ≡ b (n), and

greatest common divisors by (a, b). An integer a is a quadratic residue modulo n if a ≡ b2 (n)

for some b. The Legendre symbol is defined for any integer a and an odd prime p by

(
a

p

)
=


0 p | a,
1 p - a and a is a quadratic residue mod p,

−1 p - a and a is a quadratic nonresidue mod p.

More generally, the Jacobi symbol is defined for any odd n > 0 by(
a

n

)
=
∏
i<k

(
a

pi

)
,

where n =
∏
i<k pi is the prime factorization of n. We will also write (a|n) instead of

(
a
n

)
for typographical convenience. A Dirichlet character of modulus n is a group homomorphism

χ : (Z/nZ)× → C×. A character is principal if it only assumes the value 1, and real if it takes

values in {1,−1}. Characters can be lifted to mappings Z → C by putting χ(a) = 0 when

(a, n) 6= 1. Note that for any odd positive n, χn(x) = (x|n) is a real character of modulus n

(in particular, (a|n)(b|n) = (ab|n)), which is principal iff n is a perfect square. The characters
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r ← 1

while a 6= 0 do:

if a < 0 then:

a← −a
r ← −r if n ≡ −1 (4)

while a is even do:

a← a/2

r ← −r if n ≡ ±3 (8)

swap a and n

r ← −r if a ≡ n ≡ −1 (4)

reduce a modulo n so that |a| < n/2

if n > 1 then output 0 else output r

Figure 2.1: An algorithm for the Jacobi symbol (a|n)

χn are called quadratic. The quadratic reciprocity theorem states that for any coprime odd

n,m > 0, (
n

m

)(
m

n

)
=

{
−1 if n ≡ m ≡ −1 (4)

1 otherwise.

Together with the supplementary laws(
−1

n

)
=

{
1 n ≡ 1 (4)

−1 n ≡ −1 (4)

(
2

n

)
=

{
1 n ≡ ±1 (8)

−1 n ≡ ±3 (8)

it implies that the Jacobi symbol is poly-time computable (see Figure 2.1).

The generalized Riemann hypothesis1 (GRH ) states that for every Dirichlet character χ, all

zeros of its associated L-function L(χ, s) in the critical strip 0 < Re(s) < 1 satisfy Re(s) = 1/2.

Let GRHq denote the special case of GRH for quadratic characters χ. We will use the following

result of Bach [18], refining the work of Ankeny [10].

Theorem 2.5 Assume GRHq . If χ is a nonprincipal quadratic character with modulus n, there

exists 0 < a < 2(lnn)2 such that χ(a) 6= 1. �

3 Search complexity of factoring

In this section, we are going to describe our main result (Theorem 3.7) on the relationship of

factoring to the classes PPA and PPP (PWPP). Rather than working directly with Factoring,

it will be convenient to consider other related problems.

1Also called the extended Riemann hypothesis (ERH ). The nomenclature of various extensions of RH varies

wildly in the literature. We chose to denote the RH for Dirichlet L-functions by GRH as this name seems to

be more specific, whereas ERH is often used for other generalizations of RH , such as the RH for Dedekind

ζ-functions, or L-functions of Hecke characters.
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Definition 3.1 Let FacRoot denote the following problem: given an odd integer n > 0 and

an integer a such that (a|n) = 1, find either a nontrivial divisor of n, or a square root of a

modulo n.

We also give names to some special cases of FacRoot. FacRootMul denotes the problem,

given odd n > 0 and integers a and b, to find a nontrivial divisor of n or a square root of one

of a, b, or ab modulo n.

WeakFacRoot is the following problem: given an odd n > 0 and a, b such that (a|n) = 1

and (b|n) = −1, find a nontrivial divisor of n, or a square root of a modulo n.

We start with basic dependencies between these problems.

Lemma 3.2

(i) WeakFacRoot ≤m FacRootMul ≤m FacRoot;

(ii) WeakFacRoot ≤m Factoring.

Proof:

(i): WeakFacRoot is a special case of FacRootMul, since (a|n) = 1 and (b|n) = −1

imply that neither b nor ab is a quadratic residue modulo n. Given an instance of FacRootMul,

the multiplicativity of the Jacobi symbol implies that (x|n) = 1 for some x ∈ {a, b, ab}. We

can choose such an x as the Jacobi symbol is poly-time computable, and then we pass it to

FacRoot.

(ii): If n is prime, we can compute a square root of a modulo n in polynomial time using

the Shanks–Tonelli algorithm. This algorithm is deterministic if we provide it with a quadratic

nonresidue, which we can: b. If n is composite, we pass it to Factoring. �

Lemma 3.3

(i) FacRoot ≤ZPP
m WeakFacRoot;

(ii) Factoring ≤RP,1/2
m FacRoot;

(iii) Factoring ≤RP,1/2
m WeakFacRoot.

Proof:

(i): If n is a perfect square, we can return
√
n as its nontrivial divisor (unless it is 1, in which

case we can return 0 as the square root of a). Otherwise χn is a nonprincipal real character,

hence with probability at least 1/2, a randomly chosen 0 < b < n either shares a factor with n

(in which case we can return (n, b) as a nontrivial divisor) or satisfies (b|n) = −1, and we can

pass it to WeakFacRoot.

(ii): If n is even or a perfect power, we can factor it directly, hence we may assume n is

odd and it has k ≥ 2 distinct prime divisors. We consider the following reduction. We choose

a random 0 < a < n. If (a, n) 6= 1, we can return it as a nontrivial divisor of n, otherwise we

pass n, a to a FacRoot oracle.

Since χn is a nonprincipal real character, we have (a|n) = 1 for a half of all residues from

(Z/nZ)×. On the other hand, if n =
∏
i<k p

ei
i , where the pi are distinct primes, then a coprime
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to n is a quadratic residue modulo n iff (a|pi) = 1 for every i < k. Using the Chinese remainder

theorem, a fraction 2−k of (Z/nZ)× are quadratic residues. Thus, with probability at least

1/2 − 2−k ≥ 1/4, the chosen a either shares a factor with n, or it satisfies (a|n) = 1 while not

being a quadratic residue, hence the FacRoot oracle must give us a factor of n.

We can amplify the success probability to 1/2 by observing that residues a such that (a|n) =

1 are poly-time samplable. We assume w.l.o.g. that n is not a perfect square. The reduction

works as follows. We choose random 0 < a, b < n. If (n, a) 6= 1 or (n, b) 6= 1, we can factorize n.

Otherwise, we let c be the first residue from the list a, b, ab which satisfies (c|n) = 1, and we call

FacRoot(n, c). It is easy to see that the induced distribution of c is the uniform distribution

over {c < n : (c|n) = 1}, hence conditioned on (a, n) = (b, n) = 1, c is a quadratic nonresidue

with probability 1− 21−k ≥ 1/2.

(iii): FacRoot ≤RP
m WeakFacRoot by (i) and amplification of the success rate of ≤ZPP

m ,

hence Factoring ≤RP,1/2+ε
m WeakFacRoot for any ε > 0 by (ii). We can get rid of the ε by

observing that the proof of (ii) actually shows Factoring ≤RP,1/2−1/
√
n

m FacRoot, taking into

account residues that share a factor with n. We can reduce the error of the ≤ZPP
m reduction in

(i) to 1/
√
n, hence Factoring ≤RP,1/2

m WeakFacRoot. �

We remark that there is another well-known randomized reduction of factoring to square

root computation modulo n due to Rabin [154], but it is suited for a different model. In the

notation above, the basic idea of Rabin’s reduction is that we choose a random 1 < a < n,

and if it is coprime to n, we pass n, a2 to the FacRoot oracle. If the oracle were implemented

as a (deterministic or randomized) algorithm working independently of the reduction without

access to its random coin tosses, we would have a 1/2 chance that the root b of a2 returned by

the oracle satisfies a 6≡ ±b (n), allowing us to factorize n. However, this does not work in our

setup. According to the definition of a search problem reduction, the reduction function must

be able to cope with any valid answer to the oracle query—there is no implied guarantee that

oracle answers are computed independently of the environment. In particular, it may happen

the oracle is devious enough to always return the root b = a we already know.

What we need now is to show that FacRoot or some of its variants belongs to PPA and

PWPP.

Theorem 3.4 FacRoot ∈ PPA.

We will prove Theorem 3.4 in the next section, as the argument is a bit involved.

For the pigeonhole principle, we have the following reduction, whose idea comes from the

proof of the multiplicativity of the Legendre symbol in I∆0 + WPHP(∆0) by Berarducci and

Intrigila [29].

Theorem 3.5 FacRootMul ∈ PWPP.

Proof: Assume we are given an odd n > 1, and integers a, b. If a or b shares a factor with n, we

can return (n, a) or (n, b), resp., as a nontrivial divisor of n, we thus assume both are coprime
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to n. Consider the following poly-time function f : {0, 1, 2} × [1, (n− 1)/2]→ [1, n− 1]:

f(i, x) =

{
aix

2 mod n if (n, x) = 1,

x otherwise,

where a0 = 1, a1 = a, a2 = b. Since the domain of f is 3/2 times larger than its range, we

can use WeakPigeon to find a collision f(i, x) = f(j, y), 〈i, x〉 6= 〈j, y〉. We may assume

(n, x) = (n, y) = 1, as otherwise we can factor n. If i = j, then x2 ≡ y2 (n), but x 6≡ ±y (n),

hence (n, x − y) is a nontrivial divisor of n. If i < j, then aja
−1
i ≡ (xy−1)2 (n) (where the

inverses are also modulo n), hence xy−1 is a square root of a, b, or ba−1 modulo n. In the last

case, axy−1 is a square root of ab. �

We mention that essentially the same reduction of Factoring to WeakPigeon by means

of FacRootMul was used in a different context in [95, Thms. 4.1–2], and a similar reduction

was independently discovered by Buresh-Oppenheim [36].

While we do not know whether PWPP is closed under general Turing reductions, the next

lemma shows that it is closed under nonadaptive Turing reductions.

Lemma 3.6 The following problem, denoted WeakPigeon‖, is in PWPP: given a sequence

〈Ci : i < m〉 of circuits Ci : 2ni+1 → 2ni, find sequences 〈ui : i < m〉 and 〈vi : i < m〉 such that

ui, vi ∈ 2ni, ui 6= vi, and Ci(ui) = Ci(vi) for each i < m.

Proof: Put n = maxi ni. We can pad each Ci to n output bits by considering the circuit

C ′i : 2n−ni ×2ni+1 → 2n−ni ×2ni defined by C ′i(x, u) = 〈x,Ci(u)〉, hence we may assume n = ni
without loss of generality. By Lemma 2.2, we can amplify each Ci to a circuit Di : 2mn+1 →
2n, and we define a circuit D : 2mn+1 → (2n)m by D(u) = 〈Di(u) : i < m〉. Using a call

to WeakPigeon, we find u 6= v such that D(u) = D(v). Then Di(u) = Di(v) for each i, and

we can compute ui 6= vi such that Ci(ui) = Ci(vi). �

We obtain the main result of this paper by putting everything together:

Theorem 3.7

(i) Factoring,FullFac ≤RP
m PPA;

(ii) Factoring ≤RP
m PWPP ⊆ PPP and FullFac ≤RP

m FPPWPP ⊆ FPPPP.

Proof: (i): FullFac is in TFRPFacRoot by Lemmas 3.3 and 2.4, hence in TFRPPPA by The-

orem 3.4. This implies FullFac ≤RP
m FPPPA = PPA by Lemma 2.3 and Theorem 2.1.

(ii): We have Factoring ≤RP,1/2
m PWPP by Lemma 3.3 and Theorem 3.5. Given k in unary,

we can reduce the error to 2−k with k parallel calls to a WeakPigeon oracle, which implies

Factoring ≤RP
m WeakPigeon‖ ∈ PWPP by Lemma 3.6. As in (i), we have FullFac ≤RP

T

PWPP, hence FullFac ≤RP
m FPPWPP by Lemma 2.3. �

It would be desirable to derandomize the results in Theorem 3.7. We are only able to do it

under an extra assumption.
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Theorem 3.8 Assume GRHq .

(i) Factoring ≡m FacRoot ≡m WeakFacRoot ≡m FacRootMul;

(ii) Factoring,FullFac ∈ PPA;

(iii) Factoring ∈ PWPP, FullFac ∈ FPPWPP.

Proof: It suffices to derandomize the reductions in Lemma 3.3 ((i),(ii)). For FacRoot ≤m
WeakFacRoot, note that Theorem 2.5 guarantees that we can find a suitable b < 2(lnn)2 =

O(‖n‖2).

For Factoring ≤m FacRoot, it suffices to show that for any odd n which is not a prime

power, there exists an 0 < a < (lnn)O(1) such that either (a, n) > 1, or (a|n) = 1 and a is a

quadratic nonresidue modulo n; the latter means that (a|p) = −1 for some prime p | n.

We can assume that (a, n) = 1 for every 0 < a < 2(lnn)2, otherwise we are done. Let p be a

prime divisor of n such that, if possible, the exponent of p in the prime factorization of n is even,

so that n/p is not a perfect square. Then χn/p is a nonprincipal quadratic character, and there

is 0 < u < 2(ln(n/p))2 such that (u|n/p) = −1 by Theorem 2.5. This implies (u|n) = −(u|p).
If (u|n) = 1, we can take a = u. Otherwise, we have (u|n) = −1 and (u|p) = 1. Since χp is also

a nonprincipal quadratic character, there is 0 < v < 2(ln p)2 such that (v|p) = −1. If (v|n) = 1,

we can take a = v, otherwise we take a = uv. Either way, a < 4(ln p)2(ln(n/p))2 < 1
4(lnn)4. �

We can use FacRoot with constant a to obtain special cases of factoring that are uncon-

ditionally in deterministic PPA, see Example 4.6. In fact, we can factor n as long as there

exists a quadratic nonresidue a = (log n)O(1) such that (a|n) = 1. We can express this more

perspicuously as follows.

Definition 3.9 Let s > 0. An integer n is s-strongly composite, if we can write n = n0n1 so

that neither n0 nor n1 is a quadratic residue modulo s.

Notice that an odd integer is 4good in the sense of [35] iff it is 4-strongly composite.

Theorem 3.10 For any constant c, the following problem is in PPA: given an n > 0 which is

s-strongly composite for s = b(log n)cc!, find a nontrivial divisor of n.

Proof: We can assume w.l.o.g. that n is coprime to b(log n)cc! (hence odd). It suffices to show

that there exists an a with |a| ≤ (log n)2c such that (a|n0) = (a|n1) = −1. Since ni is a quadratic

nonresidue modulo s, it is also a quadratic nonresidue modulo si, where si = 8, or si is an odd

prime divisor of s, i.e., si ≤ (log n)c.

Assume first that both n0, n1 are quadratic nonresidues modulo s0. If s0 is odd, we put

a = s∗0 := (−1)(s0−1)/2s0. Then (a|ni) = (ni|s0) = −1 by quadratic reciprocity. If s0 = 8, i.e.,

n0, n1 6≡ 1 (8), we choose m ∈ {3, 5, 7} such that m 6≡ n0, n1 (8), and we put

a =


−2 m = 3,

−1 m = 5,

2 m = 7.
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Then (a|n0) = (a|n1) = −1.

If both n0, n1 are quadratic nonresidues modulo s1, we proceed similarly.

Assume that ni is a quadratic residue modulo s1−i for i = 0, 1. Put

ai =


s∗i si is odd,

−1 si = 8, ni ≡ 3, 7 (8),

2 si = 8, ni ≡ 5 (8),

and a = a0a1. Then (ai|ni) = −1 and (a1−i|ni) = 1, hence (a|ni) = −1. �

Conversely, one can show that if a is a quadratic nonresidue such that (a|n) = 1, then n is

s-strongly composite for any s divisible by 4a.

In Theorem 3.10, we do not need s to have the exact form given there: it is only essential

that the prime factorization of s is known.

It is not clear whether one can fully unconditionally derandomize Theorem 3.7. While no

deterministic polynomial-time algorithm to find quadratic nonresidues is known without GRH ,

in PPA we can do better:

Lemma 3.11 The following problem is in FPFacRoot ⊆ PPA: given an odd n > 1, find an a

such that (a|n) = −1, or a nontrivial divisor of n.

Proof: Consider the following algorithm. Put a = −1. While (a|n) = 1, repeat the following

steps: call the FacRoot oracle; if it provides a factor of n, we are done, otherwise we replace

a with its square root modulo n.

The algorithm must halt within log2 n iterations: if a is a 2kth root of −1, its order in

(Z/nZ)× is 2k+1 < n. �

Notice that, conversely, FacRoot is Turing-reducible to WeakFacRoot together with the

problem from Lemma 3.11.

In fact, FacRoot does the dual job of factoring and computing square roots. In Theorem 3.7

we have exploited its factoring capacity by supplying it with quadratic nonresidues, but we can

also use it the other way round to obtain algorithms for finding square roots and quadratic

nonresidues modulo arbitrary integers. We start with the latter.

Theorem 3.12 The following problem is in FPFacRoot ⊆ PPA: given an odd n which is not a

perfect square, find an a such that (a|n) = −1.

Proof: The algorithm maintains a sequence 〈ni : i < k〉 of integers ni > 1 such that n =∏
i<k ni, and a sequence 〈ai : i < k〉, where some of the ai may be undefined, but if ai is

defined, then (ai|ni) = −1. We initialize it with k = 1, n0 = n, a0 undefined, and we repeat in

arbitrary order the following steps until neither is applicable any more:

• If ni 6= nj are such that (ni, nj) > 1, we delete ni, nj from the sequence and replace them

with (ni, nj) (two copies), ni/(ni, nj), and nj/(ni, nj), omitting those equal to 1 (this

can happen only for one of the four numbers, hence the length of the sequence always

increases). The ai entries corresponding to the new numbers are undefined.
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• If ai is undefined, we call as an oracle the search problem from Lemma 3.11 on ni. If

it returns a nontrivial divisor of ni, we expand the nj sequence as in the previous step.

Otherwise, it provides a value for ai.

Since k ≤ log n, the algorithm must halt in O(‖n‖) steps. When it does, all ai are defined,

and the ni entries are pairwise equal or coprime, hence we can write n =
∏
i∈I n

ei
i for some

I ⊆ {0, . . . , k − 1} and ei > 0, where ni, i ∈ I, are pairwise coprime. Since n is not a perfect

square, we can pick i ∈ I such that ei is odd. By the Chinese remainder theorem, we can

compute an a such that a ≡ ai (neii ) and a ≡ 1 (n/neii ). Then(
a

n

)
=
∏
j∈I

(
a

nj

)ej
= (−1)ei = −1. �

Corollary 3.13 The following problem is in FPFacRoot ⊆ PPA: given n > 2, find an a coprime

to n which is a quadratic nonresidue modulo n.

Proof: If n is a power of 2, we can return 3. Otherwise, we can write n = 2em2k , where m

is odd and not a perfect square. By Theorem 3.12, we can find a such that (a|m) = −1. By

adding m to a if necessary, we can make sure a is odd, hence (n, a) = 1. Since a is a quadratic

nonresidue modulo m | n, it is also a nonresidue modulo n. �

Another problem we are going to reduce to FacRoot is the computation of square roots

modulo n. A priori it is not clear how to formulate it as a total NP search problem, as the

quadratic residuosity problem is neither known nor assumed to be poly-time decidable. We

can remedy this by requiring the search problem to find something sensible also for quadratic

nonresidues.

Definition 3.14 Let n be a positive integer. If (a, n) = 1, a divisor m | n is a coprime

nonsquare witness for a modulo n if

• m is odd and
(
a
m

)
= −1, or

• m = 4 and a ≡ 3 (4), or

• m = 8 and a ≡ 5 (8).

If a is an arbitrary integer, an m is a nonsquare witness for a modulo n, if m is not a perfect

square, m is odd or 2, and there are e, b, and j < e such that me | n, a = mjb, (m, b) = 1, and

if j is even, m (if odd) or 4 or 8 (if m = 2) is a coprime nonsquare witness for b modulo me−j .

It is easy to see that the property of being a nonsquare witness is poly-time decidable.

Let Root denote the following search problem: given n > 0 and a, find either a square root

of a modulo n, or a nonsquare witness for a modulo n.

Lemma 3.15 If there exists a nonsquare witness for a modulo n, then a is a quadratic non-

residue modulo n.
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Proof: If m is a coprime nonsquare witness for a, then a is a quadratic nonresidue modulo m,

and a fortiori modulo n.

Let m be a nonsquare witness for a, and let e, b, and j be as in Definition 3.14. Assume

for contradiction a ≡ (uc)2 (n), where (m, c) = 1, and u | mk for some k. We have mj | (uc)2,

hence mj | u2. Moreover, if we write u2 = mjv, then b ≡ vc2 (me−j), hence (m, v) = 1, i.e.,

v = 1 and mj = u2. Since m is not a perfect square, this implies j is even. However, b ≡ c2

(me−j) contradicts the fact that b has a coprime nonsquare witness modulo me−j . �

Notice that Root is a generalization of FacRoot: a nonsquare witness for a modulo n is

a nontrivial divisor of n, unless n is odd and (a|n) = −1.

Theorem 3.16 Root ∈ FPFacRoot ⊆ PPA.

Proof: Write n = 2em with m odd. In the first stage of our algorithm, we keep a sequence

〈ni : i < k〉 of integers ni > 1 such that m =
∏
i<k ni, and a sequence of integers 〈ui : i < k〉

where some ui may be undefined. We maintain the property that whenever ui is defined, we

can write a = njii ai for some ji so that (ai, ni) = 1, and we have ai ≡ u2
i (ni). We start with

k = 1, n0 = m and u0 undefined, and we repeat the following steps until none of them are

applicable any more:

• If ni 6= nj are such that (ni, nj) > 1, we delete ni, nj from the sequence and replace them

with two copies of (ni, nj), ni/(ni, nj), and nj/(ni, nj) as in the proof of Theorem 3.12.

• If ni is a perfect square, we replace ni with two copies of
√
ni.

• If a = njii ai where ni - ai, but (ni, ai) > 1, we replace ni with (ni, ai) and ni/(ni, ai).

• If a = njii ai where (ai|ni) = 1, but ui is undefined, we call a FacRoot oracle on ni, ai. If

it returns a nontrivial divisor d | ni, we replace ni with d and ni/d. Otherwise, it returns

a square root of ai modulo ni, which we store as ui.

This stage terminates after O(‖n‖) steps. When it does, we can write m =
∏
i∈I n

ei
i for some

ei > 0, I ⊆ {0, . . . , k − 1}, where ni, i ∈ I, are pairwise coprime, none of them is a perfect

square, and we have a = njii ai for some ji and (ai, ni) = 1. For each i, we try to compute a

square root zi of a modulo neii as follows:

• If ji ≥ ei, we put zi = 0.

• If ji < ei, and ji is odd or (ai|ni) = −1, we return ni as a nonsquare witness for a.

• If ji < ei is even and (ai|ni) = 1, then ui is defined, and u2
i ≡ ai (ni). We put zi = n

ji/2
i vi,

where v2
i ≡ ai (neii ) is computed using Hensel’s lifting, which is an iteration of the following

procedure: if we have u such that u2 ≡ ai (nci ), we compute w ≡ (2u)−1 (nci ), and we put

u′ = (u2 + ai)w. Then u′2 ≡ ai (n2c
i ).

We also try to find a square root z of a modulo 2e. We write a = 2jb with b odd, and then:

• If j ≥ e, we put z = 0.
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• If j < e, we return 2 as a nonsquare witness for a whenever one of the following cases

happens: j is odd, or e− j ≥ 2 and b ≡ 3 (4), or e− j ≥ 3 and b ≡ 5 (8).

• Otherwise, j < e is even, and 12 ≡ b (2min{e−j,3}). We put z = 2j/2v, where v2 ≡ b (2e−j);

if e − j > 3, we compute v using the following variant of Hensel’s lifting. If we have u

such that u2 ≡ b (2c), we compute w ≡ u−1 (2c−2), and we put u′ = ((u2 + b)/2)w. Then

u′2 ≡ b (22c−2).

Finally, using the Chinese remainder theorem, we compute x such that x ≡ z (2e) and x ≡ zi
(neii ) for every i, then x2 ≡ a (n). �

4 FacRoot is in PPA

The purpose of this section is to prove Theorem 3.4. As already mentioned in the introduction,

the original idea of the proof comes from previous work of the author on the provability of the

quadratic reciprocity theorem in variants of bounded arithmetic, and in fact, FacRoot ∈ PPA

is a simple corollary of these results. This connection is described in detail in Section 4.1. In or-

der to make this paper more self-contained, we give a direct combinatorial proof of Theorem 3.4

in Section 4.2. Readers uncomfortable with bounded arithmetic may safely skip straight there.

4.1 Bounded arithmetic

We assume familiarity with basic facts about subsystems of bounded arithmetic, in particular

Buss’s theory S1
2 . We refer the reader to [40, 116] for more background.

Chapter III introduced a theory S1
2 + Count2(PV ), axiomatized over S1

2 by the following

principle: for every number a and circuit C, C does not define an involution on {0, . . . , 2a}
without fixpoints. Notice that the axiom is Σb

1, and the corresponding search problem is a

minor variant of Lonely.

Lemma 4.1 If S1
2 + Count2(PV ) ` ∀x ∃y ϕ(x, y), where ϕ ∈ Σb

1, then the search problem to

find a y satisfying ϕ(x, y) given x is in PPA.

Proof: By the assumption, S1
2 proves

∃a,C ∀u ≤ 2a (C(C(u)) = u 6= C(u) ≤ 2a) ∨ ∃y ϕ(x, y),

hence S1
2(h) proves its Herbrandization

∃a,C (h(a,C) ≤ 2a→ C(C(h(a,C))) = h(a,C) 6= C(h(a,C)) ≤ 2a) ∨ ∃y ϕ(x, y).

This is an ∃Σb
1(h) formula, hence using Parikh’s theorem and Buss’s witnessing theorem, there

exists a polynomial-time oracle function fh such that

(1) ∃a,C (h(a,C) ≤ 2a→ C(C(h(a,C))) = h(a,C) 6= C(h(a,C)) ≤ 2a) ∨ ϕ(x, fh(x))

holds in N for any choice of h. Let us run f on an input x with an oracle solving the PPA-

problem corresponding to Count2 in place of h, and let y be its output. We may assume that
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f never asks the same question more than once, hence the oracle answers in any particular run

can be extended to a function h which satisfies

h(a,C) ≤ 2a ∧ (C(C(h(a,C))) 6= h(a,C) ∨ h(a,C) = C(h(a,C)) ∨ C(h(a,C)) > 2a).

Then (1) implies ϕ(x, y). Thus, the search problem associated to ϕ is in FPPPA = PPA using

Theorem 2.1. �

Let J(a, n) denote a PV -function formalizing the algorithm in Figure 2.1. As shown in

Theorem III.5.9, S1
2 + Count2(PV ) proves that J(a, n) agrees with the definition of the Jacobi

symbol in terms of factorization of n and quadratic residues. In particular, the theory proves

that for prime n, J(a, n) = 1 implies that a is a quadratic residue, which can be expressed as

the following Σb
1 formula:

Theorem 4.2 S1
2 + Count2(PV ) proves

J(a, n) = 1→ ∃x (x2 ≡ a (n)) ∨ ∃u, v < n (uv = n). �

Theorem 3.4 readily follows.

4.2 Explicit algorithm

Before turning to FacRoot proper, we will describe PPA algorithms for some of its special

cases which we will need as ingredients in the main construction.

We introduce some notation for conciseness. If n is a fixed odd integer n > 1, we consider

N = {x : |x| < n/2, (n, x) = 1}

as a set of unique representatives of (Z/nZ)×. We also write N+ = {x ∈ N : x > 0}, N− =

{x ∈ N : x < 0}, N0 = N ∪ {0}, and similarly for N+
0 , N−0 . We assume operations on residues

are computed modulo n with a result in N , so that, e.g., ab−1 ∈ N+ means that a ≡ bx (n) for

some x ∈ N+.

Lemma 4.3 There is a poly-time function f(n, a, x) such that for any odd n > 1 and an

integer a coprime to n, the function fn,a(x) = f(n, a, x) defines an involution on

{x ∈ N− : ax ∈ N−} ∪N+
0

whose fixpoints are of the form x−1, where

(i) x ∈ N+ r {1} and x2 = 1, or

(ii) x ∈ N− and x2 = a.

Proof: We define f ′n,a on {x ∈ N− : ax ∈ N−} ∪N+ by

f ′n,a(x) =


x−1 x, x−1 ∈ N+,

a−1x−1 ax, x−1 ∈ N−,
−x (x, ax ∈ N+ ∧ x−1 ∈ N−) ∨ (x, ax ∈ N− ∧ x−1 ∈ N+).
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It is easy to see that the three conditions define a partition of {x ∈ N− : ax ∈ N−} ∪N+, and

f ′n,a is an involution on each part. The fixpoints of f ′n,a in the first two parts have the forms

(i) (without the restriction x 6= 1) and (ii), respectively, and there are no fixpoints in the third

part. Finally, we put

fn,a(x) =


1 x = 0,

0 x = 1,

f ′n,a(x) x 6= 0, 1.

�

Definition 4.4 For a constant a, let FacRoota denote the following special case of FacRoot:

given an odd positive n such that (a|n) = 1, find either a nontrivial divisor of n, or a square

root of a modulo n.

Lemma 4.5 FacRoot−1 and FacRoot2 are in PPA.

Proof: Given n ≡ ±1 (8), observe that

{x ∈ N− : 2x ∈ N−} = N ∩ [−(n− 2± 1)/4,−1].

We define an involution r on [−(n− 2± 1)/4, (n− 1)/2] by

r(x) =

{
x x 6= 0, (x, n) 6= 1,

fn,2(x) otherwise.

The domain of r is an interval of size (3n ± 1)/4, which is odd, hence we can use Lonely to

find a fixpoint x of r. Using Lemma 4.3, we see that either x−1 is a square root of 2, or it is a

square root of 1 distinct from ±1, or (x, n) 6= 1. In the last two cases, we can factorize n.

For FacRoot−1, we define similarly an involution on [0, (n− 1)/2] using fn,−1. �

Using a similar construction, it is possible to show FacRoota ∈ PPA for every constant a.

We skip the details, as we will not directly need this fact, and Theorem 3.4 is more general.

However, notice that FacRoot−1 ∈ PPA restates Buresh-Oppenheim’s original result, and any

constant a yields a similar special case of factoring:

Example 4.6 The following search problems are in PPA.

Given n ≡ ±1 (8) such that 2 is a quadratic nonresidue modulo n (i.e., n has a divisor

p ≡ ±3 (8)), find a nontrivial divisor of n.

Given n ≡ 1 (3) such that −3 is a quadratic nonresidue modulo n (i.e., n has a divisor p ≡ 2

(3)), find a nontrivial divisor of n.

Lemma 4.7 FacRootMul (and thus WeakFacRoot) is in PPA.

Proof: Let n > 1 be odd, and a, b coprime to n. Define

g(x) =


〈0,−x〉 x ∈ N+

0 ,

〈1,−x〉 x, ax, b−1x ∈ N−,
〈2,−x〉 x, ax ∈ N−, b−1x ∈ N+.
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Then g is a poly-time bijection from {x ∈ N− : ax ∈ N−} ∪N+
0 onto

A = ({0} ×N−0 ) ∪ ({1} × {x : x, ax, b−1x ∈ N+})
∪ ({2} × {x ∈ N+ : ax ∈ N+, b−1x ∈ N−})

with a poly-time inverse. Similarly,

h(x) =


〈0, x〉 x ∈ N+,

〈1, x〉 x = 0 or x, b−1x, ax ∈ N−,
〈2, x〉 x, b−1x ∈ N−, ax ∈ N+

is a bijection from {x ∈ N− : b−1x ∈ N−} ∪N+
0 onto

B = ({0} ×N+) ∪ ({1} × ({0} ∪ {x : x, ax, b−1x ∈ N−}))
∪ ({2} × {x ∈ N− : ax ∈ N+, b−1x ∈ N−}),

x 7→ 〈2, bx〉 is a bijection from {x ∈ N− : abx ∈ N−} ∪N+
0 onto

C = {2} × ({0} ∪ {x : ax ∈ N− ∨ b−1x ∈ N+}),

and 〈1, x〉 7→ 〈1,−x〉 is a fixpoint-free involution on

D = {1} × {x ∈ N : x, ax, b−1x do not have the same sign}.

We can thus define a poly-time involution r on {0, 1, 2} × [−(n− 1)/2, (n− 1)/2] by

r(e, x) =



g(fn,a(g
−1(e, x))) 〈e, x〉 ∈ A,

h(fn,b−1(h−1(e, x))) 〈e, x〉 ∈ B,
〈2, bfn,ab(b−1x)〉 〈e, x〉 ∈ C,
〈1,−x〉 〈e, x〉 ∈ D,
〈e, x〉 x 6= 0, (x, n) > 1.

Since 3n is odd, we can use Lonely to find a fixpoint 〈e, x〉 of r. We cannot have 〈e, x〉 ∈ D. If

x 6= 0, (x, n) > 1, we can factor n. If 〈e, x〉 ∈ A, then y := g−1(e, x) is a fixpoint of fn,a. Thus,

either y2 = 1, y 6= ±1, in which case we can factor n, or y−1 is a square root of a. Similarly, if

〈e, x〉 ∈ B ∪ C, we can factor n, or compute a square root of b or ab. �

Lemma 4.7 is enough to prove our main result, Theorem 3.7. However, we will proceed with

the proof of Theorem 3.4, as we are interested in the possibility of unconditional derandomization

of the reduction of factoring to PPA, and placing FacRoot in PPA can be seen as a partial

step towards that goal. Moreover, randomized versions of Theorems 3.12 and 3.16 would not

be interesting.

Lemma 4.8 The following problems are in PPA.
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(i) FacRootOdd: given an odd n > 0, a sequence 〈ai : i < k〉 of integers coprime to n such

that k is odd, and a square root x of
∏
i<k ai modulo n, find a nontrivial divisor of n, or

a square root of some ai modulo n.

(ii) FacRootEven: given an odd n > 0, and a sequence 〈ai : i < k〉 of integers coprime

to n such that k is even, find a nontrivial divisor of n, or a square root of
∏
i<k ai or of

some ai modulo n.

Proof: (i): Put I = {0, . . . , k − 1} and y = 1, and repeat the following steps. If I = {i},
return xy−1 as a square root of ai. If |I| > 1, pick i, j ∈ I, i 6= j, and call FacRootMul

on n, ai, aj . If it gives us a nontrivial divisor of n, or a square root of ai or aj , we return it.

Otherwise, it provides a square root z of aiaj . We multiply y by z, remove i, j from I, and

repeat the loop.

(ii): Put x = ak =
∏
i<k ai, and call FacRootOdd. �

Definition 4.9 QuadRec is the following problem: given odd coprime n,m > 0 such that

n ≡ 1 (4), and a square root a of n modulo m, find a nontrivial divisor of n or m, or a square

root of m modulo n.

Notice that QuadRec is a special case of FacRoot: the input data ensure (n|m) = 1,

hence (m|n) = 1 by quadratic reciprocity.

Lemma 4.10 QuadRec ∈ PPA.

Proof: We may assume n,m > 1 and a ∈M−, so that b = a−1 ∈M is a fixpoint of fm,n. Put

n2 = (n+ 1)/2, m2 = (m+ 1)/2. The function

g(x) =

{
〈x,m2〉 x ∈ N+

0 ,

〈−x, b−mx/nc〉 x,mx ∈ N−

is a poly-time bijection with poly-time inverse from {x ∈ N− : mx ∈ N−} ∪N+
0 onto

A =
(
N+

0 × {m2}
)
∪
{
〈x, y〉 ∈ N+

0 × [0,m2) : mx− ny ∈ N+
}
,

where mx− ny is not evaluated modulo n, but literally. Likewise,

h(y) =

{
〈n2, y〉 y ∈M+

0 ,

〈b−ny/mc,−y〉 y, ny ∈M−

is a bijection from {y ∈M− : ny ∈M−} ∪M+
0 onto

B =
(
{n2} ×M+

0

)
∪
{
〈x, y〉 ∈ [0, n2)×M+

0 : mx− ny ∈M−
}
.

The function k(x, y) = 〈n2 − 1− x,m2 − 1− y〉 is a poly-time involution with no fixpoints on

C =
{
〈x, y〉 ∈ [0, n2)× [0,m2) : mx− ny ≥ n2 or mx− ny ≤ −m2

}
.
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We define a poly-time involution r on ([0, n2]× [0,m2])r {〈n2,m2〉} by

r(x, y) =



g(fn,m(g−1(x, y))) 〈x, y〉 ∈ A,
h(fm,n(h−1(x, y))) 〈x, y〉 ∈ B r {h(b)},
〈0, 0〉 〈x, y〉 = h(b),

h(b) x = y = 0,

k(x, y) 〈x, y〉 ∈ C,
〈x, y〉 otherwise.

Notice that if x ∈ [0, n2) and y ∈ [0,m2) are such that mx − ny = 0, then x = y = 0, as

(n,m) = 1. It follows that the last clause in the definition of r applies to elements of the set

D =
(
([1, n2)rN+)× {m2}

)
∪
(
{n2} × ([1,m2)rM+)

)
∪
{
〈x, y〉 ∈ [0, n2)× [0,m2) : mx− ny ∈ ([1, n2)rN+) ∪ ((−m2,−1]rM−)

}
.

The domain of r has odd size (n2 + 1)(m2 + 1)− 1, hence using Lonely, we can find a fixpoint

〈x, y〉 of r. If 〈x, y〉 ∈ A, it gives us a square root of m modulo n, or a square root of 1 distinct

from ±1, in which case we can factorize n. If 〈x, y〉 ∈ B, we get a square root of n modulo m

distinct from ±a, or a square root of 1 distinct from ±1, and both cases give a factor of m. If

〈x, y〉 ∈ D, (n, x) or (m, y) is a nontrivial divisor of n or m, respectively. �

We are ready now to prove Theorem 3.4. Assume we are given an odd n > 0, and an

integer a such that (a|n) = 1. We first compute the sequences 〈ai : i ≤ t〉, 〈ni : i ≤ t〉 of values

of a and n during the execution of the algorithm in Figure 2.1. That is, we put 〈a0, n0〉 = 〈a, n〉,
and then we define 〈ai, ni〉 by induction on i as follows. If |ai| > ni/2, we let ni+1 = ni, and

ai+1 ≡ ai (ni) such that |ai+1| < ni/2. If 0 < |ai| < ni/2, we define

〈ai+1, ni+1〉 =


〈−ai, ni〉 ai < 0,

〈ai/2, ni〉 ai > 0 is even,

〈ni, ai〉 ai > 0 is odd.

We stop when we reach at = 0. Since (a|n) = 1, we have (ai, ni) = 1 for each i, in particular

nt = 1. Notice that t = O(‖n‖). Write R = {i < t : ai is odd, 0 < ai < ni/2}.
In the main part of the algorithm, we maintain a double sequence 〈ni,j : i ≤ t, j < si〉 of

integers ni,j > 1 such that ni =
∏
j<si

ni,j , and ni,j ≤ ni,j′ for j < j′. Moreover, we maintain

sequences 〈ui,j : i ≤ k, j < si〉, 〈vi,j,k, wi,j,k : i ∈ R, j < si, k < si+1〉, where some of the

ui,j , vi,j,k, and wi,j,k may be undefined. Where they are defined, we have u2
i,j ≡ ai (ni,j),

v2
i,j,k ≡ ni+1,k (ni,j), and w2

i,j,k ≡ ni,j (ni+1,k), respectively.

We initialize the sequences with si = 1, ni,0 = ni for ni > 1, si = 0 for ni = 1, and all ui,j ,

vi,j,k, and wi,j,k undefined. We repeat in arbitrary order the following updating steps until none

of them is applicable any more.

• Assume ni = ni+1, ni,j 6= ni+1,k, and d = (ni,j , ni+1,k) > 1. If d 6= ni,j , we increase si,

replace ni,j with d and ni,j/d, and undefine all associated ui,j , vi−1,l,j , and wi−1,l,j . If

d 6= ni+1,k, we deal with it similarly. Notice that we cannot have ni,j = d = ni+1,k.
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Moreover, if this step is not applicable, then ni = ni+1 implies that si = si+1 and 〈ni,j :

j < si〉 and 〈ni+1,k : k < si+1〉 are permutations of each other, hence in view of their

monotonicity, we have ni,j = ni+1,j for each j.

• For i < t such that 〈ni,j : j < si〉 = 〈ni+1,k : k < si+1〉 (which implies ni = ni+1):

– If ai ≡ ai+1 (ni), and exactly one of ui,j , ui+1,j is defined, we define the other to the

same value.

– If ai = αai+1, α ∈ {−1, 2}, (α|ni,j) = −1, and neither ui,j nor ui+1,j is defined, we

call FacRootMul(ni,j , ai, ai+1). If it returns a nontrivial divisor of ni,j , we expand

the ni,j sequence as in the first step. Otherwise, it gives a square root of ai or ai+1

modulo ni,j , which we store as ui,j or ui+1,j , respectively.

– If ai = αai+1, α ∈ {−1, 2}, (α|ni,j) = 1, and exactly one of ui,j or ui+1,j is defined,

we call FacRootα(ni,j). If it returns a nontrivial divisor of ni,j , we expand the

ni,j sequence. Otherwise, it gives β2 ≡ α (ni,j), and we define ui,j := βui+1,j or

ui+1,j := β−1ui,j , respectively.

• For i ∈ R:

– If ui,j is defined and |I| is odd, where I = {k < si+1 : vi,j,k is undefined}, we put

x = ui,j
∏
k/∈I v

−1
i,j,k, and call FacRootOdd on ni,j , 〈ni+1,k : k ∈ I〉, x. If it returns

a factor of ni,j , we expand the ni,j sequence. Otherwise, it returns a square root of

some ni+1,k, k ∈ I, modulo ni,j , which we store as vi,j,k.

– If ui,j is undefined and |I| is even, where I is as above, we call FacRootEven

on ni,j , 〈ni+1,k : k ∈ I〉. If it returns a factor of ni,j , we expand the ni,j sequence.

If it returns a square root of some ni+1,k, k ∈ I, modulo ni,j , we store it as vi,j,k.

Otherwise, it returns a square root x of
∏
k∈I ni+1,k, and then we define ui,j =

x
∏
k/∈I vi,j,k.

– If ui+1,k is defined and |I| is odd, or ui+1,k is undefined and |I| is even, where

I = {j < si : wi,j,k is undefined}, we proceed in a similar way to expand the ni+1,k

sequence or to define some wi,j,k or ui+1,k.

– If ni,j ≡ −1 (4), (ni+1,k|ni,j) = 1, and vi,j,k is undefined, we call WeakFacRoot on

ni,j , ni+1,k,−1. If it returns a factor of ni,j , we expand the ni,j sequence, otherwise

it returns a square root of ni+1,k modulo ni,j , which we store as vi,j,k.

– If ni+1,k ≡ −1 (4), (ni,j |ni+1,k) = 1, and wi,j,k is undefined, we proceed similarly.

– If ni,j ≡ 1 (4), wi,j,k is defined, and vi,j,k is undefined, we call QuadRec on

ni,j , ni+1,k, wi,j,k. If it returns a factor of ni,j or ni+1,k, we expand the ni,j or ni+1,k

sequence (respectively), otherwise it returns a square root of ni+1,k modulo ni,j ,

which we store as vi,j,k.

– If ni+1,k ≡ 1 (4), vi,j,k is defined, and wi,j,k is undefined, we proceed similarly.
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In each step, either
∑

i≤t si ≤ O(‖n‖2) strictly increases, or it stays the same, and we define

some previously undefined ui,j , vi,j,k, or wi,j,k. It follows that the update procedure stops after

‖n‖O(1) steps.

Let us write [ai|ni,j ] = 1 if ui,j is defined, and [ai|ni,j ] = −1 otherwise. We define [ni+1,k|ni,j ]
and [ni,j |ni+1,k] similarly using vi,j,k and wi,j,k, respectively. Notice that [ai|ni,j ] = 1 implies

(ai|ni,j) = 1, and likewise for [ni+1,k|ni,j ], [ni,j |ni+1,k].

Lemma 4.11 When the update procedure stops, the following properties hold.

(i) If ni = ni+1, then si = si+1 and ni,j = ni+1,j.

(ii) If ni = ni+1 and ai ≡ ai+1 (ni), then [ai|ni,j ] = [ai+1|ni+1,j ].

(iii) If ni = ni+1 and ai = αai+1, α ∈ {−1, 2}, then[
ai+1

ni+1,j

]
=

(
α

ni,j

)[
ai
ni,j

]
.

(iv) If i ∈ R, then [
ai
ni,j

]
=

∏
k<si+1

[
ni+1,k

ni,j

]
,

[
ai+1

ni+1,k

]
=
∏
j<si

[
ni,j
ni+1,k

]
.

(v) If i ∈ R and ni,j ≡ ni+1,k ≡ −1 (4), then[
ni+1,k

ni,j

][
ni,j
ni+1,k

]
= −1.

(vi) If i ∈ R and ni,j ≡ 1 (4) or ni+1,k ≡ 1 (4), then[
ni+1,k

ni,j

][
ni,j
ni+1,k

]
= 1.

Proof:

(i), (ii), and (iv) are clear.

(iii): The statement is clear if (α|ni,j) = 1. If (α|ni,j) = −1, the inapplicability of update

steps implies that [ai|ni,j ] = 1 or [ai+1|ni+1,j ] = 1. We cannot have both, since this would imply

(ai|ni,j) = (ai+1|ni,j) = 1, hence (α|ni,j) = 1.

(v): By quadratic reciprocity, exactly one of (ni+1,k|ni,j) = 1, (ni,j |ni+1,k) = 1 holds. The

inapplicability of update steps then implies that [ni+1,k|ni,j ] = 1 or [ni,j |ni+1,k] = 1. We cannot

have both, as this would mean (ni+1,k|ni,j) = (ni,j |ni+1,k) = 1.

(vi): The statement is clear if ni,j ≡ ni+1,k ≡ 1 (4). Assume ni,j ≡ 1 (4) and ni+1,k ≡ −1

(4), the other case is symmetric. By the inapplicability of update steps, [ni,j |ni+1,k] = 1

implies [ni+1,k|ni,j ] = 1. On the other hand, if [ni+1,k|ni,j ] = 1, then (ni+1,k|ni,j) = 1, hence

(ni,j |ni+1,k) = 1 by quadratic reciprocity, thus [ni,j |ni+1,k] = 1 by the inapplicability of update

steps. �
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Using Lemma 4.11, we can show ∏
j<si

[
ai
ni,j

]
=

(
ai
ni

)
by reverse induction on i. The induction step for i ∈ R goes as follows:∏

j<si

[
ai
ni,j

]
=

∏
j<si
k<si+1

[
ni+1,k

ni,j

]

=
∏
j<si
k<si+1

[
ni,j
ni+1,k

]
(−1)(ni,j−1)(ni+1,k−1)/4

= (−1)(ai+1−1)(ni+1−1)/4
∏

k<si+1

[
ai+1

ni+1,k

]

= (−1)(ai+1−1)(ni+1−1)/4

(
ai+1

ni+1

)
=

(
ni+1

ai+1

)
=

(
ai
ni

)
.

In particular, either s0 > 1, in which case n0,0 is a nontrivial divisor of n, or s0 = 1

and [a0|n0,0] = 1, where a0 = a and n0,0 = n, in which case u2
0,0 ≡ a (n). This completes the

proof of Theorem 3.4.

5 Conclusion

We have shown that integer factoring has randomized reductions to the classes PPA and PPP

(more precisely, PWPP). We also provided evidence that there in fact exist deterministic

reductions, namely this is true under the widely believed assumption of the generalized Riemann

hypothesis for quadratic Dirichlet characters.

Problem 5.1 Is Factoring in PPA, PPP, or FPPPP?

Some of our other results can be seen as partial indication that such an unconditional de-

terministic reduction might be possible at least in the case of PPA. In particular, the fact

that FacRoot ∈ PPA bypasses the randomized reduction of WeakFacRoot to FacRoot,

and we have shown that PPA contains the search problems to find square roots modulo arbi-

trary integers (which is probabilistically Turing-equivalent to factoring) and to find quadratic

nonresidues (which is easily solvable in randomized polynomial time). Nevertheless, it remains

open whether Problem 5.1 can be resolved unconditionally.

Another interesting question is whether the methods used for the reduction of factoring

to PPA can be pushed down to the class PPAD ⊆ PPA. Note that many natural problems are

known to be complete for PPAD, such as computing Nash equilibria [51].

Problem 5.2 Does Factoring have some form of reduction to PPAD?
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Chapter V

On theories of bounded arithmetic

for NC1

Abstract

We develop an arithmetical theory VNC 1
∗ and its variant VNC 1

∗ that correspond to

“slightly nonuniform” NC1. Our theories sit between VNC 1 and VL, and allow evaluation

of log-depth bounded fan-in circuits under limited conditions. Propositional translations of

ΣB
0 (LVNC1

∗
)-formulas provable in VNC 1

∗ admit L-uniform polynomial-size Frege proofs.

1 Introduction

In proof complexity, there is a well-known general correspondence between theories of bounded

arithmetic, complexity classes, and propositional proof systems (see e.g. [116, 56, 65, 68]). A

theory T corresponds to a complexity class C if the provably total computable functions of T

are the C-functions. A propositional proof system P corresponds to T if the propositional

translations of theorems of T of certain complexity have polynomial-size proofs in P , and T

proves a reflection principle for P .

Here we are particularly concerned about theories corresponding to variants of the class

NC1. Several theories corresponding to uniform NC1 (i.e., ALOGTIME, UE-uniform NC1) and

to the Frege propositional proof system have been described in the literature: an equational

theory ALV by Clote [53], theories AID and AID + Σb
0-CA by Arai [11], and a second-order

theory VNC 1 by Cook and Morioka [61]. (All these theories are more or less equivalent: VNC 1

is RSUV -isomorphic to AID + Σb
0-CA, which is in turn a conservative extension of ALV .)

Uniform NC1 is a robust and well-behaved complexity class, but it is too strict for certain

applications, namely those involving circuit evaluation. Nonuniform complexity classes usually

consist of languages definable by a family of polynomial-size Boolean circuits satisfying certain

requirements (e.g., concerning their depth, fan-in, or available connectives): this holds for

example for nonuniform ACk, NCk, TC0, P; in particular, nonuniform NC1-languages are given

by a family of bounded fan-in circuits of logarithmic depth. Typically, the corresponding uniform

class consists of languages definable by a sufficiently uniform family of the same kind of circuits,

and moreover, the class includes the universal language which evaluates circuits of this kind
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described in a natural way by binary strings. This is not true for NC1. Even DLOGTIME-

uniform (i.e., UD-uniform) families of log-depth circuits define a class (presumably) still larger

than uniform NC1; we can only define uniform NC1 using circuits by employing the more

complicated description by so-called extended connection languages of Ruzzo [162]. Likewise,

the universal evaluator for log-depth circuits is (presumably) not in NC1 (even nonuniform).

Consequently, VNC 1 (and friends) do not prove that one can evaluate log-depth circuits, or

even a uniformly given (say, definable by a ΣB
0 -formula) sequence of log-depth circuits. There are

situations where evaluation of such circuits would be desirable in an NC1-theory. The particular

application we have in mind, and the main motivation for this work, is Chapter VI, which aims

at formalizing a version of the Ajtai–Komlós–Szemerédi sorting network in bounded arithmetic

(under the assumption that we can formalize construction of suitable expander graphs). On the

one hand, we need the formalization to proceed in an NC1-theory, and in particular, in a theory

which translates to polynomial-time Frege proofs: the point is that this implies polynomial

simulation of the sequent calculus (i.e., Frege) by the monotone sequent calculus MLK , using

results of Atserias, Galesi, and Pudlák [14]. On the other hand, the sorting network is essentially

a monotone log-depth circuit which we need to evaluate; it is uniformly described, but its

extended connection language is not available.

To address these issues, we introduce new theories VNC 1
∗ and VNC 1

∗, corresponding to a

subclass of NC1 slightly larger than uniform NC1, which allow evaluation of sufficiently uniform

families of log-depth circuits. We work with second-order theories in the spirit of Zambella [182].

The theory VNC 1
∗ is formulated in the usual language of second-order bounded arithmetic; it

includes V 0, and a derivation rule allowing to evaluate a kind of monotone log-depth bounded

fan-in circuits described by formulas without second-order parameters which are provably ∆B
1 .

The theory VNC 1
∗ has a richer language LVNC 1

∗
including comprehension function symbols for

ΣB
0 -formulas, and function symbols for evaluation of monotone log-depth bounded fan-in circuits

described by open formulas (in the extended language) without second-order parameters.

In Section 4, we prove basic properties of our new theories: VNC 1
∗ contains VNC 1 and is

contained in VL, VNC 1
∗ is an open theory conservatively extending VNC 1

∗ (more precisely, it is

an extension of VNC 1
∗ by ΣB

1 -definitions), VNC 1
∗ is ΣB

1 -axiomatizable, ∃ΣB
1 -formulas provable

in VNC 1
∗ are witnessed by terms in VNC 1

∗ (in particular, provably ∆B
1 -formulas of VNC 1

∗ are

equivalent to open formulas), the provably total computable functions ofVNC 1
∗ include uniform

(and even UD-uniform) NC1-functions, and are included in L-uniform NC1-functions, andVNC 1
∗

extended by the axiom of choice for ∃ΣB
1 -formulas is ∃ΣB

1 -conservative overVNC 1
∗. To show the

latter, we prove a general theorem on conservativity of the axiom of choice over theories meeting

certain requirements. In Section 5 we show that propositional translations of ΣB
0 (LVNC 1

∗
)-

theorems of VNC 1
∗ have L-uniform polynomial-size Frege proofs.

2 Complexity classes

We recall that a (bounded fan-in) circuit in n inputs is a directed acyclic graph whose nodes

are labelled by gate types ∧, ∨, ¬, or input variables xi, i < n. Input nodes have fan-in 0,

¬-gates have fan-in 1, and ∧ and ∨-gates have fan-in 2. One node of the circuit is designated
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as the output node. The circuit computes a Boolean function f : 2n → 2 in the obvious way.

The depth of a circuit is the maximal length of a path in the circuit. A formula is a circuit in

which all nodes save the output have fan-out 1.

If C is any class of languages, we define FC to be the class of functions f(~x) such that |f(~x)|
is at most polynomial in |~x|, and the bit-graph

{〈~x, i〉 | the ith bit of f(~x) is 1}

is in C. We will sometimes call functions f ∈ FC just C-functions.

A language L is in nonuniform NC1 if there exists a family {Cn | n ∈ ω} of circuits such

that Cn computes the characteristic function of L ∩ 2n, and the depth of Cn is O(log n) (in

short, Cn is a log-depth circuit). Equivalently, L is in nonuniform NC1 if it is computable in a

similar way by a family of polynomial-size formulas.

Let U be a complexity class. A language L is in U -uniform NC1 if it is computable by a

sequence {Cn | n ∈ ω} of log-depth circuits such that, given n in unary, we can compute the

description of Cn by a U -function. Since this definition may be sensitive to details of the chosen

representation of circuits, we make it more precise using the terminology of Ruzzo [162]. Given

a node x in a circuit C, we fix an ordering of its input nodes, and denote by x(i) the ith input

of x. The direct connection language LDC(C) of a family of circuits C = {Cn | n ∈ ω}, where

Cn has n inputs, is a set of tuples 〈n, x, p, y〉, where n is an integer given in unary, x is a binary

string identifying a node in a circuit, p ∈ {ε, 0, 1}, and y is either another string denoting a

node, or a gate type from {xi,∧,∨,¬}. It is defined by

LDC(C) = {〈n, x, ε, t〉 | node x in Cn is a t-gate} ∪ {〈n, x, p, y〉 | p ∈ {0, 1}, x(p) = y in Cn}.

We define U -uniform NC1 to consist of languages L computable by a family C of log-depth

circuits with node labels of length |x| = O(log n) such that LDC(C) ∈ U . DLOGTIME-uniform

NC1 is usually called UD-uniform, where DLOGTIME = DTIME(O(log n)). Here and below,

Turing machines supposed to work in sublinear time do not have the usual input tape. Instead,

there is a special index type, and read states. If the machine enters a read state with a, k

written on the index tape, where a is a symbol of the input alphabet, and k is a binary integer,

it continues in one of two given states according to whether the kth symbol of the input is a.

Fully uniform NC1 (also called UE-uniform) is defined as ALOGTIME, the languages com-

putable by an alternating Turing machine in O(log n) steps. Uniform NC1 is not known to

coincide with U -uniform NC1 for any natural class U . However, we can define it using circuits

as follows. We extend the x(i) notation so that if p is a binary string, x(p) is the node we

obtain by following the path which starts in x, and moves to the left or right input according to

successive bits of p. The extended connection language LEC(C) of a family C = {Cn | n < ω}
of circuits is defined by

LEC(C) = {〈n, x, ε, t〉 | node x in Cn is a t-gate}
∪ {〈n, x, p, y〉 | p ∈ {0, 1}∗, 0 < |p| ≤ log n, x(p) = y in Cn}.

Then a language L is in uniform NC1 if and only if it is computable by a family C of log-depth

circuits such that LEC(C) is computable in DLOGTIME. The class does not change if we
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allow LEC(C) to be in AC0 or ALOGTIME. Here, (uniform) AC0 can be defined as languages

computable by an alternating Turing machine in time O(log n) with O(1) alternations.

Buss [38] has shown that one can evaluate in uniform NC1 Boolean formulas represented

as strings in the usual infix notation. We can define the extended connection language for a

single circuit (rather than sequence) in a natural way, and represent it as a polynomial-size

string. Log-depth circuits in this representation can be also evaluated in uniform NC1 (this is

implicit in Ruzzo [162]). On the other hand, evaluation of log-depth circuits represented by the

direct connection language (or equivalent form) is not known to be possible even in nonuniform

NC1, but it can be done in logarithmic space. (One reason why formulas are easier to evaluate

than circuits is that they carry more structure due to linear order on their symbols: it is not

hard to see that given a formula in the usual notation, we can compute its LEC in uniform

TC0, which immediately implies it can be evaluated in uniform NC1 if it has logarithmic depth.

The hard part of Buss’s algorithm is to deal with formulas of arbitrary depth.) Regarding the

former, we observe the following reduction of a combinatorial problem which is apparently not

in nonuniform NC1:

Proposition 2.1 The following problem is many-one AC0-reducible to evaluation of bounded

fan-in log-depth circuits (described by LDC). Given a directed graph G on n vertices with

bounded out-degree, vertices x, y ∈ G, and a number d ≤ log n, determine whether y is reachable

from x in at most d steps.

Proof: Without loss of generality assume that G contains all self-loops. We construct a circuit

with d + 1 layers, where each layer is labeled by nodes of G. Every node u on layer l + 1 is a

disjunction gate, and its inputs are nodes v on layer l such that u → v is an edge of G. We

initialize the bottom layer by assigning 1 to node y, and 0 to all other nodes, and we evaluate

the circuit. Then the value of node x on the top layer is 1 iff y is reachable from x in d steps.

�

A kind of converse also holds: it can be shown that an algorithm for the problem described

in Proposition 2.1, even restricted to graphs with out-degree 1 (this problem is denoted by

REACH1(log n) in Allender and Barrington [8]), can be used to transform a direct connection

language of a log-depth circuit to its extended connection language, which can be evaluated in

uniform NC1. (That is, using an appropriate notion of relativization of uniform circuit classes,

evaluation of bounded fan-in log-depth circuits is many-one (AC0)REACH1(logn)-reducible to

NC1, and in particular, it is in (NC1)REACH1(logn).) The complexity of REACH1(log n) is

briefly discussed in [8]; in particular, they observe that it lies in the class FOLL introduced by

Barrington, Kadau, Lange, and McKenzie [20], consisting of languages computable by uniform

families of polynomial-size unbounded fan-in circuits of depth O(log log n).

3 Theories

We will work with second-order (i.e., two-sorted) arithmetical theories as in [182, 68], but for

convenience we include the function |x| = dlog2(x+ 1)e among the basic symbols. Our theories
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thus have two sorts of variables: numbers, denoted by lowercase letters, and finite sets or strings,

denoted by uppercase letters. The basic language is L0 = 〈0, s,+, ·, |x|,≤,∈, |X|〉. The theory

BASIC consists of the axioms

x+ 0 = x x+ s y = s(x+ y)

x · 0 = 0 x · s y = x · y + x

s y ≤ x→ y < x x 6= 0→ ∃y x = s y

x ∈ X → x < |X| sx = |X| → x ∈ X
|0| = 0 x 6= 0→ |x+ x| = s|x|
∀x (x ∈ X ↔ x ∈ Y )→ X = Y |s(x+ x)| = s|x|

where x < y is an abbreviation for x ≤ y ∧ x 6= y. We also write X(x) for x ∈ X. We define

the constants 1 = s 0, 2 = s s 0, 3 = s s s 0, . . . , and we will often write x + 1 for sx (the two

expressions being equal by the BASIC axioms). We introduce the bounded quantifiers

∃x ≤ t ϕ⇔ ∃x (x ≤ t ∧ ϕ),

∀x ≤ t ϕ⇔ ∀x (x ≤ t→ ϕ),

∃X ≤ t ϕ⇔ ∃X (|X| ≤ t ∧ ϕ),

∀X ≤ t ϕ⇔ ∀X (|X| ≤ t→ ϕ),

where t is a term not involving x or X (respectively), and similarly for strict inequalities. A

formula is bounded if it uses only bounded quantifiers. A bounded L0-formula without set

quantifiers is called ΣB
0 or ΠB

0 . Inductively, ΣB
i+1 consists of formulas of the form

∃X1 ≤ t1 . . . ∃Xn ≤ tn ϕ

for ϕ ∈ ΠB
i , and ΠB

i+1 consists of formulas of the form

∀X1 ≤ t1 . . . ∀Xn ≤ tn ϕ

for ϕ ∈ ΣB
i . A formula is Σ1

1 if it consists of a block of second-order existential quantifiers

followed by a ΣB
0 -formula. A predicate is ΣB

0 -definable in the standard model iff it is computable

in AC0, and for i > 0, the ΣB
i -definable (ΠB

i -definable) predicates coincide with the levels ΣP
i

(ΠP
i ) of the polynomial hierarchy. Note that we use ΣB

i and ΠB
i to denote formulas of the basic

language L0 only. If we expand the definition to allow atomic formulas in a richer language L,

we will call the corresponding classes ΣB
i (L) and ΠB

i (L), respectively.

If Γ is a set of formulas, the Γ-comprehension axiom is the schema

(Γ-COMP) ∃X ≤ x ∀u < x (u ∈ X ↔ ϕ),

where ϕ ∈ Γ has no free occurrence of X. We define the theory V 0 as BASIC + ΣB
0 -COMP .

The theory VNC 1 is axiomatized over V 0 by

∃Y ≤ 2a ∀x < a [(Y (x+ a)↔ I(x))

∧ (Y (x)↔ ((G(x) ∧ (Y (2x) ∨ Y (2x+ 1))) ∨ (¬G(x) ∧ Y (2x) ∧ Y (2x+ 1))))].
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The meaning is that we can evaluate a monotone formula laid out in a balanced binary tree

with 2a − 1 nodes, represented by nonzero numbers below 2a so that nodes 0 < x < a are

conjunction or disjunctions (according to G(x)) of nodes 2x and 2x+ 1, and nodes a ≤ x < 2a

are truth constants given by I.

The theory VL is axiomatized over V 0 by the axiom

∀x < a ∃!y < a F (x, y)→ ∃P [(P )0 = 0 ∧ ∀v < a F ((P )v, (P )v+1)],

where P encodes a sequence of numbers, and (P )v is the vth member of the sequence (see [68]

for details of the sequence coding). The meaning is that we can iterate a number function, or

equivalently, that we can trace a path in a directed graph where each node has out-degree 1.

Let ϕ(d, x, y) be a formula, possibly with other free variables. We put

ϕ∗(d, x, y)⇔ ϕ(d, x, y) ∧ (∀z < y ¬ϕ(d, x, z) ∨ ∀z > y ¬ϕ(d, x, z)),

eval(n,m,ϕ, I, Y )⇔ ∀x < n [(Y (0, x)↔ I(x))

∧ ∀d < m (Y (d+ 1, x)↔ ((2 | d ∧ ∃y < n (ϕ∗(d, x, y) ∧ Y (d, y)))

∨ (2 - d ∧ ∀y < n (ϕ∗(d, x, y)→ Y (d, y))))],

where Y (d, x) stands for dn+x ∈ Y . (By abuse of notation, we include ϕ among the arguments

of eval to indicate the dependence of eval on ϕ, even though ϕ is a formula, not a variable. Note

that free variables of eval include parameters of ϕ, i.e., its free variables other than d, x, y.) The

meaning of eval is that Y is the evaluation of a bounded fan-in monotone circuit described by ϕ

on input I. The circuit consists of m+ 1 layers, each with n nodes. Nodes on layer 0 are truth

constants given by I. Layers d > 0 consist of alternating disjunction (odd d) and conjunction

(even d) gates. Gates on level d can only use nodes on level d − 1 as inputs. The formula

ϕ(d, x, y) means that node x on level d+ 1 uses node y on level d as input. The formula ϕ∗ is

actually employed instead of ϕ to force each gate to have at most two inputs.

We define VNC 1
∗ to be the closure of V 0 under the derivation rule

(∆B
1 -SCV )

ϕ↔ ¬ϕ′

∃Y ≤ (|m|+ 1)n eval(n, |m|, ϕ, I, Y )
,

where ϕ and ϕ′ are ΣB
1 -formulas with no free set variables. (A ΣB

1 -formula provably equivalent

to a ΠB
1 -formula in a theory T will be called a ∆B

1 (T )-formula. SCV stands for “shallow circuit

value”.)

The language LVNC 1
∗

contains L0, and a function symbol Cϕ(n, ~x, ~X) for each ΣB
0 -formula

ϕ(u, ~x, ~X) (with all free variables indicated). Moreover, it is closed under the following rule:

for each open LVNC 1
∗
-formula ϕ(~p, d, x, y) without free set variables (but with arbitrary free

number variables, viz ~p), we include a function symbol Yϕ(~p, n,m, I). We will usually denote

Cϕ(n, ~x, ~X) by {u < n | ϕ(u, ~x, ~X)}.
VNC 1

∗ is a theory in LVNC 1
∗

consisting of the axioms of BASIC , the axiom

(ΣB
0 -COMP) u ∈ Cϕ(n, ~x, ~X)↔ u < n ∧ ϕ(u, ~x, ~X)
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for each ΣB
0 -formula ϕ(u, ~x, ~X), and the axiom

(Open-SCV ) |Yϕ(~p, n,m, I)| ≤ (|m|+ 1)n ∧ eval(n, |m|, ϕ, I, Yϕ(~p, n,m, I))

for each open LVNC 1
∗
-formula ϕ(~p, d, x, y). (That is, Cϕ is the bounded comprehension term

for ϕ, or as a string, the truncated characteristic function of ϕ. Yϕ gives a string containing

evaluation of all gates of the circuit described by ϕ, just like the variable Y in ∆B
1 -SCV above.)

Notice that VNC 1
∗ contains V 0.

4 Properties of VNC 1
∗ and VNC 1

∗

The ∆B
1 -SCV and Open-SCV axioms provide evaluation of a certain type of circuits, but they

were designed to be formally simple rather than feature-rich. We will introduce a more elaborate

setting for convenient evaluation of log-depth circuits.

We will describe circuits using the following data:

• Numbers k, m, and s, where k is the number of input bits, m is the number of layers,

and s is the size of each layer (we assume all layers have been padded with unused gates

to have the same size).

• A function T : m× s→ {p∨q, p∧q, p¬q} ∪ {pxiq | i < k} indicating the type of each node,

where we put e.g. p∨q = 0, p∧q = 1, p¬q = 2, and pxiq = i + 3, and we represent T by

its graph (a set T ≤ ms(k + 3)): i.e., T (d, x, p) iff xth node on layer d has type p.

• A formula ϕ(d, x, d′, x′) (possibly with other parameters) which states that node x′ on

layer d′ is an input of gate x on layer d.

In order for a circuit to be well-formed, we demand that any gate uses only nodes on lower

layers as inputs (but not necessarily from the adjacent layer), and all nodes have the correct

number of inputs: 1 for negation nodes, 0 for input nodes, and at most 2 for conjunction and

disjunction gates. Notice that we allow ∧ and ∨ gates with no inputs, which compute the truth

constants ⊥ and >, or with one input, which act as the identity function. The formula

Circ(k,m, s, T, ϕ)⇔ ∀d < m∀x < s∃!p < k + 3T (d, x, p)

∧ ∀d, d′ < m∀x, x′ < s (ϕ(d, x, d′, x′)→ d′ < d)

∧ ∀d, d0, d1, d2 < m∀x, x0, x1, x2 < s(∧
i<3

ϕ(d, x, di, xi)→
∨
i<j

(di = dj ∧ xi = xj)
)

∧ ∀d, d0, d1 < m∀x, x0, x1 < s(
T (d, x, p¬q) ∧

∧
i<2

ϕ(d, x, di, xi)→ d0 = d1 ∧ x0 = x1

)
∧ ∀d < m∀x < s (T (d, x, p¬q)→ ∃d′ < m∃x′ < sϕ(d, x, d′, x′))

∧ ∀d, d′ < m∀x, x′ < s∀i < k (T (d, x, pxiq)→ ¬ϕ(d, x, d′, x′)).
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formalizes these requirements. The formula

Eval(k,m, s, T, ϕ, I, Y )⇔ ∀d < m∀x < s
(
Y (d, x)↔

(T (d, x, p∨q) ∧ ∃d′ < m∃x′ < s (ϕ(d, x, d′, x′) ∧ Y (d′, x′)))

∨ (T (d, x, p∧q) ∧ ∀d′ < m∀x′ < s (ϕ(d, x, d′, x′)→ Y (d′, x′)))

∨ (T (d, x, p¬q) ∧ ∃d′ < m∃x′ < s (ϕ(d, x, d′, x′) ∧ ¬Y (d′, x′)))

∨ ∃i < k (T (d, x, pxiq) ∧ I(i))
)

states that Y is an evaluation of the circuit described by k,m, s, T, ϕ on input I ≤ k.

Remark 4.1 Note that any ΣB
0 -formula ϕ is equivalent in VNC 1

∗ to an open formula, e.g.,

0 ∈ {u < 1 | ϕ} (where u is not free in ϕ). We will prove later (Corollary 4.7) that the same

also holds for ΣB
0 (LVNC 1

∗
)-formulas.

Theorem 4.2

(i) If ϕ is a ∆B
1 (VNC 1

∗)-formula without free set variables, then VNC 1
∗ proves

Circ(k, |m|, s, T, ϕ)→ ∃!Y ≤ |m|s Eval(k, |m|, s, T, ϕ, I, Y ).

(ii) If ϕ is an open LVNC 1
∗
-formula without free set variables, then there exists an LVNC 1

∗
-term

Y such that VNC 1
∗ proves

Circ(k, |m|, s, T, ϕ)→ Eval(k, |m|, s, T, ϕ, I, Y (~p, k,m, s, T, I)),

where ~p are the parameters of ϕ.

Proof: Uniqueness of Y can be proved by straightforward ΣB
0 -induction, the problem is to

show its existence. We will reduce evaluation of the circuit to another circuit in the simplified

framework of eval, which can be evaluated using the axioms ∆B
1 -SCV or Open-SCV . For the

sake of clarity we will use w and friends to denote nodes in the simulated circuit (described by

T (d,w, p) and ϕ(d,w, d′, w′)), whereas x, y will refer to nodes in the newly constructed eval-style

circuit. We subject the original circuit to the following transformations:

• The input layer of the new circuit will consist of bits I(j) of the original input string I,

their negations ¬I(j), and bits T (d,w, p) of T .

• We introduce a dual node w¬ to each node w in the circuit, in order to allow making the

new circuit monotone.

• We replicate each node on all layers to overcome the restriction that each gate may only

use nodes of its immediately preceding layer as inputs in the new circuit.
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• If w is a node with possible inputs w0, w1, we include in the new circuit the following

gadgets (suppressing for simplicity the mention of layers, i.e., the first variable d of T ):

w =
∨
j<k

(T (w, pxjq) ∧ I(j)) ∨ (T (w, p¬q) ∧ w¬0 )

∨ (T (w, p∧q) ∧ w0 ∧ w1) ∨ (T (w, p∨q) ∧ (w0 ∨ w1)),

w¬ =
∨
j<k

(T (w, pxjq) ∧ ¬I(j)) ∨ (T (w, p¬q) ∧ w0)

∨ (T (w, p∨q) ∧ w¬0 ∧ w¬1 ) ∨ (T (w, p∧q) ∧ (w¬0 ∨ w¬1 )).

More precisely, we put O(|k|) layers to the bottom of the circuit which compute the

disjunctions
∨
j<k(T (w, pxjq)∧(¬)I(j)) arranged in a balanced binary tree, and we replace

each node in the original circuit with the constant-size remaining part of its gadget.

• We introduce padding to shift the nodes so that odd layers consist of disjunctions, and

even layers of conjunctions.

We proceed with the formal details to verify that we can arrange the result in such a way that

the wires of the new circuit are described by a ∆B
1 -formula or an open LVNC 1

∗
-formula without

set parameters, as required by the axioms.

Our new circuit will have m′ + 1 := 2 + 2|k| + 6|m| layers, each of n′ := 2k + (5k + 7)|m|s
nodes.

Nodes i(0, j) := j < k on each layer represent the input bits I(j), nodes i(1, j) := k + j

give ¬I(j), and nodes t(d,w, p) := 2k + (ds+ w)(k + 3) + p give T (d,w, p) for d < |m|, w < s,

p < k + 3. Nodes

r(ε, d, w, u) := 2k + (k + 3)|m|s+ ((ε|m|+ d)s+ w)(2k − 1) + u

for ε < 2, d < |m|, w < s, and u < 2k − 1 are used to compute
∨
j<k(T (d,w, pxjq) ∧ Iε(j)),

where I0 = I, I1 = ¬I. Finally, nodes

n(ε, d, w, u) := 2k + (5k + 1)|m|s+ ((ε|m|+ d)s+ w)3 + u

for ε < 2, d < |m|, w < s, u < 3 represent node w (if ε = 0) or w¬ (if ε = 1) on layer d in the

original circuit, as well as its associated gadget.

The layers are laid out as follows. Layer 0 is the input layer, initialized to

I ′ = {i(0, j) | I(j)} ∪ {i(1, j) | ¬I(j)} ∪ {t(d,w, p) | T (d,w, p)}.

Layer 1 is a copy of layer 0 (as we need conjunctions at the bottom of our new circuit, and odd

layers are disjunctions). Layers 2 to 2|k| + 1 are used to compute
∨
j<k(T (d,w, pxjq) ∧ Iε(j))

into node r(ε, d, w, 0). On layer 2, we put T (d,w, pxjq)∧ Iε(j) to node r(ε, d, w, k−1 + j). Odd

layers 3 to 2|k| + 1 then consist of disjunctions arranged in a balanced binary tree, where the

children of node r(ε, d, w, u), u < k − 1, are r(ε, d, w, 2u+ 1) and r(ε, d, w, 2u+ 2). Even layers

4 to 2|k| copy the previous layer. The remaining layers 2|k|+ 2 to 2|k|+ 1 + 6|m| do the main
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simulation of the original circuit. Let l(D, v) = 2|k| + 2 + 6D + v for D < |m|, v ≤ 5. Node

w on layer d of the original circuit is simulated by node n(0, d, w, 0) on layers l(D, 5) for all

D ≥ d, and its negation w¬ is in node n(1, d, w, 0). They are also replicated on the next layer

l(D + 1, 0) as n(ε, d, w, 2). Other nodes n(ε, d, w, u), u ≤ 2, on layers l(D, v), v ≤ 4, are parts

of the gadget needed to compute w or w¬.

Let us abbreviate r = r(0, 0, 0, 0) = 2k + (k + 3)|m|s, n = n(0, 0, 0, 0) = 2k + (5k + 1)|m|s.
For convenience, we define the functions

εr(x) =

⌊
x− r

|m|s(2k − 1)

⌋
, dr(x) =

⌊
x− r

s(2k − 1)

⌋
mod |m|,

wr(x) =

⌊
x− r
2k − 1

⌋
mod s, ur(x) = (x− r) mod (2k − 1),

so that x = r(εr(x), dr(x), wr(x), ur(x)) for any r ≤ x < n. Similarly, we can define func-

tions εn, dn, wn, un, Dl, vl so that x = n(εn(x), dn(x), wn(x), un(x)) for any x ≥ n, and d′ =

l(Dl(d
′), vl(d

′)) for any d′ ≥ l(0, 0).

Wires of the new circuit are described by the formula

ϕ′(d′, x, y)⇔ (Copy(d′, x) ∧ x = y)

∨ (r ≤ x < n ∧ 0 < d′ ≤ 2|k| ∧Disj (d′, x, y))

∨ (x ≥ n ∧ d′ > 2|k| ∧Gadget(vl(d
′), x, y))

(recall from the definition of eval that this means that node y on layer d′ is an input of node x on

layer d′ + 1). The first line takes care of nodes whose value needs to be copied over to the next

layer, the second line handles the computation of R(ε, d, w) =
∨
j<k(T (d,w, pxjq) ∧ Iε(j)) at

the bottom of the circuit, and the third line implements the gadgets doing the main simulation.

The disjunction R(ε, d, w) is computed by initializing nodes r(ε, d, w, (k− 1) + j) on layer 2

to T (d,w, pxjq) ∧ Iε(j), and making node x = r(ε, d, w, u) on layer d′ + 1 to be the disjunction

of nodes x+ u+ 1, x+ u+ 2 from layer d′, for every even positive d′ ≤ 2|k|:

Disj (d′, x, y)⇔ (2 | d′ ∧ ur(x) < k − 1 ∧ y ∈ {x+ ur(x) + 1, x+ ur(x) + 2})
∨ (d′ = 1 ∧ ur(x) ≥ k − 1

∧ y ∈ {i(εr(x), ur(x)− (k − 1)), t(dr(x), wr(x), pxur(x)−(k−1)q)})

Moreover, we need to copy the whole tree from odd layers d′ ≤ 2|k| to the next (i.e., conjunction)

layer, and the initial nodes r(ε, d, w, (k− 1) + j) through layers d′ ≤ 2|k|. We also need to copy

over the input bits on all layers of the circuit, and the computed values of R(ε, d, w) above layer

2|k|:

Copy(d′, x)⇔ x < r

∨ (r ≤ x < n ∧ (d′ = 0 ∨ d′ > 2|k| ∨ (2 - d′ ∧ d′ 6= 1) ∨ (2 | d′ ∧ ur(x) ≥ k − 1)))
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Figure 4.1: Simulation of one node of the original circuit

The main part of the simulating circuit is given by

Gadget(v, x, y)⇔ 〈y, v, un(x)〉 = 〈r(εn(x), dn(x), wn(x), 0), 2, 0〉
∨ 〈y, v, un(x)〉 = 〈t(dn(x), wn(x), p¬q), 1, 0〉
∨ 〈y, v, un(x)〉 = 〈t(dn(x), wn(x), p∧q), 1, 1 + εn(x)〉
∨ 〈y, v, un(x)〉 = 〈t(dn(x), wn(x), p∨q), 1, 2− εn(x)〉
∨ 〈y − x, v, un(x)〉 ∈ {〈0, 0, 0〉, 〈0, 0, 1〉, 〈0, 1, 0〉, 〈0, 1, 1〉, 〈0, 1, 2〉,

〈0, 2, 0〉, 〈0, 2, 1〉, 〈1, 2, 1〉, 〈0, 3, 0〉, 〈0, 3, 1〉,
〈0, 4, 0〉, 〈1, 4, 0〉, 〈−2, 5, 2〉}

∨ (Edge(v, x, y) ∧ ϕ(dn(x), wn(x), dn(y), wn(y)))

Edge(v, x, y)⇔ (〈v, un(x), un(y)〉 = 〈5, 0, 0〉 ∧ εn(x) 6= εn(y))

∨ (〈v, un(x), un(y)〉 ∈ {〈5, 1, 0〉, 〈0, 2, 2〉} ∧ εn(x) = εn(y))

The layout of the gadget is explained in Figure 4.1 for the case εn(x) = 0. Nodes x = n(0, d, w, u)

on layers l(D, v) are labelled with connectives subscripted with v, u, where ◦ stands for one-

argument ∧ or ∨ employed to satisfy the restriction that odd layers are disjunctions and even

layers are conjunctions. Plain w marks n(0, d, w, 0) on layer l(D, 5), and w′ its copy n(0, d, w, 2)

on layer l(D + 1, 0). Let the children of node w on layer d in the original circuit be nodes w0,

w1 on layers d0, d1 (one or both of them could be missing). The labels w0, w1, w¬0 , w¬1 , w′0,

w′1 mark nodes n(0, d0, w0, 0), n(0, d1, w1, 0), n(1, d0, w0, 0), n(1, d1, w1, 0) on layer l(D − 1, 5)

and nodes n(0, d0, w0, 2), n(0, d1, w1, 2) on layer l(D, 0), respectively. Note that the condition
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Circ(k, |m|, s, T, ϕ) ensures that w has only one child if T (d,w, p¬q).
Notice that integer division and mod are ΣB

0 -definable. It is thus easy to see that ϕ′ ∈
∆B

1 (VNC 1
∗) if ϕ ∈ ∆B

1 (VNC 1
∗), and, using Remark 4.1, that ϕ′ is equivalent to an open LVNC 1

∗
-

formula if ϕ is. By ∆B
1 -SCV or Open-SCV , there exists Y ′ such that eval(n′,m′, ϕ′, I ′, Y ′). It is

tedious, but completely straightforward, to verify that parts of Y ′ correspond to an evaluation

of the original circuit as described above, hence Eval(k, |m|, s, T, ϕ, I, Y ), where

Y = {〈d, x〉 | Y ′(m′, n(0, d, x, 0))}.

In the case of VNC 1
∗, we can compute I ′ from I and T by a comprehension function symbol,

compute Y ′ using the Yϕ′ function, and compute Y from Y ′ by another comprehension function,

hence Y is given by a term in the original data. �

Corollary 4.3 VNC 1
∗ and VNC 1

∗ contain VNC 1. �

Definition 4.4 Let Γ be a set of formulas. A c-ary set function F (X0, . . . , Xc−1) is computable

by a family of Γ-definable shallow circuits (computable by Γ-circuits for short) if there are L0-

terms s(n), m(n), and o(n), a ΣB
0 -formula τ(n, d, x, p), and a Γ-formula ϕ(n, d, x, d′, x′), such

that

• s(n) ≥ cn, s(n) ≥ o(n), m(n) > 0,

• Circ(cn, |m(n)|, s(n), T (n), ϕ), where T (n) = {(s(n)d+ x)(cn+ 3) + p | τ(n, d, x, p)},

• if ~X are sets such that |Xi| ≤ n, I = {in+ u | i < c, u ∈ Xi}, and

Eval(cn, |m(n)|, s(n), T (n), ϕ, I, Y ),

then

(1) F ( ~X) = {u < o(n) | Y (|m(n)| − 1, u)}.

A function F (~u, ~X) or f(~u, ~X) with number inputs and/or output is computable by Γ-circuits,

if the same holds for the set function F ′(~U, ~X) which we obtain by representing every number

x by the set {u | u < x}. A predicate ψ(~u, ~X) is computable by Γ-circuits if its characteristic

function

χψ(~u, ~X) =

{
{0} if ψ(~u, ~X),

∅ if ¬ψ(~u, ~X)

is. In other words, if we can fix o(n) = 1 in the above definition, and replace (1) with

ψ(~u, ~X)↔ Y (|m(n)| − 1, 0).

The next lemma is a key technical result needed to show various properties of VNC 1
∗ and

VNC 1
∗, e.g., that VNC 1

∗ is a conservative extension of VNC 1
∗.
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Lemma 4.5 Let α( ~X, ~x) be a LVNC 1
∗
-term, or a ΣB

0 (LVNC 1
∗
)-formula. Then α is provably in

VNC 1
∗ computable by Open(LVNC 1

∗
)-circuits, and provably in VNC 1

∗ computable by ∆B
1 (VNC 1

∗)-

circuits in such a way that VNC 1
∗ proves the defining axiom of α.

Moreover, the graph of α or of its characteristic function is definable in VNC 1
∗ by a ΣB

1 -

formula ∃Y ≤ t ϑ( ~X, ~x, ε, Y ) with ϑ ∈ ΣB
0 , and provably in VNC 1

∗, we can compute some Y

satisfying the formula from ~x, ~X by ∆B
1 (VNC 1

∗)-circuits.

Proof: We proceed by induction on the complexity of α (defined in such a way that the com-

plexity of Cϕ and Yϕ is larger than that of ϕ, and in the case of Yϕ, also ϕ∗).We will show two

cases, and leave the rest to the reader.

Let α be the formula ∃xc ≤ t( ~X, ~x)β( ~X, ~x, xc), and fix a polynomial q(n) such that t( ~X, ~x) <

q(n) whenever | ~X|, ~x ≤ n. By the induction hypothesis, we can compute the formula α′ = xc ≤
t( ~X, ~x) ∧ β( ~X, ~x, xc) by Open(VNC 1

∗)-circuits or ∆B
1 (VNC 1

∗)-circuits described by s′, m′, τ ′,

and ϕ′. We construct circuits for α by taking q(n) copies of the circuit for α′, fixing the value

of xc to the representation of i in the ith copy, and computing the disjunction of the outputs

(arranged in a binary tree, as in the proof of Theorem 4.2). To be exact, we put s(n) = q(n)s′(n)

(assuming s′(n) ≥ 2), m(n) = 4m′(n)q(n) (so that |m(n)| ≥ |m′(n)|+ |q(n)|+ 1),

τ(n, d, x, p)⇔ (d ≥ |m′| ∧ p = p∨q)
∨ (d < |m′| ∧ τ ′(n, d, x mod s′, p) ∧ ¬∃j < n p = pxcn+jq)

∨ (d < |m′| ∧ ∃j < n (τ ′(n, d, x mod s′, pxcn+jq)

∧ ((j < bx/s′c ∧ p = p∧q) ∨ (j ≥ bx/s′c ∧ p = p∨q)))),

ϕ(n, d, x, d′, x′)⇔ (d < |m′| ∧ ϕ′(n, d, x mod s′, d′, x′ mod s′) ∧ bx/s′c = bx′/s′c)
∨ (d = |m′| ∧ d′ = d− 1 ∧ q − 1 ≤ x < 2q − 1 ∧ x′ = (x− (q − 1))s′)

∨ (d > |m′| ∧ d′ = d− 1 ∧ x ≥ q − 1 ∧ x′ = x)

∨ (d > |m′| ∧ d′ = d− 1 ∧ x < q − 1 ∧ 1 ≤ x′ − 2x ≤ 2),

where we write m′, s′, q for m′(n), s′(n), q(n). Note that xcn+j represents the jth bit in xc.

The definition of τ thus ensures that each input node corresponding to xc in the original circuit

for α′ is replaced with a disjunction or conjunction gate in the new circuit; since the gate has

no inputs, it actually computes the constant ⊥ or >, respectively, accomplishing the above

mentioned replacement of xc with the representation of i. Clearly, τ is ΣB
0 , ϕ is Open(LVNC 1

∗
)

or ∆B
1 (VNC 1

∗) as appropriate, and it is easy to see that the circuit defined by s, m, τ , ϕ

computes α.

Let ∃Y ≤ uϑ( ~X, ~x, xc, ε, Y ) be a ΣB
1 -definition of the graph χα′( ~X, ~x, xc) = ε of the charac-

teristic function of α′, such that Y is computable from ~X, ~x, xc by ∆B
1 (VNC 1

∗)-circuits. Consider

the ΣB
1 -formula

(2) |ε| ≤ 1 ∧ ∃Z ≤ uq(n)
[
∀xc < q(n)

(
ϑ( ~X, ~x, xc,∅, Z [xc]) ∨ ϑ( ~X, ~x, xc, {0}, Z [xc])

)
∧
(
0 ∈ ε↔ ∃xc < q(n) ϑ( ~X, ~x, xc, {0}, Z [xc])

)]
,
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where n =
∑

i|Xi|+
∑

i xi, and Z [x] denotes {y < u | xu+ y ∈ Z}. We take q(n) parallel copies

of the circuit computing Y , and wire the xc inputs in the ith copy to the representation of i, as

above in the construction of the circuit for α. The resulting circuit computes Z satisfying

∀xc < q(n) (ϑ( ~X, ~x, xc,∅, Z [xc]) ∨ ϑ( ~X, ~x, xc, {0}, Z [xc]))

from ~X, ~x. Given Z, it is easy to see that (2) is equivalent to χα( ~X, ~x) = ε.

Let us turn to the case α = Yψ(~p( ~X, ~x), s( ~X, ~x),m( ~X, ~x), I( ~X, ~x)), where ψ(~p, d, x, y) is an

open VNC 1
∗-formula. By the induction hypothesis, we can compute the terms ~p, s, m, and I by

suitable circuits. Let q(n) be a polynomial such that ~p( ~X, ~x), s( ~X, ~x),m( ~X, ~x), |I( ~X, ~x)| < q(n)

whenever | ~X|, ~x ≤ n.

As with other compound terms, the expected idea of how to evaluate α by a circuit would

be to take circuits evaluating ~p( ~X, ~x), s( ~X, ~x), m( ~X, ~x), I( ~X, ~x), and plug them into a circuit

evaluating Yψ. However, we cannot do this directly: computing Yψ amounts to simulation of

the circuit C described by ψ, and the parameters ~p, s,m are not inputs of C, they actually

affect the shape of C (|m| is its depth, s the size of each layer, and ~p are free variables of the

formula ψ describing edges of C). In order to evaluate C, we must first fix these parameters

to some constants. We cannot quite do this either, because the terms m( ~X, ~x) etc. are not

really constant. However, we have a polynomial bound q(n) on their possible value, hence what

we can do is to evaluate in parallel polynomially many variants of C, one for each choice of

~p, s,m < q(n). (Note that here we use essentially that ψ has no set free variables: if we had

a set parameter P instead of ~p, we would have to evaluate C for exponentially many possible

choices of P .) Then we have to select the real result among results of all these circuits: this is

done using selector functions h~p,s,m( ~X, ~x) indexed by ~p, s,m < q(n), whose value is 1 iff ~p, s,m

agree with the real values of ~p( ~X, ~x), s( ~X, ~x), m( ~X, ~x).

Explicitly, we construct circuits computing α as follows:

• We compute s( ~X, ~x),m( ~X, ~x), I( ~X, ~x), ~p( ~X, ~x) using their respective circuits. We denote

the jth bit of the result by sj , mj , ij , p
r
j (we index elements of the ~p sequence by super-

scripts, to avoid clashes with bit subscripts).

• For every ~p, s,m < q(n), we evaluate in parallel the eval-style circuit defined by s, |m|,
and ψ∗(~p, ·, ·, ·) on input I. That is, we take the circuit with |m|+ 1 layers, each of size s.

The bottom layer is initialized to the first s bits ij , and the other layers are alternating

disjunctions and conjunctions, where yth node on dth layer is an input to xth node on

(d + 1)st layer iff ψ∗(~p, d, x, y). We denote the value of the xth node on dth layer by

v~p,s,m,d,x.

• For each ~p, s,m < q(n), we compute in parallel the selector h~p,s,m which states that∧
r(p

r( ~X, ~x) = pr) ∧ s( ~X, ~x) = s ∧m( ~X, ~x) = m. This can be done using

h~p,s,m =
∧
r

(prpr−1 ∧ ¬prpr) ∧ ss−1 ∧ ¬ss ∧mm−1 ∧ ¬mm,

where we omit the conjuncts with index −1 (i.e., treat them as >).
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• We compute in parallel the output bits

od,x =
∨

~p,s,m<q(n)

(h~p,s,m ∧ v~p,s,m,d,x).

We spare the reader the formal definitions of the τ and ϕ formulas describing the circuit, and

leave it to their imagination to verify that τ is ΣB
0 , and ϕ is a Boolean combination of ΣB

0 -

formulas and formulas obtained from ψ∗ by substituting ΣB
0 -definable functions like division

with remainder for some of its free variables. By the induction hypothesis, ψ∗ is equivalent to

a ∆B
1 (VNC 1

∗)- and Open(LVNC 1
∗
)-formula, therefore so is ϕ. It is easy to see that the circuit

indeed computes α.

We also have to describe the graph of α( ~X, ~x) inVNC 1
∗ by a ΣB

1 -formula such that witnesses

to the existential second-order quantifier can be computed by ∆B
1 (VNC 1

∗)-circuits. (Note that

now we do not have to compute α itself, its value Y is given to us.) This is easy: it suffices to

take as a witness of α the sequence of witnesses of ~p( ~X, ~x), s( ~X, ~x), m( ~X, ~x), I( ~X, ~x), the value

of I( ~X, ~x), and witnesses of ψ(~p, d, x, y) for each d, x, y needed to describe the circuit evaluated

by Yψ.

Formally, let ϑ be ΣB
0 -formula such that the graph χψ(~p, d, x, y) = ε of the characteristic

function of ψ is equivalent to ∃W ≤ t ϑ(~p, d, x, y, ε,W ), and W is computable by ∆B
1 (VNC 1

∗)-

circuits by the induction hypothesis. Consider the formula

∃Z ≤(q(n))3t∃I, ~p, s,m ≤ q(n)
(

eval(s, |m|, ξ, I, Y )(3)

∧
∧
r

pr( ~X, ~x) = pr ∧ s( ~X, ~x) = s ∧m( ~X, ~x) = m ∧ I( ~X, ~x) = I

∧ ∀d < |m| ∀x, y < s (ϑ(~p, d, x, y,∅, Z [d,x,y]) ∨ ϑ(~p, d, x, y, {0}, Z [d,x,y]))
)
,

where

ξ(d, x, y)⇔ ϑ(~p, d, x, y, {0}, Z [d,x,y]),

n =
∑

i|Xi|+
∑

i xi, and Z [d,x,y] denotes {u < t | ((dq(n) + x)q(n) + y)t+ u ∈ Z}. If we replace

pr( ~X, ~x), s( ~X, ~x), m( ~X, ~x), and I( ~X, ~x) with their ΣB
1 -definitions which exist by the induction

hypothesis and prenex the second-order existential quantifiers, we obtain a ΣB
1 -formula, which

we can further normalize to the form with only one second-order quantifier using a pairing

function. Given ~X, ~x, we can compute a witness to this formula by ∆B
1 (VNC 1

∗)-circuits as

follows. We compute (using the induction hypothesis) the values of ~p, s, m, and I, and witnesses

to the second-order quantifiers used in their graphs. Then we take the circuit computing W ,

and evaluate in parallel its q(n)3 copies for all fixed values d, x, y < q(n) to obtain a Z such

that

∀d < |m| ∀x, y < s (ϑ(~p, d, x, y,∅, Z [d,x,y]) ∨ ϑ(~p, d, x, y, {0}, Z [d,x,y])).

Given such Z, we have ξ(d, x, y) ↔ ψ(~p, d, x, y), hence eval(s, |m|, ξ, I, Y ) is valid for Y =

Yψ(~p, s,m, I), and only for this Y . Thus, (3) defines the graph of α, and witnesses for its

second-order quantifiers can be computed by ∆B
1 (VNC 1

∗)-circuits. �
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Corollary 4.6 VNC 1
∗ is contained in an extension of VNC 1

∗ by ΣB
1 -definitions. In particular,

VNC 1
∗ is conservative over VNC 1

∗. �

Corollary 4.7 Every ΣB
0 (LVNC 1

∗
)-formula is in VNC 1

∗ equivalent to an open formula. �

Corollary 4.8 VNC 1
∗ proves ΣB

0 (LVNC 1
∗
)-COMP, and ΣB

0 (LVNC 1
∗
)-IND. Moreover, there are

comprehension terms F (a, ~x, ~X) = {u < a | ϕ(u, ~x, ~X)} for ΣB
0 (VNC 1

∗)-formulas ϕ.

Proof: Induction follows from comprehension. Let ϕ(u, ~x, ~X) be a ΣB
0 (LVNC 1

∗
)-formula, and

let n = a +
∑

i xi +
∑

i|Xi|. By Lemma 4.5, ϕ is computable by an Open(LVNC 1
∗
)-circuit on

inputs of size n. We take a parallel copies of the circuit as in the proof of Lemma 4.5, and wire

the output of the ith circuit to the ith new output bit. We evaluate the circuit on the input

which sets ~x and ~X in each copy to the value of the respective parameters, and sets u to the

representation of i in the ith copy. Then the output of the new circuit is {u < a | ϕ}. The

circuit is described by an open formula, hence its value is computable by an LVNC 1
∗
-term using

Theorem 4.2. �

Theorem 4.9 VNC 1
∗ is an open theory.

Proof: For any ΣB
0 (LVNC 1

∗
)-formula ϕ, let ϕ be an open formula equivalent to ϕ in VNC 1

∗ by

Corollary 4.7. We may assume that ϕ = ϕ if ϕ is already open. Let T be the set of formulas

which contains

ϕ ∨ ψ ↔ ϕ ∨ ψ

and similarly for other Boolean connectives, and the formulas

ϕ(x) ∧ x ≤ t→ ∃x ≤ t ϕ(x),

∃x ≤ t ϕ(x)→ ϕ(|S|) ∧ |S| ≤ t,

where S is a term (with the same free variables as ∃x ≤ t ϕ) such that VNC 1
∗ proves that

S = {x < t | ϕ(x+ 1)} (such a term exists by Corollary 4.8).

Clearly, T is an open subtheory of VNC 1
∗, and every ΣB

0 (LVNC 1
∗
)-formula is in T equivalent

to an open formula. As VNC 1
∗ is ΣB

0 (LVNC 1
∗
)-axiomatized, it is equivalent to an open extension

of T . �

Theorem 4.10 If VNC 1
∗ proves ∃Y ϕ(~x, ~X, Y ), where ϕ is a Σ1

1-formula, then there exists an

LVNC 1
∗
-term F such that VNC 1

∗ proves ϕ(~x, ~X, F (~x, ~X)).

Proof: Write ϕ = ∃~Z ϑ(~x, ~X, Y, ~Z) with ϑ ∈ ΣB
0 (LVNC 1

∗
). By Corollary 4.7, ϑ is equivalent to

an open formula. By Theorem 4.9 and Herbrand’s theorem, there exist terms Fr, G
j
r such that

VNC 1
∗ proves

ϑ(~x, ~X, F0(~x, ~X), ~G0(~x, ~X)) ∨ · · · ∨ ϑ(~x, ~X, Fc(~x, ~X), ~Gc(~x, ~X))

for some c. Put

αr ⇔ ϑ(~x, ~X, Fr(~x, ~X), ~Gr(~x, ~X)) ∧
∧
s<r

¬ϑ(~x, ~X, Fs(~x, ~X), ~Gs(~x, ~X)),
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and let p be a polynomial such that |Fr|, |Gjr| ≤ p(~x, | ~X|). By Corollary 4.8, there are terms F

and Gj such that VNC 1
∗ proves

F (~x, ~X) =
{
u < p(~x, | ~X|)

∣∣∣ ∨
r

(αr ∧ u ∈ Fr(~x, ~X))
}
,

Gj(~x, ~X) =
{
u < p(~x, | ~X|)

∣∣∣ ∨
r

(αr ∧ u ∈ Gjr(~x, ~X))
}
,

Clearly, VNC 1
∗ proves ∨

r

αr,

αr → F (~x, ~X) = Fr(~x, ~X),

αr → Gj(~x, ~X) = Gjr(~x, ~X),

hence also

ϑ(~x, ~X, F (~x, ~X), ~G(~x, ~X)),

which implies ϕ(~x, ~X, F (~x, ~X)). �

Corollary 4.11 Every ∆B
1 (VNC 1

∗)-formula is in VNC 1
∗ equivalent to an open formula.

Proof: Given ϕ ∈ ∆B
1 (VNC 1

∗) (or even ∆1
1(VNC 1

∗)), we apply Theorem 4.10 to the formula

∃Y (0 ∈ Y ↔ ϕ). We obtain a term F such that the open formula 0 ∈ F (~x, ~X) is equivalent to

ϕ. �

Corollary 4.12 VNC 1
∗ contains VNC 1

∗, thus VNC 1
∗ is the L0-fragment of VNC 1

∗.

Proof: By Corollary 4.11, VNC 1
∗ is closed under ∆B

1 -SCV . �

Corollary 4.13 VNC 1
∗ is ΣB

1 -axiomatizable.

Proof: We can take axioms stating the totality of ΣB
1 -definitions of LVNC 1

∗
-functions by Corol-

lary 4.6, and a translation of an open axiom system forVNC 1
∗ to L0, which exists by Theorem 4.9.

The resulting theory exhausts VNC 1
∗ by Corollary 4.12.

Alternatively, assume that a ΣB
1 -formula ϕ = ∃~Z ≤ t ϑ(~p, d, x, y, ~Z) is equivalent to a ΠB

1 -

formula ¬∃~Z ≤ t λ(~p, d, x, y, ~Z) in VNC 1
∗ (and therefore in VNC 1

∗). Then ϕ is equivalent to an

open VNC 1
∗-formula by Corollary 4.11, hence by the proof of Lemma 4.5, VNC 1

∗ proves

(4) ∃Y ≤ (|m|+ 1)n ∃Z ≤ |m|n2t
[
eval(n, |m|, ξ, I, Y )

∧ ∀d < |m| ∀x, y < n
(
ϑ(~p, d, x, y, Z [d,x,y]) ∨ λ(~p, d, x, y, Z [d,x,y])

)]
,

where

ξ(d, x, y)⇔ ϑ(~p, d, x, y, Z [d,x,y]).

Clearly, (4) is a ΣB
1 -formula, and it implies

∃Y ≤ (|m|+ 1)n eval(n, |m|, ϕ, I, Y )

over V 0, hence we can axiomatize VNC 1
∗ by (4) for all such ϕ over V 0. �
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Theorem 4.14 VNC 1
∗ is contained in VL.

Proof: We need to show that VL is closed under the ∆B
1 -SCV rule. If ϕ ∈ ∆B

1 (VL), then ϕ is,

provably in VL, log-space computable, hence VL proves comprehension for ϕ (see [68]). It thus

suffices to show that VL proves

∀n,m,E, I ∃Y eval(n, |m|, E, I, Y ).

We will prove this by formalizing in VL the standard log-space algorithm for evaluation of

log-depth circuits.

Fix d0 ≤ |m| and x0 < n, we will describe how to evaluate the node x0 on layer d0 of the

circuit. The idea of the algorithm is to make a depth-first traversal of the circuit, evaluating

the nodes along the way, and taking short cuts when we have enough information to determine

the value of a particular node. The states of the algorithm will be described by numbers below

some a, and we will define the graph of the transition function F : a → a of the algorithm;

computation of the algorithm will then be simulated by iterating F using the VL axiom. The

states of the algorithm will have the following form, with 〈↓, 1, x0〉 being the initial state:

(i) 〈◦, b〉, where b < 2. This is the final state, b is the result of the computation.

(ii) 〈↓, s, x〉, where x < n, 0 < s < 2|m|+1. We have just descended one layer down the

circuit (or we are starting the search in node x0 on layer d0). The path from 〈d0, x0〉 to

the current node is recorded by a sequence encoded by s: if the binary expansion of s is

1s0 . . . sk−1, then si is 0 (1) if we have descended to the left-most (right-most, resp.) child

at the ith branching (i.e., at ith layer below the top). The current node is node x on layer

d0 − k = d0 − |s|+ 1.

(iii) 〈↑, s, b, t, i, x〉, where 0 < s < 2|m|+1, b < 2, t < 2, i < |s|, x < n. We have ascended up

from a child node. Again, s describes the path to the current node. b is the computed

value of the child, and t is 0 if the child was the left-most child, or 1 otherwise. In this

situation, we do not know the number of the node we are in, as it cannot be uniquely

inferred from the child node; we can however recover it from the sequence s. We compute

the node number in a loop with |s| − 1 steps, we use i as the loop counter, and x to keep

track of the node number. We will obtain the current node number in x when i = |s| − 1.

We pick sufficiently large a so that all states above are encoded by a number below a. The

function F is ΣB
0 -defined by

F (〈◦, b〉) = 〈◦, b〉

F (〈↓, s, x〉) =



〈◦, I(x)〉 d0 = 0

〈↑, bs/2c, I(x), s mod 2, 0, x0〉 |s| − 1 = d0 > 0

〈↑, bs/2c, (d0 − |s|) mod 2, s mod 2, 0, x0〉 |s| − 1 < d0,

∀y < n¬E(d0 − |s|, x, y)

〈↓, 2s, l(d0 − |s|+ 1, x)〉 |s| − 1 < d0,

∃y < nE(d0 − |s|, x, y)
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F (〈↑, s, b, t, i, x〉) =



〈↑, s, b, t, i+ 1, l(d0 − i, x)〉 i < |s| − 1, si = 0

〈↑, s, b, t, i+ 1, r(d0 − i, x)〉 i < |s| − 1, si = 1

〈◦, b〉 i = |s| − 1 = 0,

t = 1 or d0 − |s| 6≡ b (mod 2)

〈↑, bs/2c, b, s mod 2, 0, x0〉 i = |s| − 1 > 0,

t = 1 or d0 − |s| 6≡ b (mod 2)

〈↓, 2s+ 1, r(d0 − |s|+ 1, x)〉 i = |s| − 1 > 0,

t = 0, d0 − |s| ≡ b (mod 2)

where

l(d, x) = min{y < n | E(d− 1, x, y)},
r(d, x) = max{y < n | E(d− 1, x, y)},

and F is defined arbitrarily on other numbers below a. By the VL axiom, there exists a

sequence P such that (P )0 = 〈↓, 1, x0〉 and (P )v+1 = F ((P )v) for all v < a. We leave to

the reader to verify that P determines a correct partial evaluation of the original circuit, in

particular, (P )a = 〈◦, b〉, where b is the value of node x0 on layer d0.

In order to evaluate the whole circuit at once, we take a copy of the above algorithm for

every d0 ≤ |m| and x0 < n, and “concatenate” them in such a way that a final state 〈◦, b〉 of

node 〈d0, x0〉 is followed by the initial state 〈↓, 1, x′0〉 of the next node 〈d′0, x′0〉. We leave the

details to the reader. �

Definition 4.15 A function F (~x, ~X) is a provably total computable function of a theory T ⊇ V 0,

if there exists a Σ1
1-formula ϕ(~x, ~X, Y ) which defines the graph of F in the standard model such

that

T ` ∃!Y ϕ(~x, ~X, Y ).

Complexity classes like NC1 can be adapted to the second-order setting in a straightfor-

ward way: we represent sets by binary strings, and we write numbers in unary (i.e., as in

Definition 4.4).

Corollary 4.16 The provably total computable functions of VNC 1
∗ and VNC 1

∗ include the uni-

form NC1-functions, and are contained in the L-uniform NC1-functions.

Proof: Uniform NC1-functions are provably total already inVNC 1. On the other hand, assume

that F (~x, ~X) is provably total in VNC 1
∗. By Theorem 4.10, F is definable by an LVNC 1

∗
-term,

hence it is computable by ∆B
1 (VNC 1

∗)-circuits using Lemma 4.5. As VNC 1
∗ ⊆ VL, the formula

ϕ defining the circuits as in Definition 4.4 must be in ∆B
1 (VL) = L. The description of the

circuits by the formulas ϕ and τ is a notational variant of the direct connection language, hence

F is in L-uniform FNC1. �
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Remark 4.17 We can describe the provably total functions of VNC 1
∗ exactly, but the char-

acterization does not lead to a transparent previously studied class. Let NC1
∗ be the smallest

class X ⊇ AC0 such that X-uniform NC1 is included in X, and let FNC1
∗ denote the class of

functions whose output has length polynomially bounded in the length of input, and whose bit-

graph is in NC1
∗. (We could stratify this definition as follows: let NC1

0 = AC0, let NC1
k+1 consist

of NC1
k-uniform NC1, and put NC1

∗ =
⋃
k∈ω NC1

k. Notice that UD-uniform NC1 is included in

NC1
1.) Then it is possible to show that the provably total computable functions of VNC 1

∗ (i.e.,

functions defined by an LVNC 1
∗
-term) are exactly the FNC1

∗-functions, and ∆1
1(VNC 1

∗)-predicates

(i.e., predicates definable by an open LVNC 1
∗
-formula) are exactly the NC1

∗-languages.

The theory V i extended by the axiom of choice

∀x < a ∃X ≤ b ϕ(x,X)→ ∃Z ∀x < a ϕ(x, Z [x])

for ΣB
i+1-formulas ϕ is ∀∃ΣB

i+1-conservative over V i (Zambella [182]). We will prove that the

axiom of choice for ΣB
1 -formulas can be similarly ∀∃ΣB

1 -conservatively added to VNC 1
∗. We will

in fact show that the same holds for a version of the axiom of choice without the bound on X.

Definition 4.18 Let Γ be a set of formulas. The unbounded axiom of choice is the schema

(Γ-AC ) ∀x < a∃X ϕ(x,X)→ ∃Z ∀x < aϕ(x, Z [x]),

where ϕ ∈ Γ may have other parameters, and Z [x] denotes {u | 〈x, u〉 ∈ Z}, where 〈·, ·〉 is a

pairing function. A theory T is closed under the unbounded choice rule Γ-ACR, if

T ` ∃X ϕ(x,X)⇒ T ` ∃Z ∀x < a ϕ(x, Z [x]),

where ϕ ∈ Γ may have other parameters.

It is easy to see that ΣB
0 -AC is equivalent to ∃ΣB

1 -AC , and similarly for ACR.

Theorem 4.19 Let T be a ∀∃∀ΠB
1 -axiomatized extension of V 0 closed under ΣB

0 -ACR. Then

T + ∃ΣB
1 -AC is a ∀∃ΣB

1 -conservative extension of T .

Proof:

Claim 4.19.1 Let M � T , a ∈M , and ϕ a ΣB
0 -formula with parameters from M . Then there

exists a model N � T such that M�∃ΣB1 N , and N satisfies

∃Z ∀x < aϕ(x, Z [x])

or

∃x < a∀X ¬ϕ(x,X).

Proof: Let MM be the expansion of M by constants for all elements of M . If

T + Th∀ΠB1
(MM ) + ∃x < a∀X ¬ϕ(x,X)
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is consistent, then any its model N satisfies the conclusion. Otherwise there is a sentence

ψ = ∀X ϑ(X), where ϑ ∈ ΣB
0 has parameters from M , such that M � ψ, and

T ` ψ → ∀x < a∃X ϕ(x,X).

We can rewrite it as

T ` ∃X (ϑ(X) ∧ x < a→ ϕ(x,X)),

hence

T ` ∃Z ∀x < a (ϑ(Z [x])→ ϕ(x, Z [x]))

by ΣB
0 -ACR, which implies

M � ∃Z ∀x < aϕ(x, Z [x]).

Thus we may take N =M. � (Claim 4.19.1)

Claim 4.19.2 Any model of T has an ∃ΣB
1 -elementary extension to a model of T + ΣB

0 -AC .

Proof: Let M0 � T . We enumerate all pairs of an element a ∈ M0 and a formula ϕ ∈ ΣB
0

with parameters from M0 as 〈aα, ϕα〉 for α < κ, where κ is a cardinal. We construct an

∃ΣB
1 -elementary chain of models Nα � T , α ≤ κ, where N0 =M0, Nα+1 is obtained from Nα

by an application of Claim 1 using a = aα, ϕ = ϕα, and Nλ =
⋃
α<λNα for limit λ. Notice

that validity of T is preserved by unions of ∃ΣB
1 -elementary chains, as T is ∀∃∀ΠB

1 -axiomatized.

Then M1 := Nκ is an ∃ΣB
1 -elementary extension of M0, M1 � T , and

M1 � ∀x < a ∃X ϕ(x,X)→ ∃Z ∀x < a ϕ(x, Z [x])

for all a ∈ M0, and ϕ ∈ ΣB
0 with parameters from M0. We continue in the same way to

construct a chain M0 �∃ΣB1 M1 �∃ΣB1 M2 �∃ΣB1 . . . , whose union is a model of T + ΣB
0 -AC .

� (Claim 4.19.2)

Assume that T +∃ΣB
1 -AC = T +ΣB

0 -AC proves a ∀∃ΣB
1 -formula α, and letM be any model

of T . Take an ∃ΣB
1 -elementary extension N � T + ΣB

0 -AC of M by Claim 2. Then N � α,

hence M � α. �

Corollary 4.20 VNC 1
∗ + ∃ΣB

1 -AC is a ∀∃ΣB
1 -conservative extension of VNC 1

∗.

Proof: In view of Theorem 4.19 and Corollary 4.13, it suffices to show that VNC 1
∗ is closed

under ΣB
0 -ACR. Let

VNC 1
∗ ` ∃X ϕ(x,X,~a, ~A),

where ϕ ∈ ΣB
0 with all free variables shown. By Corollary 4.12 and Theorem 4.10, there exists

an LVNC 1
∗
-term F such that

VNC 1
∗ ` ϕ(x, F (x,~a, ~A),~a, ~A).

By Corollary 4.8, there exists an LVNC 1
∗
-term G such that VNC 1

∗ proves

G(a,~a, ~A) = {〈x, y〉 | x < a, y ∈ F (x,~a, ~A)}.
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Then

VNC 1
∗ ` ∀x < aϕ(x,G(a,~a, ~A)[x],~a, ~A),

hence

VNC 1
∗ ` ∃Z ∀x < aϕ(x, Z [x],~a, ~A)

by Corollary 4.6. �

5 Propositional translation

We will define a propositional formula

[[ϕ(x1, . . . , xr, X1, . . . , Xs)]]n1,...,nr,m1,...,ms(p1,0, . . . , p1,m1−1, . . . , ps,0, . . . , ps,ms−1)

for each ΣB
0 (LVNC 1

∗
)-formula ϕ(~x, ~X), and natural numbers ~n, ~m. Let X1, . . . , Xs be sets such

that |Xi| ≤ mi, and let X̃i denote the propositional valuation which assigns the value 1 to pi,k
iff k ∈ Xi. Then the translation is defined in such a way that

(5) [[ϕ]]~n,~m(X̃1, . . . , X̃s) = 1⇔ N � ϕ(~n, ~X).

If T (~x, ~X) is a set LVNC 1
∗
-term, we define a bounding term bT (~n, ~m), that is a number L0-term

such that |T (~n, ~X)| ≤ bT (~n, ~m) whenever |Xi| ≤ mi for each i, and we define propositional

formulas [[T ]]k~n,~m for k < bT (~n, ~m) so that

(6) [[T ]]k~n,~m(X̃1, . . . , X̃s) = 1⇔ N � k ∈ T (~n, ~X).

Finally, if t(~x, ~X) is a number LVNC 1
∗
-term, we define a bounding L0-term bt such that t(~n, ~X) ≤

bt(~n, ~m) whenever |Xi| ≤ mi for all i, and we introduce propositional formulas [[t]]k~n,~m for k ≤
bt(~n, ~m) so that

(7) [[t]]k~n,~m(X̃1, . . . , X̃s) = 1⇔ N � t(~n, ~X) = k.

The bounding terms are defined inductively as follows:

bxi(~n, ~m) = ni,

bXj (~n, ~m) = mj ,

bf(t1,...,tr)(~n, ~m) = f(bt1(~n, ~m), . . . , btr(~n, ~m)), f ∈ {0, s,+, ·, |x|},
b|T |(~n, ~m) = bT (~n, ~m),

bCϕ(s,~t,~T )(~n, ~m) = bs(~n, ~m),

bYϕ(~t,s,u,T )(~n, ~m) = (|bu(~n, ~m)|+ 1)bs(~n, ~m).

The translations [[ϕ]]~n,~m, [[T ]]k~n,~m, [[t]]k~n,~m are defined by simultaneous induction on complexity,

along with formulas {{R}}~n,~m, {{F}}k~n,~m, {{f}}k~n,~m for predicates R (including equality), set func-

tion symbols F , and number function symbols f . (The formulas {{α}} are in a sense variants of

[[α]], cf. Lemma 5.1 (v). However, they are conceptually different: they are defined for symbols
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of the language, not for formulas. In particular, they are not tied to particular variables Xj ,

and by the same token, they are not supposed to use the same propositional variables pj,k as

above. They are only used in the definition of [[α(~t, ~T )]] below where formulas are explicitly

substituted for their propositional variables, and we will indicate their variables explicitly when

defining them. Their purpose is to make the definition of [[α(~t, ~T )]] below uniform, so that we do

not have to treat specially the case where ~t, ~T are simple variables, and so that we do not have

to repeat the unsightly expression with wide conjunctions and disjunctions for each symbol of

the language separately.) Let us denote

I(ϕ) =

{
> if ϕ holds,

⊥ otherwise.

If α is a predicate or function symbol, we put

[[α(t1, . . . , tr, T1, . . . , Ts)]]
k
~n,~m =

∨
k1≤bt1 (~n,~m)

...
kr≤btr (~n,~m)

( r∧
i=1

[[ti]]
ki
~n,~m

∧ {{α}}k~k,bT1 (~n,~m),...,bTs (~n,~m)

(
[[T1]]0~n,~m, . . . , [[T1]]

bT1−1

~n,~m , . . . , [[Ts]]
0
~n,~m, . . . , [[Ts]]

bTs−1
~n,~m

))
,

where the superscript k is omitted if α is a predicate. We further define

[[xi]]
k
~n,~m = I(k = ni),

[[Xj ]]
k
~n,~m = pj,k,

[[ϕ ◦ ψ]]~n,~m = [[ϕ]]~n,~m ◦ [[ψ]]~n,~m, ◦ ∈ {∧,∨,¬},

[[∃x ≤ t ϕ]]~n,~m =
∨

k≤bt(~n,~m)

[[x ≤ t ∧ ϕ]]k,~n,~m,

[[∀x ≤ t ϕ]]~n,~m =
∧

k≤bt(~n,~m)

[[x ≤ t→ ϕ]]k,~n,~m,

{{R}}n,n′ = I(n R n′), R ∈ {≤,=},

{{∈}}n,m(p0, . . . , pm−1) =

{
pn if n < m,

⊥ otherwise,

{{=}}m,m′(p0, . . . , pm−1, q0, . . . , qm′−1) =
∧

i<min{m,m′}

(pi ↔ qi) ∧
m−1∧
i=m′

¬pi ∧
m′−1∧
i=m

¬qi,

{{f}}k~n = I(f(~n) = k), f ∈ {0, s,+, ·, |x|},

{{|X|}}km(p0, . . . , pm−1) =


pk−1 ∧

m−1∧
i=k

¬pi if k > 0,∧
i<m

¬pi otherwise,

{{Cϕ(u,~x, ~X)}}
k
n,~n,~m(~p) = I(k < n) ∧ [[ϕ]]k,~n,~m(~p).
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It remains to define the formula {{Yϕ(~p, n, r, I)}}k~p,n,r,m(q0, . . . , qm−1) for an open LVNC 1
∗
-formula

ϕ(~p, d, x, y). We fix ~p, n,m, r, and we write {{Yϕ}}d,x for {{Yϕ}}dn+x
~p,n,r,m, where x < n. As ϕ has

no free set variables, [[ϕ]]~p,d,x,y is a Boolean sentence with a definite truth value. We may thus

define the edge relations

e(d, x, y)⇔ [[ϕ]]~p,d,x,y = 1,

e∗(d, x, y)⇔ e(d, x, y) ∧
(∧
z<y

¬e(d, x, z) ∨
n−1∧
z=y+1

¬e(d, x, z)
)

for d < |m|, x, y < n. By induction on d < |m|, we define

{{Yϕ}}0,x(q0, . . . , qm−1) =

{
qx if x < r,

⊥ otherwise,

{{Yϕ}}d+1,x(q0, . . . , qm−1) =



∨
e∗(d,x,y)

{{Yϕ}}d,y(q0, . . . , qm−1) if d is even,

∧
e∗(d,x,y)

{{Yϕ}}d,y(q0, . . . , qm−1) if d is odd.

We also put {{Yϕ}}d,x = ⊥ for d > |m|. Notice that the definition of e∗ ensures that there are

at most two y such that e∗(d, x, y) for any given d, x, hence the conjunctions and disjunctions

in the definition of {{Yϕ}}d+1,x are at most binary. As the formulas have depth d ≤ |m|, they

are of size O(m). It follows by induction on complexity that the formulas [[α]]
(k)
~n,~m for any fixed

formula or term α have size poly(~n, ~m) and logarithmic depth.

In fact, [[α]]
(k)
~n,~m is constructible in logarithmic space given ~n, ~m, k in unary (note that α is

fixed, it is not given to the machine as input). This can be established by induction on the

complexity of α. The only non-obvious case is {{Yϕ}}, which can be constructed in log-space

as follows. Given ~p, d, x, y, we can construct the Boolean sentence [[ϕ]]~p,d,x,y by the induction

hypothesis, and we can evaluate it in log-space (note that we do not have to write it down, the

log-space formula evaluator will call an algorithm computing bits of [[ϕ]]~p,d,x,y as a subroutine).

This means that we can compute the relation e above, from which we compute e∗ easily. We

can also compute in log-space the extended connection language LEC(C) of the circuit C whose

edge relation is given by e∗: given a starting node and p ∈ {0, 1}∗, we can trace the path

determined by p in a loop, where in each step we compute the (at most two) inputs of the given

node by calling the algorithm for e∗ to check all possibilities, and we follow the left or right

input according to the relevant bit of p. Then we can compute the description of the formula

{{Yϕ}} (which is essentially C unfolded into a tree) by recursive depth-first traversal of C; the

depth of recursion is logarithmic, and for each recursive call we only need to remember one bit

(namely, whether we have descended into the left or right child), as we can recover the current

node in C from the recursion stack using LEC(C).

It is also straightforward to show (5), (6), (7) by induction on complexity.

We recall that a Frege system is a propositional proof system given by a finite set F of rules

of the form
ϕ1, . . . , ϕn

ϕ
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which is sound and implicationally complete. An F -proof of a formula ϕ is a sequence of

propositional formulas ending with ϕ such that every formula is derived from previous formulas

by an instance of an F -rule. By a well-known theorem of Cook and Reckhow [69], all Frege

systems are polynomially equivalent, hence the choice of the basic rules does not matter (often

one takes Modus Ponens and a list of axioms). Frege systems are also polynomially equivalent

to the propositional version of Gentzen’s sequent calculus LK , which is easier to work with in

some contexts.

Lemma 5.1

(i) If τ, σ are terms, then bτ(~x, ~X,σ(~x, ~X))(~n, ~m) = bτ (~n, ~m, bσ(~n, ~m)).

(ii) If α(~x, ~X, Y ) is a formula or term, and T (~x, ~X) is a set term, then

[[α(~x, ~X, T (~x, ~X))]]
(k)
~n,~m = [[α]]

(k)
~n,~m,bT (~n,~m)

(
[[T ]]0~n,~m, . . . , [[T ]]

bT (~n,~m)−1
~n,~m

)
,

where k is present only if α is a term, and on the right-hand side the formulas are substi-

tuted for the variables corresponding to Y .

(iii) If t(~x, ~X) is a number term, there are size poly(~n, ~m) log-space constructible Frege proofs

of the formulas ∨
k≤bt(~n,~m)

[[t]]k~n,~m,∧
k≤bt(~n,~m)

l<k

([[t]]k~n,~m → ¬[[t]]l~n,~m).

(iv) If α(y, ~x, ~X) is a formula or term, and t(~x, ~X) is a number term, then there are size

poly(~n, ~m) log-space constructible Frege proofs of the formulas

[[α(t(~x, ~X), ~x, ~X)]]
(k)
~n,~m ↔

∨
r≤bt(~n,~m)

(
[[t]]r~n,~m ∧ [[α]]

(k)
r,~n,~m

)
,

where k is present only if α is a term, and we put [[α]]kr,~n,~m = ⊥ if α is a number term and

k > bα(~n, ~m), or if α is a set term and k ≥ bα(~n, ~m).

(v) If α(~x, ~X) is a predicate or function symbol, there are size poly(~n, ~m) log-space con-

structible Frege proofs of

{{α}}(k)
~n,~m(~p)↔ [[α(~x, ~X)]]

(k)
~n,~m(~p).

Proof: By straightforward induction on complexity. For example, we will show the proof of the

step for α = β(~t, ~T ) in (iv), where β is a predicate or function symbol. Let r ≤ bt(~n, ~m). By

the induction hypothesis, we can construct proofs of

[[ti(t(~x, ~X), ~x, ~X)]]ki~n,~m ↔
∨

s≤bt(~n,~m)

(
[[t]]s~n,~m ∧ [[ti]]

ki
s,~n,~m

)
,
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hence we construct proofs of

[[t]]r~n,~m →
(
[[ti(t(~x, ~X), ~x, ~X)]]ki~n,~m ↔ [[ti]]

ki
r,~n,~m

)
using (iii). Similarly, we can construct proofs of

[[t]]r~n,~m →
(
[[Ti(t(~x, ~X), ~x, ~X)]]j~n,~m ↔ [[Ti]]

j
r,~n,~m

)
.

Using the definition of [[β(~t, ~T )]] and (i), we infer

[[t]]r~n,~m →
[
[[α(t(~x, ~X), ~x, ~X)]]

(k)
~n,~m

↔
∨

k1≤bt1 (bt(~n,~m),~n,~m)
...

(∧
i

[[ti]]
ki
r,~n,~m ∧ {{β}}

(k)
~k,bT1 (bt(~n,~m),~n,~m),...

([[T1]]0r,~n,~m, . . .)
)]
.

It is easy to see that there are short proofs of

{{β}}(k)
~k,~v

(~p)↔ {{β}}(k)
~k,~u

(~p, ~⊥)

for any ~u ≥ ~v. Using the fact that bTj (r, ~n, ~m) ≤ bTj (bt(~n, ~m), ~n, ~m), and the definition of [[ti]]
j

or [[Ti]]
j as ⊥ for too large j, we obtain a proof of

[[t]]r~n,~m →
[
[[α(t(~x, ~X), ~x, ~X)]]

(k)
~n,~m

↔
∨

k1≤bt1 (r,~n,~m)
...

(∧
i

[[ti]]
ki
r,~n,~m ∧ {{β}}

(k)
~k,bT1 (r,~n,~m),...

([[T1]]0r,~n,~m, . . .)
)]
,

hence

[[t]]r~n,~m →
(
[[α(t(~x, ~X), ~x, ~X)]]

(k)
~n,~m ↔ [[α]]

(k)
r,~n,~m

)
by the definition of [[β(~t, ~T )]]. We get the required

[[α(t(~x, ~X), ~x, ~X)]]
(k)
~n,~m ↔

∨
r≤bt(~n,~m)

(
[[t]]r~n,~m ∧ [[α]]

(k)
r,~n,~m

)
using (iii). �

Theorem 5.2 Let ϕ(~x, ~X) be a ΣB
0 (LVNC 1

∗
)-formula provable in VNC 1

∗. Then the formulas

[[ϕ]]~n,~m have Frege proofs of size poly(~n, ~m) constructible in logarithmic space.

Proof: It will be more convenient to work with sequent calculus, which is p-equivalent to Frege

systems. The sequent ` ϕ has an LK -proof π using substitution instances of axioms of VNC 1
∗

and equality axioms as extra initial sequents. We may reformulate the extensionality axiom

∀x (x ∈ X ↔ x ∈ Y )→ X = Y of BASIC as

∀x < |X| (x ∈ X → x ∈ Y ) ∧ ∀x < |Y | (x ∈ Y → x ∈ X)→ X = Y,

hence all the initial sequents are ΣB
0 (LVNC 1

∗
). Using the free-cut elimination theorem [42], we

may thus assume that all formulas in π are ΣB
0 (LVNC 1

∗
). We will show by induction on the length
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of the proof that for every sequent Γ ` ∆ in π, the sequents [[Γ]]~n,~m ` [[∆]]~n,~m have propositional

LK -proofs constructible in logarithmic space, where [[Γ]]~n,~m denotes {[[ψ]]~n,~m | ψ ∈ Γ} for any

set of formulas Γ.

The induction steps for the cut rule, propositional rules, and structural rules is trivial, we

simply use the induction hypothesis and apply the same rule.

If the last rule in the proof is the ∀-right rule, it must have the form

Γ ` y ≤ t→ ψ(y),∆

Γ ` ∀x ≤ t ψ(x),∆

as the conclusion is ΣB
0 (LVNC 1

∗
). By the induction hypothesis we can construct proofs of

[[Γ]]~n,~m ` [[y ≤ t→ ψ(y)]]r,~n,~m, [[∆]]~n,~m

for every r ≤ bt(~n, ~m), from which we derive

[[Γ]]~n,~m `
∧

r≤bt(~n,~m)

[[y ≤ t→ ψ(y)]]r,~n,~m, [[∆]]~n,~m

using the ∧-right rule. The case of ∃-left is similar.

If the last rule in the proof is the ∃-right rule, it must have the form

Γ ` s ≤ t ∧ ψ(s),∆

Γ ` ∃x ≤ t ψ(x),∆

where s is a term. By the induction hypothesis we can construct a proof of

[[Γ]]~n,~m ` [[s ≤ t ∧ ψ(s)]]~n,~m, [[∆]]~n,~m.

By Lemma 5.1 (iv), there are short Frege proofs of

[[s ≤ t ∧ ψ(s)]]~n,~m ↔
∨

r≤bs(~n,~m)

([[s]]r~n,~m ∧ [[x ≤ t ∧ ψ(x)]]r,~n,~m).

Moreover, we can construct Frege proofs of ¬[[x ≤ t∧ψ(x)]]r,~n,~m for all bt(~n, ~m) < r ≤ bs(~n, ~m),

hence we can construct a proof of the sequent

[[s ≤ t ∧ ψ(s)]]~n,~m `
∨

r≤bt(~n,~m)

[[x ≤ t ∧ ψ(x)]]~r,~n,~m.

We derive

[[Γ]]~n,~m `
∨

r≤bt(~n,~m)

[[x ≤ t ∧ ψ(x)]]~r,~n,~m, [[∆]]~n,~m

by a cut. The case of the ∀-left rule is analogous.

It remains to construct proofs of propositional translations of substitution instances of ax-

ioms of VNC 1
∗ and equality axioms. If ψ′ = ψ(~t, ~T ) is an instance of an axiom ψ, then there are

short Frege proofs of

(8) [[ψ′]]~n,~m ↔
∨

k1≤bt1 (~n,~m)
...

(∧
i

[[ti]]
ki
~n,~m ∧ [[ψ]]~k,bT1 (~n,~m),...

(
[[T1]]0~n,~m, . . .

))
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by Lemma 5.1 (ii), (iv). If we can construct short proofs of [[ψ]], we can substitute the formulas

[[Ti]]
j
~n,~m in the proof (incurring a polynomial blow-up) and combine it with Lemma 5.1 (iii) to

obtain the right-hand side of (8). It thus suffices to construct translations of the base form of

the axioms.

Axioms of BASIC and equality axioms for L0 are provable in V 0, hence their translations

have log-space constructible proofs already in bounded-depth Frege [68].

The ΣB
0 -COMP axiom translates to

[[u ∈ Cψ(v, ~x, ~X)]]k,l,~n,~m ↔ [[u < v]]k,l ∧ [[ψ(u, ~x, ~X)]]k,~n,~m,

which can be proven equivalent to the tautology

I(k < l) ∧ [[ψ]]k,~n,~m ↔ I(k < l) ∧ [[ψ]]k,~n,~m

by Lemma 5.1 (v) and the definition of {{Cψ}}.
Consider an instance

|Yψ(~p, n, r, I)| ≤ (|r|+ 1)n ∧ eval(n, |r|, ψ, I, Yψ(~p, n, r, I))

of Open-SCV . We can prove

[[|Yψ(~p, n, r, I)| ≤ (|r|+ 1)n]]~p,n,r,m

easily using Lemma 5.1 (iii) and bYψ = (|r| + 1)n. Using the notation from the definition of

{{Yψ}}, we can construct short proofs of

[[dn+ x ∈ Yψ(~p, n, r, I)]]d,x,~p,n,r,m ↔ {{Yψ}}d,x

using Lemma 5.1 (v). As there are short proofs evaluating the Boolean sentences [[2 | d]]d and

[[ψ∗(~p, d, x, y)]]~p,d,x,y to I(2 | d) and I(e∗(d, x, y)), we can construct short proofs of

{{Yψ}}d+1,x ↔
[(

[[2 | d]]d ∧
∨
y<n

([[ψ∗]]~p,d,x,y ∧ {{Yψ}}d,y)
)

∨
(

[[2 - d]]d ∧
∧
y<n

([[ψ∗]]~p,d,x,y → {{Yψ}}d,y)
)]

for d < |r| and x < n, using the definition of {{Yψ}}d+1,x. Similarly, we construct proofs of

{{Yψ}}0,x ↔ [[x ∈ I]]x,m.

Putting it all together, we obtain a proof of

[[eval(n, |r|, ψ, I, Yψ(~p, n, r, I))]]~p,n,r,m.

Translation of the equality axioms for Cψ and Yψ is easy and left to the reader. (As a matter

of fact, one can show that these axioms are redundant in VNC 1
∗.) �
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Chapter VI

A sorting network in bounded

arithmetic

Abstract

We formalize the construction of Paterson’s variant of the Ajtai–Komlós–Szemerédi sort-

ing network of logarithmic depth in the bounded arithmetical theory VNC 1
∗ (an extension

of VNC 1), under the assumption of existence of suitable expander graphs. We derive a con-

ditional p-simulation of the propositional sequent calculus in the monotone sequent calculus

MLK .

1 Introduction

Sorting is one of the most fundamental algorithmic operations, thus it is not surprising that

much effort in theoretical computer science was invested in investigation of its computational

complexity in various contexts. In particular, its exact parallel complexity was open for a long

time. It has been known since the 1960s that it is fairly easy to construct parallel sorting

algorithms using O(log2 n) steps (Batcher [22]), but it proved quite difficult to further improve

on this upper bound. It was only in 1983 when Ajtai, Komlós, and Szemerédi [4, 5] devised an

ingenious algorithm achieving O(log n) parallel operations. The algorithm and its analysis were

subsequently simplified by Paterson [148]. An important feature of the AKS algorithm is that

the pattern of comparisons and swaps is fixed in advance independent of the data, hence the

construction in fact gives a sorting network of depth O(log n). (This result is asymptotically

optimal, as there is an obvious Ω(log n) depth lower bound.) A sorting network is a structure

consisting of comparators connected by wires, where a comparator is a device which takes two

inputs and outputs them in sorted order.

In the present paper we are going to formalize the core of the AKS sorting network (or rather

its version by Paterson) in the theory VNC 1
∗ of bounded arithmetic. More precisely, the basic

building blocks of the AKS network, the so-called ε-halvers, are constructed using a certain

kind of expander graphs. Construction of the expanders is a separate issue rather tangential to

analysis of the main part of the network, we thus leave it out completely: we simply assume

thatVNC 1
∗ proves the existence of appropriate expanders, and all our results are conditional on

167
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this assumption. We note that some research towards formalization of expanders in bounded

arithmetic is in progress [114].

There are several reasons why such a formalization is desirable. It is a basic problem in the

development of bounded arithmetic to find what results in mathematics or computer science

are provable in a given theory. In the other direction, the program of reverse mathematics seeks

to find the minimal theory capable of proving a given statement. In particular, it is a natural

foundational problem whether various properties of a given complexity class are provable using

only concepts from the same class. Since the AKS network is a kind of a circuit of logarithmic

depth, the natural class it fits into is (nonuniform) NC1; it is thus reassuring to have a proof of

its correctness in an NC1-theory such as VNC 1
∗.

The formalization has applications in propositional proof complexity. The monotone sequent

calculus MLK is the fragment of the usual propositional sequent calculus LK using only sequents

consisting of monotone formulas. Atserias, Galesi, and Pudlák [14] have shown that MLK

quasipolynomially simulates LK (with respect to monotone sequents), but it is an open problem

whether one can give a polynomial simulation. It was also shown in [14] that it is sufficient for

an affirmative answer to construct monotone formulas for threshold functions such that their

basic properties have polynomial-size proofs in LK . Such monotone formulas can be obtained

by evaluation of the AKS network on 0–1 inputs. SinceVNC 1
∗ proves soundness of the network,

and translates into polynomial LK -proofs, the properties of these formulas required by [14]

indeed have polynomial LK -proofs. We thus obtain a p-simulation of LK by MLK under our

basic assumption on formalizability of expanders in VNC 1
∗.

There are other potential applications of the AKS network in bounded arithmetic. As shown

in [66], the closure of the class NL under complement is provable in the bounded arithmetic

for NL. However, it is not known whether we can formalize the closure of the related class SL

under complement in an SL-theory. Formalization of the AKS network is the first step, as the

network is involved in the proof of SL = coSL from [134].

Our formalization is carried out in a not quite standard theory VNC 1
∗ introduced for this

very purpose in Chapter V. This theory was chosen to satisfy two conflicting goals. On the

one hand, the application to monotone sequent calculus described above requires that proposi-

tional translations of ΠB
1 -formulas provable in the theory have polynomial-size proofs in LK , or

equivalently, in Frege systems, hence we need some kind of an NC1-theory. On the other hand,

successful formalization of the AKS network requires at the very least that the theory proves

that the network can be evaluated. We thus need the ability to evaluate (sufficiently uniformly

described) circuits of logarithmic depth. The standard NC1-theory VNC 1 is too weak for this

purpose, as evaluation of log-depth circuits is not known to be possible in uniform NC1 (i.e.,

ALOGTIME). VNC 1 can only evaluate log-depth circuits described by their extended connec-

tion language (ecl, see Ruzzo [162]), which is however not available for the AKS network (see

also Section 6). The network is defined as a sequence of steps, each of which is described locally:

the n elements are organized in a tree-like structure (varying in each step), and constant-depth

subnetworks are applied to parts of this structure. A longer sequence of steps can move an

element quite far in the structure in a hard to predict way (this is, after all, one of the reasons

why the network can sort), and there does not seem to be any way of globally describing the
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ecl of the network other than to follow the path through the circuit step by step. (Note that

this is unrelated to the complexity of description of expanders used in the construction: in fact,

the expander-based gadgets have constant depth, hence their ecl is no harder than their direct

connection language.)

The paper is organized as follows. Section 2 gives definitions ofVNC 1
∗ and basic notions like

comparator networks, as well as their elementary properties. In Section 3 we formally describe

the AKS network, and in Section 4 we carry out the analysis of the network in VNC 1
∗. In

Section 5 we give a p-simulation of LK by MLK as an application, and Section 6 mentions

some open problems.

2 Preliminaries

We refer the reader to §V.3 for definitions of the theories VNC 1
∗ and VNC 1

∗ which we will work

in. As shown in §V.4, VNC 1
∗ is an open conservative extension of VNC 1

∗, and LVNC 1
∗
-functions

have ΣB
1 -definitions in VNC 1

∗. For this reason, we will not distinguish the two theories, and

we will work freely with LVNC 1
∗
-functions in VNC 1

∗. Every ΣB
0 (LVNC 1

∗
)-formula (or indeed,

∆B
1 (VNC 1

∗)-formula) is equivalent to an open LVNC 1
∗
-formula in VNC 1

∗. We will denote these

formulas simply as NC1
∗-formulas, and likewise, we will refer to functions given by LVNC 1

∗
-terms

as NC1
∗-functions. VNC 1

∗ proves NC1
∗-COMP and NC1

∗-IND . VNC 1
∗ contains VNC 1, and is

contained in VL. The provably total computable functions of VNC 1
∗ are those definable by

NC1
∗-functions in the standard model of arithmetic; this class fits between uniform NC1 and

L-uniform NC1.

As VNC 1
∗ ⊇VNC 1 ⊇ VTC 0, there is a well-behaved NC1

∗-function computing cardinality of

sets. We will denote it cardX in order to distinguish it from the basic symbol |X| of L0.

The main property ofVNC 1
∗ we will use is that it can evaluate sufficiently uniform log-depth

circuits. We can describe circuits using the following data:

• Numbers k, m, and s, where k is the number of inputs, m is the number of layers, and s

is the size of each layer (we assume all layers have been padded with unused gates to have

the same size).

• A function T : m× s→ {p∨q, p∧q, p¬q} ∪ {pxiq | i < k} indicating the type of each node,

where we put e.g. p∨q = 0, p∧q = 1, p¬q = 2, and pxiq = i + 3, and we represent T by

its graph (a set T ≤ ms(k + 3)): i.e., T (d, x, p) iff xth node on layer d has type p.

• A formula ϕ(d, x, d′, x′) (possibly with other parameters) which states that node x′ on

layer d′ is an input of gate x on layer d.

In order for a circuit to be well-formed, we demand that any gate uses only nodes on lower

layers as inputs (but not necessarily from the adjacent layer), and all nodes have the correct

number of inputs: 1 for negation nodes, 0 for input nodes, and at most 2 for conjunction and

disjunction gates.
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Lemma 2.1 (Thm. V.4.2) (in VNC 1
∗) A circuit described as above with ϕ an NC1

∗-formula

without set parameters, and m bounded by some |a|, can be evaluated on any input string.

Moreover, the evaluation is computable by an NC1
∗-function. �

Definition 2.2 A comparator network on n inputs is a directed acyclic graph without duplicate

edges with three types of vertices: input nodes with fan-in 0 and fan-out 1, comparators with

fan-in 2 and fan-out 2, and output nodes with fan-in 1 and fan-out 0. Input and output nodes

are labelled by numbers k < n, and there exists exactly one input node and one output node

labelled k for every k. The edges of the graph are called wires. For each comparator, one of

its outgoing wires is labelled h (higher) and the other one is labelled l (lower). The size of a

network is the number of its comparators. We represent a comparator network N by a sequence

N = {wi | i < s}, where wi describes the ith node of N : its type, adjacent nodes, and labels.

We require the sequence to start with the input nodes and end with the output nodes, both

ordered according to their labels. If there is a wire going from node i to node j, we further

require i < j. The network has depth at most d, if we can partition the comparators of N into

at most d blocks (called layers), such that each layer is contiguous in the sequence ordering,

and there are no wires going between two nodes of the same layer.

Let ~X = {Xk | k < n} be a sequence of sets, and ≤ a total ordering whose domain includes

every Xk. An evaluation of a network N with respect to ≤ on input ~X is a sequence of sets

Ee indexed by wires e of N such that Ee = Xk if e is the outgoing wire of an input node with

label k, and if l and h are the lower and higher outgoing wires of a comparator with incoming

wires e, f , then El = min≤{Ee, Ef}, and Eh = max≤{Ee, Ef}. The result of an evaluation E

is the sequence of sets ~Y = {Yk | k < n} such that Yk = Ee, where e is the incoming wire

of the output node with label k. We write ~Y = eval(N,≤, ~X) (the context should suffice to

disambiguate between this notation and the eval-formula from the definition of VNC 1
∗).

Since comparators have the same number of incoming and outgoing wires, there are exactly

n wires at any section of a network with n inputs. That is, if N = {wi | i < s} is a network

with n inputs, and i < s is a comparator node, then we can show by straightforward induction

on i that there are n wires going from nodes j ≤ i to nodes j > i. Consequently, each layer has

size at most n/2, and a network of depth d has size at most nd/2.

A comparator network of logarithmic depth resembles an NC1-circuit. Indeed, if we want

to evaluate a uniformly described network on a 0–1 input, we can replace each comparator by a

pair of ∧ and ∨ gates (i.e., min and max in the Boolean domain), turning it into a logarithmic

depth bounded fan-in circuit, which can be evaluated inVNC 1
∗. This argument does not work for

nonconstant domains, as we then cannot compute the required comparisons by bounded depth

bounded fan-in circuits. Nevertheless, we will show that we can evaluate a log-depth network

on arbitrary inputs in VNC 1
∗ using a simple trick based on a variant of the 0–1 principle.

Lemma 2.3 (in VNC 1
∗) Let N be a comparator network on n inputs of depth d ≤ logm for

some m defined by an NC1
∗-formula without set parameters, ≤ a total ordering defined by an

NC1
∗-formula, and {Xk | k < n} a sequence of sets in the domain of ≤. Then there exists a

unique evaluation of N on input ~X with respect to ≤.
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Proof: Uniqueness: if E and E′ are two evaluations of N = {wi | i < s}, we prove by straight-

forward induction on i < s that Ee = E′e for all wires e incident with a node j ≤ i.
Existence: the basic idea is to represent the input value Xi by the set Bi ⊆ n such that

j ∈ Bi iff Xi ≥ Xj . Then Xi ≤ Xj iff Bi ⊆ Bj , hence max≤{Xi, Xj}, min≤{Xi, Xj} are

represented by Bi∪Bj , Bi∩Bj , respectively. In other words, we can compute min or max by n

parallel binary conjunctions or disjunctions in this representation, as in the 0–1 case. In more

detail, we construct a circuit C as follows. For each wire e in N , we put in C nodes ei for all

i < n. If w is a comparator in N with incoming wires e, f and outgoing wires l, h, we include

in C the gates li = ei ∧ fi, hi = ei ∨ fi. If ek is the outgoing wire of the kth input node, we

make eki an input node of the circuit and initialize it to 1 iff Xi ≤ Xk using NC1
∗-comprehension.

Since C is a circuit of logarithmic depth defined by an NC1
∗-formula without set parameters,

we can evaluate it by Lemma 2.1. Let V be its valuation, let ϕ(e) denote the NC1
∗-formula

∃k < n ∀i < nV (ei) = V (eki ), and for each wire e, define the set

Ee = {j | ∃k < n (∀i < nV (ei) = V (eki ) ∧ j ∈ Xk)}

by NC1
∗-comprehension. If w is a comparator with incoming wires e, f and outgoing wires l, h,

and if we assume ϕ(e) ∧ ϕ(f), then it is easy to see that ϕ(l) ∧ ϕ(h), and El = min≤{Ee, Ef},
Eh = max≤{Ee, Ef}. We can thus prove by induction ϕ(e) for all e, which implies that E is a

correct evaluation of N . �

Lemma 2.4 (in VNC 1
∗)

Let N , ~X, and ≤ be as in Lemma 2.3. Let � be an NC1
∗-defined total order, and F an NC1

∗-

function such that X ≤ X ′ implies F (X) � F (X ′). Then eval(N,�, F ( ~X)) = F (eval(N,≤, ~X)).

Proof: Let E be the evaluation of N on ~X wrt ≤, and put E′e = F (Ee). Then E′ is an

evaluation of N on F ( ~X) wrt �. �

Lemma 2.5 (in VNC 1
∗) Let N , ~X, and ≤ be as in Lemma 2.3, and ~Y = eval(N,≤, ~X). Then

there exists a permutation π of n such that Yi = Xπ(i) for all i < n.

Proof: The proof of Lemma 2.3 shows that

(1) ∀i < n∃j < nYi = Xj .

On the other hand, if j < n, N = 〈wk | k < s〉, and ~E is the evaluation of N on ~X wrt ≤, we

can show by induction on k the following property: if wk is a comparator node, there exists a

wire e going from a node ≤ k to a node > k such that Ee = Xj . Therefore,

(2) ∀j < n∃i < nXj = Yi.

Assume first that the Xi’s are pairwise distinct. Then for each i there is a unique j such that

Yi = Xj by (1). We put π(i) = j. Then (2) implies that π is surjective, hence it is a bijection

by PHP (provable in VTC 0 ⊆VNC 1
∗), and Yi = Xπ(i) by the definition.

In the general case, we define

i � j ⇐⇒ Xi ≤ Xj ∧ (Xj = Xi → i ≤ j).
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It is easy to see that � is a total order on n, hence by the previous part of the proof, there exists

a permutation π such that eval(N,�, 〈0, . . . , n − 1〉)i = π(i). Using Lemma 2.4 for F (i) = Xi,

we obtain

Yi = eval(N,≤, 〈F (0), . . . , F (n− 1)〉)i = F (eval(N,�, 〈0, . . . , n− 1〉)i) = Xπ(i). �

Lemma 2.6 (in VNC 1
∗) If ≤ is a total ordering defined by an NC1

∗-formula, and 〈Xi | i < n〉
a sequence of sets in the domain of ≤, then there exists a permutation π of n such that

Xπ(i) ≤ Xπ(j) for each i ≤ j < n.

Proof: Define

i � j ⇐⇒ Xi < Xj ∨ (Xi = Xj ∧ i ≤ j).

It is easy to see that � is a total order on n. Put

σ(i) := card{k < n | k ≺ i}.

Clearly i ≺ j implies σ(i) < σ(j). In particular, σ is injective, hence it is a permutation by PHP .

We can thus define π = σ−1, and then i ≤ j implies π(i) � π(j), which gives Xπ(i) ≤ Xπ(j). �

3 Ajtai–Komlós–Szemerédi–Paterson network

In this section we will define in detail Paterson’s variant of the Ajtai–Komlós–Szemerédi network.

We generally follow Paterson’s construction, but we had to disentangle the gradual way in which

he describes it: first, we learn the basic tree-like structure with idealized rational sizes; then it

is modified so that the bottom and top parts work out correctly; then it turns out that one tree

is not enough, and it is going to be split in many trees after some point; and finally, changes

throughout the whole construction are proposed to make all sizes integer rather than rational.

In contrast, we have to formalize (and therefore explicitly describe) the final network. We made

some inessential changes to facilitate the formalization.1

Before describing the sorting network proper, let us start with a few auxiliary structures.

Definition 3.1 Let D and 0 < ε < 1 be constants. An 〈ε,D〉-expander on m + m vertices is

a bipartite graph G ⊆ m ×m such that every vertex (in either partition) has degree at most

D, and for every k ≤ m, every subset of one partition with more than εk vertices has at least

(1− ε)k neighbours in the other partition.

1For example, the last step (making sizes integer) of Paterson’s construction is actually incompatible with his

choice of the parameters of the network. He solves it by modification of what we denote Case 3 below so that

the splitting is applied not only to the root bag and cold storage, but to more levels on top of the tree. Since

this introduces an undesirable extra complication to the overall structure, we chose to solve it in another way,

namely by picking a different set of parameters. In general, we made no effort to optimize parameters and the

resulting constant in the size bound for the network, since we need the network for strictly theoretical purposes

where the values of these constants are irrelevant.
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From now on, we fix the first parameter ε0 of our sorting network, say ε0 = 1/600.

Assumption 3.2 There exists a constant D and a (parameter-free) NC1
∗-function G(m) such

that VNC 1
∗ proves: for all numbers m, G(m) is an 〈ε0, D〉-expander on m+m vertices.

We fix D from Assumption 3.2 as our next parameter.

Definition 3.3 An ε0-halver on m elements, where m is even, is a comparator network with m

inputs whose output is partitioned into two blocks (left and right) of size m/2 with the following

property: for each k ≤ m/2, if a 0–1 input contains k zeros, then at most ε0k zeros get in the

right output block, and if the input contains k ones, then at most ε0k ones get in the left output

block.

Lemma 3.4 There is an NC1
∗-function which, provably in VNC 1

∗, computes for any even m an

ε0-halver on m inputs of depth D2.

Proof: Let G be an 〈ε0, D〉-expander on m/2 + m/2 vertices given by Assumption 3.2. For

each partition and each its vertex, we enumerate its outgoing edges by numbers i < D. In

this way, every edge is labelled by a pair of numbers 〈i, j〉 ∈ D × D. As different edges with

the same label are disjoint, the labelling defines a partition of the edges of G into D2 partial

matchings, which we denote by {Gk | k < D2}. We construct a comparator network on m

inputs as follows. We split the wires between any two adjacent layers into a left and right block

as in Definition 3.3, and we identify each block with the vertices of one partition of G. For each

k < D2, we include a layer of comparators corresponding to the edges in Gk (with the higher

output of the comparator landing in the right block).

Consider an evaluation of the network on a 0–1 input, and a wire a from the left block. In

each layer of the network, the value of a is either unchanged, or it is replaced with the minimum

of the value of a and of a value of some wire in the right block, hence the value of a never

increases during the computation. Symmetrically, the value of a wire in the right block never

decreases. Let 〈a, b〉 ∈ G. We have 〈a, b〉 ∈ Gk for some k. After the kth layer, the value of wire

a is less that or equal to the value of wire b, and then the former can only decrease, and the

latter only increase, hence the relation is preserved. It follows that the output of the network

is compatible with G in the following sense: the output value of a wire a in the left block is less

that or equal to the value of a wire b in the right block whenever they are joined by an edge in

G.

Let there be k ≤ m/2 zeros and m− k ones in the input (or in the output, for that matter),

and assume for contradiction that the right output block contains strictly more than ε0k zeros.

As G is an expander, the positions of these zeros are connected by an edge to at least (1− ε0)k

positions in the left block. By the compatibility property, the value of each of them is also zero,

hence the total number of zeros in the output is more than ε0k+ (1− ε0)k = k, a contradiction.

The case of k ones in the input is symmetric. �

Definition 3.5 Let N be a comparator network with m+k inputs. A network N ′ on m inputs is

constructed from N by chopping from left as follows. We pick k input wires (say, the wires with
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the smallest index), and mark them for deletion. If both inputs of a comparator are marked,

we mark both outputs as well. If only one input of a comparator is marked, we mark its lower

output. When we finish the marking, we delete all marked wires and comparators with both

inputs marked, and we replace each comparator with one marked input with a wire connecting

its unmarked input and output. (This is equivalent to the following operation: we expand the

m inputs with k virtual elements, we apply N while considering the virtual elements to order

below the real elements, and then we delete the virtual elements from output.) Chopping from

right is defined symmetrically.

Definition 3.6 Let ε ∈ [ε0, 1) be a rational constant, and m ≥ l > 0 be even integers. An

〈l, ε, ε0〉-separator on m elements is a comparator network N whose m outputs are partitioned

into four blocks, FL, CL, CR, FR (here L, R, C, and F stand for left, right, centre, and far,

respectively), of sizes card FL = card FR = l/2, card CL = card CR = (m − l)/2, such that N

is an ε0-halver with respect to the blocks L = FL ∪ CL and R = FR ∪ CR, and satisfies the

following additional property: for any k ≤ l/2, if a 0–1 input contains k zeros, then at most εk

zeros are output outside FL, and if the input contains k ones, then at most εk ones are output

outside FR.

Lemma 3.7 Let p ≥ 0 be an integer constant. There exists an NC1
∗-function which, provably

in VNC 1
∗, computes an 〈l, (p + 1)ε0, ε0〉-separator on m elements of depth (p + 1)D2 for any

given even m and even l ≤ m such that l ≥ m2−p.

Proof: We proceed by induction on p. (Notice that the induction is external, as p is standard.)

If p = 0, it suffices to take an ε0-halver on m elements from Lemma 3.4. Let p > 0, and assume

that the statement is true for p − 1. We are given even m, l such that 2−pm ≤ l ≤ m. If

21−pm ≤ l, we may simply use the induction hypothesis, hence we assume l ≤ 21−pm. We

distinguish two cases.

First, assume that p > 1, so that 2l ≤ m. By the induction hypothesis, we obtain a

〈2l, pε0, ε0〉-separator on m inputs. We denote its output blocks by FL′, CL′, CR′, FR′. We

take an ε0-halver H on l elements. We apply H to FL′, denoting its output blocks as FL (the

left one) and CL′′ (the right one), and symmetrically we apply a copy of H in parallel to FR′

obtaining CR′′ and FR. We put CL = CL′ ∪ CL′′ and CR = CR′ ∪ CR′′. Clearly the resulting

network is an ε0-halver. Consider an input with k zeros, where k ≤ l/2. Then k ≤ 2l/2, hence

at most pε0k zeros land outside FL′ by the induction hypothesis. There remain at most k ≤ l/2
zeros in FL′, and H is a halver, thus at most ε0k zeros end up in CL′′. In total, at most

(p+ 1)ε0k zeros end up outside FL. The case of an input with k ones is symmetric.

Finally, let p = 1, thus m/2 ≤ l ≤ m. We construct our network as follows. First, we apply

an ε0-halver on m elements, obtaining the blocks L and R. We fix an ε0-halver H on l elements.

We chop H from right to m/2 inputs, and apply it to L, denoting its left output block with

l/2 elements as FL, and its chopped right block as CL. Symmetrically, we chop a copy of H

from left to m/2 inputs, and apply it in parallel to R, obtaining FR and CR. Again, it is clear

that the network is an ε0-halver. Consider an input with k zeros, where k ≤ l/2. At most kε0

zeros end up in R. We can simulate the effect of chopped H on L as follows: we extend the
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partial result in L with ones to l elements, apply H, and discard the excessive ones from the

right block CL. The number of zeros in the extended input is thus still at most k ≤ l/2, hence

at most ε0k zeros land in CL. In total, at most 2ε0k zeros end up outside FL, as required. The

case of an input with k ones is symmetric. �

We now proceed to the description of the sorting network. Let n be the number of inputs.

We fix the parameters p = 4, λ0 = 2−p = 1/16, ε = (p+1)ε0 = 1/120, λ = 1/8, A = 3, C = 150,

ν = 2λA + (1 − λ)/2A = 43/48, cm = d− log 2A/ log νe = 17. Without loss of generality, we

assume

n ≥ C/ν.

The sorting network consists of O(log n) stages, where the transition from one stage to the

next one is computed by a constant depth comparator network. In each stage, the n elements

are divided into a number of bags. Each bag is capable of accommodating a certain number of

elements, called its capacity, but some of the bags may actually hold fewer elements than its

capacity. The bags are organized in a subset of an ambient binary tree. All bags on the same

level of the tree have the same capacity. In stage t, bags with nonempty capacity only appear

at levels d such that d ≡ t (mod 2) and d0(t) ≤ d ≤ d1(t). (Note that we number stages and

levels of the tree starting from 0.) We will write just d0, d1 if t is understood from the context.

We label bags on level d by numbers i < 2d in the natural order from left to right (i.e., the

children of the ith bag on level d are the 2ith and (2i+ 1)th bags on level d+ 1).

The level d1 is called the bottom level, and it is the only one which may contain bags not

filled up to their full capacity. The level d0 is the root level. The condition d ≥ d0 effectively

means that the structure consists of 2d0 disjoint trees with roots at the root level. Each of these

2d0 trees also has a cold storage attached to it, which is a special bag sitting outside the ambient

tree structure. Note that the roots of the trees may be empty, if d0(t) 6≡ t (mod 2). We label

the trees by numbers i < 2d0 in the left-to-right order, the same as their roots.

The parameters and sizes of various parts of the structure are as follows. For any t ≤
cmdlog ne and d ≤ 2dlog ne, put

s′(t, d) =
n

2d

(
1− (2A)d−2νt

)
.

(Notice that here and below, the exponentiation has a fixed base, and the exponent is bounded

by O(log n), hence the expression is definable by a well-behaved bounded formula in I∆0 ⊆ V 0.)

We define

d′1(t) = max{d | (2A)d−2 < ν−t} = max{d | s′(t, d) > 0},
d1(t) = d′1(t)− ((d′1(t)− t) mod 2),

d′0(t) = min{d | nAdνt ≥ C},

d0(t) =

{
d′0(t)− 1 if t > 0, d′0(t) > d′0(t− 1), d′0(t− 1) ≡ t (mod 2),

d′0(t) otherwise.

As A > 1 > ν, dα(t) are well-defined by a bounded formula, and dα(t) = O(t).



176

There are n mod 2d0 trees of size (i.e., the number of elements it holds) dn2−d0e, and 2d0 −
(n mod 2d0) trees of size bn2−d0c. These sizes are distributed so that the leftmost i trees have

total size bin2−d0c, thus the tree with label i has size

T (t, i) = b(i+ 1)n2−d0c − bin2−d0c =

{
dn2−d0e if (in mod 2d0) > ((i+ 1)n mod 2d0),

bn2−d0c otherwise.

If d ≥ d0 and d ≡ t (mod 2), each subtree rooted at level d has nominal capacity

s(t, d) = 2ds′(t, d)/2e,

and actually holds max{0, s(t, d)} elements. This means that the capacity of any bag at level d

is

b(t, d) =

{
s(t, d)− 4s(t, d+ 2) if d0 ≤ d ≤ d1, d ≡ t (mod 2),

0 otherwise,

and the number of elements it holds is

h(t, d) =

{
s(t, d) if d = d1,

b(t, d) otherwise.

Note that the capacity and actual content of each bag is even. The capacity (and content) of

cold storage is accordingly

c(t, i) =

{
T (t, i)− s(t, d0) if d0 ≡ t (mod 2),

T (t, i)− 2s(t, d0 + 1) otherwise,

where i < 2d0 is the label of the tree.

We also define “ideal sizes” of the various parameters, which are rational numbers approxi-

mated by the real sizes. The ideal size of each tree is T ′(t) = n2−d0 . We already know the ideal

subtree capacity s′(t, d). The ideal bag capacity is defined by

b′(t, d) =

s
′(t, d)− 4s′(t, d+ 2) =

(
1− 1

4A2

)
nAdνt if d0 ≤ d ≤ d1, d ≡ t (mod 2),

0 otherwise,

and the ideal cold storage capacity is

c′(t) =


T ′(t)− s′(t, d0) =

1

4A2
nAd0νt if d0 ≡ t (mod 2),

T ′(t)− 2s′(t, d0 + 1) =
1

2A
nAd0νt otherwise.

Notice that d0(0) = d1(0) = 0, thus the structure at stage 0 consists of a single root bag

and the associated cold storage. We initialize the network by putting arbitrary s(0, 0) elements

to the root bag, and the rest to the cold storage.
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Let tm be the least t > 0 such that d0(t) = d1(t). We will see below (Lemma 4.4) that tm
exists, tm ≤ cmdlog ne, and T (tm, i) is bounded by a constant. The stage tm will be the last

regular stage of our network. After this stage, we sort each of the 2d0 constant-size trees using

a suitable constant-size sorting network, and stop.

We have to define the constant-depth network which makes the transition from stage t < tm
to stage t + 1. A general overview is that we will apply a suitable constant-depth subnetwork

to each nonempty bag to split its content into a few parts, which we send to its parent and

children bags. Root bags will exchange elements with their cold storage instead of a parent.

Notice that when a bag is nonempty at stage t, then its children and parent are empty (except

for the cold storage), whereas the opposite holds at stage t + 1. Now we describe the actual

network fragments. We have to distinguish several cases.

Case 1: we consider a nonempty bag B on level d such that d0 < d ≤ d1. If d = d1(t) >

d1(t + 1), we send all of B to its parent. Otherwise, we use an 〈l, ε, ε0〉-separator of depth

(p+1)D2 from Lemma 3.7 to split B into FL, CL, CR, and FR, where l = s(t, d)−2s(t+1, d+1).

We send CL to the left child, CR to the right child, and FL ∪ FR to the parent.

Case 2: a nonempty root bag B, assuming d0(t) = d0(t+ 1). We apply a separator just like

in Case 1, except that we send FL ∪ FR to the cold storage instead of B’s parent.

Case 3: a root bagB of the ith tree, assuming d0(t) 6= d0(t+1). We will see in Lemma 4.2 that

d0(t+ 1) = d0(t) + 1, and b(t, d0) + c(t, i) is bounded by a constant. Note that d1(t) ≥ d0(t) + 2.

We merge the bag with its cold storage, and apply a constant-size sorting network to split it to

two pieces, L of size T (t+ 1, 2i)− 2s(t, d0(t) + 2), and R of size T (t+ 1, 2i+ 1)−2s(t, d0(t) + 2),

so that each element of L is less than or equal to each element of R. We put arbitrary c(t+1, 2i)

elements from L to the newly created cold storage of the left child of B, and send the rest of L

to the left child itself. We do the same with R and the right child.

Case 4: a cold storage. If d0 ≡ t (mod 2), we expand the storage with some elements sent

from its root bag, as described in Case 2, or merge it with the root bag and split it to children,

as described in Case 3. If d0 6≡ t (mod 2) (which implies d0(t) = d0(t + 1), as we will see), we

send arbitrary s(t+ 1, d0)− 2s(t, d0 + 1) elements to the root bag.

We observe that the network is defined by an NC1
∗-function F (n).

4 Analysis of the network

We first check that our definition of the various parameters of the network are sensible, and

that all sizes work out correctly when shuffling elements around.

We have already seen why d0 and d1 are well-defined.

Lemma 4.1 (in VNC 1
∗)

(i) d′1(t) ≤ d′1(t+ 1) ≤ d′1(t) + 1.

(ii) d1(t+ 1)− d1(t) = ±1.

(iii) If t > 0, then d1(t) > 0.
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Proof:

(i): d′1(t) ≤ d′1(t+ 1) is clear as ν < 1. We have (2A)d1(t)−1 ≥ ν−t, hence (2A)d1(t) ≥ ν−(t+1)

as A ≥ ν−1, which implies d1(t+ 1) < d1(t) + 2.

(ii): Since d′1(t) − 1 ≤ d1(t) ≤ d′1(t), we obtain |d1(t + 1) − d1(t)| ≤ 2 from (i). However,

d1(t) ≡ t 6≡ t+ 1 ≡ d1(t+ 1) (mod 2), hence |d1(t+ 1)− d1(t)| = 1.

(iii): Since (2A)0 = 1 < ν−t, we have d′1(t) ≥ 2 and d1(t) ≥ 1. �

Lemma 4.2 (in VNC 1
∗)

(i) d′0(t) ≤ d′0(t+ 1) ≤ d′0(t) + 1.

(ii) d′0(t− 1) ≤ d0(t) ≤ d′0(t).

(iii) d0(t) ≤ d0(t+ 1) ≤ d0(t) + 1.

(iv) If d0(t) < d0(t+ 1), then d0(t) ≡ t (mod 2), and b(t, d0(t)) + c(t, i) ≤ dC/νe.

Proof:

(i) follows from ν < 1 < Aν as in the proof of Lemma 4.1.

(ii): If d0(t) 6= d′0(t), then d′0(t) > d′0(t− 1) and d0(t) = d′0(t)− 1 by the definition.

(iii): We have d0(t) ≤ d′0(t) ≤ d0(t + 1) from (ii). d0(t + 1) ≥ d0(t) could only happen

if d0(t) < d′0(t) < d′0(t + 1) = d0(t + 1). The former inequality implies d0(t) = d′0(t − 1) ≡ t

(mod 2), hence d′0(t) = d0(t)+1 ≡ t+1 (mod 2), thus by the definition d0(t+1) = d′0(t+1)−1,

a contradiction.

(iv): If d0(t) < d′0(t), then d0(t) = d′(t − 1) ≡ t (mod 2). If d0(t) = d′0(t), we must have

d0(t+ 1) = d′0(t+ 1) > d′0(t), hence d0(t) = d′0(t) ≡ t (mod 2).

Since d0(t) < d′0(t+ 1), we have nAd0(t)νt+1 < C, hence

b(t, d0(t)) + c(t, i) = T (t, i)− 4s(t, d0(t) + 2) < T ′(t)− 4s′(t, d0(t) + 2) + 1

= b′(t, d0(t)) + c′(t) + 1 = nAd0(t)νt + 1 < 1 + Cν−1.

�

Lemma 4.3 (in VNC 1
∗) If d0 ≤ d ≤ d1, d ≡ t (mod 2), and i < 2d0, then b(t, d) > 0 and

c(t, i) > 0.

Proof: Since d0(t) ≥ d′0(t− 1), we have nAd0νt−1 ≥ C. As s(t, d) < s′(t, d) + 2, we obtain

b(t, d) = s(t, d)− 4s(t, d+ 2) > s′(t, d)− 4s′(t, d+ 2)− 8 = b′(t, d)− 8

=

(
1− 1

4A2

)
nAdνt − 8 ≥

(
1− 1

4A2

)
nAd0νt − 8 ≥

(
1− 1

4A2

)
Cν − 8 ≥ 0.

If d0 ≡ t (mod 2), we have

c(t, i) = T (t, i)− s(t, d0) > c′(t)− 3 =
n

4A2
Ad0νt − 3 ≥ Cν

4A2
− 3 ≥ 0.

Similarly, if d0 6≡ t (mod 2), then

c(t, i) >
Cν

2A
− 5 ≥ 0. �
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Lemma 4.4 (in VNC 1
∗) There exists

tm = min{t > 0 | d0(t) = d1(t)},

which satisfies tm ≤ cmdlog ne. We have d0(t) < d1(t) for all 0 < t < tm. Moreover,

d′1(t) ≤ blog nc for all t ≤ tm, and T (tm, i) ≤ dC/νe.

Proof: Put t = cmdlog ne and d = d′0(t). As ν−cm ≥ 2A, we have

C ≤ nAdνt ≤ nAd(2A)−dlogne ≤ Ad−dlogne,

thus d ≥ dlog ne and 2d ≥ n. This implies

(2A)d−2νt ≥ 1

4A2
nAdνt ≥ C

4A2
≥ 1,

hence d′1(t) < d′0(t), and d1(t) ≤ d0(t).

On the other hand, d1(0) = 1 > d0(0) = 0 from Lemma 4.1 and nν ≥ C, hence there exists

tm := min{t > 0 | d1(t) ≤ d0(t)} ≤ cmdlog ne.

We have d0(tm − 1) < d1(tm − 1). By Lemmas 4.1 and 4.2 we obtain d0(tm) = d1(tm) unless

d0(tm−1) = d1(tm), d1(tm−1) = d0(tm) = d1(tm)+1. But then tm−1 ≡ d0(tm−1) = d1(tm) ≡
tm (mod 2), a contradiction.

As d0(tm) = d1(tm), we have

T (tm, i) = c(tm, i) + s(tm, d0) ≤ c(tm, i) + b(tm, d0) ≤ dC/νe

by Lemma 4.2. Finally, bn2−d0(tm)c = T (tm, 0) = s(tm, d0(tm)) + c(tm, 0) ≥ 2 by Lemma 4.3,

hence d′1(t) ≤ d1(tm) + 1 = d0(tm) + 1 ≤ blog nc for any t ≤ tm. �

The Lemma below implies, among others, that Case 4 makes sense.

Lemma 4.5 (inVNC 1
∗) If d0(t+1) ≤ d < d1(t) and d 6≡ t (mod 2), then s(t+1, d) > 2s(t, d+1).

Proof: We have

s(t+ 1, d)− 2s(t, d+ 1) ≥ s′(t+ 1, d)− 2s′(t, d+ 1)− 4

=
n

2d

(
1− (2A)d−2νt+1 − 1 + (2A)d−1νt

)
− 4

=
n

4A2
Adνt(2A− ν)− 4 ≥ C

4A2
(2A− ν)− 4 > 0.

�

The following Lemma ensures that the 〈l, ε, ε0〉-separator in Cases 1 and 2 is used correctly.

Lemma 4.6 (in VNC 1
∗) Let d0(t) ≤ d < d1(t + 1), d ≡ t (mod 2), m = h(t, d), and l =

s(t, d)− 2s(t+ 1, d+ 1). Then m ≥ l ≥ mλ0.
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Proof: Recall that b′(t, d) =
(
1− (4A2)−1

)
nAdνt. Put l′ = s′(t, s)− 2s′(t+ 1, d+ 1). We have

l′ =
n

2d

(
1− (2A)d−2νt

)
− n

2d

(
1− (2A)d−1νt+1

)
=

n

2d
(2A)d−2νt(2Aν − 1)

= nAdνt
1

4A2
(4A2λ+ 1− λ− 1) =

(
1− 1

4A2

)
nAdνtλ = λb′(t, d).

If d = d1(t), then l ≤ s(t, d) = m. Otherwise

m− l = 2s(t+ 1, d+ 1)− 4s(t, d+ 2) > 0

by Lemma 4.5.

For the other inequality, we have

l

m
≥ l

b(t, d)
= 1− 2s(t+ 1, d+ 1)− 4s(t, d+ 2)

s(t, d)− 4s(t, d+ 2)
≥ 1− 2s(t+ 1, d+ 1)− 4s(t, d+ 2)

s′(t, d)− 4s(t, d+ 2)

=
s′(t, d)− 2s(t+ 1, d+ 1)

s′(t, d)− 4s(t, d+ 2)
≥ s′(t, d)− 2s′(t+ 1, d+ 1)− 4

s′(t, d)− 4s′(t, d+ 2)

=
l′ − 4

b′(t, d)
≥ λ− 4(

1− (4A2)−1
)
Cν
≥ λ0.

�

The next Lemma shows that the splitting in Case 3 make sense.

Lemma 4.7 (in VNC 1
∗) Let t < tm be such that d0(t) < d0(t + 1), and i < 2d0(t). Put

xα = T (t + 1, 2i + α) − 2s(t, d0(t) + 2) for α = 0, 1. Then x0 + x1 = b(t, d0(t)) + c(t, i)

and xα ≥ c(t+ 1, 2i+ α).

Proof: As d0(t+ 1) = d0(t) + 1, we have

T (t+ 1, 2i) + T (t+ 1, 2i+ 1) = b(2i+ 2)n2−d0(t+1)c − b2in2−d0(t+1)c

= b(i+ 1)n2−d0(t)c − bin2−d0(t)c = T (t, i).

Then clearly

b(t, d0(t)) + c(t, i) = T (t, i)− 4s(t, d0(t) + 2) = x0 + x1.

Since d0(t+ 1) ≡ t+ 1 (mod 2), we have

xα − c(t+ 1, 2i+ α) = s(t+ 1, d0(t) + 1)− 2s(t, d0(t) + 2) > 0

by Lemma 4.5. �

Lemma 4.8 (in VNC 1
∗) Let t < tm, d0(t + 1) ≤ d ≤ d1(t + 1), d ≡ t + 1 (mod 2). Then the

total number of elements sent from stage t to any bag of level d is h(t + 1, d). If i < 2d0(t+1),

the number of elements sent to the ith cold storage is c(t+ 1, i).
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Proof: We start with the cold storage. If d0(t) < d0(t + 1), the cold storage gets c(t + 1, i)

elements by Case 3. Let thus d0(t) = d0(t+ 1). If d0 6≡ t (mod 2), there remain

c(t, i)− (s(t+ 1, d0)− 2s(t, d0 + 1)) = T (t, i)− s(t+ 1, d0) = c(t+ 1, i)

elements in the cold storage by Case 4. Otherwise, we get

c(t, i) + (s(t, d0)− 2s(t+ 1, d0 + 1)) = T (t, i)− 2s(t+ 1, d0 + 1) = c(t+ 1, i)

elements by Case 2.

Now we turn to regular bags. First assume d > d1(t), hence d = d1(t+ 1). We get

1
2

(
s(t, d− 1)− (s(t, d− 1)− 2s(t+ 1, d))

)
= s(t+ 1, d) = h(t+ 1, d)

elements from the parent by Case 1 or 2. Let thus assume d < d1(t).

If d > d0(t+ 1), we obtain

1
2

(
b(t, d− 1)− (s(t, d− 1)− 2s(t+ 1, d))

)
= s(t+ 1, d)− 2s(t, d+ 1)

elements from the parent by Case 1 or 2. If d = d0(t+ 1) = d0(t), we get s(t+ 1, d)−2s(t, d+ 1)

elements from cold storage by Case 4. If d = d0(t+ 1) > d0(t), we get

T (t+ 1, i)− 2s(t, d+ 1)− c(t+ 1, i) = s(t+ 1, d)− 2s(t, d+ 1)

elements from splitting of the parent by Case 3. Thus, in all cases, the bag obtains

s(t+ 1, d)− 2s(t, d+ 1)

elements “from above”.

If d = d1(t+ 1), then we obtain s(t, d+ 1) elements from each child by Case 1, hence we get

s(t+ 1, d) = h(t+ 1, d) elements in total.

If d < d1(t+ 1), then we cannot have d+ 1 = d1(t) > d1(t+ 1). We thus obtain s(t, d+ 1)−
2s(t+ 1, d+ 2) elements from each child by Case 1. We have

s(t+ 1, d)− 2s(t, d+ 1) + 2(s(t, d+ 1)− 2s(t+ 1, d+ 2))

= s(t+ 1, d)− 4s(t+ 1, d+ 2) = b(t+ 1, d) = h(t+ 1, d)

elements in total. �

Having checked that the network is coherently defined, we turn our attention to its behaviour

when evaluated. In order to simplify the analysis, we first consider the special case when the

input is a permutation of the sequence 0, . . . , n − 1 (the most important point being that the

inputs are pairwise distinct), and ≤ is the usual ordering. We fix an evaluation of the network

on such input. (Strictly speaking, we only defined evaluation of a network on set inputs, not

number inputs. We can encode numbers k < n by sets in a straightforward way, e.g., by {k}.)
We associate with each bag B its natural interval in [0, n): the ith bag on level d in the

left-to-right order corresponds to the interval

I(d, i) =
[
bin2−dc, b(i+ 1)n2−dc

)
.
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An element x of the bag B whose value is outside I(d, i) is called a stranger, and its strangeness

is defined as the smallest number j such that x belongs to the natural interval of B’s ancestor

on level d − j, i.e., I(d − j, bi2−jc). We let Sj(t, d, i) denote the number of elements of B at

stage t of strangeness at least j. Let ξ(t) denote the NC1
∗-formula which is the conjunction of

the following conditions:

(i) For every i < 2d0 , the values of all elements of the ith tree (including its cold storage) at

stage t belong to I(d0, i).

(ii) For every d, i, j such that d0 ≤ d ≤ d1, i < 2d, and 0 < j ≤ d− d0, we have

Sj(t, d, i) ≤ µδjb′(t, d),

where we put µ = 10, δ = 1/270.

Lemma 4.9 (in VNC 1
∗) If ξ(t) holds, then condition (i) of ξ(t+ 1) also holds.

Proof: If d0(t) = d0(t+ 1), the conclusion is trivial, as element movements respect tree bound-

aries. Let us thus assume d0(t + 1) = d0(t) + 1, and denote d0 = d0(t) for short. Fix i < 2d0 .

We know by ξ(t) that all elements of the 2ith and the (2i+ 1)th tree at stage t+ 1, which come

from the ith tree at stage t, belong to I(d0, i) = I(d0 + 1, 2i) ∪̇ I(d0 + 1, 2i+ 1).

Consider d > d0 such that d ≡ t (mod 2), and i′ < 2d such that bi′2d0−dc = i. Note that

d ≥ d0 + 2. Since Aδ ≤ 1, we have

Sd−d0(t, d, i′) ≤ µδd−d0b′(t, d) = µδd−d0Ad−d0b′(t, d0) ≤ µ(Aδ)2b′(t, d0)

= µ(Aδ)2

(
1− 1

4A2

)
nAd0νt < µ(Aδ)2

(
1− 1

4A2

)
Cν−1 ≤ 1,

using ξ(t), and nAd0νt+1 < C, which follows from d0 < d′0(t+1). This means that every element

of the i′th bag on level d at stage t has strangeness less than d−d0, i.e., it belongs to the interval

I(d0 + 1, bi′2d0+1−dc). On the other hand, these elements end up in the bi′2d0+1−dcth tree at

stage t+ 1, as required.

The remaining elements of the 2ith and (2i+1)th tree at stage t+1 come from the root and

cold storage of the ith tree at stage t. We know from above that there are exactly 2s(t, d0 + 2)

elements of I(d0 +1, 2i) and 2s(t, d0 +2) elements of I(d0 +1, 2i+1) in the rest of the ith tree at

stage t. Since I(d0+1, 2i) and I(d0+1, 2i+1) have T (t+1, 2i) and T (t+1, 2i+1) elements in total,

respectively, the root and cold storage of the ith tree at stage t contain T (t+1, 2i)−2s(t, d0 +2)

elements of I(t+ 1, 2i), and T (t+ 1, 2i+ 1)− 2s(t, d0 + 2) elements of I(t+ 1, 2i+ 1). By Case 3

of the definition of the network, we send the smallest T (t+1, 2i)−2s(t, d0 +2) of these elements

to the 2ith tree at stage t + 1, and the largest T (t + 1, 2i + 1) − 2s(t, d0 + 2) elements to the

(2i+ 1)th tree. As elements of I(t+ 1, 2i) are smaller than elements of I(t+ 1, 2i+ 1), all these

elements end up in the correct tree. �

Lemma 4.10 (in VNC 1
∗) If ξ(t) holds, d0(t + 1) ≤ d ≤ d1(t + 1), d ≡ t + 1 (mod 2), i < 2d,

and 2 ≤ j ≤ d− d0(t+ 1), then Sj(t+ 1, d, i) ≤ µδjb′(t+ 1, d).
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Proof: Note that d0(t + 1) < d − 1. Denote by B the ith bag on level d. Elements of B of

strangeness j or more at stage t+ 1 come from two sources: elements of B’s children at stage t

of strangeness at least j + 1, and elements of B’s parent at stage t of strangeness at least j − 1,

both using Case 1 of the definition of the network.

Using ξ(t), the number of elements of B’s children with strangeness j+ 1 or more is at most

(3) 2µδj+1b′(t, d+ 1).

Let P be B’s parent. The number of elements of P of strangeness j−1 or more at stage t is

k := Sj−1(t, d− 1, bi/2c) ≤ µδj−1b′(t, d− 1).

Let a be the number of elements of P whose value is smaller than x, and b the number of

elements of P whose value is at least y, where I(d− j, bi2−jc) = [x, y), so that a+ b = k. Put

l = s(t, d− 1)− 2s(t+ 1, d).

By Case 1, we apply to P ’s content an 〈l, ε, ε0〉-separator S, and send the part CL ∪ CR of its

output to B.

Notice that b′(t, d − 1) ≥
(
1 − (4A2)−1

)
Cν by the proof of Lemma 4.3. Using the proof of

Lemma 4.6, we obtain

l ≥ s′(t, d− 1)− 2s′(t+ 1, d)− 4 = λb′(t, d− 1)− 4

≥

(
λ− 4(

1− (4A2)−1
)
Cν

)
b′(t, d− 1) ≥ 2µδ b′(t, d− 1) ≥ 2k,

hence a, b ≤ l/2. Let F (u) ∈ {0, 1} be defined by F (u) = 1 iff u ≥ x. The application of F to

the elements of P gives a 0–1 sequence with a zeros. If we evaluate S on this input, at most εa

zeros end up outside FL by Definition 3.6. Using Lemma 2.4, the application of S to P sends at

most εa elements smaller than x to CL∪CR∪FR. By a similar argument, at most εb elements

greater than or equal to y end up in CL ∪ CR ∪ FL. In total, the number of elements outside

I(d− j, bi2−jc) sent from P to B is at most

(4) εa+ εb = εk ≤ εµδj−1b′(t, d− 1).

Putting (3) and (4) together, we see that at stage t+ 1, B contains at most

2µδj+1b′(t, d+ 1) + εµδj−1b′(t, d− 1) =

(
2Aδ

ν
+

ε

Aδν

)
µδjb′(t+ 1, d) ≤ µδjb′(t+ 1, d)

elements of strangeness j or more. �

Lemma 4.11 (in VNC 1
∗) If ξ(t) holds, d0(t+1) < d ≤ d1(t+1), d ≡ t+1 (mod 2), and i < 2d,

then S1(t+ 1, d, i) ≤ µδ b′(t+ 1, d).
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Proof: Let B be the ith bag on level d, P its parent, and B′ its sibling. Let i′ = i+ (−1)i be

the label of B′, and put I = I(d, i), I ′ = I(d, i′).

Strangers in B at stage t + 1 come from two sources: elements of strangeness at least 2 in

B’s children at stage t, of whom there are at most

(5) 2µδ2b′(t, d+ 1) = 2Aµδ2b′(t, d),

and elements of P at stage t sent downwards to B which are either strangers in P , or belong

to I ′.

The number of elements of the subtree below B′ at stage t which do not belong to I ′ is

d1−d∑
j=1
j odd

2j(i′+1)−1∑
ı̂=2ji′

Sj+1(t, d+ j, ı̂) ≤
d1−d∑
j=1
j odd

2jµδj+1Ajb′(t, d)

= 2Aµδ2b′(t, d)

(d1−d−1)/2∑
k=0

(2Aδ)k

≤ 2Aµδ2

1− 4A2δ2
b′(t, d) =: αb′(t, d).

This subtree thus contains at least 2s(t, d+ 1)− αb′(t, d) elements of I ′, hence P contains

x ≤ card I ′ − 2s(t, d+ 1) + αb′(t, d) ≤ 1 + αb′(t, d) +
n

2d
− 2s′(t, d+ 1)

= 1 + αb′(t, d) +
n

2d
(2A)d−1νt = 1 +

(
α+

2A

4A2 − 1

)
b′(t, d)

elements of I ′. P also contains

y + z ≤ µδ b′(t, d− 1) =
µδ

A
b′(t, d)

strangers, where y is the number of elements below min(I ∪ I ′), and z the number of elements

above max(I ∪ I ′).
Assume that i is even (i.e., I < I ′); the other case is symmetric. Remember that we apply

a 〈l, ε, ε0〉-separator (hence an ε0-halver) to P , and send the content of CL to B. Let c be the

element of P which splits it in half, i.e., there are 1
2b(t, d − 1) elements of P greater than c.

Define F (u) ∈ {0, 1} by F (u) = 1 iff u > c. By Definition 3.3 and Lemma 2.4, there are at most

(ε0/2)b(t, d − 1) elements of P greater than c which end up in FL ∪ CL. Furthermore, there

are at most max
{

0, x+ z − 1
2b(t, d− 1)

}
elements greater than max I below c, and y elements
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smaller than min I. The total number of elements outside I in CL is thus bounded by

y + max
{

0, x+ z − 1
2b(t,d− 1)

}
+
ε0

2
b(t, d− 1)

≤ 1 +

(
α+

2A

4A2 − 1
+
µδ

A

)
b′(t, d)− 1− ε0

2
b(t, d− 1)

≤ 5 +

(
α+

2A

4A2 − 1
+
µδ

A

)
b′(t, d)− 1− ε0

2
b′(t, d− 1)

= 5 +

(
α+

2A

4A2 − 1
+
µδ

A
− 1− ε0

2A

)
b′(t, d)

≤

(
α+

1

2A(4A2 − 1)
+
µδ

A
+
ε0

2A
+

5(
1− (4A2)−1

)
ACν

)
b′(t, d),

as b′(t, d− 1) ≥
(
1− (4A2)−1

)
Cν by the proof of Lemma 4.3. Combining this with (5), we see

that the number of strangers in B at stage t+ 1 is at most(
2Aµδ2

1− 4A2δ2
+

1

2A(4A2 − 1)
+
µδ

A
+
ε0

2A
+

5(
1− (4A2)−1

)
ACν

+ 2Aµδ2

)
b′(t, d)

≤ µδν b′(t, d) = µδ b′(t+ 1, d).

�

Theorem 4.12 Under Assumption 3.2, there exists an NC1
∗-function N(n), and a constant c

such that VNC 1
∗ proves the following:

For every n > 0, N(n) is a comparator network on n inputs of depth at most c log n. If ≤ is

a total ordering defined by an NC1
∗-formula, and 〈Xi | i < n〉 a sequence of sets in the domain

of ≤, then there exists a permutation π of n such that eval(N(n),≤, ~X) = 〈Xπ(i) | i < n〉, and

Xπ(i) ≤ Xπ(j) for every i ≤ j < n.

Proof: If n ≤ C/ν, we let N(n) be any sorting network on n inputs, otherwise we define N(n)

as the network described in Section 3. Clearly, N(n) is a comparator network on n inputs of

depth at most cm(p+ 1)D2dlog ne+O(1).

First, let ~X be a permutation of 〈0, . . . , n− 1〉, and ≤ the usual ordering. For every t < tm,

ξ(t) implies ξ(t+1) by Lemmas 4.9, 4.10, and 4.11, and ξ(0) holds trivially. Using induction, we

obtain ξ(tm). By condition (i), each of the 2d0 constant-size trees at stage tm contains elements

of its corresponding subinterval of [0, n), hence after the final application of sorting subnetworks

on the trees, the result is fully sorted.

In the general case, we pick a permutation π on n such that Xπ(i) ≤ Xπ(j) for each i ≤ j

by Lemma 2.6. Put xi = π−1(i), and F (i) = Xπ(i). Clearly F (~x) = ~X, and eval(N(n),≤, ~x) =

〈0, . . . , n − 1〉 by the first part of the proof, hence eval(N(n),≤, ~X) = 〈F (0), . . . , F (n − 1)〉 =

〈Xπ(i) | i < n〉 by Lemma 2.4. �
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5 Monotone sequent calculus

The monotone sequent calculus MLK is the fragment of the usual Gentzen propositional sequent

calculus LK where we allow only sequents consisting of monotone formulas, i.e., propositional

formulas built using the connectives {∧,∨,⊥,>}. The calculus thus uses structural rules, the

initial rule (axiom), the cut rule, and left and right introduction rules for ∧, ∨, ⊥, and >. Its

introduction was originally motivated by results in circuit complexity [156, 9] showing exponen-

tial lower bounds on the size of monotone circuits; the hope was that these can be transformed

to an exponential separation between MLK and LK . Atserias, Galesi, and Pudlák [14] proved

that this is not the case, as MLK quasipolynomially simulates LK :

Theorem 5.1 ([14]) A monotone sequent in n variables which has an LK -proof of size s has

also an MLK -proof of size sO(1)nO(logn) with sO(1) lines. �

It remains an open problem (called the Think Positively Conjecture by Atserias [12]) whether

we can improve this quasipolynomial simulation to a p-simulation, i.e., whether there exists a

polynomial-time algorithm transforming an LK -proof of a monotone sequent to an MLK -proof

of the same sequent. Atserias, Galesi, and Pudlák [14] suggested the following approach to

attack the problem, relying on a construction of suitable monotone formulas for the threshold

functions

θnm(x0, . . . , xn−1) = 1⇔ card{i | xi = 1} ≥ m.

Theorem 5.2 ([14]) Assume that there are monotone formulas Tnm(p0, . . . , pn−1) for m ≤ n+1

such that the formulas

Tn0 (p0, . . . , pn−1)(6)

¬Tnn+1(p0, . . . , pn−1)(7)

Tnm(p0, . . . , pk−1,⊥, pk+1, . . . , pn−1)→ Tnm+1(p0, . . . , pk−1,>, pk+1, . . . , pn−1)(8)

for m ≤ n, k < n have LK -proofs constructible in time nO(1). Then MLK p-simulates LK -

proofs of monotone sequents. �

A remarkable feature of Theorem 5.2 is that in the conclusion we construct MLK -proofs from

LK -proofs, nevertheless in the assumption we only require the existence of LK -proofs. This

significantly broadens the range of methods admissible for proving (6)–(8), and in particular,

we can use propositional translations of proofs in bounded arithmetic.

Recall that the sequent calculus LK is p-equivalent to Frege systems: these are proof systems

given by a sound and implicationally complete finite set of rules of the form ϕ1, . . . , ϕn/ϕ, such

that a Frege proof of ϕ is a sequence of formulas ending with ϕ where each formula is derived from

previous formulas by a substitution instance of a basic rule. As shown in §V.5, NC1
∗-formulas

provable in VNC 1
∗ translate to families of propositional tautologies with polynomial-time Frege

proofs. The translation works as follows. For each NC1
∗-formula ϕ(x1, . . . , xr, X1, . . . , Xs) (i.e.,

ϕ ∈ ΣB
0 (LVNC 1

∗
)) and natural numbers n1, . . . , nr,m1, . . . ,ms, we define a propositional formula

[[ϕ(~x, ~X)]]~n,~m(p1,0, . . . , p1,m1−1, . . . , ps,0, . . . , ps,ms−1).
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Let X1, . . . , Xs be sets such that |Xi| ≤ mi, and let X̃i denote the propositional assignment

which gives the value 1 to the variable pi,k iff k ∈ Xi. Then the translation satisfies

(∗) [[ϕ]]~n,~m(X̃1, . . . , X̃s) = 1⇔ N � ϕ(~n, ~X).

In particular, if (the universal closure of) ϕ is valid in N, then [[ϕ]]~n,~m is a sequence of tautologies.

The translation of compound formulas is defined by

[[ϕ ◦ ψ]]~n,~m = [[ϕ]]~n,~m ◦ [[ψ]]~n,~m, ◦ ∈ {∧,∨,¬},

[[∃x ≤ t ϕ]]~n,~m =
∨

k≤bt(~n,~m)

([[x ≤ t]]k,~n,~m ∧ [[ϕ]]k,~n,~m),

[[∀x ≤ t ϕ]]~n,~m =
∧

k≤bt(~n,~m)

([[x ≤ t]]k,~n,~m → [[ϕ]]k,~n,~m),

where bt is a suitable L0-term such that t(~n, ~X) ≤ bt(~n, ~m) whenever |Xi| ≤ mi for each i. The

definition of [[ϕ]] for atomic formulas ϕ is more tedious and involves translation of terms as well

as formulas, but it proceeds in a more-or-less expected way, we refer the reader to §V.5 for

details.

Theorem 5.3 (Thm. V.5.2) If ϕ is an NC1
∗-formula such thatVNC 1

∗ ` ϕ, then the tautologies

[[ϕ]]~n,~m have Frege proofs constructible in time poly(~n, ~m). �

Sorting a 0–1 input amounts to counting the number of ones, hence the AKS network eval-

uated on a 0–1 input gives monotone circuits for threshold functions of logarithmic depth,

which can be unwinded into polynomial-size formulas. (We mention here that there is also an

elegant simple construction of monotone polynomial-size formulas for threshold functions by

Valiant [175]. Unfortunately, this construction is probabilistic, hence it does not give concrete

formulas with any hope of being formalizable by short Frege proofs.) Since fundamental proper-

ties of the network are provable inVNC 1
∗, we can use Theorem 5.3 to construct polynomial-time

Frege proofs of (6)–(8). We proceed with the details.

Let N(n) be the NC1
∗-function computing a log-depth sorting network as in Theorem 4.12.

Let ϕ(n, e, f, h, l) be an NC1
∗-formula expressing that there exists a comparator in N(n) whose

input edges are e, f , and whose higher and lower output edges are h and l, respectively. Using

Lemma 2.3, there is an NC1
∗-formula ψ(n, e,X) expressing that edge e in N(n) evaluates to 1 on

a 0–1 input X. Finally, let χ(n, i,X) denote the NC1
∗-formula i ∈ eval(N(n),≤, X). We define

a monotone propositional formula An,e for each edge e of N(n) as follows. If e is the outgoing

edge of the ith input node, we put

An,e = pi.

If ϕ(n, e, f, h, l), we define

An,h = An,e ∨An,f ,
An,l = An,e ∧An,f .
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Notice that the depth of An,e is the depth of e in N(n), which is bounded by O(log n), thus

An,e has polynomial size. If 0 < m ≤ n, and e is the incoming edge of the (n −m)th output

node of N(n), we put

Tnm = An,e.

We also define

Tnn+1 = ⊥,
Tn0 = >.

Lemma 5.4 There are polynomial-time Frege proofs of the formulas

Tnm ↔ [[m ≤ cardX]]m,n.

Proof: As VNC 1
∗ proves the formula

α = ϕ(n, e, f, h, l)→ [(ψ(n, h,X)↔ ψ(n, e,X) ∨ ψ(n, f,X))

∧ (ψ(n, l,X)↔ ψ(n, e,X) ∧ ψ(n, f,X))],

its translation [[α]]n,e,f,h,l,n has polynomial-time Frege proofs. If e, f, h, l are the respective input

and output edges of a comparator in N(n), then [[ϕ]]n,e,f,h,l is a true Boolean sentence, hence it

has a polynomial-time Frege proof. We obtain proofs of the formulas

[[ψ]]n,h,n ↔ [[ψ]]n,e,n ∨ [[ψ]]n,f,n,

[[ψ]]n,l,n ↔ [[ψ]]n,e,n ∧ [[ψ]]n,f,n.

If e is the outgoing edge of the ith input node in N(n), and f is the incoming edge of the ith

output node, we can similarly construct proofs of

[[ψ]]n,e,n ↔ pi,

[[ψ]]n,f,n ↔ [[χ(n, i,X)]]n,i,n.

Then we can construct proofs of

An,e ↔ [[ψ]]n,e,n

by induction on the depth of e, and we derive

Tnm ↔ [[χ]]n,n−m,n

for 0 < m ≤ n. By Theorem 4.12 and the proof of Lemma 2.6, VNC 1
∗ proves

|X| ≤ n→ (χ(n, i,X)↔ cardX ≥ n− i).

As there are short proofs of [[|X| ≤ n]]n,n, we obtain short proofs of

[[χ]]n,n−m,n ↔ [[cardX ≥ m]]m,n,
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and we conclude

Tnm ↔ [[cardX ≥ m]]m,n

for 0 < m ≤ n. The cases m = 0 and m = n+ 1 follow from translation of the formulas

cardX ≥ 0,

|X| ≤ n→ ¬(cardX ≥ n+ 1),

provable in VNC 1
∗. �

Theorem 5.5 Under Assumption 3.2, the monotone sequent calculus MLK p-simulates LK -

proofs of monotone sequents.

Proof: In view of Theorem 5.2, it suffices to construct polynomial-time Frege proofs of (6)–(8)

for the formulas Tnm defined above. (6) and (7) are trivial. VNC 1
∗ proves

∀u < n (u 6= k ∧X(u)→ Y (u)) ∧ ¬X(k) ∧ Y (k) ∧ |Y | ≤ n
→ (m ≤ cardX → m+ 1 ≤ cardY ),

thus its (slightly simplified) propositional translation∧
u<n
u6=k

(pu → qu) ∧ ¬pk ∧ qk → ([[u ≤ cardX]]m,n(~p)→ [[u ≤ cardX]]m+1,n(~q))

for n ∈ ω, m ≤ n, and k < n has poly-time constructible Frege proofs. We substitute ⊥ for pk,

> for qk, and pu for qu, u 6= k, in the proof. We obtain

[[u ≤ cardX]]m,n(p0, . . . , pk−1,⊥, pk+1, . . . , pn−1)

→ [[u ≤ cardX]]m+1,n(p0, . . . , pk−1,>, pk+1, . . . , pn−1),

from which we derive

Tnm(p0, . . . , pk−1,⊥, pk+1, . . . , pn−1)→ Tnm+1(p0, . . . , pk−1,>, pk+1, . . . , pn−1)

using Lemma 5.4. �

6 Open problems

The main problems we left open were already mentioned:

Problem 6.1 Is Assumption 3.2 valid?

Problem 6.2 Does MLK p-simulate LK on monotone sequents?

We also touched a problem of a more computational nature: as mentioned in the Introduc-

tion, the reason for using VNC 1
∗ instead of VNC 1 is that we do not know whether the AKS

network is sufficiently uniform. In the most important 0–1 case, we can formulate it as the

following problem in circuit complexity.
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Definition 6.3 A language L ⊆ {0, 1}∗ belongs to uniform monotone NC1 (mNC1 for short) if

it satisfies any of the following conditions, which can be shown equivalent by a straightforward

adaptation of the arguments by Ruzzo [162]:

(i) L is computable by a log-time alternating Turing machine whose input queries are re-

stricted so that they force the machine to halt with the same result as the queried input

bit.

(ii) L is computable by a UE-uniform sequence of log-depth bounded fan-in monotone circuits.

(iii) L is computable by a UE∗-uniform sequence of log-depth bounded fan-in monotone circuits.

(iv) L is computable by a sequence of log-depth monotone formulas, ALOGTIME-uniform in

the usual infix notation.

Problem 6.4 Is Majority in mNC1?

As is, the AKS network only seems to provide UD∗-uniform circuits for Majority (where UD∗

is to UD as UE∗ is to UE).
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Chapter VII

Root finding with threshold circuits

Abstract

We show that for any constant d, complex roots of degree d univariate rational (or Gaus-

sian rational) polynomials—given by a list of coefficients in binary—can be computed to a

given accuracy by a uniform TC0 algorithm (a uniform family of constant-depth polynomial-

size threshold circuits). The basic idea is to compute the inverse function of the polynomial

by a power series. We also discuss an application to the theory VTC 0 of bounded arithmetic.

1 Introduction

The complexity class TC0 was originally defined by Hajnal, Maass, Pudlák, Szegedy, and

Turán [87] in the nonuniform setting, as the class of problems recognizable by a family of

polynomial-size constant-depth circuits with majority gates. It was implicitly studied before

by Parberry and Schnitger [141], who consider various models of computation using thresholds

(threshold circuits, Boltzmann machines, threshold RAM, threshold Turing machines). The im-

portance of the class follows already from the work of Chandra, Stockmayer, and Vishkin [50],

who show (in today’s terminology) the TC0-completeness of several basic problems (integer

multiplication, iterated addition, sorting) under AC0 reductions. Barrington, Immerman, and

Straubing [19] establish that there is a robust notion of fully uniform TC0. (We will use TC0

to denote this uniform TC0, unless stated otherwise.)

We can regard TC0 as the natural complexity class of elementary arithmetical operations:

integer multiplication is TC0-complete, whereas addition, subtraction, and ordering are in

AC0 ⊆ TC0. The exact complexity of division took some time to settle. Wallace [177] con-

structed division circuits of depth O((log n)2) and bounded fan-in (i.e., NC2). Reif [158] im-

proved this bound to O(log n log logn). Beame, Cook, and Hoover [25] proved that division,

iterated multiplication, and exponentiation (with exponent given in unary) are TC0-reducible

to each other, and constructed P-uniform TC0 circuits for these problems. Chiu, Davida, and

Litow [52] exhibited logspace-uniform TC0 circuits for division, showing in particular that di-

vision is computable in L. Finally, Hesse, Allender, and Barrington [90] proved that division

(and iterated multiplication) is in uniform TC0.

Using these results, other related problems can be shown to be computable in TC0, for

191
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example polynomial division, iterated multiplication, and interpolation. In particular, using

iterated addition and multiplication of rationals, it is possible to approximate in TC0 functions

presented by sufficiently nice power series, such as log, exp, x1/k, and trigonometric functions,

see e.g. Reif [158], Reif and Tate [159], Maciel and Thérien [126], and Hesse, Allender, and

Barrington [90].

Numerical computation of roots of polynomials is one of the oldest problems in mathematics,

and countless algorithms have been devised to solve it, both sequential and parallel. The

most popular methods are based on iterative techniques that successively derive closer and

closer approximations to a root (or, sometimes, to all the roots simultaneously) starting from a

suitable initial approximation. Apart from the prototypical Newton–Raphson iteration, there

are for instance Laguerre’s method [151, §9.5], Brent’s method [151, §10.3], the Durand–Kerner

method [75, 112], the Jenkins–Traub algorithm [92], and many others. One can also reduce root

finding to matrix eigenvalue computation, for which there are iterative methods such as the QR

algorithm [84]. Another class of root-finding algorithms are divide-and-conquer approaches: the

basic idea is to recursively factorize the polynomial by identifying a suitable contour (typically,

a circle) splitting the set of roots roughly in half, and recovering coefficients of the factor whose

roots fall inside the contour from the residue theorem by numerical integration. Algorithms of

this kind include Pan [137], Ben-Or, Feig, Kozen, and Tiwari [26], Neff [130], Neff and Reif [131],

and Pan [138], see Pan [139] for an overview. These algorithms place root finding in NC: for

example, the algorithm of [138] can find n-bit approximations to all roots of a polynomial

of degree d ≤ n in time O((log n)2(log d)3) using O(nd2(log log n)/(log d)2) processors on an

EREW PRAM. (More specifically, Allender [7] mentions that root finding is known to be in the

#L hierarchy, but not known to be in GapL.)

The purpose of this paper is to demonstrate that in the case of constant-degree polynomi-

als, we can push the complexity of root finding down to uniform TC0 (i.e., constant time on

polynomially many processors on a TRAM, in terms of parallel complexity), as in the case of

elementary arithmetical operations. (This is clearly optimal: already locating the unique root

of a linear polynomial amounts to division, which is TC0-hard.) As a corollary, the binary ex-

pansion of any algebraic constant can be computed in uniform TC0 when given the bit position

in unary. Our primary interest is theoretical, we seek to investigate the power of the complex-

ity class TC0; we do not expect our algorithm to be competitive with established methods in

practice, and we did not make any effort to optimize parameters of the algorithm.

The basic idea of the algorithm is to express the inverse function of the polynomial by a

power series, whose partial sums can be computed in TC0 using the results of Hesse, Allender,

and Barrington [90]. We need to ensure that coefficients of the series are TC0-computable, we

need bounds on the radius of convergence and convergence rate of the series, and we need to find

a point in whose image to put the centre of the series so that the disk of convergence includes

the origin. Doing the latter directly is in fact not much easier than approximating the root in

the first place, so we instead construct a suitable polynomial-size set of sample points, and we

invert the polynomial at each one of them in parallel.

We formulated our main result in terms of computational complexity, but our original moti-

vation comes from logic (proof complexity). The bounded arithmetical theory VTC 0 (see Cook
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and Nguyen [68]), whose provably total computable functions are the TC0 functions, can define

addition, multiplication, and ordering on binary integers, and it proves that these operations

obey the basic identities making it a discretely ordered ring. The question is which other proper-

ties of the basic arithmetical operations are provable in the theory, and in particular, whether it

can prove induction (on binary integers) for some class of formulas. Now, it follows easily from

known algebraic characterizations of induction for open formulas in the language of ordered

rings (IOpen, see Shepherdson [164]) and from the witnessing theorem for VTC 0 that VTC 0

proves IOpen if and only if for each d there is a TC0 root-finding algorithm for degree d poly-

nomials whose soundness is provable in VTC 0. Our result thus establishes the computational

prerequisites for proving open induction in VTC 0, leaving aside the problem of formalizing the

algorithm in the theory. Since the soundness of the algorithm can be expressed as a universal

sentence, we can also reformulate this result as follows: the theory VTC 0 + Th∀ΣB0
(N) proves

IOpen.

The paper is organized as follows. In Section 2 we provide some background in the relevant

parts of complexity theory and complex analysis. Section 3 contains material on inverting

polynomials with power series. Section 4 presents our main result, a TC0 root-finding algorithm.

Finally, in Section 5 we discuss the connection to bounded arithmetic.

2 Preliminaries

A language L is in nonuniform TC0 if there is a sequence of circuits Cn : {0, 1}n → {0, 1}
consisting of unbounded fan-in majority and negation gates such that Cn computes the charac-

teristic function of L on strings of length n, and Cn has size at most nc and depth c for some

constant c.

L is in (uniform) TC0, if the sequence {Cn : n ∈ ω} is additionally DLOGTIME-uniform

(UD-uniform in the terminology of Ruzzo [162]): i.e., we can enumerate the gates in the circuit

by numbers i < nO(1) in such a way that one can check the type of gate i and whether gate i

is an input of gate j by a deterministic Turing machine in time O(log n), given n, i, j in binary.

There are other equivalent characterizations of TC0. For one, it coincides with languages

recognizable by a threshold Turing machine [141] in time O(log n) with O(1) thresholds [6].

Another important characterization is in terms of descriptive complexity. We can represent a

string x ∈ {0, 1}n by the first-order structure 〈{0, . . . , n − 1}, <,bit, X〉, where X is a unary

predicate encoding the bits of x. Then a language is in TC0 iff its corresponding class of

structures is definable by a sentence of FOM (first-order logic with majority quantifiers). We

refer the reader to [19] for more background on uniformity of TC0.

In some cases it may be more convenient to consider languages in a non-binary alphabet Σ.

The definition of TC0 can be adapted by adjusting the input alphabet of a threshold Turing

machine, or by considering more predicates in the descriptive complexity setting. In the original

definition using threshold circuits, the same can be accomplished by encoding each symbol of

Σ with a binary substring of fixed length. We can also define TC0 predicates with more than

one input in the obvious way.

A function f : {0, 1}∗ → {0, 1}∗ is computable in TC0 if the length of its output is polyno-
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mially bounded in the length of its input, and its bitgraph is a TC0 predicate. (The bitgraph

of f is a binary predicate b(x, i) which holds iff the ith bit of f(x) is 1.) In terms of the original

definition, this amounts to allowing circuits Cn : {0, 1}n → {0, 1}m(n), where m(n) = nO(1). TC0

functions are closed under composition, and under “parallel execution”: if f is a TC0 function,

its aggregate function g(〈x0, . . . , xm−1〉) = 〈f(x0), . . . , f(xm−1)〉 is also TC0. We note in this

regard that TC0 functions can do basic processing of lists

x0, x1, . . . , xm−1

where “,” is a separator character. Using the fact that TC0 can count commas (and other

symbols), we can for instance extract the ith element from the list, convert the list to and from

a representation where each element is padded to some fixed length with blanks, or sort the list

according to a given TC0 comparison predicate.

We will refrain from presenting TC0 functions in one of the formalisms suggested by the

definitions above: we will give informal algorithms, generally consisting of a constant number of

simple steps or TC0 building blocks, sometimes forking into polynomially many parallel threads.

The reader should have no difficulty convincing herself that our algorithms are indeed in TC0.

We will work with numbers of various kinds. Integers will be represented in binary as usual,

unless stated otherwise. As we already mentioned in the introduction, elementary arithmetical

operations on integers are TC0 functions: this includes addition, subtraction, ordering, multi-

plication, division with remainder, exponentiation (with unary exponents), iterated addition,

iterated multiplication, and square root approximation. Here, iterated addition is the function

〈x0, . . . , xm−1〉 7→
∑

i<m xi, and similarly for multiplication. Notice that using iterated mul-

tiplication, we can also compute factorials and binomial or multinomial coefficients of unary

arguments. Base conversion is also in TC0.

Rational numbers will be represented as pairs of integers, indicating fractions. We cannot

assume fractions to be reduced, since integer gcd is not known to be TC0-computable. Using

integer division, we can convert a fraction to its binary expansion with a given accuracy (the

opposite conversion is trivial). Rational arithmetic is reducible to integer arithmetic in the

obvious way, hence rational addition, subtraction, ordering, multiplication, division, exponen-

tiation (with unary integer exponents), iterated addition, iterated multiplication, and square

root approximation are in TC0.

In lieu of complex numbers, we will compute with Gaussian rationals (elements of the field

Q(i)), represented as pairs of rationals a+ib. By reduction to rational arithmetic, we can see that

addition, subtraction, complex conjugation, norm square, norm approximation, multiplication,

division, and iterated addition of Gaussian rationals are in TC0. Using the binomial theorem,

exponentiation with unary integer exponents is also in TC0. (In fact, iterated multiplication of

Gaussian rationals is in TC0 using conversion to polar coordinates, but we will not need this.)

We will need some tools from complex analysis. We refer the reader to Ahlfors [2] or

Conway [59] for background, however, we review here some basic facts to fix the notation.

A function f : U → C, where U ⊆ C is open, is holomorphic (or analytic) in U if f ′(a) =

limz→a(f(z) − f(a))/(z − a) exists for every a ∈ U . The set of all functions holomorphic in U

is denoted H(U). Let B(a, r) := {z : |z − a| < r} and B(a, r) := {z : |z − a| ≤ r}. If f is
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holomorphic in the open disk B(a,R), it can be expressed by a power series

f(z) =
∞∑
n=0

cn(z − a)n

on B(a,R). More generally, if f is holomorphic in the annulus A = B(a,R)rB(a, r), 0 ≤ r <
R ≤ ∞, it can be written in A as a Laurent series

f(z) =
+∞∑

n=−∞
cn(z − a)n.

We denote the coefficients of the series by [(z − a)n]f := cn. (Other variables may be used

instead of z when convenient.) The residue of f at a is Res(f, a) := [(z − a)−1]f . When a = 0,

we write just [zn]f and Res(f), respectively. The coefficients of a Laurent series are given by

Cauchy’s integral formula:

[(z − a)n]f =
1

2πi

∫
γ

f(z)

(z − a)n+1
dz,

where γ is any closed curve in A whose index with respect to a is 1 (such as the circle γ(t) =

a+%e2πit, r < % < R). The identity theorem states that if f, g are holomorphic in a region (i.e.,

connected open set) U and coincide on a set X ⊆ U which has a limit point in U , then f = g.

The open mapping theorem states that a nonconstant function f holomorphic in a region is an

open mapping (i.e., maps open sets to open sets).

If X ⊆ C and a ∈ C, we put dist(a,X) = inf{|z − a| : z ∈ X}.
We will also need some easy facts on zeros of polynomials. Let f ∈ C[x] be a degree d

polynomial, and write f(x) =
∑d

j=0 ajx
j . Cauchy’s bound [180, L. 6.2.7] states that every zero

α of f satisfies
|a0|

|a0|+ max
0<j≤d

|aj |
≤ |α| ≤ 1 + max

j<d

|aj |
|ad|

.

Let f, g ∈ (Q(i))[x] be two polynomials of degrees d, e (resp.), and assume f(α) = g(β) = 0,

α 6= β. If f, g ∈ (Z[i])[x], we have

(1) |α− β| ≥ 1

(2d+1‖f‖∞)e‖g‖d2
,

where ‖f‖p denotes the Lp-norm of the vector of coefficients of f [180, §6.8]. In general, we can

apply (1) to the polynomials rf and sg, where r is the product of all denominators appearing

among the coefficients of f , and similarly for s. If we represent f and g by the lists of their

coefficients, which are in turn represented by quadruples of binary integers as detailed above,

we obtain easily the following root separation bound:

Lemma 2.1 For each j = 0, 1, let fj ∈ (Q(i))[x] have degree dj and total bit size nj, and

assume fj(αj) = 0. If α0 6= α1, then

|α0 − α1| ≥ 2−(d1n0+d0n1) ≥ 2−n0n1 . �



196

3 Inverting polynomials

As already mentioned in the introduction, the main strategy of our algorithm will be to approx-

imate a power series computing the inverse function of the given polynomial f . In this section,

we establish the properties of such series needed to make the algorithm work.

The basic fact we rely on is that holomorphic functions with nonvanishing derivative are

locally invertible: i.e., if f ∈ H(U) and a ∈ U is such that f ′(a) 6= 0, there exist open

neighbourhoods a ∈ U0 ⊆ U and f(a) ∈ V0 such that f is a homeomorphism of U0 onto

V0, and the inverse function g = (f �U0)−1 is holomorphic in V0. In particular, g is computable

by a power series in a neighbourhood of f(a).

Notice that local inverses of holomorphic functions are automatically two-sided: if f ∈ H(U),

g ∈ H(V ), a ∈ U , b ∈ V , g(b) = a, and f(g(z)) = z in a neighbourhood of b, then g(f(z)) = z

in a neighbourhood of a.

The coefficients of the power series of an inverse of a holomorphic function are given by the

Lagrange inversion formula [58, §3.8, Thm. A]:

Fact 3.1 Let f ∈ H(U), g ∈ H(V ), f ◦ g = idV , a = g(b) ∈ U , b = f(a) ∈ V , n > 0. Then

[(w − b)n]g(w) =
1

n
Res

(
1

(f(z)− b)n
, a

)
. �

We can make the formula even more explicit as follows. First, the composition of two power

series is given by Faà di Bruno’s formula [58, §3.4, Thm. A], which we formulate only for

a = b = 0 for simplicity:

Fact 3.2 Let f ∈ H(U), g ∈ H(V ), g(0) = 0 ∈ U , f(0) = 0 ∈ V , n ≥ 0. Then

[zn](g ◦ f) =
∑

∑∞
j=1 jmj=n

( ∑
jmj

m1,m2, . . .

)
[w

∑
j mj ]g

∞∏
j=1

(
[zj ]f

)mj . �

Note that here and below, the outer sum is finite, and the product has only finitely many

terms different from 1, hence the right-hand side is well-defined without extra assumptions on

convergence. We can now expand the residue in Fact 3.1 to obtain the following version of

Lagrange inversion formula, which only refers to the coefficients of f [58, §3.8, Thm. E]:

Proposition 3.3 Let f ∈ H(U), g ∈ H(V ), f ◦ g = idV , a = g(b) ∈ U , b = f(a) ∈ V . Then

[(w − b)0]g = a, and for n > 0,

[(w − b)n]g =
1

n! [z − a]f

∑
∑∞
j=2(j−1)mj=n−1

(∑
j jmj

)
!
∞∏
j=2

1

mj !

(
− [(z − a)j ]f

([z − a]f)j

)mj
.

Proof: Note that f ′(a) 6= 0. Put f1(z) = f(a + z/f ′(a)) − b and g1(w) = f ′(a)(g(b + w) − a),

so that f1(0) = 0 = g1(0), f1 ◦ g1 = id on a neighbourhood of 0, and f ′1(0) = 1. Write
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f1(z) = z(1− h(z)), where h is holomorphic in a neighbourhood of 0, and h(0) = 0. Then

[wn]g1 =
1

n
[z−1]

1

fn1
=

1

n
[zn−1]

1

(1− h)n

=
1

n

∑
∑∞
j=1 jmj=n−1

(
∑

jmj)!

m1!m2! · · ·
(
∑

jmj + n− 1)!

(
∑

jmj)! (n− 1)!

∞∏
j=1

(
[zj ]h

)mj
=

1

n!

∑
∑∞
j=1 jmj=n−1

(
∑

j(j + 1)mj)!

m1!m2! · · ·

∞∏
j=1

(
−[zj+1]f1

)mj
=

1

n!

∑
∑∞
k=2(k−1)mk=n−1

(
∑

k kmk)!

∞∏
k=2

(
−[zk]f1

)mk
mk!

using Facts 3.1 and 3.2, and the expansion [wr](1 − w)−n =
(
r+n−1
n−1

)
. The result follows by

noting that for any k, n > 0, [zk]f1 = ([(z − a)k]f)/(f ′(a))k, [wn]g1 = f ′(a)[(w − b)n]g, and

f ′(a) = [z − a]f . �

Let d be a constant. If f in Proposition 3.3 is a polynomial of degree d, then the product is

nonzero only when mj = 0 for every j > d, hence it suffices to enumerate m2, . . . ,md. It follows

easily that the outer sum has polynomially many (namely, O(nd)) terms, and we can compute

[(w − b)n]g in uniform TC0 given a, b, and the coefficients of f in binary, and n in unary.

Apart from a description of the coefficients, we also need bounds on the radius of conver-

gence of the inverse series, and on its rate of convergence (i.e., on the norm of its coefficients).

Generally speaking, the radius of convergence of a power series is the distance to the nearest

singularity. Since a polynomial f is an entire proper map, its inverse cannot escape to infinity

or hit a point where f is undefined, thus the only singularities that can happen are branch

points. These occur at zeros of f ′. This suggests that the main parameter governing the ra-

dius of convergence and other properties of the inverse should be the distance of a to the set

Cf = {z ∈ C : f ′(z) = 0} of critical points of f .

Lemma 3.4 Let f ∈ C[x] be a degree d polynomial with no roots in B(a,R), R > 0, and let

µ > 0. Then |f(z)− f(a)| <
(
(1 + µ)d − 1

)
|f(a)| for all z ∈ B(a, µR).

Proof: Write f(z) = c
∏d
j=1(z − αj). We have

f(z)

f(a)
=

d∏
j=1

(z − a) + (a− αj)
a− αj

=
∑

I⊆{1,...,d}

∏
j∈I

z − a
a− αj

,

hence ∣∣∣∣f(z)

f(a)
− 1

∣∣∣∣ =
∣∣∣∑
I 6=∅

∏
j∈I

z − a
a− αj

∣∣∣ ≤∑
I 6=∅

∏
j∈I

|z − a|
R

< (1 + µ)d − 1. �

Proposition 3.5 Let f ∈ C[x] have degree d > 1, f(a) = b, and 0 < R ≤ dist(a,Cf ). Let

g(w) = a+
∞∑
n=1

cn(w − b)n
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satisfy f ◦ g = idB(b,%), where % > 0 is the radius of convergence of g. Put

µ =
d−1
√

2− 1 ≥ ln 2

d− 1
, ν =

2(d− 1)µ− 1

d
≥ ln 4− 1

d
,

λδ =
d
√

1 + δdν − 1 ≥ δ ln ln 4

d
, %0 = νR |f ′(a)|

for 0 < δ ≤ 1 (the inequalities are established below). Then:

(i) f is injective on B(a, µR).

(ii) % ≥ %0.

(iii) g[B(b, %)] ⊇ B(a, λ1R), and more generally, g[B(b, δ%0)] ⊇ B(a, λδR) for each δ ∈ (0, 1].

(iv) |cn| ≤ µR/n%n0 .

Proof: Notice that ex − 1 ≥ x for every x ∈ R, hence d−1
√

2 − 1 = exp((ln 2)/(d − 1)) − 1 ≥
(ln 2)/(d − 1); ν ≥ (ln 4 − 1)/d immediately follows. Similarly, λδ ≥ ln(1 + δ(ln 4 − 1))/d. We

have ln(1 + δ(ln 4− 1)) ≥ δ ln ln 4 for δ ∈ [0, 1] as ln is concave.

(i): Let u, v ∈ B(a, µR), u 6= v. We have

f(v)− f(u) =

∫ v

u
f ′(z) dz = (v − u)

(
f ′(a) +

∫ 1

0
f ′
(
(1− t)u+ tv

)
− f ′(a) dt

)
.

Since |f ′((1− t)u+ tv)− f ′(a)| < |f ′(a)| for all t ∈ (0, 1) by Lemma 3.4, we obtain∣∣∣∣∫ 1

0
f ′
(
(1− t)u+ tv

)
− f ′(a) dt

∣∣∣∣ ≤ ∫ 1

0

∣∣f ′((1− t)u+ tv
)
− f ′(a)

∣∣ dt < |f ′(a)|,

thus f(u) 6= f(v).

(ii): Let U = B(a, µR). Since f is a biholomorphism of U and f [U ], % ≥ dist(b,C r f [U ]).

Since f [U ] is open, there exists w /∈ f [U ] such that |w − b| = dist(b,C r f [U ]). Let zn ∈ U be

such that limn f(zn) = w. By compactness, {zn} has a convergent subsequence; without loss

of generality, there exists z = limn zn. Then f(z) = w by continuity, hence z /∈ U . However,

z ∈ U , hence z is in the topological boundary ∂U = U r intU = U r U . We have thus verified

that % ≥ dist(b, f [∂U ]).

Let u = a+ µReiθ ∈ ∂U . We have

f(u) = b+

∫ u

a
f ′(z) dz = b+Reiθ

(
µf ′(a) +

∫ µ

0
f ′(a+ teiθR)− f ′(a) dt

)
.

By Lemma 3.4, |f ′(a+ teiθR)− f ′(a)| ≤
(
(1 + t)d−1 − 1

)
|f ′(a)|, hence∣∣∣∣∫ µ

0
f ′(a+ teiθR)− f ′(a) dt

∣∣∣∣ ≤ |f ′(a)|
∫ µ

0
(1 + t)d−1 − 1 dt = |f ′(a)|

(
(1 + µ)d − 1

d
− µ

)
= |f ′(a)| 2(1 + µ)− 1− dµ

d
= |f ′(a)| 1− (d− 2)µ

d
.
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Thus,

|f(u)− b| ≥ R |f ′(a)|
(
µ− 1− (d− 2)µ

d

)
= νR |f ′(a)|.

(iii): The proof above shows that g[B(b, %0)] ⊆ U . As f is injective on U ⊇ B(a, λδR), it

suffices to show that f [B(a, λδR)] ⊆ B(b, δ%0). Let thus u = a+ λReiθ, λ < λδ. As above,

f(u) = b+Reiθ
(
λf ′(a) +

∫ λ

0
f ′(a+ teiθR)− f ′(a) dt

)
and ∣∣∣∣∫ λ

0
f ′(a+ teiθR)− f ′(a) dt

∣∣∣∣ ≤ |f ′(a)|
(

(1 + λ)d − 1

d
− λ

)
,

hence

|f(u)− b| ≤ R |f ′(a)|(1 + λ)d − 1

d
< R |f ′(a)|(1 + λδ)

d − 1

d
= δ%0.

(iv): Let γ(t) = a+ µRe2πit. By Fact 3.1 and Cauchy’s integral formula,

cn =
1

2πin

∫
γ

dz

(f(z)− b)n
=
µR

n

∫ 1

0

e2πit dt

(f(γ(t))− b)n
.

The proof of (ii) shows |f(γ(t))− b| ≥ %0, hence

|cn| ≤
µR

n

∫ 1

0

dt

|f(γ(t))− b|n
≤ µR

n%n0
. �

Example 3.6 Let f(z) = zd, a = b = 1. Then f ′ = dzd−1, Cf = {0}, R = 1, f ′(a) = d.

It is not hard to see that f is injective on B(1, r) iff no two points of B(1, r) have arguments

differing by 2π/d iff r ≤ sin(π/d) = π/d + O(d−3). Since g must hit a root of f ′ at the

circle of convergence, we must have % = 1 = (1/d)Rf ′(a). Finally, |(1 + z)d − 1| is maximized

on {z : |z| = r} for z positive real, thus B(1, λR) ⊆ g[B(1, δ%)] iff (1 + λ)d − 1 ≤ δ iff

λ ≤ (1 + δ)1/d − 1 = ln(1 + δ)/d+ O(d−2). Thus, in Proposition 3.5, µ, ν, and λδ are optimal

up to a linear factor.

Remark 3.7 We prefer to give a simple direct proof of Proposition 3.5 for the benefit of the

reader. Nevertheless, we could have assembled the bounds (with somewhat different constants)

from several more sophisticated results in the literature. The Grace–Heawood theorem (or

rather its corollary, originally due to Alexander, Kakeya, and Szegő; see [128, Thm. 23,2])

states that (i) holds with µ = sin(π/d) (which is tight in view of the zd example). Then the

Koebe 1/4-theorem [60, Thm. 14.7.8] implies (ii) with ν = µ/4, and one more application of

the theorem yields (iii) with λδ = νδ/4.
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4 Root finding in TC0

We start with the core part of our root-finding algorithm. While it is conceptually simple, its

output is rather crude, so we will have to combine it with some pre- and postprocessing to

obtain the desired result (Theorem 4.5).

Theorem 4.1 Let d be a constant. There exists a uniform TC0 function which, given the

coefficients of a degree d polynomial f ∈ (Q(i))[x] in binary and t in unary, computes a list

{zj : j < s} ⊆ Q(i) such that every complex root of f is within distance 2−t of some zj.

Proof: If d = 1, it suffices to divide the coefficients of f . Assume d ≥ 2. Let µ, ν, λ = λ1/2 be

as in Proposition 3.5 (more precisely, we should use their fixed rational approximations; we will

ignore this for simplicity). Let A = 1 +λ/5, p = d5π/λe, and ξ = e2πi/p (approximately, again).

Consider the TC0 algorithm given by the following description:

(i) Input: f =
∑

j≤d fjz
j with fj ∈ Q(i), fd 6= 0, and t > 0 in unary.

(ii) Put ε = 2−t. Compute recursively a list C = {αj : j < s} including ε/4-approximations

of all roots of f ′.

(iii) Output (in parallel) each αj .

(iv) Put c = 2 + maxj<d|fj/fd| and kmax = dlog(2cε−1)/ logAe.

(v) For every j < s, k < kmax, and q < p, do the following in parallel.

(vi) Let a = αj + εAkξq, b = f(a), R = 1
2 |a− αj |, N = dlog2(µRε−1)e.

(vii) For each h ≤ d, let f̃h =
∑d

u=h

(
u
h

)
fua

u−h.

(viii) Compute and output

zj,k,q = a+
∑

m2,...,md∑
h(h−1)mh<N

(2m2 + · · ·+ dmd)! (−f̃2)m2 · · · (−f̃d)md(−b)1+m2+···+(d−1)md

m2! · · ·md! (1 +m2 + · · ·+ (d− 1)md)! f̃
1+2m2+···+dmd
1

.

Let f(α) = 0, we have to show that one of the numbers output by the algorithm is ε-close

to α. If |α− αj | < ε for some j, we are done by step (iii). We can thus assume dist(α,C) ≥ ε,
which implies dist(α,Cf ) ≥ 3ε/4. Assume that αj is an ε/4-approximation of the root α̃j of

f ′ nearest to α. Since all roots of f or f ′ have modulus bounded by c− 1 by Cauchy’s bound,

we have ε ≤ |α − αj | < 2c, thus there exists k < kmax such that εAk ≤ |α − αj | < εAk+1. Let

q < p be such that the argument of α − αj differs from 2πq/p by at most π/p, and consider

steps (v)–(viii) for this particular choice of j, k, q (cf. Fig. 4.1). We have

|α− a| ≤
(
π

p
+ 1− 1

A

)
|α− αj | ≤

2λ

5
|α− αj | <

1

5
|α− αj |.

Notice that

dist(α,Cf ) = |α− α̃j | ≥ |α− αj | −
ε

4
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Figure 4.1: The spiderweb.

by the choice of α̃j and αj , hence

dist(a,Cf ) ≥ dist(α,Cf )− |a− α| ≥ |α− αj | −
ε

4
− 1

5
|α− αj | ≥

1

2
|α− αj | ≥ R.

Since

|a− αj | ≥ |α− αj | − |a− α| >
4

5
|α− αj |,

we also have

|a− α| < 5

4

2λ

5
|a− αj | = λR.

Let

g(w) = a+
∞∑
n=1

cn(w − b)n

be an inverse of f in a neighbourhood of b, and let % be its radius of convergence. By Propo-

sition 3.5, |−b| = |f(α) − b| < %0/2, where %0 = νR |f ′(a)| ≤ %. Thus, g(f(α)) = g(0) = α.

Since
∑

h f̃hz
h = f(z + a) by the binomial formula, f̃h = [(z − a)h]f . Then it follows from

Proposition 3.3 that

zj,k,q = a+
N∑
n=1

cn(−b)n.

Since

|cn(−b)n| ≤ µR

n%n0
|b|n < µR

2n

by Proposition 3.5, we have

|α− zj,k,q| =
∣∣∣∣ ∞∑
n=N+1

cn(−b)n
∣∣∣∣ < µR

2N
≤ ε. �
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Most of the algorithm described in Theorem 4.1 is independent of the assumption of d being

constant (or it can be worked around). There are two principal exceptions. First, the recursion

in step (ii) amounts to d sequential invocations of the algorithm. Second, while N is still linear

in the size of the input, the main sum in step (viii) has roughly Nd terms. Thus, approximation

of roots of arbitrary univariate polynomials can be done by (uniform) threshold circuits of depth

O(d) and size nO(d), where n is the total length of the input. (The known NC algorithms for

root finding can do much better for large d.)

The algorithm from Theorem 4.1 does the hard work in locating the roots of f , but it suffers

from several drawbacks:

• Its output includes a lot of bogus results that are not actually close to any root of f .

• There may be many elements on the list close to the same root, and we do not get any

information on the multiplicity of the roots.

• The roots have no “identity”: if we run the algorithm for two different ts, we do not know

which approximate roots on the output lists correspond to each other.

• It may be desirable to output the binary expansions of the roots rather than just approx-

imations.

We are going to polish the output of the algorithm to fix these problems. Let us first formulate

precisely the goal.

Definition 4.2 The t-digit binary expansion of a ∈ C is the pair 〈bRe(a2t)c, bIm(a2t)c〉, where

both integers are written in binary. A root-finding algorithm for a set of polynomials P ⊆
(Q(i))[x] is an algorithm with the following properties:

(i) The input consists of a polynomial f ∈ P given by a list of its coefficients in binary, and

a positive integer t in unary.

(ii) The output is a list of pairs {〈zj(f, t), ej(f, t)〉 : j < s(f, t)}.

(iii) For every f ∈ P , there exists a factorization

f(z) = c
∏
j<s

(z − aj)ej ,

where c ∈ Q(i), aj ∈ C, aj 6= ak for j 6= k, and ej > 0, such that for every t: s(f, t) = s,

ej(f, t) = ej , and zj(f, t) is the t-digit binary expansion of aj .

We note that the choice of base 2 in the output is arbitrary, the algorithm can output expansions

in any other base if needed.

Lemma 4.3 Let d be a constant. Given a degree d polynomial f ∈ (Q(i))[x], we can compute

in uniform TC0 a list of pairwise coprime square-free nonconstant polynomials fj, c ∈ Q(i),

and integers ej > 0 such that f = c
∏
j<k f

ej
j , where k, ej ≤ d.
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Proof: Since d is constant, division of degree d polynomials takes O(1) arithmetical operations,

hence it can be implemented in uniform TC0. The same holds for gcd, using the Euclidean

algorithm. We compute a list L = 〈fj : j < k〉, k ≤ d, of nonconstant polynomials such that

f =
∏
j fj as follows:

(i) Start with L = 〈f〉. Repeat the following steps until none of them is applicable.

(ii) If fj is not square-free, replace it with gcd(fj , f
′
j) and fj/ gcd(fj , f

′
j).

(iii) If fh | fj , fj - fh for some h, j, replace fj in L with fh, fj/fh.

(iv) If g := gcd(fh, fj) 6= 1 for some h, j such that fh - fj , fj - fh, replace fh, fj in L with

g, g, fh/g, fj/g.

The algorithm terminates after at most d steps, hence it is in TC0. Clearly, it computes a list

of square-free polynomials such that for every h, j, fh is coprime to fj or fh is a scalar multiple

of fj . It remains to collect scalar multiples of the same polynomial together. �

Lemma 4.4 Let d be a constant. Given a degree d square-free polynomial f ∈ (Q(i))[x] and t

in unary, we can compute in uniform TC0 a list {zj : j < s} such that every root of f is within

distance 2−t of some zj, and every zj is within distance 2−t of some root.

Proof: We use the notation from the proof of Theorem 4.1. We modify the algorithm from

that proof as follows:

• We compute an ε0 > 0 such that the distance of any root of f to any root of f ′ is at least

ε0 using Lemma 2.1. In step (ii), we put ε = min{2−t, ε0/3}.

• We skip step (iii).

• In step (vi), we check that |b| < 1
2ν|f

′(a)|R and |a − αj′ | ≥ R + ε/4 for every j′ < s. If

either condition is violated, we output a symbol “∗” instead of a number, and skip the

remaining two steps.

The result is a list of numbers and ∗’s; it is easy to construct the sublist consisting of only

numbers by a TC0 function.

Let zj,k,q be one of the numbers output by the algorithm. In step (vi) we ensured dist(a,C) ≥
R + ε/4, hence dist(a,Cf ) ≥ R. Moreover, |0 − b| < %0/2, hence 0 is within the radius of

convergence of g, and α = g(0) is a root of f whose distance from zj,k,q is

|α− zj,k,q| =
∣∣∣∣ ∞∑
n=N+1

cn(−b)n
∣∣∣∣ < µR

2N
≤ ε.

On the other hand, let α be a root of f . Since dist(α,Cf ) ≥ ε0, we have dist(α,C) ≥ ε,

hence we can choose j, k, q such that |α − zj,k,q| < ε as in the proof of Theorem 4.1. We have

to show that the extra conditions in step (vi) are satisfied. |b| < 1
2νR|f

′(a)| was verified in the

proof of Theorem 4.1. Moreover,

|a− αj′ | ≥ |α− α̃j′ | − |a− α| −
ε

4
≥ |a− α̃j | − |a− α| −

ε

4
≥ 4

5
|α− αj | −

ε

2
≥ R+

ε

4

as |α− αj | ≥ ε0 − ε/4 > 5
2ε. �
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We can now finish the proof of the main result of this paper:

Theorem 4.5 For every constant d, there exists a uniform TC0 root-finding algorithm for

degree d polynomials in the sense of Definition 4.2.

Proof: We employ the notation of Definition 4.2. By Lemma 4.3, we can assume f to be

square-free (in which case we will have ej(f, t) = 1 for all j, so we only need to compute the

roots). Consider the following TC0 algorithm:

(i) Using Lemma 2.1, compute an η > 0 such that all roots of f are at distance at least η

from each other.

(ii) Using Lemma 4.4, compute a list {r′j : j < u} such that every root of f is within distance

η/5 of some r′j , and vice versa.

(iii) Note that if r′h and r′j correspond to the same root, then |r′h − r′j | < 2
5η, otherwise

|r′h − r′j | >
3
5η. Use this criterion to omit duplicate roots from the list, creating a list

{rj : j < d} which contains η/5-approximations of all roots of f , each of them exactly

once.

(iv) If ε := 2−t ≥ η/5, output zj := rj and halt. Otherwise use Lemma 4.4 to construct a list

{z′h : h < s} consisting of ε-approximations of roots of f .

(v) For each j < d, output zj := z′h(j), where h(j) is the smallest h < s such that |z′h − rj | <
η/2.

Notice that the computation of rj is independent of t. Let aj be the unique root of f such that

|aj− rj | < η/5. Given t and i, let j′ be such that |z′h−aj′ | < ε. Then |z′h− rj | < ε+η/5 ≤ 2
5η if

j = j′, otherwise |z′h − rj | >
4
5η − ε ≥

3
5η. Thus, the definition of h(j) in the last step is sound,

and guarantees |zj − aj | < ε.

It follows that this TC0 function has all the required properties, except that it computes

approximations instead of binary expansions. We can fix this as follows. Using the algorithm we

have just described, we can compute integers u, v such that |u+ iv−2taj | < 1. Then bRe(2taj)c
is either u or u− 1, hence it remains to find the sign of Re(2taj)− u (the case of Im is similar).

Let g(z) = f(2−t(2z+u)), h(z) = g(−z), and α = 1
2(2taj −u). Then g(α) = 0 = h(−α) and

α − (−α) = Re(2taj) − u. Using Lemma 2.1, we can compute ξ > 0 such that |α − (−α)| ≥ ξ

whenever it is nonzero. Using the algorithm above, we can compute rational u′, v′ such that

|u′ + iv′ − 2taj | < ξ/4. If |u − u′| < ξ/2, then Re(2taj) = u. Otherwise, |Re(2taj) − u| ≥ ξ,

hence the sign of u′ − u agrees with the sign of Re(2taj)− u. �

Corollary 4.6 If α is a fixed real algebraic number, then the kth bit of α can be computed in

uniform TC0, given k in unary. �

(Note that this corollary is only interesting in the uniform setting, since the language is unary.)
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5 Open induction in VTC 0

As we already mentioned in the introduction, our primary motivation for studying root finding

for constant-degree polynomials comes from bounded arithmetic. We will now describe the

connection in more detail. A reader not interested in bounded arithmetic may safely stop

reading here.

The basic objects of study in bounded arithmetic are weak first-order theories based on in-

teger arithmetic. There is a loose correspondence of arithmetical theories to complexity classes:

in particular, if a theory T corresponds to a class C, then the provable total computable func-

tions of T are functions from C (or more precisely, FC). The following is one of the natural

problems to study in this context: assume we have a concept (say, a language or a function)

from the computational class C. Which properties of this concept are provable in the theory

T? (This asks for a form of feasible reasoning: what can we show about the concept when we

are restricted to tools not exceeding its complexity?)

Here we are concerned with the theory VTC 0, corresponding to TC0. We refer the reader

to Cook and Nguyen [68] for a comprehensive treatment of VTC 0. Let us briefly recall that

VTC 0 is a two-sorted theory, with one sort intended for natural numbers (which we think of

as given in unary), and one sort for finite sets of these unary numbers (which we also regard as

finite binary strings, or as numbers written in binary). We are primarily interested in the binary

number sort, we consider the unary sort to be auxiliary. We use capital letters X,Y, . . . for

variables of the binary (set) sort, and lowercase letters x, y, . . . for the unary sort. The language

of the theory consists of basic arithmetical operations on the unary sort, the elementhood (or

bit) predicate x ∈ X, and a function |X| which extracts an upper bound on elements of a set X.

The axioms of VTC 0 include comprehension for ΣB
0 formulas (formulas with number quantifiers

bounded by a term and no set quantifiers)—which also implies induction on unary numbers for

ΣB
0 formulas—and an axiom ensuring the existence of counting functions for any set. The

provably total computable (i.e., Σ1
1-definable: Σ1

1 formulas consist of a block of existential set

quantifiers in front of a ΣB
0 formula) functions of VTC 0 are the TC0 functions.

In VTC 0, we can define the basic arithmetical operations +, ·,≤ on binary integers. Our

main question is, what properties of these operations are provable in VTC 0. (We can make

this more precise as follows: which theories in the usual single-sorted language of arithmetic

LPA = 〈0, 1,+, ·,≤〉 are interpreted in VTC 0 by the corresponding operations on the binary

sort?) It is not hard to show that VTC 0 proves binary integers to form a discretely ordered

ring (DOR). What we would especially like to know is whether VTC 0 can prove the induction

schema on the binary sort

ϕ(0) ∧ ∀X (ϕ(X)→ ϕ(X + 1))→ ∀X ϕ(X)

for some nontrivial class of formulas ϕ. In particular, we want to know whether VTC 0 includes

the theory IOpen (axiomatized by induction for open formulas of LPA over DOR) introduced

by Shepherdson [164] and widely studied in the literature.

Now, assume for a moment that VTC 0 ` IOpen. Then for each constant d, VTC 0 proves

X < Y ∧ F (X) ≤ 0 < F (Y )→ ∃Z (X ≤ Z < Y ∧ F (Z) ≤ 0 < F (Z + 1))
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where F (X) =
∑

j≤d UjX
j is a degree d integer polynomial whose coefficients are parameters

of the formula. This is (equivalent to) a Σ1
1 formula, hence the existential quantifier is, provably

in VTC 0, witnessed by a TC0 function G(U0, . . . , Ud, X, Y ). Since any rational polynomial

is a scalar multiple of an integer polynomial, and we can pass from a polynomial F (X) to

2tdF (2−tX) to reduce the error from 1 to 2−t, we see that there is a TC0 algorithm solving the

following root-finding problem: given a degree d rational polynomial and two rational bounds

where it assumes opposite signs, approximate a real root of the polynomial between the two

bounds up to a given accuracy. Using a slightly more complicated argument, one can also

obtain a root-finding algorithm in the set-up we considered earlier : i.e., we approximate all

complex roots of the polynomial, and the input of the algorithm is only the polynomial and the

desired error of approximation. Thus, a TC0 root-finding algorithm is a necessary prerequisite

for showing IOpen in VTC 0.

We can in a sense reverse the argument above to obtain a proof of open induction from

a root-finding algorithm, but there is an important caveat. The way we used the witnessing

theorem for VTC 0, we lost the information that the soundness of the algorithm is provable

in VTC 0. Indeed, if we are only concerned with the computational complexity of witnessing

functions, then witnessing of Σ1
1 formulas is unaffected by addition of true universal (i.e., ∀ΣB

0 )

axioms to the theory. In other words, the same argument shows the existence of a root-finding

algorithm from the weaker assumption VTC 0 + Th∀ΣB0
(N) ` IOpen, where Th∀ΣB0

(N) denotes

the set of all ∀ΣB
0 sentences true in the standard model of arithmetic. Now, this formulation of

the argument can be reversed:

Theorem 5.1 The theory VTC 0 + Th∀ΣB0
(N) proves IOpen for the binary number sort.

Proof: Let M be a model of VTC 0 + Th∀ΣB0
(N), and D be the discretely ordered ring of the

binary integers of M . For any constant d, we can use Theorem 4.1 to construct a TC0 function

which, given the coefficients of an integer polynomial of degree d, computes a list of integers

a0 < a1 < · · · < ak, k ≤ d, such that the sign of the polynomial is constant on each of the

integer intervals (aj , aj+1), (−∞, a0), (ak,+∞). This property of the function is expressible by

a ∀ΣB
0 sentence (when the coefficients of the polynomial and the aj are taken from the binary

sort), hence it holds in D that such elements a0, . . . , ak exist for every polynomial over D.

Any atomic formula ϕ(x) of LPA with parameters from D is equivalent in DOR to the

formula f(x) ≤ 0 for some f ∈ D[x], hence ϕ(D) := {x : D |= ϕ(x)} is a finite union of

intervals. Sets of this kind form a Boolean algebra, hence ϕ(D) is a finite union of intervals for

every open formula ϕ. This implies induction for ϕ: if D |= ϕ(0) ∧ ¬ϕ(u) for some u > 0, the

interval I of ϕ(D) containing 0 cannot be infinite from above, hence its larger end-point v ∈ D
satisfies D |= ϕ(v) ∧ ¬ϕ(v + 1). �

Problem 5.2 Does VTC 0 prove IOpen?

In light of the discussion above, Problem 5.2 is essentially equivalent to the following: are there

TC0 root-finding algorithms for constant-degree polynomials whose correctness is provable in

VTC 0? We remark that the complex-analytic tools we used in the proof of Theorem 4.1 are

not available in VTC 0.
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We note that already proving the totality of integer division in VTC 0 (i.e., formalization of

a TC0 integer division algorithm in VTC 0) is a nontrivial open1 problem, thus Problem 5.2 may

turn out to be too ambitious a goal. The following is a still interesting version of the question,

which may be easier to settle:

Problem 5.3 Does VTC 0 + IMUL prove IOpen, where IMUL is a natural axiom postulating

the totality of iterated integer multiplication?

We also mention that it is not hard to prove in VTC 0 that binary integers form a Z-ring,

which implies all universal consequences of IOpen in the language of ordered rings. The problem

is thus only with statements with a genuinely existential import (note that IOpen is a ∀∃ theory).
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1Hesse, Allender, and Barrington [90, Cor. 6.6] claim that the totality of integer division is provable in VTC 0

(or rather, in the theory C0
2 of Johannsen and Pollett [109], RSUV-isomorphic to VTC 0 + ΣB0 -AC , which is

∀Σ1
1-conservative over VTC 0). However, the way it is stated there with no proof as an “immediate” corollary

strongly suggests that the claim is due to a misunderstanding. See also [68, §IX.7.3].
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Chapter VIII

Open induction in a bounded

arithmetic for TC0

Abstract

The elementary arithmetic operations +, ·,≤ on integers are well-known to be computable

in the weak complexity class TC0, and it is a basic question what properties of these op-

erations can be proved using only TC0-computable objects, i.e., in a theory of bounded

arithmetic corresponding to TC0. We will show that the theory VTC 0 extended with an

axiom postulating the totality of iterated multiplication (which is computable in TC0) proves

induction for quantifier-free formulas in the language 〈+, ·,≤〉 (IOpen), and more generally,

minimization for Σb
0 formulas in the language of Buss’s S2.

1 Introduction

Proof complexity is sometimes presented as the investigation of a three-way correspondence

between propositional proof systems, theories of bounded arithmetic, and computational com-

plexity classes. In particular, we can associate to a complexity class C satisfying suitable

regularity conditions a theory T such that on the one hand, the provably total computable

functions of T of certain logical form define exactly the C-functions in the standard model of

arithmetic, and on the other hand, T proves fundamental deductive principles such as induction

and comprehension for formulas that correspond to C-predicates. In this sense T provides a

formalization of C-feasible reasoning: we can interpret provability in T as capturing the idea

of what can be demonstrated when our reasoning capabilities are restricted to manipulation

of objects and concepts of complexity C. The complexity class corresponding to a “minimal”

theory that proves a given logical or combinatorial statement can be seen as a gauge of its proof

complexity. Then a particularly natural question is, given a function or predicate X, which

properties of X can be proved by reasoning whose complexity does not exceed that of X, that

is, in a theory corresponding to the complexity class for which X is complete.

The main theme of this paper is what we can feasibly prove about the basic integer arithmetic

operations +, ·,≤. The matching complexity class is TC0: + and ≤ are computable in AC0 ⊆
TC0, while · is in TC0, and it is in fact TC0-complete under AC0 (Turing) reductions. (In this

209
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paper, all circuit classes like TC0 are assumed DLOGTIME-uniform unless stated otherwise.)

TC0 also includes many other functions related to arithmetic. First, + and · are also TC0-

computable on rationals or Gaussian rationals. An important result of Hesse, Allender, and

Barrington [90] based on earlier work by Beame, Cook, and Hoover [25] and Chiu, Davida,

and Litow [52] states that integer division and iterated multiplication are TC0-computable. As

a consequence, one can compute in TC0 approximations of functions presented by sufficiently

nice power series, such as log, sin, or x1/k, see e.g. Reif [158], Reif and Tate [159], Maciel and

Thérien [126], and Hesse, Allender, and Barrington [90].

The more-or-less canonical arithmetical theory corresponding to TC0 is VTC 0 (see Cook

and Nguyen [68]). This is a two-sorted theory in the setup of Zambella [182], extending the base

AC0-theory V 0 by an axiom stating the existence of suitable counting functions, which gives it

the power of TC0. VTC 0 is equivalent (RSUV -isomorphic) to the one-sorted theory ∆b
1-CR by

Johannsen and Pollett [110], which is in turn ∀∃Σb
1-conservative under the theory C0

2 [109].

VTC 0 can define addition and multiplication on binary integers, and it proves basic identities

governing these operations, specifically the axioms of discretely ordered rings (DOR). We are in-

terested in what other properties of integers expressible in the language LOR = 〈0, 1,+,−, ·,≤〉
of ordered rings are provable in VTC 0, and in particular, whether the theory can prove in-

duction for a nontrivial class of formulas. Note that we should not expect the theory to prove

induction for bounded existential formulas, or even its weak algebraic consequences such as the

Bézout property: this would imply that integer gcd is computable in TC0, while it is not even

known to be in NC. However, this leaves the possibility that VTC 0 could prove induction for

open (quantifier-free) formulas of LOR, i.e., that it includes the theory IOpen introduced by

Shepherdson [164].

Using an algebraic characterization of open induction and a witnessing theorem for VTC 0,

the provability of IOpen in this theory is equivalent to the existence of TC0 algorithms for ap-

proximation of real or complex roots of constant-degree univariate polynomials whose soundness

can be proved in VTC 0. The existence of such algorithms in the “real world” is established

in Chapter VII, but the argument extensively relies on tools from complex analysis (Cauchy

integral formula, . . . ) that are not available in bounded arithmetic, hence it is unsuitable for

formalization in VTC 0 or a similar theory.

The purpose of this paper is to demonstrate that IOpen is in fact provable in a mild ex-

tension of VTC 0. The argument naturally splits into two parts. We first formalize by a direct

inductive proof a suitable version of the Lagrange inversion formula (LIF), which was also the

core ingredient in the algorithm in Chapter VII. This allows us to compute approximations

of a root of a polynomial f by means of partial sums of a power series expressing the inverse

function of f , but only for polynomials obeying certain restrictions on coefficients. The second

part of the argument is model-theoretic, using basic results from the theory of valued fields.

The question whether a given DOR is a model of IOpen can be reduced to the question whether

the completion of its fraction field under a valuation induced by its ordering is real-closed, and

there is a simple criterion for recognizing real-closed valued fields. In our situation, LIF ensures

the relevant field is henselian, which implies that the criterion is satisfied.

We do not work with VTC 0 itself, but with its extension VTC 0 + IMUL including an axiom
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ensuring the totality of iterated multiplication. This theory corresponds to TC0 just like VTC 0

does, as iterated multiplication is TC0-computable. We need the extra axiom because it is not

known whether VTC 0 can formalize the TC0 algorithms for division and iterated multiplication

of Hesse, Allender, and Barrington [90], and this subtle problem is rather tangential to the

question of open induction and root approximation. As explained in more detail in Section 3,

the IMUL axiom is closely related to the integer division axiom DIV which is implied by IOpen,

hence its use is unavoidable in one way or another. In terms of the original theory VTC 0, our

results show that VTC 0 ` IOpen if and only if VTC 0 ` DIV .

We can strengthen the main result if we switch from LOR to the language of Buss’s one-

sorted theories of bounded arithmetic. By formalizing the description of bounded Σb
0-definable

sets due to Mantzivis [127], VTC 0+IMUL can prove the RSUV -translation of Buss’s theory T 0
2 ,

and in fact, of the Σb
0-minimization schema. In other words, T 0

2 and Σb
0-MIN are included in

the theory ∆b
1-CR + IMUL.

2 Preliminaries

A structure 〈D, 0, 1,+,−, ·,≤〉 is an ordered ring if 〈D, 0, 1,+,−, ·〉 is a commutative (associative

unital) ring, ≤ is a linear order on D, and x ≤ y implies x + z ≤ y + z and xz ≤ yz for all

x, y, z ∈ D such that z ≥ 0. If D is an ordered ring, D+ denotes {a ∈ D : a > 0}. A discretely

ordered ring (DOR) is an ordered ring D such that 1 is the least element of D+. Every DOR

is an integral domain. An ordered field is an ordered ring which is a field. A real-closed field

(RCF ) is an ordered field R satisfying any of the following equivalent conditions:

• Every a ∈ R+ has a square root in R, and every f ∈ R[x] of odd degree has a root in R.

• R has no proper algebraic ordered field extension.

• The field R(
√
−1) is algebraically closed.

• R is elementarily equivalent to R.

(In a RCF, ≤ is definable in terms of the ring structure, thus we can also call a field 〈R,+, ·〉
real-closed if it is the reduct of a RCF.) The real closure of an ordered field F is a RCF F̃ real ⊇ F
which is an algebraic extension of F . Every ordered field has a unique real closure up to a unique

F -isomorphism.

The theory IOpen consists of the axioms of ordered rings and the induction schema

ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1))→ ∀x ≥ 0ϕ(x)

for open formulas ϕ (possibly with parameters). An integer part of an ordered field F is a

discretely ordered subring D ⊆ F such that every element of F is within distance 1 from an

element of D. The following well-known characterization is due to Shepherdson [164].

Theorem 2.1 Models of IOpen are exactly the integer parts of real-closed fields. �
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The criterion is often stated with the real closure of the fraction field of the model instead of a

general real-closed field, but these two formulations are clearly equivalent, as an integer part D

of a field R is also an integer part of any subfield D ⊆ R′ ⊆ R.

In particular, models of IOpen are integer parts of their fraction fields. This amounts to

provability of the division axiom

(DIV ) ∀x > 0∀y ∃q, r (y = qx+ r ∧ 0 ≤ r < x)

in IOpen. (The uniqueness of q and r holds in any DOR.)

We define AC0 as the class of languages recognizable by a DLOGTIME-uniform family

of polynomial-size constant-depth circuits using ¬ and unbounded fan-in ∧ and ∨ gates, or

equivalently, languages computable by an O(log n)-time alternating Turing machine with O(1)

alternations, or by a constant-time CRAM with polynomially many processors [91]. If we

represent an n-bit binary string w by the finite structure 〈{0, . . . , n− 1}, <,+, ·, Pw〉, where

Pw(i) iff the ith bit of w is 1, then AC0 coincides with FO (languages definable by first-order

sentences). A language B is AC0-reducible to a language A if B is computable by a DLOGTIME-

uniform family of polynomial-size constant-depth circuits using unbounded fan-in ∧, ∨, ¬, and

A-gates. The class of languages AC0-reducible to A is its AC0-closure.

TC0, originally introduced as a nonuniform class by Hajnal, Maass, Pudlák, Szegedy, and

Turán [87], is defined for our purposes as the AC0-closure of Majority. (Several problems

TC0-complete under AC0 reductions are noted in Chandra, Stockmeyer, and Vishkin [50]; any

of these could be used in place of Majority.) Equivalently, TC0 coincides with languages

computable by O(log n)-time threshold Turing machines with O(1) thresholds, or by constant-

time TRAM with polynomially many processors [141]. In terms of descriptive complexity, a

language is in TC0 iff the corresponding class of finite structures is definable in FOM, i.e.,

first-order logic with majority quantifiers [19].

In connection with bounded arithmetic, it is convenient to consider not just the complexity

of languages, but of predicates P (x1, . . . , xn, X1, . . . , Xm) with several inputs, where Xi are

binary strings as usual, and xi are natural numbers written in unary. It is straightforward to

generalize AC0, TC0, and similar classes to this context, see [68, §IV.3] for details. Likewise,

we can consider computability of functions: if C is a complexity class, a unary number function

f(~x, ~X) is in FC if it is bounded by a polynomial in ~x and the lengths of ~X, and its graph

f(~x, ~X) = y is in C; a string function F (~x, ~X) is in FC if the length of the output is polynomially

bounded as above, and the bitgraph GF (~x, ~X, y) ⇔ (F (~x, ~X))y = 1 is in C. For simplicity,

functions from FC will also be called just C-functions.

We will work with two-sorted (second-order) theories of bounded arithmetic in the form

introduced by Zambella [182] as a simplification of Buss [37]. We refer the reader to Cook and

Nguyen [68] for a general background on these theories as well as a detailed treatment of VTC 0,

however, we include the main definitions here in order to fix our notation.

The language L2 = 〈0, S,+, ·,≤,∈, ‖·‖〉 of second-order bounded arithmetic is a first-order

language with equality with two sorts of variables, one for unary natural numbers, and one

for finite sets thereof, which can also be interpreted as binary strings, or binary integers. The

standard convention is that variables of the first sort are written with lowercase letters x, y, z, . . . ,
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and variables of the second sort with uppercase letters X,Y, Z, . . . . While we adhere to this

convention in the introductory material on the theories and their basic properties, we will not

follow it in the less formal main part of the paper (we will mostly work with binary integers or

rationals, and it looks awkward to write them all in uppercase). The symbols 0, S,+, ·,≤ of L2

denote the usual arithmetic operations and relation on the unary sort; x ∈ X is the elementhood

predicate, and the intended meaning of the ‖X‖ function is the least unary number strictly

greater than all elements of X. This function is usually denoted as |X|, however (apart from

the section on Buss’s theories) we reserve the latter symbol for the absolute value on binary

integers and rationals, which we will use more often. We write x < y as an abbreviation for

x ≤ y ∧ x 6= y.

Bounded quantifiers are introduced by

∃x ≤ t ϕ⇔ ∃x (x ≤ t ∧ ϕ),

∃X ≤ t ϕ⇔ ∃X (‖X‖ ≤ t ∧ ϕ),

where t is a term of unary sort not containing x or X (resp.). Universal bounded quantifiers,

as well as variants of bounded quantifiers with strict inequalities, are defined in a similar way.

A formula is ΣB
0 if it contains no second-order quantifiers, and all its first-order quantifiers

are bounded. The ΣB
0 -definable predicates in the standard model of arithmetic are exactly

the AC0 predicates. A formula is ΣB
i if it consists of i alternating (possibly empty) blocks of

bounded quantifiers, the first of which is existential, followed by a ΣB
0 formula. We define ΠB

i

formulas dually. Similarly, a formula is Σ1
i (Π1

i ) if it consists of i alternating blocks of (possibly

unbounded) quantifiers, the first of which is existential (universal, resp.), followed by a ΣB
0

formula1.

The theory V 0 in L2 can be axiomatized by the basic axioms

x+ 0 = x x+ Sy = S(x+ y)

x · 0 = 0 x · Sy = x · y + x

Sy ≤ x→ y < x ‖X‖ 6= 0→ ∃x (x ∈ X ∧ ‖X‖ = Sx)

x ∈ X → x < ‖X‖ ∀x (x ∈ X ↔ x ∈ Y )→ X = Y

and the comprehension schema

(ϕ-COMP) ∃X ≤ x ∀u < x (u ∈ X ↔ ϕ(u))

for ΣB
0 formulas ϕ, possibly with parameters not shown (but with no occurrence of X). We

denote the set X whose existence is postulated by ϕ-COMP as {u < x : ϕ(u)}. Using COMP ,

V 0 proves the induction and minimization schemata

ϕ(0) ∧ ∀x
(
ϕ(x)→ ϕ(x+ 1)

)
→ ∀xϕ(x),(ϕ-IND)

ϕ(x)→ ∃y
(
ϕ(y) ∧ ∀z < y ¬ϕ(z)

)
(ϕ-MIN )

1Notice that bounded second-order quantifiers still count towards i, so these formula classes do not correspond

in the one-sorted setting to the usual arithmetical hierarchy Σ0
i , but to its restricted version where the formula

after the main quantifier prefix is sharply bounded. We follow [68] in this usage; they only appear to define Σ1
1,

but we find it convenient to extend this notation to higher levels as well.



214

for ΣB
0 formulas ϕ. In particular, V 0 includes I∆0 on the unary number sort.

Let 〈x, y〉 be a V 0-definable pairing function on unary numbers, e.g., 〈x, y〉 = (x+y)(x+y+

1)/2 + y. We define X [u] = {x : 〈u, x〉 ∈ X}; this provides an encoding of sequences of sets by

sets. We can encode sequences of unary numbers by putting X(u) = ‖X [u]‖ (this is easily seen to

be a ΣB
0 -definable function). For convenience, we also extend the pairing function to (standard-

length) k-tuples by 〈x1, . . . , xk+1〉 = 〈〈x1, . . . , xk〉, xk+1〉, and we write X [u1,...,uk] = X [〈u1,...,uk〉],

X(u1,...,uk) = X(〈u1,...,uk〉).

VTC 0 is the extension of V 0 by the axiom

∀n,X ∃Y
(
Y (0) = 0 ∧ ∀i < n

(
(i /∈ X → Y (i+1) = Y (i)) ∧ (i ∈ X → Y (i+1) = Y (i) + 1)

))
,

whose meaning is that for every set X there is a sequence Y supplying the counting function

Y (i) = card(X ∩ {0, . . . , i− 1}).
Let Γ be a class of formulas, and T an extension of V 0. A string function F (~x, ~X) is a provably

total Γ-definable function of T if its graph is definable in N by a formula ϕ(~x, ~X, Y ) ∈ Γ such

that T ` ∀~x, ~X ∃!Y ϕ(~x, ~X, Y ); similarly for number functions. If Γ = Σ1
1, such functions are

also called provably total recursive functions of T . Note that one function may have many

different definitions that are not T -provably equivalent; some of them may be provably total,

while other are not.

The provably total recursive functions of V 0 and VTC 0 are FAC0 and FTC0, respectively.

Moreover, we can use these functions freely in the sense that if we expand the languages of the

theories with the corresponding function symbols, the resulting conservative extensions of V 0

and VTC 0 (respectively) prove the comprehension and induction schemata for ΣB
0 formulas of

the expanded language; we will see more details in the next section.

Being AC0, the ordering on binary integers is definable by a ΣB
0 formula, and addition is

provably total in V 0. Likewise, multiplication and iterated addition are provably total ΣB
1 -

definable functions of VTC 0. In fact, as shown in [68], the natural ΣB
0 definitions of X < Y

and X + Y provably satisfy basic properties like commutativity and associativity in V 0, and

similarly, there are natural definitions of X ·Y and
∑

i<nX
[i] provably total in VTC 0 such that

VTC 0 proves their basic properties, including the inductive clauses∑
i<0

X [i] = 0,∑
i<n+1

X [i] =
∑
i<n

X [i] +X [n].

While Cook and Nguyen [68] normally use second-sort objects to denote nonnegative integers, it

will be more convenient for us to make them represent all integers, which is easily accomplished

by using one bit for sign. The definitions of <, +, ·, and
∑

i<nX
[i] can be adapted in a

straightforward way to this setting so that VTC 0 still proves their relevant properties, that is,

the axioms of discretely ordered rings.
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3 Iterated multiplication and division

As we already mentioned, it is not known whether VTC 0 can formalize the TC0 algorithms of

Hesse, Allender, and Barrington [90] for integer division and iterated multiplication. In partic-

ular, it is not known whether VTC 0 proves the sentence DIV (formulated for binary integers),

which is a consequence of IOpen. This problem is rather tangential to the formalization of root

finding, whence we bypass it by strengthening our theory appropriately.

It might seem natural just to work in the theory VTC 0 + DIV , however we will instead

consider an axiom stating the totality of iterated multiplication in the following form:

(IMUL) ∀X,n ∃Y ∀i ≤ j < n
(
Y [i,i] = 1 ∧ Y [i,j+1] = Y [i,j] ·X [j]

)
.

(The meaning is that for any sequence X of n binary integers, there is a triangular matrix Y with

entries Y [i,j] =
∏j−1
k=i X

[k].) One reason is simply that we need to use iterated multiplication at

various places in the argument (in particular, to compute partial sums of power series), and we

do not know whether VTC 0 +DIV ` IMUL. The more subtle reason is that we need the theory

to be well-behaved in a certain technical sense that we will describe in more detail below, and

it turns out that VTC 0 + IMUL is the smallest well-behaved extension of VTC 0 + DIV .

Consider an extension T ⊇ V 0 proving that a particular polynomially bounded recursive

(i.e., Σ1
1-definable) function F is total, e.g. DIV or IMUL. While the most simplistic arguments

employing F can get away with the mere fact that the value computed by F exists for a

particular input, usually we need more than that. For example, we may want to use induction

on a formula ϕ(x) which involves F applied to an argument depending on x; since induction

is obtained over V 0 by considering the least element of the set {x < a : ¬ϕ(x)}, we effectively

need comprehension for (simple enough) formulas containing F , say, ΣB
0 (F )-COMP .

From a computational viewpoint, it is desirable that we can combine provably total recursive

functions in various ways. For example, one of the basic TC0 functions is iterated addition, and

a natural way how we would like to apply it is to compute
∑

x<a F (x) for a given provably total

function F . More generally, we want the class of provably total recursive functions to be closed

under AC0 (or even TC0 in our case) reductions, and as a simple special case, under parallel

repetition: if we can compute a function F (X), we want to be able to compute its aggregate

function F ∗ : 〈X0, . . . , Xn−1〉 7→ 〈F (X0), . . . , F (Xn−1)〉 (where n is a part of the input). In

more logical terms, it is desirable that T is closed under the choice rule ΣB
0 -ACR: if T `

∀X ∃Y ϕ(X,Y ), where ϕ ∈ ΣB
0 , then also T ` ∀n ∀W ∃Z ∀i < nϕ(W [i], Z [i]). This is a derived

rule corresponding to the axiom of choice, also called replacement or bounded collection:

(ΣB
0 -AC ) ∀i < n∃Y ≤ mϕ(i, Y, P )→ ∃Z ∀i < nϕ(i, Z [i], P ).

Unfortunately, none of the desiderata mentioned in the last two paragraphs hold automati-

cally, even for theories of the simple form V 0 + ∀X ∃!Y F (X) = Y (note that VTC 0 + DIV is

of such form): this axiom implies the totality of functions making a constant number of calls

to F , but we cannot a priori construct functions involving an unbounded number of applications

of F , such as the aggregate function F ∗. However, Cook and Nguyen [68] show that the simple

expedient of using F ∗ in the axiomatization instead of F leads to theories satisfying all the

properties above.
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Definition 3.1 Let δ(X,Y ) be a ΣB
0 -formula such that V 0 proves

δ(X,Y )→ ‖Y ‖ ≤ t(X),

δ(X,Y ) ∧ δ(X,Y ′)→ Y = Y ′

for some term t(X). The Cook–Nguyen (CN ) theory2 associated with δ is

V (δ) = V 0 + ∀W,n∃Z ∀i < n δ(W [i], Z [i]).

(That is, if F is a polynomially bounded function with an AC0 graph defined by δ, which V 0

proves to be a partial function, then V (δ) is axiomatized by the statement that the aggregate

function F ∗ is total.)

For example, VTC 0 can be formulated as a CN theory, as shown in [68, §IX.3].

Theorem 3.2 Let V (δ) be a CN theory, and F the function whose graph is defined by δ.

(i) The provably total Σ1
1-definable (or ΣB

1 -definable) functions of V (δ) are exactly the func-

tions in the AC0-closure of F .

(ii) V (δ) has a universal definitional (and therefore conservative) extension V (δ) in a lan-

guage L
V (δ)

consisting of ΣB
1 -definable functions of V (δ). The theory V (δ) has quantifier

elimination for ΣB
0 (L

V (δ)
)-formulas, and it proves ΣB

0 (L
V (δ)

)-COMP, ΣB
0 (L

V (δ)
)-IND,

and ΣB
0 (L

V (δ)
)-MIN .

(iii) V (δ) is closed under ΣB
0 -ACR, and V (δ) + ΣB

0 -AC is Π1
2-conservative over V (δ).

Proof:

(i) and (ii) are Theorems IX.2.3, IX.2.14, and IX.2.16 in Cook and Nguyen [68].

(iii): If V (δ) ` ∀X ∃Y ϕ(X,Y ) with ϕ ∈ ΣB
0 , there is an L

V (δ)
-term G(X) such that V (δ) `

ϕ(X,G(X)) by Herbrand’s theorem, as V (δ) is a universal theory, and ϕ is equivalent to an

open formula. Then V (δ), hence V (δ), proves

∀W,n∃Z Z = {〈i, y〉 : i < n, y ∈ G(W [i])}

using ΣB
0 (L

V (δ)
)-COMP .

The Π1
2-conservativity of ΣB

0 -AC over V (δ) follows from the closure under ΣB
0 -ACR by cut

elimination. Alternatively, see Theorem V.4.19 for a model-theoretic proof generalizing the

result of Zambella [182] for V 0. �

2In [68], V (δ) is denoted V C, where the complexity class C is the AC0-closure of F , and it is called the

minimal theory associated with C. We refrain from this terminology as the theory is not uniquely determined

by the complexity class: it depends on the choice of the C-complete function F , and of a particular ΣB0 -formula

defining the graph of F in N. In particular, both VTC 0 and VTC 0 + IMUL are “minimal” theories for the same

class (TC0), and it would be rather confusing to call them as such.
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Lemma 3.3

(i) VTC 0 + IMUL is a CN theory.

(ii) VTC 0 + IMUL ` DIV .

Proof:

(i): The main observation is that VTC 0+IMUL proves the totality of the aggregate function

of iterated multiplication, that is,

(IMUL∗) ∀W,m, n∃Z ∀k < m ∀i ≤ j < n
(
Z [k,i,i] = 1 ∧ Z [k,i,j+1] = Z [k,i,j] ·W [k,j]

)
.

Given W,m, n, put X = {〈nk + j, x〉 : k < m, j < n, x ∈W [k,j]} so that X [nk+j] = W [k,j] for all

k < m and j < n, and let Y be as in (IMUL) for X,mn. Define

Z =
{
〈k, i, j, y〉 : k < m, i ≤ j ≤ n, y ∈ Y [nk+i,nk+j]

}
,

so that Z [k,i,j] = Y [nk+i,nk+j] for k < m and i ≤ j ≤ n. Then Z satisfies (IMUL∗).

Thus, VTC 0 + IMUL = VTC 0 + IMUL∗. The latter looks almost like a CN theory, except

that the graph of the function specified in the axiom is not ΣB
0 , as it involves multiplication.

(The official definition also does not allow an extra unary input, but this is benign as we could

easily code X,n into a single set.) There are several ways how to get around this problem.

For one, the whole machinery from [68, §IX.2] works fine if we take VTC 0 instead of V 0 as a

base theory, and allow the use of ΣB
0 (L

VTC 0) formulas. Alternatively, we can rewrite IMUL to

incorporate the definition of multiplication, say

(IMUL′)

∀X,n∃Y, Z ∀i ≤ j < n∀x < ‖X‖
(
Y [i,i] = 1 ∧ Z [i,j,0] = 0 ∧ Z [i,j,‖X‖] = Y [i,j+1]

∧
(
x /∈ X [j] → Z [i,j,x+1] = Z [i,j,x]

)
∧
(
x ∈ X [j] → Z [i,j,x+1] = Z [i,j,x] + 2xY [i,j]

))
,

where + and multiplication by 2x can be given easy ΣB
0 definitions. Since the entries of Z

can be expressed as products of suitable ΣB
0 -definable sequences of integers, one can show in

the same way as above that IMUL′, as well as the axiom IMUL′∗ stating the totality of the

corresponding aggregate function, is provable in VTC 0+IMUL. Conversely, the CN theory V 0+

IMUL′∗ proves VTC 0 (as it implies the totality of usual multiplication), hence it is equivalent

to VTC 0 + IMUL.

(ii) can be shown by formalizing the reduction from [25]. Assume that we want to find

bY/Xc, where X ≥ 1. Choose n,m > 0 such that 2n−1 ≤ X ≤ 2n and Y ≤ 2m, and put

Z =
∑
i<m

(2n −X)i2n(m−1−i).

An easy manipulation of the sum shows that XZ = 2nm − (2n −X)m, hence

2nm − 2(n−1)m ≤ XZ ≤ 2nm.

Put Q = bY Z/2nmc. Then

2nmY ≥ XY Z ≥ 2nmQX > XY Z − 2nmX ≥ 2nm(Y −X − 1),

hence QX ≤ Y ≤ (Q+ 1)X. �
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The more complicated converse reduction of iterated multiplication to division was formal-

ized in bounded arithmetic by Johannsen [108] (building on Johannsen and Pollett [109]), but

in a different setting, so let us see what his result gives us here. Johannsen works with a one-

sorted theory C0
2 [div ], whose language consists of the usual Buss’s language for S2 expanded

with −̇, MSP , and most importantly bx/yc. It is axiomatized by a suitable version of BASIC ,

the defining axiom for division, the quantifier-free LIND schema, and the axiom of choice BBΣb
0

for Σb
0 formulas in the expanded language.

We claim that C0
2 [div ] is RSUV -isomorphic to the theory VTC 0 + DIV + ΣB

0 -AC . We

leave the interpretation of the latter theory in C0
2 [div ] to the reader as we will not need it, and

focus on the other direction. It is straightforward to translate the symbols of the language save

division to the corresponding operations on binary integers, and prove the translation of BASIC

in VTC 0. Of course, DIV allows us to translate the division function and prove its defining

axiom, hence the only remaining problem is with the LIND and BB schemata. Here we have

to be a bit careful, as Σb
0 (or even quantifier-free) formulas in the language of C0

2 [div ] do not

translate to ΣB
0 formulas in the language of V 0.

Let DIV ∗ denote the axiom stating the totality of the aggregate function of division, or

rather, of its expanded version with witnesses for multiplication as in the proof of Lemma 3.3,

so that T = VTC 0 +DIV ∗ is a CN theory. By an application of choice, VTC 0 +DIV +ΣB
0 -AC

proves DIV ∗. Let T be the universal conservative extension of T from Theorem 3.2, which

includes function symbols for division and for TC0 functions like multiplication. Since Σb
0

formulas in the language of C0
2 [div ] translate to ΣB

0 (LT ) formulas, Theorem 3.2 implies that T ,

and therefore T ⊆ VTC 0 + DIV + ΣB
0 -AC , proves the translation of open (or even Σb

0) LIND .

As for the axiom of choice, every ΣB
0 (LT ) formula is equivalent to a ΣB

1 formula in the language

of V 0, and ΣB
0 -AC implies ΣB

1 -AC , hence the translation of BBΣb
0 is provable in T + ΣB

0 -AC ,

and thus in VTC 0 + DIV + ΣB
0 -AC by the conservativity of T over T .

This, together with provability of iterated multiplication in C0
2 [div ], implies the following:

Theorem 3.4 (Johannsen [108]) VTC 0 + DIV + ΣB
0 -AC proves IMUL. �

Corollary 3.5 VTC 0 + IMUL = VTC 0 + DIV ∗ is the smallest CN theory including VTC 0 +

DIV .

Proof: Since VTC 0 +DIV ∗ is a CN theory, Theorem 3.2 implies that VTC 0 +DIV +ΣB
0 -AC is

Π1
2-conservative over VTC 0 +DIV ∗, hence VTC 0 +DIV ∗ ` IMUL by Theorem 3.4. Conversely,

every CN theory (such as VTC 0 + IMUL, by Lemma 3.3) that proves DIV also proves DIV ∗,

using its closure under ΣB
0 -ACR. �

Corollary 3.6 VTC 0 ` DIV if and only if VTC 0 ` IMUL.

Proof: VTC 0 is a CN theory. �

The alert reader may have noticed that the reason why IMUL yields a CN theory while this

is unclear for DIV is not due to any deep property of iterated multiplication that would make it

inherently better-behaved than division, but because we made it so by formulating the axiom in

the slightly redundant form using a triangular matrix of partial products. There does not seem
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to be any particular reason we should expect to get a CN theory if we formulate the axiom more

economically, using only a one-dimensional array consisting of the products
∏
j<iX

[j]. In view

of this, the decision to axiomatize the theory using IMUL rather than DIV ∗ is mostly a matter

of esthetic preference and convenience. Even in its triangular form, the IMUL axiom is a fairly

natural rendering of the idea of computing iterated products, whereas the usage of an aggregate

function in DIV ∗ is overtly a technical crutch. Moreover, we will be using iterated products

more often than division, and while DIV has a straightforward proof in VTC 0 + IMUL as

indicated above, we would have to rely on the complicated argument from [108] to derive IMUL

if we based the theory on DIV ∗, making the main result of the paper less self-contained.

We mention another possibility for axiomatization of our theory, using the powering axiom

(POW ) ∀X,n∃Y ∀i < n
(
Y [0] = 1 ∧ Y [i+1] = Y [i] ·X

)
(here it makes no difference whether we use a linear or triangular array of witnesses) and its

aggregate function version POW ∗. Over VTC 0, we clearly have IMUL ` POW ∗ ` POW . The

argument in Lemma 3.3 (ii) only needed the sequence of powers (2n −X)i, i ≤ m apart from

VTC 0, hence it actually shows POW ` DIV . Since VTC 0 +POW ∗ is a CN theory, this implies

VTC 0+POW ∗ = VTC 0+IMUL. In fact, one can also show that VTC 0+POW = VTC 0+DIV

by formalizing the reduction of powering to division from [25]. The key point is that the result

of a single division is enough to reconstruct the whole sequence of powers X0, . . . , Xn, hence we

do not need any aggregate functions. If X < 2k and m = k(n+1)+1, let 2nm = (2m−X)Q+R

with R < 2m−X using DIV , write Q =
∑

i<n Y
[i]2(n−1−i)m with Y [i] < 2m, and put Y [n] = R.

Then one can show Y [0] = 1 and

Y [j] ≤ 2kj ∧ ∀i < j Y [i+1] = XY [i]

by induction on j ≤ n. We leave the details to the interested reader.

Let us also mention that while it is unclear whether the soundness of the Hesse–Allender–

Barrington algorithms for division and iterated multiplication is provable in VTC 0, it seems

very likely that it is provable in VTC 0 + IMUL. If true, this would imply that VTC 0 + IMUL

is Π1
1-axiomatizable over VTC 0 by the sentence asserting the soundness of the algorithm, and

it can be formulated as a purely universal theory in the language of VTC 0. A priori, the IMUL

axiom is only ∀ΣB
1 .

Even though we do not know whether IMUL is provable in VTC 0 itself, we can place it

reasonably low in the usual hierarchy of theories for small complexity classes: it is straightfor-

ward to show that VTC 0 + IMUL is included in the theory VNC 2 (and even VTC 1, if anyone

bothered to define such a theory) by formalizing the computation of iterated products by a

balanced tree of binary products.

As stated in the Introduction, the provability of IOpen in VTC 0 or VTC 0 + IMUL can

be phrased in terms of TC0 root-finding algorithms. There are several ways of expressing this

connection precisely; one version reads as follows.

Proposition 3.7 VTC 0+IMUL proves IOpen if and only if for every constant d > 0 there exist

L
VTC 0+IMUL

-terms R−(A0, . . . , Ad, X, Y,E) and R+(A0, . . . , Ad, X, Y,E) such that the theory
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proves

(1) X < Y ∧ F (X) < 0 < F (Y ) ∧ E > 0 ∧ Z± = R±(A0, . . . , Ad, X, Y,E)

→ X < Z− < Z+ < Y ∧ Z+ − Z− < E ∧ F (Z−) < 0 < F (Z+),

where all second-sort variables are interpreted as binary rational numbers (fractions), and F (X)

denotes AdX
d +Ad−1X

d−1 + · · ·+A0.

Proof:

Left-to-right: the statement that for every A0, . . . , Ad, X, Y,E there exist Z−, Z+ satisfy-

ing (1) is provable in IOpen (in the real closure of the model, there is a root of F between X

and Y where F changes sign, and this root can be arbitrarily closely approximated from either

side in the fraction field of the model using Theorem 2.1). By assumption, the same statement

is also provable in VTC 0 + IMUL. Since the latter is a universal theory whose terms are closed

under definitions by cases, Herbrand’s theorem implies that there are terms R−, R+ witnessing

Z−, Z+.

Right-to-left: Let D be a DOR induced by a model of VTC 0+IMUL, K its fraction field, and

F a polynomial with coefficients in D. Since F can change sign only deg(F ) times, a repeated

use of (1) gives us elements Z0 < Z1 < · · · < Zk of K such that F has (in K) a constant sign on

each interval (−∞, Z0), (Zk,∞), and (Zi, Zi+1), except when Zi+1−Zi < 1. We have D � DIV ,

hence we can approximate each Zi in D within distance 1; it follows that in D, F is positive on

a finite union of (possibly degenerate) intervals. Every LOR open formula ϕ is equivalent to a

Boolean combination of formulas of the form F (X) > 0, hence {X ∈ D : X ≥ 0 ∧ ¬ϕ(X)} is

also a finite union of intervals, and as such it has a least element if nonempty. Thus, D satisfies

induction for ϕ. �

Note that L
VTC 0+IMUL

-terms denote TC0 algorithms (employing iterated multiplication),

hence the gist of the conclusion of Proposition 3.7 is that VTC 0 + IMUL proves the soundness

of a TC0 degree-d polynomial root-approximation algorithm for each d. The details can be

varied; for example, we could drop X and Y , and make the algorithm output approximations

to all real roots of the polynomial, or even complex roots. However, such modifications make it

more difficult to state what exactly the “soundness” of the algorithm means.

4 Working in VTC 0 + IMUL

As we already warned the reader, the objects we work with most often in this paper are binary

numbers (integer or rational), and we will employ common mathematical notation rather than

the formal conventions used in [68]: in particular, we will typically denote numbers by lowercase

letters (conversely, we will occasionally denote unary numbers by capital letters), and we will

write xi for the ith member of a sequence x (which may be a constant-length tuple, a variable-

length finite sequence encoded by a set as in Section 2, or an infinite sequence given by a

TC0 function with unary input i). We do not distinguish binary and unary numbers in notation;

we will either explicitly mention which numbers are unary, or it will be assumed from the context:
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unary natural numbers appear as indices and lengths of sequences, as powering exponents, and

as bound variables in iterated sums
∑n

i=0 xi and products
∏n
i=0 xi.

By Theorem 3.2, we can use L
VTC 0+IMUL

-function symbols (i.e., TC0 algorithms) freely

in the arguments. In particular, we can use basic arithmetic operations on integers, including

iterated sums and products. Iterated sums satisfy the recursive identities∑
i<0

x0 = 0,∑
i<n+1

xi =
∑
i<n

xi + xn,

and other basic properties can be easily proved by induction, for example∑
i<n

(xi + yi) =
∑
i<n

xi +
∑
i<n

yi,∑
i<n

yxi = y
∑
i<n

xi,∑
i<n+m

xi =
∑
i<n

xi +
∑
i<m

xn+i.

(2)

In particular, VTC 0 + IMUL proves that if π is a permutation of {0, . . . , n− 1}, then

(3)
∑
i<n

xi =
∑
i<n

xπ(i).

(In order to see this, show
∑

i<m xi =
∑

i<n xπ(i)[π(i) < m] by induction on m ≤ n using (2),

where [· · · ] denotes the Iverson bracket.) This allows us to make sense of more general sums∑
i∈I xi where the indices run over a TC0-definable collection of objects (e.g., tuples of unary

numbers) that can be enumerated by a subset of some {0, . . . , n − 1}; the identity (3) shows

that the value of such a sum is independent of the enumeration. For example, we can write

f(n) =
∑
i+j=n

xi,j ,

meaning a sum over all pairs of numbers 〈i, j〉 such that i+j = n. We can also prove the double

counting identity

(4)
∑
i<n

∑
j<m

xi,j =
∑
i<n
j<m

xi,j =
∑
j<m

∑
i<n

xi,j

by first showing
∑

i<n

∑
j<m xi,j =

∑
k<nm xbk/mc,k mod m by induction on n using (2), and then

(3) implies that other enumerations of the same set of pairs give the same result. Likewise, we

can show

(5)
(∑
i<n

xi

)(∑
i<m

yi

)
=
∑
i<n
j<m

xiyj .

Iterated products can be treated the same way as sums, mutatis mutandis.
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Rational numbers can be represented in VTC 0 + IMUL as pairs of integers standing for

fractions a/b, where b > 0. We will not assume fractions to be reduced, as we cannot compute

integer gcd. Arithmetic operations can be extended to rational numbers in VTC 0 + IMUL in

the obvious way, for example ∑
i<n

ai
bi

:=

∑
i<n ai

∏
j 6=i bj∏

i<n bi
.

VTC 0 + IMUL knows the rationals form an ordered field, being the fraction field of a DOR.

The properties of iterated sums and products we established above for integers also hold for

rationals.

Using iterated products, we can define factorials and binomial coefficients

n! =

n∏
i=1

i,

(
n

m

)
=

n!

m!(n−m)!

for unary natural numbers n ≥ m. A priori, n! is a binary integer, and
(
n
m

)
a binary rational;

however, the definition easily implies the identities(
n

0

)
=

(
n

n

)
= 0,

(
n+ 1

m+ 1

)
=

(
n

m

)
+

(
n

m+ 1

)
,

from which one can show by induction on n that
(
n
m

)
is an integer for all m ≤ n. We can also

prove by induction on n the binomial formula

(x+ y)n =
∑
i≤n

(
n

i

)
xiyn−i

for rational x, y. More generally, we can define the multinomial coefficients(
n

n1, . . . , nd

)
=

n!

n1! · · ·nd!
=

(
n

n1

)(
n− n1

n2

)
· · ·
(
n− n1 − · · · − nd−1

nd

)
for a standard constant d and unary n = n1 + · · · + nd, and we can prove the multinomial

formula

(6) (x1 + · · ·+ xd)
n =

∑
n1+···+nd=n

(
n

n1, . . . , nd

)
xn1

1 · · ·x
nd
d

by metainduction on d.

5 Lagrange inversion formula

The Lagrange inversion formula (LIF) is an expression for the coefficients of the (compositional)

inverse g = f−1 of a power series f . In this section, we will formalize in VTC 0 + IMUL variants

of LIF for the special case where f is a constant-degree polynomial; we first show that g inverts f

as a formal power series, and then with the help of a suitable bound on the coefficients of g,
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we show that the series g(w) is convergent for small enough w; this means that under some

restrictions, partial sums of g(−a0) approximate a root of the polynomial f(x) + a0.

LIF, specifically the equivalent identity (9), has a simple combinatorial interpretation in

terms of trees which allows for a straightforward bijective proof. However, this proof relies on

exact counting of exponentially many objects, and as such it cannot be formalized in VTC 0 +

IMUL. In contrast, the inductive proof we give below proceeds by low-level manipulations of

sums and products; while it lacks conceptual clarity, it is elementary enough to go through in

our weak theory.

We introduce some notation for convenience. Let us fix a standard constant d ≥ 1. We are

going to work extensively with sequences m = 〈m2, . . . ,md〉 of length d−1 of unary nonnegative

integers. We will use subscripts i = 2, . . . , d to extract elements of the sequence as indicated,

and we will employ superscripts (and primes) to label various sequences used at the same time;

these do not denote exponentiation. If m1 and m2 are two such sequences, we define m1 +m2

and m1 −m2 coordinatewise (i.e., (m1 +m2)i = m1
i +m2

i ), we write m1 ≤ m2 if m1
i ≤ m2

i for

all i = 2, . . . , d, and m1 � m2 if m1 ≤ m2 and m1 6= m2. We define the generalized Catalan

numbers

Cm =

(∑d
i=2 imi

)
!(∑d

i=2(i− 1)mi + 1
)
!
∏d
i=2mi!

.

Theorem 5.1 VTC 0 + IMUL proves the following for every constant d ≥ 1: let

f(x) = x+
d∑

k=2

akx
k

be a rational polynomial, and let

g(w) =
∞∑
n=1

bnw
n

be the formal power series (with unary indices) defined by

(7) bn =
∑

∑
i(i−1)mi=n−1

Cm

d∏
i=2

(−ai)mi .

Then f(g(w)) = w as formal power series.

Remark 5.2 The sum in (7) runs over sequences m = 〈m2, . . . ,md〉 satisfying the constraint∑d
i=2(i−1)mi = n−1; since this implies m2, . . . ,md < n, there are at most nd−1 such sequences,

hence the sum makes sense in VTC 0 + IMUL.

The power series identity f(g(w)) = w in the conclusion of the theorem amounts to b1 = 1,

and the recurrence

(8) bn =

d∑
k=2

(−ak)
∑

n1+···+nk=n

bn1 · · · bnk (n > 1).

Rather than developing a general theory of formal power series in VTC 0 + IMUL, we take this

as a definition of f(g(w)) = w.
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Proof: After plugging in the definition of bn, both sides of (8) can be written as polynomials in

−a2, . . . ,−ad with rational (actually, integer) coefficients by several applications of (5). More-

over, bnj contains only monomials
∏
i(−ai)m

j
i with

∑
i(i− 1)mj

i = nj − 1. Thus, the right-hand

side contains monomials
∏
i(−ai)mi with mi =

∑
jm

j
i + δki , where δki is Kronecker’s delta. We

have
∑

i(i − 1)mi =
∑

i,j(i − 1)mj
i + k − 1 =

∑
j(nj − 1) + k − 1 = n − 1, which is the same

constraint as on the left-hand side. In order to prove (8), it thus suffices to show that the

coefficients of the monomials
∏
i(−ai)mi satisfying

∑
i(i− 1)mi = n− 1 are the same on both

sides of (8). This is easily seen to be equivalent to the following identity for every sequence m:

(9) Cm =
d∑

k=2

∑
m1+···+mk=m−δk

Cm1 · · ·Cmk (m 6= ~0).

(Here, we treat Kronecker’s delta as the sequence δk = 〈δk2 , . . . , δkd〉.) We will prove (9) by

induction on
∑

imi, simultaneously with the identities∑
m′+m′′=m

(∑
i(i− 1)m′i + 1

)
Cm′Cm′′ =

(∑
i imi + 1

)
Cm,(10)

∑
m1+···+mk=m

Cm1 · · ·Cmk =

(∑
i imi + k − 1

)
! k(∑

i(i− 1)mi + k
)
!
∏
imi!

(k = 1, . . . , d).(11)

The reader may find it helpful to consider the following combinatorial explanation of the iden-

tities, even though it cannot be expressed in VTC 0 + IMUL. First, Cm counts the number of

ordered rooted trees with m2, . . . ,md nodes of out-degree 2, . . . , d, respectively, and the appro-

priate number (i.e.,
∑

i(i − 1)mi + 1) of leaves. Indeed, such a tree can be uniquely described

by the sequence of out-degrees of its nodes in preorder. One checks easily that every string with

m2, . . . ,md occurrences of 2, . . . , d, resp., and
∑

i(i − 1)mi + 1 occurrences of 0, has a unique

cyclic shift that is a valid representation of a tree, so there are

1∑
i imi + 1

( ∑
i imi + 1∑

i(i− 1)mi + 1,m2, . . . ,md

)
= Cm

such trees. The left-hand side of (11) thus counts k-tuples of trees with a prescribed total number

of nodes of out-degree 2, . . . , d; a similar argument as above shows their number equals the right-

hand side (every string with the appropriate number of symbols of each kind has exactly k cyclic

shifts that are concatenations of representations of k trees). The main identity (9) expresses that

a tree with more than one node can be uniquely decomposed as a root of out-degree k = 2, . . . , d

followed by a k-tuple of trees. Finally, (10) expresses that a pair of trees t′, t′′ together with a

distinguished leaf x of t′ uniquely represent a tree t with a distinguished node x, namely the

tree obtained by identifying the root of t′′ with x.

Let us proceed with the formal proof by induction. Assume that (9), (10), and (11) hold for

all m′ such that m′ � m, we will prove them for m.
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(9): If m 6= ~0, we have

d∑
k=2

∑
m1+···+mk=m−δk

Cm1 · · ·Cmk =
d∑

k=2
mk>0

(∑
i imi − 1

)
! k(∑

i(i− 1)mi + 1
)
!
∏
i 6=kmi! (mk − 1)!

=

(∑
i imi − 1

)
!(∑

i(i− 1)mi + 1
)
!
∏
imi!

d∑
k=2
mk>0

kmk

=

(∑
i imi

)
!(∑

i(i− 1)mi + 1
)
!
∏
imi!

= Cm,

using (11) for m− δk � m.

(10): If m = ~0, the statement holds. Otherwise, we have(∑
i imi + 1

)
Cm

= Cm +
(∑

i imi

) d∑
k=2

∑
m1+···+mk=m−δk

Cm1 · · ·Cmk

= Cm +
d∑

k=2

∑
m1+···+mk=m−δk

k∑
j=1

(∑
i im

j
i + 1

)
Cm1 · · ·Cmk

= Cm +
d∑

k=2

k
∑

m1+···+mk=m−δk

(∑
i im

k
i + 1

)
Cm1 · · ·Cmk(12)

= Cm +
d∑

k=2

k
∑

m1+···+mk+m′′=m−δk

(∑
i(i− 1)mk

i + 1
)
Cm1 · · ·CmkCm′′

= Cm +
∑

m′+m′′=m
m′ 6=~0

Cm′′
d∑

k=2

k
∑

m1+···+mk=m′−δk

(∑
i(i− 1)mk

i + 1
)
Cm1 · · ·Cmk

= Cm +
∑

m′+m′′=m
m′ 6=~0

Cm′′
d∑

k=2

∑
m1+···+mk=m′−δk

k∑
j=1

(∑
i(i− 1)mj

i + 1
)
Cm1 · · ·Cmk(13)

= Cm +
∑

m′+m′′=m
m′ 6=~0

Cm′′
d∑

k=2

∑
m1+···+mk=m′−δk

(∑
i(i− 1)m′i + 1

)
Cm1 · · ·Cmk

= Cm +
∑

m′+m′′=m
m′ 6=~0

(∑
i(i− 1)m′i + 1

)
Cm′′Cm′

=
∑

m′+m′′=m

(∑
i(i− 1)m′i + 1

)
Cm′Cm′′ ,

using (9) for m and m′ ≤ m, and (10) for mk � m. We derive line (12) by observing that the
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k sums ∑
m1+···+mk=m−δk

(∑
i im

j
i + 1

)
Cm1 · · ·Cmk (j = 1, . . . , k)

have the same value due to symmetry (i.e., by an application of (3)). Line (13) is similar.

(11): By metainduction on k = 1, . . . , d. The case k = 1 is the definition of Cm. Assuming

the statement holds for k, we prove it for k + 1 from the identity

k
(∑

i(i− 1)mi + k + 1
) ∑
m1+···+mk+1=m

Cm1 · · ·Cmk+1

= k
∑

m1+···+mk+1=m

k+1∑
j=1

(∑
i(i− 1)mj

i + 1
)
Cm1 · · ·Cmk+1

= k(k + 1)
∑

m1+···+mk+1=m

(∑
i(i− 1)mk+1

i + 1
)
Cm1 · · ·Cmk+1

= k(k + 1)
∑

m1+···+mk=m

Cm1 · · ·Cmk−1

∑
m′+m′′=mk

(∑
i(i− 1)m′i + 1

)
Cm′Cm′′

= k(k + 1)
∑

m1+···+mk=m

(∑
i im

k
i + 1

)
Cm1 · · ·Cmk

= (k + 1)
∑

m1+···+mk=m

k∑
j=1

(∑
i im

j
i + 1

)
Cm1 · · ·Cmk

= (k + 1)
(∑

i imi + k
) ∑
m1+···+mk=m

Cm1 · · ·Cmk

using (10) for mk ≤ m. �

Lemma 5.3 VTC 0 + IMUL proves: let f, g be as in Theorem 5.1, and a = max
{

1,
∑

i|ai|
}

.

Then |bn| ≤ (4a)n−1 for every n.

Proof: We can estimate

|bn| ≤ an−1
∑

∑
i(i−1)mi=n−1

Cm

d∏
i=2

(
a1−i|ai|

)mi
=
an−1

n

∑
∑
i(i−1)mi=n−1

(
n− 1 +

∑
imi

n− 1,m2, . . . ,md

) d∏
i=2

(
a1−i|ai|

)mi
≤ an−1

n

2(n−1)∑
t=n−1

∑
s+

∑
imi=t

(
t

s,m2, . . . ,md

) d∏
i=2

(
a−1|ai|

)mi
=
an−1

n

2(n−1)∑
t=n−1

(
1 + a−1

d∑
i=2

|ai|
)t

≤ an−1
(

1 + a−1
d∑
i=2

|ai|
)2(n−1)

≤ an−122(n−1)

using the multinomial formula (6). �
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Example 5.4 The bound in Lemma 5.3 is reasonably tight even in the “real world”. Let

a > 0 be a real number, and put f(x) = x − ax2. Then g is its inverse function g(w) =

(1 −
√

1− 4aw)/2a, whose radius of convergence is the modulus of the nearest singularity,

namely 1/4a. Thus, for every ε > 0, |bn| ≥ (4a− ε)n for infinitely many n. In fact, the Stirling

approximation for Catalan numbers gives bn = Θ
(
(4a)nn−3/2

)
.

Theorem 5.5 VTC 0 + IMUL proves the following for every constant d ≥ 1. Let h(x) =∑d
i=0 aix

i be a rational polynomial with linear coefficient a1 = 1. Put f = h− a0, let g and bn
be as in Theorem 5.1, a = max

{
1,
∑d

i=2|ai|
}

, α = 4a|a0|, and let

xN =
N∑
n=1

bn(−a0)n

denote the N th partial sum of g(−a0) for every unary natural number N . If

|a0| <
1

4a
,

then

|xN | ≤
|a0|

1− α
,(14)

|xN − xM | ≤
|a0|αN−1

1− α
,(15)

|h(xN )| ≤ Nd|a0|αN(16)

for every unary M ≥ N ≥ 1.

Proof: Lemma 5.3 gives

|xN | ≤
N∑
n=1

|a0|n(4a)n−1 = |a0|
N−1∑
n=0

αn ≤ |a0|
1− α

.

The proof of (15) is similar. As for (16), we have

h(xN ) = a0 +

d∑
k=1

ak

N∑
n1,...,nk=1

bn1 · · · bnk(−a0)n1+···+nk

=
d∑

k=1

ak

N∑
n1,...,nk=1

n1+···+nk>N

bn1 · · · bnk(−a0)n1+···+nk ,(17)

as
d∑

k=1

ak
∑

n1+···+nk=n

bn1 · · · bnk = δ1
n
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for all n ≤ N by Theorem 5.1. Note that the inner sum in (17) is empty for k = 1, thus

|h(xN )| ≤
d∑

k=2

|ak|
N∑

n1,...,nk=1
n1+···+nk>N

(4a)−k
(
4a|a0|

)n1+···+nk

≤
d∑

k=2

|ak|
(
N

4a

)k
αN+1

≤ amax

{
N2

(4a)2
,
Nd

(4a)d

}
αN+1

≤ max

{
N2

4
,
Nd

4d−1

}
|a0|αN ≤ Nd|a0|αN ,

using Lemma 5.3 and a ≥ 1. �

Intuitively, the conclusion of Theorem 5.5 says that xN is a Cauchy sequence with an explicit

modulus of convergence whose limit is a root of h of bounded modulus.

6 Valued fields

Theorem 5.5 shows that VTC 0 + IMUL can compute roots of polynomials of a special form,

however it would still be rather difficult to extend it to a full-blown root-finding algorithm.

We will instead give a model-theoretic argument using well-known properties of valued fields to

bridge the gap between Theorem 5.5 and approximation of roots of general polynomials.

In order to prove VTC 0 + IMUL ` IOpen, it suffices to show that every model of VTC 0 +

IMUL is a model of IOpen. First, since VTC 0 + IMUL ` DIV , we can reformulate Theorem 2.1

in terms of fields.

Lemma 6.1 Let D be a DOR, and F its fraction field. The following are equivalent.

(i) D � IOpen.

(ii) D � DIV , and F is a dense subfield of a RCF R. �

The condition that F is dense in R means that elements of R can be well approximated in F ,

i.e., R cannot be too large, while the condition that R is real-closed (or at least contains the

real closure F̃ real) means that R cannot be too small, so these two conditions work against each

other. One canonical choice of R is the smallest RCF extending F , i.e., F̃ real. We obtain that

a DOR D � DIV is a model of IOpen iff F is dense in F̃ real. However, it will be useful for us to

consider another choice: it turns out that there exists the largest ordered field extension F̂ ⊇ F
in which F is dense, and a DOR D � DIV is a model of IOpen iff F̂ is real-closed.

The existence of F̂ was shown by Scott [163]. One way to prove it is by generalization of

the construction of R using Dedekind cuts. Consider pairs 〈A,B〉, where F = A ∪B, B has no

smallest element, and

inf{b− a : a ∈ A, b ∈ B} = 0.
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One can show that the collection of all such cuts can be given the structure of an ordered field in

a natural way, and it has the property needed of F̂ . However, we will use a different construction

of F̂ which may look more complicated on first sight, but has the advantage of allowing us to

employ tools from the theory of valuations to explore its properties (such as being real-closed).

It can be thought of as generalizing the construction of R by means of Cauchy sequences.

We refer the reader to [76] for the theory of valued fields, however we will review our notation

and some basic facts below to make sure we are on the same page.

A valuation on a field K is a surjective mapping v : K � Γ ∪ {∞}, where 〈Γ,+,≤〉 is a

totally ordered abelian group (called the value group), and v satisfies

(i) v(a) =∞ only if a = 0,

(ii) v(ab) = v(a) + v(b),

(iii) v(a+ b) = min{v(a), v(b)},

where we put ∞+ γ = γ +∞ =∞ and γ ≤ ∞ for every γ ∈ Γ. (Elements with large valuation

should be thought of as being small; the order is upside down for historical reasons.) Valuations

v : K → Γ ∪ {∞}, v′ : K → Γ′ ∪ {∞} are equivalent if there is an ordered group isomorphism

f : Γ→ Γ′ such that v′ = f ◦ v.

The valuation ring of v is

O = {a ∈ K : v(a) ≥ 0},

with its unique maximal ideal being

I = {a ∈ K : v(a) > 0}.

The quotient field k = O/I is called the residue field. If a ∈ O, we will denote its image under

the natural projection O → k as a.

More abstractly, a valuation ring for a field K is a subring O ⊆ K such that a ∈ O or a−1 ∈ O
for every a ∈ K×. Any such ring corresponds to a valuation: we take Γ = K×/O× ordered

by aO× ≤ bO× iff b ∈ aO, and define v as the natural projection v(a) = aO×. A valuation is

determined uniquely up to equivalence by its valuation ring; thus, either of the structures 〈K, v〉
and 〈K,O〉 can be called a valued field. A valued field 〈K ′, v′〉 is an extension of 〈K, v〉 if K is

a subfield of K ′, and v ⊆ v′. (In terms of valuation rings, the latter means O = O′ ∩ K.) A

valuation (or valuation ring or valued field) is nontrivial if Γ 6= {0}, or equivalently, if O 6= K.

A valuation v : K → Γ ∪ {∞} induces a topology on K with basic open sets

B(a, γ) = {b ∈ K : v(b− a) > γ}, a ∈ K, γ ∈ Γ.

(Note that B(a, γ) = B(a′, γ) for any a′ ∈ B(a, γ).) This makes K a topological field, and

as with any topological group, it also makes K a uniform space (with a fundamental system

of entourages of the form {〈a, b〉 ∈ K2 : v(a − b) > γ} for γ ∈ Γ). Consequently, we have

the notions of Cauchy nets, completeness, and completion; for the particular case of valued

fields, they can be stated as follows. A Cauchy sequence in K is {aγ : γ ∈ Γ} ⊆ K such

that v(aγ − aδ) > min{γ, δ} for every γ, δ ∈ Γ. (Alternatively, it would be enough if Cauchy
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sequences were indexed over a cofinal subset of Γ.) Such a sequence converges to a ∈ K if

v(a − aγ) > γ for every γ ∈ Γ. The valued field 〈K, v〉 is complete if every Cauchy sequence

in K converges. A completion of 〈K, v〉 is an extension 〈K̂, v̂〉 of 〈K, v〉 which is a complete

valued field such that K is (topologically) dense in K̂. (The last condition implies that K̂ is an

immediate extension of K, i.e., the natural embeddings Γ ⊆ Γ̂ and k ⊆ k̂ are isomorphisms.)

Theorem 6.2 ([76, Thm.2.4.3]) Every valued field 〈K, v〉 has a completion, which is unique

up to a unique valued field isomorphism identical on K. �

Now we turn to the interaction of valuation and order [76, §2.2.2]. Let 〈K,O〉 be a valued

field. If ≤ is an order on K (i.e., 〈K,≤〉 is an ordered field) such that O is convex (i.e., a ≤ b ≤ c
and a, c ∈ O implies b ∈ O), then an order is induced on the residue field k by a ≤ b ⇔ a ≤ b.

Conversely, any order on k is induced from an order ≤ on K making O convex in this way. If

Γ is 2-divisible, such a ≤ is unique, and can be defined explicitly by

a > 0 ⇐⇒ ∃b ∈ K (ab2 ∈ O× ∧ ab2 > 0).

In general, the structure of all such orders ≤ is described by the Baer–Krull theorem [76,

Thm. 2.2.5]. Notice also that every convex subring of an ordered field is a valuation ring.

Lemma 6.3 If 〈K,≤〉 is an ordered field, and O a nontrivial convex subring of K, then the

valuation topology on K coincides with the interval topology. In particular, a subset X ⊆ K is

topologically dense iff it is order-theoretically dense.

Proof: The convexity of O implies that every B(a, γ) is also convex. If c ∈ (a, b), and γ ≥
v(c − a), v(c − b), then c ∈ B(c, γ) ⊆ (a, b). On the other hand, if c ∈ B(a, γ), pick e > 0

with v(e) > γ (which exists as the valuation is nontrivial). Then c ∈ (c− e, c+ e) ⊆ B(a, γ). �

For any ordered field 〈K,≤〉, the set of its bounded elements

O = {a ∈ K : ∃q ∈ Q+ (−q ≤ a ≤ q)}

is a convex valuation ring for K with the set of infinitesimal elements

I = {a ∈ K : ∀q ∈ Q+ (−q ≤ a ≤ q)}

being its maximal ideal. The corresponding valuation is the natural valuation induced by ≤.

The residue field is an archimedean ordered field, and as such it can be uniquely identified with

a subfield k ⊆ R. Here is the promised construction of the largest dense extension of an ordered

field.

Lemma 6.4 Let 〈K,≤〉 be a nonarchimedean ordered field, v its natural valuation, and 〈K̂, v̂〉
its completion. There is a unique order on K̂ extending ≤ that makes Ô convex. Its natural

valuation is v̂, and it satisfies:

(i) K̂ is an ordered field extension of K such that K is dense in K̂.
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(ii) If K ′ is any ordered field extension of K in which K is dense, there is a unique ordered

field embedding of K ′ in K̂ identical on K.

Proof: Since K̂ is an immediate extension of K, for every a ∈ K̂× there exists an a0 ∈ K× such

that aa−1
0 ∈ 1 + Î, or equivalently, v̂(a − a0) > v̂(a) = v(a0). Any order ≤̂ on K̂ extending ≤

such that Ô is convex (which implies 1 + Î ⊆ K̂+) must satisfy

(18) a >̂ 0 ⇐⇒ a0 > 0,

which specifies it uniquely. On the other hand, we claim that (18) defines an order on K̂. First,

the definition is independent of the choice of a0: if a1 ∈ K× is such that aa−1
1 ∈ 1 + Î, then

a0a
−1
1 ∈ 1+I is positive, whence a0 and a1 have the same sign. Clearly, exactly one of a and −a

is positive for any a ∈ K̂×. Let a, b ∈ K̂×, a, b >̂ 0. Since (ab)(a0b0)−1 ∈ 1 + Î, we have ab >̂ 0.

Also, v(a0 + b0) = min{v(a0), v(b0)} as they have the same sign, thus

v̂
(
(a+ b)− (a0 + b0)

)
≥ min{v̂(a− a0), v̂(b− b0)} > min{v(a0), v(b0)} = v(a0 + b0).

This means we can take a0 + b0 for (a+ b)0, showing that a+ b >̂ 0.

If a <̂ b <̂ c, a, c ∈ Ô, we may assume (c − a)0 = (c − b)0 + (b − a)0 by the argument

above, hence (c − b)0 + (b − a)0 ∈ O. Since (c − b)0, (b − a)0 > 0, this implies (b − a)0 ∈ O,

hence b− a ∈ Ô, and b ∈ Ô. Thus, Ô is convex under ≤̂.

Since 〈K,≤〉 is nonarchimedean, the valuations v and v̂ are nontrivial. Thus, K is an order-

theoretically dense subfield of K̂ by Lemma 6.3, which shows (i). Also, in view of the convexity

of Ô, this implies that O is dense in Ô, hence

Ô = {a ∈ K̂ : ∃q ∈ Q+ (−q ≤̂ a ≤̂ q)},

i.e., v̂ is the natural valuation of 〈K̂, ≤̂〉.
(ii): Let v′ be the natural valuation on K ′, and 〈K̂ ′, v̂′〉 its completion. By Lemma 6.3, 〈K, v〉

is topologically dense in its complete extension 〈K̂ ′, v̂′〉, hence there is an isomorphism of 〈K̂ ′, v̂′〉
and 〈K̂, v̂〉 identical on K by Theorem 6.2. It restricts to an embedding f : 〈K ′, v′〉 → 〈K̂, v̂〉.
For any a ∈ K ′, we can see from (18) that f(a) >̂ 0 implies a0 > 0 for some a0 ∈ K× such that

aa−1
0 ∈ 1 + I ′, whence a >′ 0. Thus, f is order-preserving. The uniqueness of f follows from

the density of K in K̂. �

(If K is archimedean, its natural valuation is trivial, hence the induced topology is discrete,

and K̂ = K. However, the largest ordered field extension of K where K is dense is R.)

We will rely on the following important characterization of real-closed fields in terms of

valuations [76, Thm. 4.3.7].

Theorem 6.5 Let 〈K,≤〉 be an ordered field, and O a convex valuation ring of K. The follow-

ing are equivalent.

(i) K is real-closed.

(ii) Γ is divisible, k is real-closed, and O is henselian. �
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There are many equivalent definitions of henselian valuation rings or valued fields (cf. [76,

Thm. 4.1.3]). It will be most convenient for our purposes to adopt the following one: a valuation

ring O or a valued field 〈K,O〉 is henselian iff every polynomial h(x) =
∑d

i=0 aix
i ∈ O[x] such

that a0 ∈ I and a1 = 1 has a root in I.

The basic intuition behind Theorem 6.5 is that in order to find a root a of a polynomial in K,

we use the divisibility of Γ to get a ballpark estimate of a, we refine it to an approximation up to

an infinitesimal relative error using the real-closedness of k, and then use the henselian property

to compute a. Complications arise from interference with other roots of the polynomial.

It is well known that the completion of a henselian valued field is henselian. In fact, we

have the following simple criterion, where we define a valued field 〈K,O〉 to be almost henselian

if for every polynomial h as above, and every γ ∈ Γ, there is a ∈ I such that v(h(a)) > γ.

(Equivalently, 〈K,O〉 is almost henselian iff the quotient ring O/P is henselian for every nonzero

prime ideal P ⊆ O [176].)

Lemma 6.6 The completion 〈K̂, v̂〉 is henselian iff 〈K, v〉 is almost henselian.

Proof: First, we observe that if h =
∑d

i=0 aix
i ∈ O[x] has a1 = 1, then

(19) v(h(b)− h(c)) = v(b− c)

for any b, c ∈ I. Indeed, if b 6= c, we have

h(b)− h(c)

b− c
= a1 +

d∑
i=2

ai(b
i−1 + bi−2c+ · · ·+ ci−1) ∈ 1 + I ⊆ O×.

Left to right: assume that h =
∑d

i=0 aix
i ∈ O[x], a1 = 1, a0 ∈ I, and γ ∈ Γ. Without loss

of generality, γ ≥ 0. Since K̂ is henselian, there is â ∈ Î such that h(â) = 0. By the density

of K in K̂, we can find a ∈ K such that v̂(a− â) > γ. Then a ∈ I, and v(h(a)) > γ by (19).

Right to left: let h =
∑d

i=0 aix
i ∈ Ô[x] with a1 = 1 and a0 ∈ Î. For any γ ∈ Γ, γ ≥ 0, we

choose ai,γ ∈ K such that v̂(ai−ai,γ) > γ, and put hγ =
∑

i ai,γx
i. Then hγ ∈ O[x], a0,γ ∈ I, and

we could have picked a1,γ = 1, hence by assumption, there is bγ ∈ I such that v(hγ(bγ)) > γ. By

the choice of hγ , this implies v̂(h(bγ)) > γ. Moreover, v(bγ − bδ) = v̂(h(bγ)−h(bδ)) > min{γ, δ}
by (19), hence {bγ : γ ≥ 0} is a Cauchy sequence. Since K̂ is complete, there is b ∈ K̂ such that

v̂(b− bγ) > γ for every γ. Then b ∈ Î. Since v̂(h(b)− h(bγ)) > γ by (19), we have v̂(h(b)) > γ

for every γ ∈ Γ, i.e., h(b) = 0. �

Putting all the things together, we obtain the following characterization of open induction.

We note that the fact that the completion of a real-closed field is real-closed was shown by

Scott [163].

Lemma 6.7 Let D be a nonstandard DOR such that D � DIV , F its fraction field endowed

with its natural valuation, and F̂ its completion. The following are equivalent.

(i) D � IOpen.

(ii) F̂ is real-closed.
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(iii) F is almost henselian, its value group is divisible, and its residue field is real-closed.

Proof:

(ii) and (iii) are equivalent by Theorem 6.5 and Lemma 6.6, using the fact that F̂ is an

immediate extension of F .

(ii)→ (i) follows from Lemma 6.1 as F is dense in F̂ . Conversely, assume that F is a dense

subfield of a RCF R. By Theorem 6.5, R is henselian, its value group is divisible, and its residue

field is a RCF. The completion R̂ is also henselian by Lemma 6.6, and it has the same Γ and k

as R, hence it is a RCF by Theorem 6.5. However, the density of F in R̂ implies F̂ ' R̂ by

Lemma 6.4, hence F̂ is a RCF. �

We remark that we could have used any nontrivial convex subring in place of the natural

valuation in Lemma 6.4 (any two such valuations determine the same uniform structure by

Lemma 6.3, which means that their completions are the same qua topological fields, and one

checks easily that they also carry the same order). Likewise, Lemma 6.7 continues to hold

when F is endowed with any nontrivial valuation with a convex valuation ring; this may make

a difference for verification of condition (iii). Notice that such valuation rings correspond to

proper cuts (in the models-of-arithmetic sense) on D closed under multiplication.

We can now prove the main result of this paper.

Theorem 6.8 VTC 0 + IMUL proves IOpen on binary integers.

Proof: Let M � VTC 0 + IMUL, and D be its ring of binary integers, we need to show that

D � IOpen. We may assume without loss of generality that M , and therefore D, is ω-saturated.

Since VTC 0 + IMUL ` DIV , it suffices to check the conditions of Lemma 6.7 (iii).

As we have mentioned above, the residue field k of any ordered field under its natural

valuation is a subfield of R. The ω-saturation of D implies that every Dedekind cut on Q is

realized by an element of F , hence in fact k = R, which is a real-closed field.

Every element of the value group Γ is the difference of valuations of two (positive) elements

of D. Let thus a ∈ D+, and k ∈ Z+. Put n = ‖a‖ − 1, which is a unary integer of M such that

2n ≤ a < 2n+1. Put m = bn/kc and b = 2m. Then bk ≤ a < 2kbk, hence kv(b) = v(a). This

shows that Γ is divisible.

Let γ ∈ Γ, and h(x) =
∑

i≤d aix
i ∈ F [x] be such that v(ai) ≥ 0, v(a0) > 0, and a1 = 1.

Then a = max
{

1,
∑d

i=2|ai|
}

is bounded by a standard integer, whereas a0 is infinitesimal,

thus α = 4a|a0| is also infinitesimal. Let N be a nonstandard unary integer of M such that

v(2−N ) > γ, and let xN be as in Theorem 5.5. Then using a crude estimate,

|h(xN )| ≤ Nd|a0|αN ≤ 2N4−N = 2−N ,

which means that v(h(xN )) > γ. Moreover, |xN | ≤ |a0|/(1 − α) is infinitesimal. Thus, F is

almost henselian. �

As explained in Section 3, Theorem 6.8 implies that for any constant d, VTC 0 + IMUL can

formalize a TC0 algorithm for approximation of roots of degree d rational polynomials. The

reader might find it disappointing that we have shown its existence nonconstructively using the
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abstract nonsense from this section, so let us give at least a rough idea how this algorithm may

actually look like; it is somewhat different from the one in Chapter VII.

Clearly, one ingredient is Theorem 5.5, which gives an explicit description of a TC0 algorithm

for approximation of roots of polynomials of a special form (small constant coefficient and large

linear coefficient). The remaining part is a reduction of general root approximation to this

special case, and this happens essentially in Theorem 6.5. This theorem has a proof with a fairly

algorithmic flavour using Newton polygons (cf. [21, §2.6], where a similar argument is given in

the special case of real Puiseux series). The Newton polygon of a polynomial f(x) =
∑d

i=0 aix
i ∈

K[x] is the lower convex hull of the set of points {ei = 〈i, v(ai)〉 : i = 0, . . . , d} ⊆ Q× Γ.

The basic idea is as follows. Take an edge of the Newton polygon with endpoints ei0 , ei1 .

The slope of the edge is in Γ due to its divisibility, hence we can replace f(x) by a suitable

polynomial of the form af(bx) to ensure v(ai0) = v(ai1) = 0. Then f ∈ O[x], its image f ∈ k[x]

has degree i1, and the least exponent of its nonzero coefficient is i0. If we find a nonzero

root a ∈ k× of f of multiplicity m using the real-closedness of k, the Newton polygon of the

shifted polynomial f(x + a) will have an edge whose endpoints satisfy i′0 < i′1 ≤ m ≤ i1 − i0,

since m is the least exponent with a nonzero coefficient in f(x+a). This is strictly shorter than

the original edge unless f is a constant multiple of xi0(x−a)i1−i0 , which case has to be handled

separately. If we set up the argument properly, we can reduce f by such linear substitutions in

at most d steps into a polynomial whose Newton polygon has e0, e1 for vertices, and then we

can apply the henselian property to find its root in K.

One can imagine that a proper TC0 algorithm working over Q instead of a nonarchimedean

field can be obtained along similar lines by replacing “infinitesimal” with a suitable notion

of “small enough” (e.g., employing an approximation of − log |a| as a measure of magnitude

in place of v(a)). However, the details are bound to be quite unsightly due to complications

arising from the loss of the ultrametric inequality of v.

7 Application to Buss’s theories

While VTC 0 + IMUL does not stand much chance of proving induction for interesting classes of

formulas with quantifiers in the language of ordered rings, we will show in this section that we can

do better in the richer language LB = 〈0, 1,+, ·,≤,#, |x|, bx/2c〉 of Buss’s one-sorted theories of

bounded arithmetic—VTC 0+IMUL proves the RSUV -translation of T 0
2 , and even minimization

for sharply bounded formulas (Σb
0-MIN ). The main tool is a description of Σb

0-definable sets

discovered by Mantzivis [127], whose variants were also given in [33, 113]: in essence, a Σb
0-

definable subset of [0, 2n) can be written as a union of nO(1) intervals on each residue class

modulo 2c, where c is a standard constant. As we will see, this property can be formalized

in VTC 0 + IMUL using the provability of IOpen for the base case of polynomial inequalities,

and as a consequence, our theory proves minimization and induction for Σb
0 formulas. (We

stress that as in the case of IOpen, these are minimization and induction over binary numbers.

Despite the same name, the schemata denoted as IND and MIN in the two-sorted framework

only correspond to LIND and minimization over lengths in Buss’s language, respectively.) We

will present the messier part of the argument as a normal form for Σb
0 formulas over a weak
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base theory, in the hope that this will make the result more reusable.

We will assume the reader is familiar with definitions of Buss’s theories (see e.g. [37, 116]),

in particular, with BASIC . Recall that a formula is sharply bounded if all its quantifiers are of

the form ∃x ≤ |t| or ∀x ≤ |t|. We reserve Σb
0 for the class of sharply bounded formulas of LB,

whereas sharply bounded formulas in an extended language LB ∪ L′ will be denoted Σb
0(L′).

Let BASIC + denote the extension of Buss’s BASIC by the axioms

x(yz) = (xy)z,(20)

y ≤ x→ ∃z (y + z = x),(21)

u ≤ |x| → ∃y (|y| = u),(22)

z < x# y → |z| ≤ |x||y|,(23)

|x| ≤ x.(24)

(The quantifiers in (21), (22) could be bounded by x, if desired.) On top of BASIC , axioms

(20) and (21) imply the theory of nonnegative parts of discretely ordered rings, hence we can

imagine the universe is extended with negative numbers in the usual fashion. In particular, we

can work with integer polynomials. We introduce two extra functions by

x −̇ y = z ⇐⇒ y + z = x ∨ (x < y ∧ z = 0),

2min{u,|x|} = z ⇐⇒ z # 1 = 2z ∧
(
(u ≤ |x| ∧ |z| = u+ 1) ∨ (u > |x| ∧ |z| = |x|+ 1)

)
.

BASIC + proves that −̇ and 2min{u,|x|} are well-defined total functions. Notice that BASIC + is

universally axiomatizable in a language with −̇ and 2min{u,|x|}. We will write 2u for 2min{u,|x|}

when a self-evident value of x such that u ≤ |x| can be inferred from the context (e.g., when u

is a sharply bounded quantified variable).

If p is a polynomial with nonnegative integer coefficients, one can construct easily a term t

such that BASIC + ` p(|x1|, . . . , |xk|) ≤ |t(~x)|. Conversely, one can check that BASIC + proves

|xy| ≤ |x| + |y|; together with other axioms, this implies that for every term t (even using −̇
and 2min{u,|x|}) there is a polynomial p such that BASIC + ` |t(~x)| ≤ p( ~|x|).

Lemma 7.1 Let ϕ(x1, . . . , xk) be a Σb
0(−̇, 2min{u,|x|}) formula. Then BASIC + proves ϕ(~x)

equivalent to a formula of the form

∨
σ1,...,σk<2c

( k∧
i=1

(
xi ≡ σi (mod 2c)

)
∧Q1u1 ≤ p( ~|x|) · · · Qlul ≤ p( ~|x|) f~σ(x1, . . . , xk, u1, . . . , ul, 2

u1 , . . . , 2ul) ≥ 0
)
,

where c is a constant, Q1, . . . , Ql ∈ {∃,∀}, p is a nonnegative integer polynomial, xi ≡ σi
(mod 2c) stands for xi = σi + 2cb· · · bbxi/ 2c/2c · · · /2︸ ︷︷ ︸

c

c, and f~σ is an integer polynomial.

Proof: Using the remark before the lemma, we can find a nonnegative integer polynomial p

such that p( ~|x|) bounds the values of |t| for every subterm t(~x, ~u) occurring in ϕ and all possible
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values of the quantified variables ~u. Then we can rewrite ϕ in the form

Q1u1 ≤ p( ~|x|) · · · Qlul ≤ p( ~|x|)ψ(~x, ~u),

where ψ is open. The next step is elimination of unwanted function symbols. Let |t| be a

subterm of ψ, and write ψ(~x, ~u) = ψ′(~x, ~u, |t|). Then ψ(~x, ~u) is equivalent to

∃u ≤ p( ~|x|) (|t| = u ∧ ψ′(~x, ~u, u)).

Using the axioms of BASIC + and the definition of 2u, this is equivalent to

∃u ≤ p( ~|x|) (b2u/2c ≤ t < 2u ∧ ψ′(~x, ~u, u)).

Likewise,

ψ(~x, ~u, t# s)↔ ∃u, v, w ≤ p( ~|x|) (u = |t| ∧ v = |s| ∧ w = uv ∧ ψ(~x, ~u, 2w)),

ψ(~x, ~u, 2min{t,|s|})↔ ∃u, v ≤ p( ~|x|) (u = |s| ∧ v = min{t, u} ∧ ψ(~x, ~u, 2v)),

where we further eliminate |t| and |s| as above, and min{t, u} in an obvious way. Applying

successively these reductions, we can eventually write ϕ as

(25) Q1u1 ≤ p( ~|x|) · · · Qlul ≤ p( ~|x|)ψ(~x, ~u, ~2u),

where ψ is an open formula in the language 〈0, 1,+, ·, −̇, bx/2c,≤〉.

Claim 7.1.1 Let t(~x) be a 〈0, 1,+, ·, −̇, bx/2c〉-term such that the nesting depth of bx/2c in t

is c, and the number of occurrences of −̇ is r. For every ~σ < 2c, there are integer polynomials

g1, . . . , gr and
{
f~α : α1, . . . , αr ∈ {0, 1}

}
such that BASIC + proves

(26)
r∧
i=1

(gi(~x) ≥ 0)αi → t(2c~x+ ~σ) = f~α(~x),

where ϕ1 = ϕ, ϕ0 = ¬ϕ.

Proof: By induction on the complexity of t. For example, assume (26) holds for t, and consider

the term bt/2c. Let ~τ < 2, and assume that f~α(~τ) ≡ ρ (mod 2), ρ ∈ {0, 1}. Notice that all

coefficients of f~α(2~x+~τ)− ρ are even, so h~α(~x) = 1
2(f~α(2~x)− ρ) is again an integer polynomial,

and BASIC + proves

r∧
i=1

(gi(2~x+ ~τ) ≥ 0)αi → t(2c+1~x+ (2c~τ + ~σ)) =

⌊
f~α(2~x)

2

⌋
=

⌊
2h~α(~x) + ρ

2

⌋
= h~α(~x).

� (Claim 7.1.1)
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Claim 7.1.2 Every open formula ψ(~x) in the language 〈0, 1,+, ·, −̇, bx/2c,≤〉 is equivalent to

a formula of the form ∨
~σ<2c

(∧
i

(
xi ≡ σi (mod 2c)

)
∧ ψ~σ(~x)

)
over BASIC +, where each ψ~σ is a Boolean combination of integer polynomial inequalities.

Proof: Using Claim 7.1.1 and BASIC +-provable uniqueness of the representation x = 2cy+ σ,

σ < 2c, we obtain an equivalent of ψ in almost the right form except that ψ~σ is a Boolean

combination of inequalities of the form

f(2−c(~x− ~σ)) ≥ 0,

where f is an integer polynomial. If d = deg(f), g(~x) = 2cdf(2−c(~x− ~σ)) is an integer polyno-

mial, and the inequality above is equivalent to g(~x) ≥ 0. � (Claim 7.1.2)

Let us apply Claim 7.1.2 to the formula ψ(~x, ~u, ~2u) in (25). Since BASIC + knows that

20 = 1 and 2u+1 = 2 · 2u, we can replace 2ui ≡ σ (mod 2c) with 2ui = σ ∨ (ui ≥ c ∧ σ = 0).

Moreover, ui ≡ σ (mod 2c) can be written as ∃v ≤ p( ~|x|) (ui = 2cv + σ), and xi ≡ σ (mod 2c)

can be moved outside the quantifier prefix. Thus, ϕ(~x) is equivalent to

∨
~σ<2c

( k∧
i=1

(
xi ≡ σi (mod 2c)

)
∧Q1u1 ≤ p( ~|x|) · · · Qlul ≤ p( ~|x|)ψ~σ(~x, ~u, ~2u)

)
,

where ψ~σ is a Boolean combination of integer polynomial inequalities. We can reduce ψ~σ to a

single inequality using

¬(f ≥ 0)↔ −f − 1 ≥ 0,

f ≥ 0 ∧ g ≥ 0↔ ∀v ≤ p( ~|x|) (vf + (1− v)2g ≥ 0),

assuming p( ~|x|) ≥ 1. �

Lemma 7.2 VTC 0 + IMUL proves the following for every constant d: if {fu : u < n} is a

sequence of integer polynomials of degree d (each given by a (d + 1)-tuple of binary integer

coefficients), and a > d is a binary integer, there exists a double sequence w = {wu,i : u < n,

i ≤ d+ 1} such that 0 = wu,0 < wu,1 < · · · < wu,d+1 = a and fu(x) has a constant sign on each

interval [wu,i, wu,i+1), that is,

(27) ∀u < n ∀x
∧
i≤d

(
wu,i ≤ x < wu,i+1 → (fu(x) ≥ 0↔ fu(wu,i) ≥ 0)

)
.

Proof: Using IOpen, {x < a : f(x) ≥ 0} is a union of at most d intervals for every polynomial f

of degree at most d, i.e., VTC 0 + IMUL proves

∀f ∀a > d ∃0 = x0 < · · · < xd+1 = a∀x
∧
i≤d

(
xi ≤ x < xi+1 → (f(x) ≥ 0↔ f(xi) ≥ 0)

)
.
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Now we would like to invoke ΣB
1 -ACR to find a sequence w satisfying (27), but we cannot

directly do that as the conclusion is only ΠB
1 .

Let M � VTC 0 + IMUL, and R be its real closure. Quantifier elimination for RCF furnishes

an open formula ϑ in LOR such that M � ϑ(x, y, a0, . . . , ad) iff f(x) =
∑

i≤d aix
i has no roots in

the interval (x, y]R. By replacing f with 2f + 1 if necessary, we may assume f has no integral

roots. Let α1 < · · · < αc, c ≤ d, be the list of all roots of f in (0, a]R, and let x0, . . . , xd+1 ∈M be

the sequence of integers 0, dα1e, . . . , dαce, a (which exist due to IOpen) with duplicates removed,

and dummy elements added if necessary to make it the proper length. Then f has no roots in

the intervals (xi, xi+1 − 1]R. This means we can prove in VTC 0 + IMUL the statement

∀f ∀a > d∃0 = x0 < x1 < · · · < xd+1 = a
∧
i≤d

ϑ(xi, xi+1 − 1, f),

which has the right complexity, hence we can use ΣB
1 -ACR to derive the existence of a sequence w

such that

∀u < n
(
wu,0 = 0 ∧ wu,d+1 = a ∧

∧
i≤d

(
wu,i < wu,i+1 ∧ ϑ(wu,i, wu,i+1 − 1, fu)

))
.

This implies (27). �

Theorem 7.3 The RSUV -translation of BASIC + + Σb
0(−̇, 2min{u,|x|})-MIN , and a fortiori

of T 0
2 , is provable in VTC 0 + IMUL.

Proof: Work in VTC 0 +IMUL. It is straightforward but tedious to verify the BASIC + axioms.

Let ϕ(x) be (the translation of) a Σb
0(−̇, 2min{u,|x|}) formula (possibly with other parameters),

and a a binary number such that ϕ(a), we have to find the least such number. Since it is enough

to do this separately on each residue class modulo 2c, we can assume using Theorem 7.3 that

ϕ(x) is equivalent to

Q1u1 ≤ n · · · Qlul ≤ n f(x, ~u, ~2u) ≥ 0

for x < a, where n is a unary number, and f is a polynomial with binary integer coefficients.

By Lemma 7.2, there is a sequence w such that

w~u,i ≤ x < w~u,i+1 → (f(x, ~u, ~2u) ≥ 0↔ f(w~u,i, ~u, ~2u) ≥ 0)

for all x < a, ~u ≤ n, and i ≤ d. As VTC 0 proves that every sequence of integers can be sorted,

there is an increasing sequence {w′j : j < m} whose elements include every w~u,i. Consequently,

the truth value of ϕ(x) is constant on each interval [w′j , w
′
j+1), and the minimal x < a satisfying

ϕ(x), if any, is w′j0 , where

j0 = min{j < m : ϕ(w′j)}.

The latter exists by ΣB
0 (L

VTC 0+IMUL
)-COMP . �

We remark that the proof used nothing particularly special about division by 2, except

that BASIC conveniently includes the bx/2c function symbol and the relevant axioms. We

could allow more general instances of division as long as the values of all denominators en-

countered when evaluating a Σb
0 formula on [0, a] have a common multiple which is a length
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(unary number); in particular, Theorem 7.3 (along with an appropriate version of Lemma 7.1)

holds for Σb
0 formulas in a language further expanded by function symbols for bx/2||y||c and

bx/max{1, ||y||}c.
We formulated Theorem 7.3 for VTC 0+IMUL as we have been working with this two-sorted

theory throughout the main part of the paper, however here it is perhaps more natural to state

the result directly in terms of one-sorted arithmetic to avoid needless RSUV translation. A

theory ∆b
1-CR corresponding to TC0 was defined by Johannsen and Pollett [110], and shown

RSUV -isomorphic to VTC 0 by Nguyen and Cook [133]. Recall also Johannsen’s theory C0
2 [div ]

from Section 3.

Corollary 7.4 The theories ∆b
1-CR + IMUL and C0

2 [div ] prove Σb
0(−̇, 2min{u,|x|})-MIN and

therefore T 0
2 . �

To put Theorem 7.3 in context, there has been a series of results to the effect that various

subsystems of bounded arithmetic axiomatized by sharply bounded schemata are pathologically

weak. Takeuti [169] has shown that S0
2 = Σb

0-PIND does not prove the totality of the predecessor

function, and Johannsen [107] extended his method to show that S0
2 in a language including −̇,

bx/2yc, and bit counting does not prove the totality of division by three (or even of the AC0

function b2|x|/3c). Boughattas and Ko lodziejczyk [33] have shown that T 0
2 = Σb

0-IND does not

prove that nontrivial divisors of powers of two are even, and by Ko lodziejczyk [113], it does not

even prove 3 - 2|x|. These results also apply to certain mild extensions of T 0
2 , nevertheless no

unconditional independence result is known for Σb
0-MIN , or its subtheory T 0

2 + S0
2 .

What makes such separations possible is a lack of computational power. It is no coincidence

that there are no result of this kind for two-sorted Zambella-style theories, where already the

base theory V 0 proves the totality of all AC0-functions: we can show V 0(p) * V 0(q) for primes

p 6= q using the known lower bounds for AC0[p], but we have no independence results for stronger

theories without complexity assumptions such as AC0[6] 6= PH. This is directly related to the ex-

pressive power of sharply bounded formulas: while ΣB
0 formulas can define all AC0 predicates,

the ostensibly quite similar Σb
0 formulas (that even involve the TC0-complete multiplication

function) have structural properties that preclude this, as witnessed by Mantzivis’s result. In-

deed, the pathological behaviour of T 0
2 disappears if we slightly extend its language: as proved

in [94], T 0
2 (bx/2yc) = PV1, and this can be easily extended to show Σb

0(bx/2yc)-MIN = T 1
2 .

Theorem 7.3 formally implies only conditional separations: in particular, PV1 * Σb
0-MIN

unless P = TC0, and Σb
0-MIN ( T 1

2 unless PH = BH ⊆ TC0/poly and PLS = FTC0 (provably

in Σb
0-MIN ). However, heuristically it gives us more. If Σb

0-MIN were a “computationally

reasonable” theory, we would expect it to coincide with T 1
2 due to its shape, or at the very

least to correspond to a class closer to PLS than TC0. Thus, Theorem 7.3 indicates that it

might be a pathologically weak theory in some way, and therefore amenable to unconditional

independence results by means of a direct combinatorial construction of models in the spirit

of [33, 113].
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8 Conclusion

The weakest theory of bounded arithmetic in the setup of [182, 68] that can talk about elemen-

tary arithmetic operations on binary integers is VTC 0. We have shown that its strengthening

VTC 0 + IMUL proves that these operations are fairly well behaved in that they satisfy open

induction. Despite that the theory VTC 0 +IMUL corresponds to the complexity class TC0 sim-

ilarly to VTC 0, it is still an interesting problem what properties of integer arithmetic operations

are provable in plain VTC 0. In view of Theorem 6.8 and Corollary 3.6, we have:

Corollary 8.1 VTC 0 proves IOpen if and only if it proves DIV . �

Question 8.2 Does VTC 0 prove DIV ? In particular, does it prove the soundness of the divi-

sion algorithm by Hesse, Allender, and Barrington [90]?

While the analysis of the algorithm in [90] generally relies on quite elementary tools, its formal-

ization in VTC 0 suffers from “chicken-and-egg” problems. For instance, the proof of Lemma

6.1, whose goal is to devise an algorithm for finding small powers in groups, assumes there is

a well-behaved powering function, and uses its various properties to establish that its value is

correctly computed by the algorithm. This is no good if we need the very algorithm to construct

the powering function in the first place. Similarly, integer division is employed throughout Sec-

tion 4. It is not clear whether one can circumvent these circular dependencies in VTC 0. On

the other hand, the requisite operations such as division are available in VTC 0 + IMUL, which

makes it plausible that VTC 0 + IMUL can formalize the arguments.

We remark that it is not difficult to do division by standard integers in VTC 0. This means

VTC 0 knows that binary integers form a Z-ring, and in particular, they satisfy all universal

consequences of IOpen by a result of Wilkie [178]. (IOpen itself is a ∀∃-axiomatized theory, and

likewise, DIV is a ∀∃ sentence.)

As explained in Section 7, our main result implies that VTC 0 + IMUL (or better, the

corresponding one-sorted theory ∆b
1-CR +IMUL) proves minimization for Σb

0 formulas in Buss’s

language, which suggests that the theory axiomatized by Σb
0-MIN is rather weak. Consequently,

it might be feasible to unconditionally separate this theory from stronger fragments of S2,

nevertheless our argument gives no clue how to do that.

Problem 8.3 Prove that Σb
0-MIN is strictly weaker than T 1

2 without complexity-theoretic as-

sumptions.
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[121] Jan Kraj́ıček, Pavel Pudlák, and Gaisi Takeuti, Bounded arithmetic and the polynomial

hierarchy, Annals of Pure and Applied Logic 52 (1991), no. 1–2, pp. 143–153.



Bibliography 249

[122] Clemens Lautemann, BPP and the polynomial hierarchy, Information Processing Letters

17 (1983), no. 4, pp. 215–217.

[123] Franz Lemmermeyer, Reciprocity laws: From Euler to Eisenstein, Springer Monographs

in Mathematics, Springer, 2000, see also https://www.mathi.uni-heidelberg.de/

~flemmermeyer/qrg_proofs.html.

[124] Saunders Mac Lane and Garrett Birkhoff, Algebra, third ed., American Mathematical

Society, Providence, 1999.

[125] Alexis Maciel, Toniann Pitassi, and Alan R. Woods, A new proof of the weak pigeonhole

principle, Journal of Computer and System Sciences 64 (2002), no. 4, pp. 843–872.
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[161] Alexander Russell and Ravi Sundaram, Symmetric alternation captures BPP, Computa-

tional Complexity 7 (1998), no. 2, pp. 152–162.

[162] Walter L. Ruzzo, On uniform circuit complexity, Journal of Computer and System Sci-

ences 22 (1981), no. 3, pp. 365–383.

[163] Dana Scott, On completing ordered fields, in: Applications of Model Theory to Algebra,

Analysis, and Probability (W. A. J. Luxemburg, ed.), Holt, Rinehart and Winston, New

York, 1969, pp. 274–278.

[164] John C. Shepherdson, A nonstandard model for a free variable fragment of number theory,

Bulletin de l’Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astro-
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Gazette 49 (1965), no. 369, pp. 290–293.

[169] Gaisi Takeuti, Sharply bounded arithmetic and the function a −̇ 1, in: Logic and Compu-

tation, Proceedings of a Workshop held at Carnegie Mellon University, June 30–July 2,

1987 (W. Sieg, ed.), Contemporary Mathematics vol. 106, American Mathematical Soci-

ety, 1990, pp. 281–288.

[170] , RSUV isomorphisms, in Clote and Kraj́ıček [54], pp. 364–386.
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