
Recursive functions and existentially closed structures

Emil Jeřábek
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Abstract

The purpose of this paper is to clarify the relationship between various conditions implying

essential undecidability: our main result is that there exists a theory T in which all partially

recursive functions are representable, yet T does not interpret Robinson’s theory R. To

this end, we borrow tools from model theory—specifically, we investigate model-theoretic

properties of the model completion of the empty theory in a language with function symbols.

We obtain a certain characterization of ∃∀ theories interpretable in existential theories in the

process.
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1 Introduction

First-order theories studied by logicians may be broadly divided in two classes. One class comprises
theories of “arithmetical strength”, such as various fragments and extensions of Peano arithmetic,
or set theories. They are distinguished by their great expressive power that, on the one hand,
allows them to work with all kinds of objects from mathematical practice in a suitable encoding
(indeed, some of these theories are designed to serve as foundations for all of mathematics, e.g.,
ZFC), and on the other hand, makes them subject to Gödel’s incompleteness theorems and related
phenomena. The other class are theories of “tame” structures, for example algebraically closed
or real closed fields, vector spaces, generic structures such as the random graph, etc. These
theories have low expressive power (often manifested in classification of definable sets stemming
from partial quantifier elimination), and consequently their models have a manageable structure
of a geometric nature. Tame theories tend to be decidable.

The borderline between arithmetical and tame theories is not sharply demarcated, but one
typical feature of arithmetical theories is their essential undecidability, meaning that all consistent
extensions of the theory are undecidable. This notion was isolated by Tarski, Mostowski, and
Robinson [12]. This classic monograph also includes convenient methods for proving essential
undecidability of a theory T , which can be viewed as stand-alone properties implying essential
undecidability. In order of increasing strength, these are:

• T can represent all partially recursive functions (prf; see below for a precise definition).

• T can interpret Robinson’s theory R.

• T can interpret Robinson’s arithmetic Q, or equivalently, the adjunctive set theory.

1



An even stronger condition is that of being an sequential theory [8, 14].
Recall that Robinson’s R is, essentially, a theory axiomatizing the true Σ1 sentences of the

standard model of arithmetic N; while it is in some ways less convenient to work with than
the better-known arithmetic Q (e.g., R is not finitely axiomatizable), it is distinguished by its
interpretability properties—see Visser [15].

The above-mentioned conditions on theories form an increasing chain. For most of the inclu-
sions in this chain, it is clear (or at least, reasonably well known) that the inclusions are strict:
in particular, there are theories interpreting Q that are not sequential (in fact, Q itself is such a
theory [13]), R does not interpret Q (as Q is a finitely axiomatized theory with no finite model,
whereas R is locally finitely satisfiable), and there are essentially undecidable recursively axioma-
tized theories that do not represent prf. However, one of these inclusions is not as easy to resolve,
leading to the question that motivated this paper:

Question 1.1 If a theory represents all partial recursive functions, does it interpret Robinson’s
theory R?

This may look plausible at first sight: R is a very weak theory that only fixes the values of
elementary arithmetic operations on standard natural numbers, and requires virtually nothing
else from the rest of the model. Now, the definition of representability of prf does provide for
natural number constants and definable functions on them that behave like elementary arithmetic
operations as these operations are prf, so everything seems to be in order.

Despite this, the answer turns out to be negative. The devil is in the “virtually nothing else”: R
does, after all, involve universally quantified conditions that may look innocuous (in our favourite
formulation of R, these universal quantifiers are bounded by a constant, hence ostensibly “finite”),
but actually turn out to be crucially important. Using Visser’s [15] characterization, R interprets
nontrivial universal theories such as the theory of infinite discrete linear order. In contrast, prf
can be represented in a theory axiomatized purely by quantifier-free sentences, with no universal
quantifiers lurking behind.

We are going to prove that consistent theories with quantifier-free—or even existential—axioms
cannot interpret infinite linear orders and a couple of similar universal theories, and a fortiori,
cannot interpret R. This is not easy to work out directly: the weakness of existential theories—
which should intuitively be the reason for nonexistence of such interpretations—backfires in that we
have absolutely no control over the complexity of formulas that make up potential interpretations,
and over the sets they define in models.

Our strategy to solve this problem is to consistently extend the interpreting theory to a theory
with quantifier elimination, using the fact that the empty theory in an arbitrary language L has a
model completion (which we denote ECL, being the theory of existentially closed L-structures).
This fact is well known for relational languages, in which case ECL is the theory of the “random L-
structure”. However, we need it for languages with function symbols, which are mostly neglected
in common literature, though the existence of ECL was proved in full generality already by
Winkler [17].

It follows that if a theory is interpretable in a consistent quantifier-free or existential theory,
it is weakly interpretable in ECL for some L, and the interpretation can be taken quantifier-free.
In order to see that this is heading in the right direction, we establish a converse result: if an ∃∀
theory is weakly interpretable in ECL, it is interpretable in a quantifier-free theory.

We proceed to prove that ECL does not, actually, weakly interpret various theories of interest.
At this point, we are heading further and further into model theory, having left the realm of arith-
metical theories. It turns out that our non-interpretability results can be naturally expressed in
the language of classification theory. Arising through the work of Shelah [10], classification theory
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studies the landscape of “dividing lines” between tame and wild theories, and their structural
consequences. Many dividing lines have the following form: a theory is wild if it has a model that
contains a certain complex combinatorial arrangement. Usually, conditions of this form can be
reformulated as (weak) interpretability of a specific ∃∀ theory. For a concrete example, a theory T
has the strict order property (SOP) if there exists a model M � T , a formula ϕ(x, y), and tuples
an ∈M for n ∈ N such that ϕ defines in M a strict partial order, and ϕ(an, am) whenever n < m.
Otherwise, T is said to have the no-strict-order property (NSOP).

We observe that theories that can represent recursive functions, as well as consistent extensions
of ECL for sufficiently rich languages L, are moderately wild in that they always have the tree
property TP2. However, we will prove that ECL (for arbitrary L) has certain tameness proper-
ties: specifically, it has the no-strong-order property NSOP3 (which implies NSOP), and it has
elimination of infinity. Using a characterization of NSOP1 theories by Chernikov and Ramsey [2],
we show that it even has the NSOP1 property. On the other hand, theories interpreting R are
firmly on the wild side of all generally considered dividing lines.

For completeness, the paper also includes discussion of basic model-theoretic properties of ECL

in the appendix.

2 Preliminaries

Let us first agree on a few bits of general notation. We will use N and ω more or less interchangeably
to denote the set of nonnegative integers; N may also denote the standard model of arithmetic
〈N, 0, succ,+, ·, <〉. We denote sequences by angle brackets, and consider them indexed starting
from 0; tuples of finite-but-unspecified length will be denoted by placing a bar over a variable
name, so that x may stand for the n-tuple 〈x0, . . . , xn−1〉.

We will write F : X ⇀ Y to denote that F is a partial function from X to Y . (We use this
notation in the context of partial recursive functions, so virtually always we will have X = Nk,
Y = N.)

The notation t l s means that t and s are syntactically identical terms; we may also apply it
to formulas and other syntactic objects.

2.1 Theories and interpretations

In this paper, a language consists of an arbitrary number of relation and function symbols of arbi-
trary finite arity (including 0: nullary functions are constants, nullary relations are propositional
variables; relation and function symbols of arity ≥ 1 are called proper). A theory is a deductively
closed set of sentences in a particular language. A theory in language L is also called an L-theory.
We will often consider theories specified by a set of axioms, in which case the theory is taken to
be their deductive closure; we will frequently omit outer universal quantifiers from axioms. We
will generally employ a form of first-order logic that allows empty models.

Many considerations in this paper revolve around the notion of interpretation of one theory in
another, so we need to be somewhat specific about its meaning. However, since a precise technical
definition of interpretations would get quite lengthy, we advise the reader to consult e.g. Visser [15,
§2] for the details if necessary; we will only indicate the main distinctive features below.

Let T be a theory in a language LT , and S a theory in a language LS . In its most simple form,
a translation I of language LT into language LS is specified by:

• An LS-formula δI(x) denoting the domain of I.

• For each relation symbol R of LT , as well as the equality relation =, an LS-formula RI of
the same arity.
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• For each function symbol F of LT of arity k, an LS-formula FI of arity k + 1.

If ϕ is an LT -formula, its I-translation ϕI is an LS-formula constructed as follows: we rewrite the
formula in an equivalent way so that function symbols only occur in atomic subformulas of the
form F (x) = y, where xi, y are variables; then we replace each such atomic formula with FI(x, y),
we replace each atomic formula of the form R(x) with RI(x), and we restrict all quantifiers and
free variables to objects satisfying δI . We take care to rename bound variables to avoid variable
capture during the process.

A translation I of LT into LS is an interpretation of T in S if S proves:

• For each function symbol F of LT , the formula expressing that FI is total on δI :

∀x0, . . . , xk−1

(
δI(x0) ∧ · · · ∧ δI(xk−1)→ ∃y (δI(y) ∧ FI(x, y))

)
. (1)

• The I-translations of all axioms of T , and axioms of equality.

It follows that S proves the I-translations of all sentences provable in T .
The simplified picture of translations and interpretations above actually describes only one-

dimensional, parameter-free, and one-piece translations. In the full generality, we allow the fol-
lowing:

• Translations may be multi-dimensional. That is, we use n-tuples of LS-objects to represent
LT -objects (where n is a fixed natural number, called the dimension of the translation):
thus, δI has n free variables, RI has kn free variables for a k-ary relation R ∈ LT , and
similarly for functions; and when constructing ϕI , each quantifier is replaced with a block
of n quantifiers.

• Translations may use parameters. This means that the formulas δI , RI , and FI may include
parameter variables w that are assumed distinct from any proper variables used in the
target formulas, and the specification of I includes an LS-formula πI(w) that describes
which parameters are admissible. Parameters carry through the translation unchanged, so
they appear as free variables in ϕI . The definition of interpretation is modified so that S
proves ∀w (πI(w)→ ϕI(w)) for each axiom ϕ, and likewise for (1).

• Translations may be piece-wise: the interpreted domain of LT -objects may be stitched to-
gether from finitely many pieces (possibly of different dimensions, and possibly overlapping).
Each piece has its own δI formula, there is a separate RI formula for each choice of a sequence
of pieces for the arguments of R, etc.

A translation I is called unrelativized if, on each piece, δI(x) is a tautologically true formula, and
it has absolute equality if, on each piece, x =I y is the formula

∧
i xi = yi.

Under suitable conditions, we do not need the full generality of interpretations:

• Assume that S proves the existence of at least two distinct objects. Then whenever T has
an interpretation in S, it also has a one-piece interpretation. (The new interpretation may
have larger dimension, but needs no extra parameters.) This can be achieved by using the
pattern of equalities on an extra tuple of variables to distinguish pieces. For this reason, we
will mostly think of interpretations as one-piece, to avoid unnecessary technical baggage.

• If T has a definable object, then an interpretation of T in S may be converted to an unrel-
ativized interpretation by “equating” tuples outside the original domain with the definable
object. If we do not mind using extra parameters, the same can be achieved even if T just
proves the existence of at least one object. This construction may not be always desirable,
hence relativized interpretations will remain the norm for us.
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• A theory S has (non-functional) pairing if there is a formula π(x, y, z) such that S proves

π(x, y, z) ∧ π(x′, y′, z)→ x = x′ ∧ y = y′

∀x ∀y ∃z π(x, y, z).

If T has an interpretation in a theory S with pairing, it also has a one-dimensional interpre-
tation, as we can use single elements to code tuples.

If I1 is a translation of language L1 into L0, and I2 a translation of language L2 into L1, the
composition I1 ◦ I0 is a translation of L2 into L0, and it is defined in an expected way. Note that
if I1 is an interpretation of a theory T1 in T0, and I2 an interpretation of T2 in T1, then I1 ◦ I2 is
an interpretation of T2 in T0.

Let T and S be theories. Some variants on the notion of interpretation of T in S are:

• A weak interpretation of T in S is an interpretation of T in a consistent extension of S (in
the same language as S), or equivalently, in a completion of S.

• A cointerpretation of T in S is a translation I of language LS into LT (sic!) such that T ` ϕI
implies S ` ϕ for every LS-sentence ϕ.

• A faithful interpretation of T in S is an interpretation of T in S that is at the same time a
cointerpretation of S in T .

A theory T is interpretable (weakly interpretable, cointerpretable) in a theory S if there exists an
interpretation (weak interpretation, cointerpretation, resp.) of T in S.

If T and S are complete theories, a translation I of LT in LS is an interpretation of T in S iff
it is a weak interpretation iff (assuming I is parameter-free) it is a cointerpretation of S in T .

Lemma 2.1 If I is a weak interpretation of U in T , and J a cointerpretation of S in T , then
J ◦ I is a weak interpretation of U in S. �

An interpretation I of T in S, as defined, is a syntactic transformation of formulas provable
in T into formulas provable in S. However, it can be also viewed semantically: it provides a
uniform way of building “internally definable” models of T out of models of S.

Assume first I is a parameter-free one-piece interpretation with absolute equality, and let
M � S. We construct a model M I � T as follows: if I is n-dimensional, the domain of M I

is δI(M) = {a ∈ Mn : M � δI(a)}; a k-ary relation symbol R ∈ LT is realized in M I by
{〈a0, . . . , ak−1〉 ∈ δI(M)k : M � RI(a0, . . . , ak−1)}, and similarly, a k-ary function symbol F ∈ LT
is realized by the function whose graph is the subset of (δI(M))k+1 defined in M by the formula FI .

Next, if I does not have absolute equality, we build the structure as before, and let M I be its
quotient by the binary relation defined on it by the formula =I ; this relation is in fact a congruence,
as S proves the translations of equality axioms.

If I is a piece-wise interpretation, we construct the domain of M I as the disjoint union of the
finitely many pieces, each defined as above; we define relations and functions in the appropriate
way.

Finally, if I is an interpretation with parameters, we will not obtain a single model M I , but
one model for each choice of parameters: that is, if a is a tuple such that M � πI(a), then M I,a

is a model of T built from the expanded structure 〈M,a〉 by the procedure above.
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2.2 Representation of recursive functions

The notion of representable1 predicates and functions in first-order theories was introduced in [12].
We summarize it below, with a few inessential modifications. (Warning: we are going to relax the
definition a bit later in this section.)

Definition 2.2 Let T be a theory in a language L, and σ = {n : n ∈ N} a fixed sequence of
numerals: i.e., a sequence of closed terms n such that

T ` n 6= m

for n,m ∈ N, n 6= m.
A recursive predicate (rp) P ⊆ Nk is represented in T w.r.t. σ by a formula ϕ(x0, . . . , xk−1) if

〈n0, . . . , nk−1〉 ∈ P =⇒ T ` ϕ(n0, . . . , nk−1),

〈n0, . . . , nk−1〉 /∈ P =⇒ T ` ¬ϕ(n0, . . . , nk−1)

for all n0, . . . , nk−1 ∈ N.
A partial recursive function (prf) F : Nk ⇀ N is represented w.r.t. σ by a formula ϕ(x, y) if

T ` ϕ(n0, . . . , nk−1, y)↔ y = m

whenever n0, . . . , nk−1,m ∈ N are such that F (n) = m.
A set R of prf and rp is representable in T if there exists a sequence of numerals σ such that

each member of R is representable in T w.r.t. σ.

In fact, [12] only considers representation of total recursive functions (trf), but it can be
obviously generalized to partial functions in the indicated fashion. Likewise, we can generalize
representation of rp to representation of disjoint pairs of r.e. predicates (dprp): such a disjoint
pair 〈P+, P−〉, where P+, P− ⊆ Nk, is represented by a formula ϕ(x) if

〈n0, . . . , nk−1〉 ∈ P+ =⇒ T ` ϕ(n0, . . . , nk−1),

〈n0, . . . , nk−1〉 ∈ P− =⇒ T ` ¬ϕ(n0, . . . , nk−1)

for all n0, . . . , nk−1 ∈ N. We identify any relation P ⊆ Nk with the disjoint pair 〈P,Nk r P 〉.
Notice that a representation of a rp P ⊆ Nk is essentially the same as a representation of

its characteristic function χP : Nk → N; likewise for disjoint pairs (their characteristic functions
are partial). Consequently, representability of all prf in T implies representability of all trf and
representability of all dprp; in turn, either of the latter two properties implies representability of
all rp.

The definition of representation of functions does not demand anything from ϕ(x, y) when x

is not one of the tuples n in the domain of the original function. However, if ϕ(x, y) represents a
partial function F : Nk ⇀ N in T , we may define

ϕ′(x, y) l ∀z (ϕ(x, z)↔ z = y),

ϕ′′(x, y) l ϕ′(x, y) ∨
(
y = 0 ∧ ¬∃z ϕ′(x, z)

)
.

Then ϕ′ and ϕ′′ also represent F in T ; moreover, ϕ′ is T -provably a partial function, and ϕ′′ is
T -provably a total function. Thus, we could have included either condition in the definition with
no ill effects.

1In the terminology of [12], definable. We reserve the latter word for something else, in accordance with current

standard usage.
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A desirable condition that we did not include in the definition is that the sequence of numerals σ
be recursive: that is, we can compute the term n on input n. For most purposes, this is actually
redundant if T can represent recursive functions with respect to σ: using a formula representing the
(recursive) successor function succ(n) = n+1, we can build a recursive sequence of formulas ϕn(x)
that define n.

Definition 2.2 formally makes sense for representation of arbitrary predicates or partial func-
tions in T . However, there is little point in that: if T is recursively axiomatizable, and the given
numeral sequence is recursive (or if we can represent succ), then all predicates and total functions
represented in T are actually recursive, and each partial function represented in T extends to a
partial recursive function represented in T . (This is not necessarily true for non-recursive numeral
sequences, see Proposition C.2.)

The primary reason for discussing representability of recursive functions in [12] is that it implies
essential undecidability. We include the argument below for completeness.

Proposition 2.3 If the set of all unary rp is representable in a theory T w.r.t. a recursive sequence
of numerals, then T is essentially undecidable.

Proof: Let S ⊇ T be decidable. This makes the predicate

P (n) ⇐⇒ n is the Gödel number of a formula ϕ(x) s.t. S ` ¬ϕ(n)

recursive, hence P is represented in S by a formula ϕ(x). Let n = pϕq be its Gödel number. If
¬P (n), then S ` ¬ϕ(n) by representability, hence P (n) by the definition of P , which is a contra-
diction. Thus, P (n). Then S ` ¬ϕ(n) by the definition of P , and S ` ϕ(n) by representability,
hence S is inconsistent. �

Again, the assumption of recursivity of the numeral sequence in Proposition 2.3 may be replaced
with representability of succ. However, it cannot be dropped entirely, as shown in the appendix
(Propositions C.2 and C.3).

Likewise, it is essential in Proposition 2.3 that all unary rp are representable at once: we show
in Proposition C.1 that any finite (or uniformly recursive) set of rp and trf is representable in a
decidable theory. In contrast, there is one fixed unary dprp (or: prf) whose representability in a
theory w.r.t. a recursive numeral sequence implies essential undecidability: in fact, any recursively
inseparable pair has this property.

The reader may have realized that representation of recursive functions and predicates in T

amounts to an interpretation of a particular theory in T . We now make this connection explicit.

Definition 2.4 LetR be a set of prf and dprp. The language LR consists of constants {n : n ∈ N},
function symbols F of appropriate arity for every prf F ∈ R, and likewise relation symbols P for
every dprp P ∈ R. The theory REPR in language LR is axiomatized by

n 6= m

for n 6= m ∈ N;
F (n0, . . . , nk−1) = m

for each k-ary function F ∈ R, and n0, . . . , nk−1,m ∈ N such that F (n) = m; and for each k-ary
disjoint pair P = 〈P+, P−〉 ∈ R, the axioms

P (n0, . . . , nk−1)

for 〈n0, . . . , nk−1〉 ∈ P+, and
¬P (n0, . . . , nk−1)
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for 〈n0, . . . , nk−1〉 ∈ P−. This definition also applies to rp P ⊆ Nk using their identification with
dprp 〈P,Nk r P 〉.

Note that that the theory REPR is axiomatized by open (= quantifier-free) sentences.
Let PRF, TRF, DPRP, and RP denote the sets of all prf, trf, dprp, and rp, respectively

(where we consider TRF ⊆ PRF and RP ⊆ DPRP). Since REPDPRP is included in an extension
of REPPRF by quantifier-free definitions, we will use REPPRF as a proxy for REPPRF∪DPRP.

For convenience, we also consider a finite-language formulation of REPPRF. Let U(x, y) be the
prf defined by

U(0,m) = m+ 1,

U(n+ 1,m+ 1) = [n,m],

U([n,m] + 1, 0) ' ϕn(m),

where [n,m] denotes a recursive bijective pairing function N2 → N (e.g., the Cantor pairing
function (n+m)(n+m+ 1)/2 + n), and ϕn(m) a partial recursive numbering of unary prf. Let
REPU be the fragment of REPPRF in the language 〈0, U〉; it can be axiomatized by

0 6= S(0),

U(Sn(0), Sm(0)) = Sk(0)

for all n,m, k ∈ N such that U(n,m) = k, where S(x) denotes U(0, x).

Lemma 2.5 REPPRF is included in an extension of REPU by definitions of function symbols by
terms, thus a theory interprets REPPRF iff it interprets REPU .

Proof: We can read the definition of U backwards to obtain definitions of S, [x, y], and ϕn(x) in
terms of U and 0: S(x) = U(0, x), [x, y] = U(S(x), S(y)), ϕn(x) = U(S([Sn(0), x]), 0). Then any
prf F : Nk ⇀ N can be written in the form F (x0, . . . , xk−1) = ϕn([x0, [x1, · · · [xk−2, xk−1] · · · ]]) for
a suitable n. �

Using the above-mentioned fact that representations of (partial) functions may be assumed to
be actual definable functions, we see:

Observation 2.6 A set R of prf and dprp is representable in a theory T according to Defini-
tion 2.2 iff REPR is interpretable in T by a one-piece one-dimensional parameter-free interpreta-
tion I with absolute equality such that each nI is definable in T by a closed term. �

Now, the restrictions on the interpretation in Observation 2.6 are mostly irrelevant and arbi-
trary; as we are looking at the concept of representations from the viewpoint of interpretability,
it seems we obtain a cleaner concept if we just drop them:

Definition 2.7 A loose representation of R ⊆ PRF∪DPRP in a theory T is an interpretation of
REPR in T .

In particular, a theory T loosely represents all prf iff it interprets the theory REPU .

2.3 The theory R

Robinson’s theory R was originally defined in [12]. Some inessential variants (mutually inter-
pretable) of the theory appear in the literature; we prefer the following form in this paper.

8



Definition 2.8 Let R denote the theory in the language LR = 〈0, succ,+, ·, <〉 axiomatized by

n+m = n+m, (2)

n ·m = nm, (3)

x < n↔ x = 0 ∨ · · · ∨ x = n− 1 (4)

for all n,m ∈ N, where n l succn(0).

(In particular, note that axiom (4) for n = 0 states ¬(x < 0).) It is easy to show that R implies
n 6= m for distinct n,m ∈ N.

Observe that an LR-structure is a model of R iff it contains the standard model N as an initial
(i.e., closed downward under <) substructure.

As usual, bounded quantifiers are introduced in LR as the short-hands

∃y < t(x)ϕ(x, y) l ∃y (y < t(x) ∧ ϕ(x, y)),

∀y < t(x)ϕ(x, y) l ∀y (y < t(x)→ ϕ(x, y)),

where t is a term not containing the variable y. An LR-formula ϕ(x) is ∆0 (or bounded) if all
quantifiers in ϕ are bounded. A formula is Σ1 if it consists of a block of existential quantifiers
followed by a ∆0 formula.

Proposition 2.9 R proves all Σ1 sentences true in the standard model N. Conversely, it can be
axiomatized by a set of true (universal) ∆0 sentences. �

As already proved in [12] (for the original, slightly stronger definition of the theory), R can
represent recursive functions. We briefly sketch the argument below for completeness.

Proposition 2.10 Every prf F : Nk ⇀ N is representable in R by a Σ1 formula w.r.t. the usual
sequence of numerals as in Definition 2.8.

Proof: The graph {〈x, y〉 : F (x) = y} is definable in N by a Σ1 formula of the form ∃z ϑ(x, y, z),
where ϑ ∈ ∆0. Put

α(w) l 0 < w ∧ ∀z < w (succ(z) = w ∨ succ(z) < w),

ϕ(x, y) l ∃w, z
(
α(w) ∧ y < w ∧ z < w ∧ ϑ(x, y, z) ∧ ∀y′, z′ < w (ϑ(x, y′, z′)→ y′ = y)

)
.

One can check
R ` α(w)→ w = 1 ∨ · · · ∨ w = r ∨ r < w (5)

for any r ∈ N.
We claim that ϕ represents F in R. Assume F (n) = m. On the one hand, ϕ(n,m) is a true

Σ1 sentence, and as such it is provable in R. On the other hand, fix r ∈ N that witnesses the z
quantifier in N � ϕ(n,m). Working in R, assume ϕ(n, y′), we need to show y′ = m. Let w′, z′

witness the existential quantifiers in ϕ(n, y′). Using (5), either w′ equals a standard numeral, or
w′ > m, r. In the latter case, θ(n,m, r) implies y′ = m as needed. In the former case, y′, z′ < w′

are also standard. It again follows that y′ = m, as otherwise ¬θ(n, y′, z′) would be a true ∆0

sentence, thus provable in R. �

Consequently, R is essentially undecidable.
It is easy to see that R (therefore any theory interpretable in R) is locally finitely satisfiable2,

i.e., every finite subset has a finite model: indeed, if we identify all elements of N above b+ 1, we
obtain a model satisfying (2), (3), and (4) for n ≤ b. Visser [15] proved a striking converse to this
observation:

2This terminology from [15] is unrelated to the notion of a type being finitely satisfiable.
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Theorem 2.11 Every locally finitely satisfiable, recursively axiomatizable theory in a finite lan-
guage is interpretable in R, using a one-piece one-dimensional parameter-free interpretation. �

Since relational ∃∀ sentences have the finite model property, this in particular implies that R
interprets any consistent theory axiomatized by a recursive set of ∃∀ sentences in a finite relational
language.

2.4 Model theory

Since this paper is intended to be accessible to a non-model-theoretic audience (and the author
is not a model theorist either), it will only assume modest prerequisites in model theory—mostly
common knowledge among logicians. We will review a few selected topics in more detail below;
the material needed should be covered by a textbook such as [3], except that we will also need a
few concepts from classification theory, which will be explained in the next section.

First, let us start with a few basic conventions. Recall that we allow models to be empty, and
that we denote finite tuples as x. For any structure M , we denote by Diag(M) its diagram: the
set of quantifier-free sentences true in M in the language of M augmented with constants for each
element of M . By a slight abuse of language, we will also use this notation to denote the set of
quantifier-free sentences true in M in its original language, if every element of M is the value of
a closed term (i.e., if M is 0-generated).

Even though we normally work with one-sorted logic, the following construction is best thought
of as yielding a multi-sorted structure. For any structure M , let M eq be the structure that has
M itself as one of its sorts, and for each equivalence relation E(x, y) on Mn definable without
parameters in M , it has a sort whose elements are the equivalence classes of E; the structure
includes the projection function to this sort from Mn. It is easy to see that each such equivalence
relation is definable in M by a formula that provably defines an equivalence relation in predicate
logic; thus, the following makes sense: for any theory T , let T eq be the multi-sorted theory whose
models are exactly the structures M eq for M � T . (Officially, M eq and T eq can be coded in
a suitable one-sorted language.) Note that T eq is interpretable in T , and any interpretation of
another theory S in T can be made into an interpretation with absolute equality of S in T eq.

Since we will work a lot with model completions, let us recall the related background. Let K
be a class of structures in the same language. A model M ∈ K is existentially closed (e.c.) in K
if for every model N ⊇ M such that N ∈ K, we have M �1 N : i.e., every existential formula
with parameters from M which is satisfied in N is already satisfied in M . We will often speak of
(absolutely) e.c. models without reference to K, in which case it is understood that K is the class
of all models in the given language. An e.c. model of a theory T is an e.c. structure in the class of
models of T . If T is a ∀∃-axiomatized theory, then every model M � T embeds in an e.c. model
of T . (More generally, this holds for any class K closed under limits of chains.)

A theory T is model-complete if all models M � T are e.c. models of T ; this implies the
stronger condition that for all M,N � T , M ⊆ N implies M � N . Equivalently, T is model-
complete iff every formula ϕ is in T equivalent to an existential formula; it is enough to test
this for universal formulas ϕ. A stronger condition is that T has quantifier elimination, meaning
that every formula ϕ is in T equivalent to a quantifier-free formula; it is enough to test this for
existential formulas ϕ with only one quantifier. Any model-complete theory T is axiomatizable
by ∀∃ sentences.

Theories T and S in the same language are companions if every model of T embeds in a model
of S, and vice versa; equivalently, T∀ = S∀, where T∀ denotes the universal fragment of T . A
model companion of a theory T is a model-complete theory T ∗ that is a companion of T . There
are theories with no model companion (e.g., the theory of groups), but if a theory T has a model
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companion T ∗, it is unique: the models of T ∗ are exactly the e.c. models of T∀. A theory has a
model companion iff the class of e.c. models of T∀ is elementary. Notice that a model companion
of T is the same thing as a model companion of T∀, hence we can as well restrict attention to
universal theories T .

A model completion of a theory T is a model companion T ∗ of T such that for every M � T , the
theory T ∗+Diag(M) is complete. Equivalently, a model companion T ∗ of T is a model completion
of T iff T has the amalgamation property (cf. Definition B.4). If T is a universal theory (which is
the case we are primarily interested in), a companion T ∗ of T is a model completion of T iff T ∗

has quantifier elimination.
A convenient trick when studying models of a complete theory T is to use monster models.

A monster model of T is a model M � T sufficiently rich so that all models we need to discuss
can be assumed to be submodels of M; in order for this to work, we make M highly saturated:
to be specific, let us posit that M is κ-saturated (i.e., every type over < κ parameters from M is
realized in M) and strongly κ-homogeneous (i.e., every partial elementary self-map of M of size
< κ extends to an automorphism of M), where κ is a “large” cardinal number (in particular, larger
than the size of the language, as well as any models of T that we are going to encounter during the
argument). This also implies that M is κ+-universal (every model of T of size ≤ κ elementarily
embeds in M). (If it were not for foundational issues that we prefer not to be dragged into, we
could even take M as an “Ord-saturated” model: a proper class model of T saturated w.r.t. types
over any set of parameters.) Having fixed the monster model M, a small set is a subset of M of size
< κ (likewise for sequences and other similar objects); a small model is an elementary submodel
of M of size < κ.

2.5 Classification theory

Stability theory and the more general classification theory was initially developed by Shelah [9, 10]
(with some notions pioneered by Morley [7]); one of its main themes is identifying useful “dividing
lines” between tame and wild theories. The dividing lines we are going to mention here are mostly
combinatorial properties based on the appearance of certain arrangements of points and definable
sets in models; for other kind of dividing lines (variants of stability based on counting of types),
see Appendix B.

While model theorists prefer to work with complete theories, the properties below are all
stated in such a way that a theory T has a “tameness” property P iff every completion of T
has property P . Also, it will be generally the case that T has a (tameness) property P iff every
countable-language fragment of T has property P .

For an overview of inclusions among the properties below, see Figure 1.
A theory T has the order property (OP) if there exists a formula ϕ(x, y) (where x and y are

tuples of the same length), a model M � T , and a sequence of tuples {ai : i ∈ ω} in M such that

M � ϕ(ai, aj) ⇐⇒ i < j

for all i, j ∈ ω; otherwise, T has the no-order property (NOP). It turns out that T has NOP if
and only if it is stable (see Appendix B).

Beware of the terminological peculiarity that the base form of this condition on theories (OP) is
“negative” (wild), whereas the corresponding “positive” (tame) condition is denoted as its negation
(NOP). All properties below follow the same naming pattern.

A theory T has the independence property (IP) if there is a formula ϕ(x, y), a model M � T ,
and tuples {ai : i ∈ ω} and {bI : I ⊆ ω} in M such that

M � ϕ(ai, bI) ⇐⇒ i ∈ I
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Figure 1: Main dividing lines

for all i ∈ ω and I ⊆ ω. Otherwise, T is NIP (also called dependent).
A theory T has the strict order property (SOP) if there is a formula ϕ(x, y), a model M � T ,

and tuples {ai : i ∈ ω} in M such that

M � ∃x
(
ϕ(x, ai) ∧ ¬ϕ(x, aj)

)
⇐⇒ i < j

for all i, j ∈ ω; equivalently, T is SOP iff there is a formula ϕ(x, y) that T -provably defines a strict
partial order, and there is a model M � T in which the partial order defined by ϕ has an infinite
chain. Otherwise, T is NSOP.

A theory is NOP (stable) if and only if it is both NIP and NSOP.
Recall that X<ω denotes the set of finite sequences with entries from X, ordered by the

initial subsequence relation (which we write as t ⊆ s) to form an X-branching tree; Xω is the
corresponding set of infinite sequences (which are branches of the tree). If s ∈ X<ω ∪ Xω, and
n < lh(s), then s � n is the initial subsequence of s of length n; if s ∈ X<ω and x ∈ X, then sax

is s extended with a new entry x at the end. For clarity, we will write von Neumann numerals as
n = {0, . . . , n− 1}.

A set of formulas is k-inconsistent if each k-element subset is inconsistent.
A theory T has the tree property (TP) if there is a formula ϕ(x, y), a model M � T , tuples

{as : s ∈ ω<ω} in M , and k ≥ 2 such that

• for each σ ∈ ωω, the type {ϕ(x, aσ�n) : n < ω} is consistent, and

• for each s ∈ ω<ω, {ϕ(x, asai) : i < ω} is k-inconsistent.

Otherwise, T is called NTP or simple. Simplicity can also be equivalently defined in terms of
properties of forking; there is a related stronger condition called supersimplicity, see e.g. [16].
Stable theories are simple, and simple theories are NSOP.

The tree property has two important variants. A theory T has the tree property TP1 if there
is a formula ϕ(x, y), a model M � T , and tuples {as : s ∈ ω<ω} in M such that

• for each σ ∈ ωω, {ϕ(x, aσ�n) : n < ω} is consistent, and

• for each incomparable s, t ∈ ω<ω, {ϕ(x, as), ϕ(x, at)} is inconsistent.

T has the tree property TP2 if there is a formula ϕ(x, y), a modelM � T , and tuples {an,i : n, i ∈ ω}
in M such that
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• for each σ ∈ ωω, {ϕ(x, an,σ(n)) : n < ω} is consistent, and

• for each n, i, j ∈ ω such that i < j, {ϕ(x, an,i), ϕ(x, an,j)} is inconsistent.

As usual, if T is not TPi, it is NTPi. A theory is NTP if and only if it is both NTP1 and NTP2.
All NIP theories are NTP2, and all NTP1 theories are NSOP.

The region between simple and NSOP theories is further stratified by levels of the strong order
property. For k ≥ 3, a theory T has the strong order property SOPk if there is a formula ϕ(x, y),
a model M � T , and tuples {ai : i < ω} in M such that M � ϕ(ai, aj) for all i < j < ω, but

{ϕ(x0, x1), ϕ(x1, x2), . . . , ϕ(xk−2, xk−1), ϕ(xk−1, x0)} (6)

is inconsistent; otherwise, T has NSOPk. A theory T has the strong order property SOP∞ if there
are data as above such that (6) is inconsistent for all k ≥ 3; otherwise, T has NSOP∞. For any
theory T , we have

NTP1 =⇒ NSOP3 =⇒ NSOP4 =⇒ · · · =⇒ NSOP∞ =⇒ NSOP.

We warn the reader that usage of the abbreviations (N)SOP∞ and (N)SOP varies in the literature.
Notice that the definition of NSOPk above is only interesting for k ≥ 3, as stated: taking it

blindly for k = 2 would give a condition equivalent to NOP, and for k = 1 a condition false for
any theory with infinite models. Instead, the names NSOP1 and NSOP2 were given ad hoc to
variants of the tree property that fit nicely in the picture. Since NSOP2 is equivalent to NTP1,
we will not bother to define it separately. A theory T has property SOP1 if there is a formula
ϕ(x, y), a model M � T , and tuples {as : s ∈ 2<ω} in M such that

• for each σ ∈ 2ω, {ϕ(x, aσ�n) : n < ω} is consistent, and

• for each s, t ∈ 2<ω, if sa0 ⊆ t, then {ϕ(x, asa1), ϕ(x, at)} is inconsistent;

otherwise, T is NSOP1. We have

NTP =⇒ NSOP1 =⇒ NSOP2 ⇐⇒ NTP1 =⇒ NSOP3 =⇒ · · ·

for any theory T .
We observe that each of the combinatorial properties above (NOP, NSOP, NIP, NTP1,2,

NSOPk, NSOP∞) can be expressed as weak non-interpretability of a particular recursively ∃∀-
axiomatized theory in a finite relational language. (Incidentally, notice that any such theory is
interpretable in R by Theorem 2.11, hence R is “wild” according to all of these dividing lines.)

For example, by compactness, a theory T has SOP iff it has a model with a definable strict
order (on k-tuples, for some k) with arbitrarily long finite chains. It makes no difference if the
defining formula is allowed extra parameters, or if we allow to relativize the domain of the order.
Thus, T has SOP iff it has a completion that interprets the theory TSOP of strict orders with
arbitrarily long chains, axiomatized by

∀x, y, z (x < y ∧ y < z → x < z),

∀x¬(x < x),

∃x0, . . . , xn
∧
i<n

xi < xi+1

for n ∈ ω.
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For a more complicated example, T has TP1 iff it weakly interprets the theory in a language
with a single binary relation R(x, y), and axioms

∃{ys : s ∈ n≤n}
( ∧
s∈nn

∃x
∧
i≤n

R(x, ys�i) ∧
∧

s,t∈n≤n

s*t*s

∀x¬
(
R(x, ys) ∧R(x, yt)

))

for n ∈ ω.

3 Model completion of the empty theory

Recall that our original motivation was to find a theory T that represents prf, but does not
interpret R. Now, the weaker T is, the lower its chances of interpreting R, so the obvious choice
is to take T = REPPRF. This theory, axiomatized by quantifier-free sentences, essentially just
states that the universe includes a copy of a certain model based on the integers; it does not take
a big leap of faith to surmise it is too weak to interpret much of anything. It is, however, another
matter to actually prove this. A possible strategy is to consider an arbitrary translation I of the
language of R into REPPRF, and try to argue that in some models of REPPRF, RI is not valid.
But here the weakness of REPPRF that we were hoping to exploit becomes our worst enemy: I
may involve formulas of arbitrary high quantifier complexity that may potentially denote very
complicated combinatorial properties, and we just have no handle on how to understand them.
What we need is that definable sets have manageable structure.

Ideally, we would like to extend REPPRF to a (consistent) theory T with full quantifier elim-
ination. Now, a moment of reflection tells us that any possible configuration of finitely many
functions on a finite set may be realized by suitable recursive functions, and as such should embed
into a model of T . By compactness, any LPRF-structure should embed in a model of T , thus if
such a T exists, it is unique: T must be the model completion of the empty theory in LPRF. (By
the empty theory, we mean the theory with no extra-logical axioms.)

The model completion of the empty L-theory is well known and well understood for finite
relational languages L. The theory can be axiomatized by a transparent set of “extension axioms”,
and it coincides with the set of all formulas that hold in random finite L-structures with asymptotic
probability 1. The theory is ω-categorical, and its unique countable model is the countable random
L-structure generalizing the Erdős–Rényi–Rado random graph; alternatively, it can be described
as the Fräıssé limit of the class of all finite L-structures.

It is much less known that the model completion of the empty L-theory does, indeed, exist for
arbitrary languages L, as we need here. This was proved by Winkler [17] as a corollary of more
general results on model companions of Skolem expansions of model-complete theories. Note that
for languages with functions, most of the above-mentioned properties of the theory of the random
relational structure break down: first-order logic with functions has no 0–1 law (or even limit
law) on finite structures, and there does not seem to be a sensible way of defining a probability
distribution on functions on infinite sets; we will see that the model completion is not ω-categorical,
and not locally finitely satisfiable.

We will now give a self-contained argument that the model completion exists, including an
explicit axiomatization by extension formulas; this will also help us later to determine (syntacti-
cally) what open formulas are consistent with the theory. We will denote the model completion
as ECL, as its models are exactly the (absolutely) existentially closed L-structures.

Definition 3.1 Let L be a finite language, and Θ be a finite set of L-terms closed under subterms
such that the variables in Θ are among x0, . . . , xn−1, y0, . . . , ym−1. Let εR

t
∈ {0, 1} for every k-ary

relation R ∈ L, and every t0, . . . , tk−1 ∈ Θ. Let ∼ be an equivalence relation on Θ such that:
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(i) If R ∈ L is k-ary, and ti ∼ si for each i < k, then εR
t

= εRs .

(ii) If F ∈ L is k-ary, and t l F (t) ∈ Θ and s l F (s) ∈ Θ satisfy ti ∼ si for each i < k, then
t ∼ s.

Then the elementary existential formula ∃y θΘ,∼,ε(x, y) is defined by

θΘ,∼,ε(x, y) l
∧
t,s∈Θ
t∼s

t = s ∧
∧
t,s∈Θ
t�s

t 6= s ∧
∧
R∈L
t∈Θ

Rε
R
t (t), (7)

where ψ1 l ψ, ψ0 l ¬ψ.

Lemma 3.2 Every existential formula ∃y θ(x, y) in a finite language L is equivalent to a disjunc-
tion of elementary existential formulas with the same free and bound variables.

Proof: Let Θ be the set of all subterms of θ(x, y), and Φ the set of all (finitely many) atomic
formulas using terms from Θ. We can write θ in full disjunctive normal form in atoms Φ, and
switch disjunctions with existential quantifiers. Each disjunct has the form (7), except for the
conditions on ∼ and ε. However, it is easy to see that if ∼ is not an equivalence relation, or if (i)
or (ii) is violated, then θΘ,∼,ε is contradictory. �

Definition 3.3 Let L,Θ, x, y,∼, ε be as in Definition 3.1. We define a subset Ξ ⊆ Θ, and for each
t ∈ Ξ a term t∗(x), as follows:

(i) Every variable xi is in Ξ, and x∗i l xi.

(ii) If t ∼ s ∈ Ξ, then t ∈ Ξ, and t∗ l s∗.

(iii) If t l F (t0, . . . , tk−1) ∈ Θ, and t0, . . . , tk−1 ∈ Ξ, then t ∈ Ξ, and t∗ l F (t∗0, . . . , t
∗
k−1).

If more than one clause applies to put t ∈ Ξ, we define t∗ using any of them; the choice does not
matter. The only relevant property is the following observation:

` θΘ,∼,ε(x, y)→ t(x, y) = t∗(x) (8)

for every t ∈ Ξ. Finally, we define an open formula θ∗Θ,∼,ε(x) as∧
t,s∈Ξ
t∼s

t∗ = s∗ ∧
∧
t,s∈Ξ
t�s

t∗ 6= s∗ ∧
∧
R∈L
t∈Ξ

Rε
R
t (t∗) ∧

∧
tlF (t)∈Ξ

t∈Ξ

t∗ = F (t∗).

Proposition 3.4 Let L,Θ,∼, ε be as in Definition 3.1, M an L-structure, and u ∈ M . The
following are equivalent.

(i) There exists an extension N ⊇M such that N � ∃y θΘ,∼,ε(u, y).

(ii) M � θ∗Θ,∼,ε(u).

Proof: (i)→ (ii) follows immediately from the definitions and property (8).
(ii)→ (i): Put N = M ∪̇ (Θ r Ξ)/∼, and identify t/∼ with t∗(u) for t ∈ Ξ. If t0, . . . , tk−1 ∈ Θ,

R ∈ L, and t = F (t) ∈ Θ, define

RN (t0/∼, . . . , tk−1/∼) ⇐⇒ εRt = 1,

FN (t0/∼, . . . , tk−1/∼) = t/∼.
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Using M � θ∗Θ,∼,ε(u) and the properties of ∼ and Ξ, it is easy to check that the definition is
independent of the choice of representatives, and agrees with M if t0, . . . , tk−1 ∈ Ξ. We can thus
extend the definition with the original structure of M , and then arbitrarily to the remaining tuples
from N . The definition ensures

N � θΘ,∼,ε(x/∼, y/∼),

where xi/∼ = ui. �

In other words, Proposition 3.4 shows that θ∗Θ,∼,ε is equivalent to the resultant (see [3, §7.2])
of the elementary existential formula ∃y θΘ,∼,ε(x, y) in the empty theory.

Lemma 3.5 Let M be an L-structure.

(i) If M is existentially closed, then so is M � L′ for every L′ ⊆ L.

(ii) If M � L′ is e.c. for every finite L′ ⊆ L, then M is e.c.

Proof: (i): Every extension of M � L′ can be expanded to an extension of M . (ii): Assume that
M ⊆ N � ϕ(u), where u ∈M , and ϕ is an existential formula. Let L′ ⊆ L be a finite sublanguage
containing all symbols occurring in ϕ. Then ϕ(u) holds in N � L′, hence in M � L′ (and M) as
M � L′ is e.c. �

Definition 3.6 If L is a finite language, let ECL denote the theory axiomatized by the formulas

θ∗Θ,∼,ε(x)→ ∃y θΘ,∼,ε(x, y)

for all Θ,∼, ε as in Definition 3.1 with m = 1.
For infinite L, we put ECL =

⋃
{ECL′ : L′ ⊆ L finite}.

Theorem 3.7 For any language L, ECL is a model completion of the empty L-theory:

(i) ECL has elimination of quantifiers.

(ii) Models of ECL are exactly the existentially closed L-structures; in particular, every L-
structure embeds in a model of ECL.

Moreover, if L is recursively presented, then ECL is decidable.

Proof: By Lemma 3.5, we may assume that L is finite.
(i): Proposition 3.4 implies the converse implications

` ∃y θΘ,∼,ε(x, y)→ θ∗Θ,∼,ε(x)

for each axiom of ECL. In view of Lemma 3.2, this shows that every formula with one existential
quantifier is equivalent to an open formula over ECL, hence the same follows for all formulas by
induction on complexity.

(ii): Proposition 3.4 implies that any e.c. model validates ECL. The converse would also follow
from Proposition 3.4, were it not for the restriction to m = 1 in the definition of ECL. However, if
ϕ(x) is an existential formula, N ⊇M � ECL, and N � ϕ(u) for some u ∈M , we can assume N
is e.c. by extending it further if necessary. Thus, N � ECL, and M is an elementary substructure
of N by (i), hence M � ϕ(u).

As for decidability, ECL is clearly r.e., hence quantifier elimination is effective (in fact, the
argument above gives an explicit algorithm). Now, if ϕ is a quantifier-free (or even universal)
sentence, then ECL ` ϕ iff ∅ ` ϕ iff ϕ holds in all finite models of cardinality bounded by
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the number of subterms t of ϕ: if M 2 ϕ, let M0 = {tM : t a subterm of ϕ} ⊆ M . We define
realizations of relation and function symbols from L in M0 to be the same as in M , except when
a function symbol takes a value outside M0, in which case we redefine it as an arbitrary element
of M0. Then M0 2 ϕ, since tM0 = tM for all subterms of ϕ. �

Corollary 3.8 If M is a recursive L-structure, ECL + Diag(M) is a decidable complete theory.
�

4 Interpretability in existential theories

As explained in the beginning of Section 3, our intention for discussing ECL is that we want
to show noninterpretability of certain theories S in REPPRF (which is an existential—in fact,
quantifier-free—theory) by showing their noniterpretability in completions of ECL. Now, it is not
a priori clear if this strategy is any good: why should we expect that S is, indeed, not intepretable
in an extension of ECL? After all, ECL is a fairly nontrivial theory, hence it may interpret S
even if no existential theory can; to begin with, it interprets ECL itself.

To allay our fears, we will prove in the present section that a large class of theories S is
immune to such shenanigans: specifically, a theory axiomatized by ∃∀ sentences is interpretable
in a completion of some ECL if and only if it is interpretable in a consistent quantifier-free or
existential theory. We believe this characterization to be of independent interest, which is why
we prove it in detail even though it is only of indirect relevance for our original goal, in that it
assures us that we set off in the right direction; of course, we would eventually find that anyway
when we got to the point.

We start with a few auxiliary lemmas whose basic intention is that if a theory is (weakly)
interpretable in ECL, we can make L and the interpretation “nice”.

Lemma 4.1

(i) If L′ ⊇ L, ECL′ is a conservative extension of ECL.

(ii) If L′ = L ∪ {ci : i ∈ I}, where ci /∈ L are constants, then ECL′ is axiomatized by ECL. In
particular, ECL′ ` ϕ(c) iff ECL ` ∀xϕ(x).

(iii) If L contains a constant c, and F,R /∈ L are a k-ary function and relation symbol (resp.),
then

RI(x) l F (x) = c

provides a faithful interpretation of ECL∪{R} in ECL∪{F}.

(iv) If L contains an at least binary function, or at least two unary functions, then ECL has
pairing.

Proof: (i): ECL′ ⊇ ECL follows from Lemma 3.5. On the other hand, any model M � ECL

has an expansion to an L′-structure M ′, which has an extension N ′ � ECL′ . M is an elementary
substructure of N ′ � L by quantifier elimination for ECL.

(ii) follows from (i) and the fact that an expansion of an e.c. model by constants is e.c.
(iii): Let M � ECL∪{F}, and ϕ(u) be an existential (L ∪ {R})-formula with u ∈ M , satisfied

in an extension N ⊇ M I . We can extend FM to N so that FN (a) = c iff RN (a) for all a ∈ N .
Then 〈N � L,FN 〉 � ϕI(u), where ϕI is an existential formula, hence M � ϕI(u) by e.c., and
M I � ϕ(u). Thus, M I � ECL∪{R}, which shows that ECL∪{F} ` EC I

L∪{R}. On the other hand,
assume ECL∪{F} ` ϕI , and M � ECL∪{R}. Let FM : Mk → M be such that FM (a) = cM iff
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RM (a), and N ⊇ 〈M �L,FM 〉 be a model of ECL∪{F}. We have N I � ECL∪{R}+ϕ, and M � N I

by quantifier elimination, hence M � ϕ.
(iv): If L contains two distinct unary function symbols L(x), R(x), we claim that

ECL ` ∀x, y ∃z (L(z) = x ∧R(z) = y).

Let M � ECL, and a, b ∈M . Put N = M ∪̇ {c}, where LN (c) = a, RN (c) = b, and the realization
of other functions or relations on tuples involving c is arbitrary. ThenN � ∃z (L(z) = a∧R(z) = b),
hence the same holds in M by e.c.

If L contains a k-ary function F for k ≥ 2, we may use a similar argument with e.g.

L(x) = F (F (x, . . . , x), x, . . . , x),

R(x) = F (x, . . . , x, F (x, . . . , x)),

and N = M ∪̇ {c, F (c, . . . , c)}. �

Definition 4.2 We will call a parameter-free translation quantifier-free if its domain, and the
translations of all predicate symbols as well as equality are given by quantifier-free formulas, and
the translations of all function symbols are given piecewise by terms, where the pieces are finitely
many and quantifier-free definable.

Recall Lemma 2.1.

Lemma 4.3 For any language L, there is a quantifier-free one-piece one-dimensional parameter-
free unrelativized cointerpretation with absolute equality of ECL2 in ECL, where L2 consists of a
single binary function and at most |L| constants. If L is countable, one constant suffices.

Proof: Using Lemma 4.1 (iii) (which may be applied in parallel to all relations using the same
argument), we may assume L contains no relations. Let L2 be the language consisting of a binary
function (x, y), the constants of L, and new constants cF for every nonconstant function F ∈ L.
For n ≥ 1, write

(x0, . . . , xn−1) := (x0, (x1, . . . , (xn−2, xn−1) . . . )).

Let I be the translation of L into L2 defined by cI = c for constants c ∈ L, and

F I(x0, . . . , xn−1) = ((cF , x0, . . . , xn−1), x0, . . . , xn−1, x0, . . . , xn−1)

for n-ary functions F ∈ L, n > 0. Let

EC ∗L2
= ECL2 + {cF 6= cG : F 6= G ∈ L}.

We will show that I is a faithful interpretation of ECL in EC ∗L2
, which implies it is also a

cointerpretation of ECL2 in ECL.

Claim 4.3.1

(i) If N is an L2-structure such that the constants cNF are pairwise distinct, and M is an
extension of the L-structure N I , there is an extension K ⊇ N such that KI ⊇M .

(ii) If M is an L-structure, there is an L2-structure N such that N I ⊇M , and the constants cNF
are distinct.
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Proof: (i): Let K be the disjoint union M ∪̇M<ω, with constants realized as in N , and

(a, b)K = (a, b)N a, b ∈ N,
(a0, 〈a1, . . . , an〉)K = 〈a0, . . . , an〉 a0 ∈M,

(〈cF , u0, . . . , ui−1〉, 〈a0, . . . , an−1, v0, . . . , vj−1〉)K = FM (a0, . . . , an−1) F n-ary, i, j ≥ 0,

(a, b)K = 〈a〉 a, b ∈M, {a, b} * N,

(a, b)K = 〈〉 all other cases.

We need to check that if F ∈ L is n-ary with n > 0, and a0, . . . , an−1 ∈M , then

FM (a) = (F I(a))K .

We may assume a /∈ Nn, as otherwise the statement follows from N I ⊆M . Let i < n be maximal
such that ai /∈ N , and i′ = min{i, n− 2}. It follows from the definition that

(a0, . . . , an−1, a0, . . . , an−1)K = 〈a0, . . . , an−1, a0, . . . , ai′〉,
(cF , a0, . . . , an−1)K = 〈cF , a0, . . . , ai′〉,

hence
((cF , a0, . . . , an−1), a0, . . . , an−1, a0, . . . , an−1)K = FM (a0, . . . , an−1)

as required.
(ii): By extending M if necessary, we may assume |M | ≥ |L|, hence we can fix pairwise distinct

elements cNF ∈M . Put N = M ∪̇M<ω, and define

(a, b)N = 〈a, b〉 a, b ∈M,

(a0, 〈a1, . . . , an〉)N = 〈a0, . . . , an〉 a0 ∈M,

(〈cF , u0, . . . , ui−1〉, 〈a0, . . . , an−1, v0, . . . , vj−1〉)K = FM (a0, . . . , an−1) F n-ary, i, j ≥ 0,

(a, b)N = 〈〉 otherwise.

We have M ⊆ N I by a similar (but easier) argument as in (i). � (Claim 4.3.1)

In order that I interprets ECL in EC ∗L2
, it suffices to show that if N � EC ∗L2

, then N I is
e.c. Now, if an existential L-formula ϕ with parameters from N is satisfiable in M ⊇ N I , then
M ⊆ KI for some K ⊇ N by the claim, which thus satisfies the existential formula ϕI . It follows
that N � ϕI as N is e.c., i.e., N I � ϕ.

To show that I is faithful, let EC ∗L2
` ϕI , and M � ECL. By the claim, there is N with the

elements cNF pairwise distinct such that N I ⊇ M . By extending it if necessary, we may assume
N � EC ∗L2

, hence N I � ϕ. Also, N I � ECL, hence M � N I by quantifier elimination, which
gives M � ϕ.

Finally, let L be countable, and enumerate it as {Fk : k ∈ ω}. Let L2 be the language consisting
of (x, y) and a single constant c. We modify the construction above as follows: we employ the
closed terms

ck = (. . . ((c, c), c), . . . , c︸ ︷︷ ︸
n+ 2 times

).

in place of cFk
, and if Fk is a constant, we put F Ik = (ck, ck). (In particular, we redefine EC ∗L2

to
state that all the ck are pairwise distinct.) Then it is easy to check that the argument still goes
through: the only place where the exact composition of cF matters is in the proof of part (ii) of
the claim, and we can fix it e.g. by making N the set of all finite binary trees with leaves labelled
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by M ∪̇ {c}, where a ∈ M is identified with a one-node tree, and (x, y)N is the tree whose root
has children x, y, except for

((ck, a0, . . . , an−1)N , (a0, . . . , an−1, a0, . . . , an−1)N )N = FMk (a0, . . . , an−1) Fk n-ary, a ∈M ,

(cNk , c
N
k )N = FMk Fk constant,

as needed to make the interpretation work. �

Corollary 4.4 If a theory T is weakly interpretable in ECL for some L, it has a one-piece one-
dimensional parameter-free unrelativized interpretation in a consistent extension of some ECL2 ,
where L2 consists of a binary function, and at most |L| constants. If L is countable, one constant
suffices.

Proof: We can make the interpretation one-piece as ECL proves there are at least two elements.
We can assume L contains a constant by Lemma 4.1 (i), and that it is purely functional by (iii).
Then we can make the interpretation one-dimensional by (iv), and parameter-free by expanding
L with constants for the parameters, using (ii). We can also assume to have a constant c denoting
an element in the domain of the interpretation, and then it is easy to make the interpretation
unrelativized by equating (i.e., extending the interpreted equality) elements outside the domain
with c. Finally, we can compose the interpretation with the one from Lemma 4.3 to make the
language as needed. �

Note that the argument in Corollary 4.4 does not guarantee that the interpretation is quantifier-
free: while the domain and the translations of all symbols can be made quantifier-free formulas
just by quantifier elimination, this does not ensure function symbols are given piecewise by terms.
This will in fact pose a serious challenge in the proof of the characterization below, and we will
need results on elimination of imaginaries from Appendix A to deal with it.

Theorem 4.5 Let T be an ∃∀-axiomatized theory in a language LT . The following are equivalent.

(i) T is interpretable in a consistent existential theory.

(ii) T has a quantifier-free interpretation I in a consistent quantifier-free theory S such that
I and the language of S obey the conditions in Corollary 4.4, except that I may be multi-
dimensional if LT contains a proper function symbol.

(iii) T is weakly interpretable in ECL for some language L, w.l.o.g. obeying the same conditions
as in (ii).

If LT is finite, and T is recursively axiomatized, we can also make the interpreting theories recur-
sively axiomatized.

Proof: (ii) → (i) is trivial, and (i) → (iii) follows from the fact that every consistent existential
theory is consistent with ECL in the same language by Theorem 3.7.

(iii) → (ii): By expanding L and LT with Henkin constants for the existential quantifiers in
axioms of T using Lemma 4.1 (ii), we may assume that T is universal. By Corollary 4.4, T has
a one-piece one-dimensional parameter-free unrelativized interpretation J in a consistent theory
ECL +S, where L consists of a binary function and constants. By quantifier elimination, we may
assume S is a set of quantifier-free sentences, and the J-translations of equality and all symbols
of LT are given by quantifier-free formulas. By expanding the language L further, we may assume
that constants of LT are interpreted by constants (or constant terms) of L. In the countable case,
we may apply Lemma 4.3 again to reduce the number of constants to one.
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If LT contains proper function symbols, we need more work, as we cannot add Skolem functions
in the same way as constants. As we will explain in Appendix A, ECL has weak elimination of
imaginaries, and as a corollary, we obtain in Proposition A.9 an explicit description of definable
equivalence relations that we apply to =J . Using (13), we see that the collection of equivalence
classes that make up the domain of J can be definably split in finitely many pieces, where the
i-th piece is in definable bijection with a collection of mi-element sets of r-tuples (represented by
an equivalence relation on mir-tuples as in Definition A.1). The upshot is that we may replace J
with an equivalent piece-wise interpretation I that almost has absolute equality, in the sense that
all equivalence classes of =I have bounded finite size. Consequently, the translation F I of any
function symbol F ∈ LT , when viewed as a relation on tuples rather than on their equivalence
classes, is a total multifunction with only finitely many values. By Lemma A.2 and a compactness
argument, there is a piecewise term-definable function that picks one possible value of such a
multivalued function. Thus, I is a quantifier-free interpretation. Since we may assume L includes
a pair of constants c, d such that S ` c 6= d, we can make I a one-piece interpretation; it is
still parameter-free, and we can make it unrelativized as above, but it may be multi-dimensional.
(Lemma 4.1 does not give a pairing function, hence it is unclear if we can make the interpretation
one-dimensional without sacrificing the property that translations of functions are piecewise term-
definable.)

The result of these manipulations is that T I is a universal subtheory of ECL +S, as we made
sure all existential quantifiers needed are witnessed (piecewise) by terms. Thus, T I is in fact
included in S, i.e., I is an interpretation of T in S which satisfies all the requirements.

Finally, let T be an r.e. theory in a finite language. We have shown that if T is interpretable
in a consistent existential theory, there is a quantifier-free unrelativized one-piece parameter-free
interpretation of T in a consistent extension of ECL2 , where L2 consists of a constant and a binary
function. (The interpretation is automatically recursive, as the language is finite.) The universal
Henkin expansion TH of T is still r.e., and we can assign the Henkin constants in a recursive
way to new constants added to L2 so that we get an interpretation I with the same properties
of TH in a consistent extension of ECL, where L consists of a binary function and countably many
constants, and I is recursive. The cointerpretation from Lemma 4.3 is also recursive, hence we
can reduce the language back to L2. Then ECL2 + (TH)I is an r.e. theory, hence by effectiveness
of quantifier elimination, it is equivalent to ECL2 + S for an r.e. quantifier-free L2-theory S. By
the argument above, I is an interpretation of T in S, as (TH)I is a universal theory. �

Remark 4.6 Theorem 4.5 does not extend to ∀∃ theories T . On the one hand, any theory
interpretable in a consistent existential theory is locally finitely satisfiable (notice also that any
consistent ∃∀ theory in a relational language is locally finitely satisfiable). On the other hand,
ECL itself is a ∀∃ theory interpretable in ECL, and if L contains a nonconstant function symbol,
then ECL is not locally finitely satisfiable: for example, if we have a unary function F (x), then
ECL proves the formula

∀x, y ∃z (z 6= x ∧ F (z) = y)

with no finite model.
We note that if L contains only at most unary relations and constants, then ECL and any

its consistent extension is an existential theory, and easily seen to be interpretable in REPU for
L finite. If L consists of relations and constants, but is not unary, then ECL (i.e., essentially
the theory of the random structure) is genuinely ∀∃, but still locally finitely satisfiable, hence
interpretable in R for L finite by Visser’s Theorem 2.11.

Question 4.7 Is every consistent r.e. existential theory interpretable in REPPRF?
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Question 4.8 Is the theory of the random graph interpretable in a consistent existential theory?

5 Classification of EC L

We now proceed to the main results of the paper, showing that certain theories are not interpretable
in any existentially axiomatized theory by way of establishing tameness properties of ECL. We
will mostly deduce them from the following statement, showing the impossibility of certain con-
figurations in models of ECL.

In order to keep the proof self-contained and accessible to wider audience, we will not use any
results on indiscernibles (though they are lurking in our application of Ramsey’s theorem).

Recall that a relation R ⊆ X2 is asymmetric if there are no a, b ∈ X such that R(a, b)∧R(b, a).

Theorem 5.1 For any language L and formula ϕ(z, x, y) with lh(x) = lh(y), there is a constant n
with the following property. Let M � ECL and u ∈M be such that

M � ∃x0, . . . , xn−1

∧
i<j<n

ϕ(u, xi, xj).

Then for every m ∈ ω and every asymmetric relation R on {0, . . . ,m− 1},

M � ∃x0, . . . , xm−1

∧
〈α,β〉∈R

ϕ(u, xα, xβ).

Proof: By Theorem 3.7 and Lemma 4.1, we may assume L contains no relations, all the tuples
have length one, and ϕ is open. Let τ be the number of subterms of ϕ, and τ∗ = 2256τ2

. Using
Ramsey’s theorem, let n be sufficiently large so that

n→ (7)4
τ∗ .

Fix M � ECL, u ∈ M , and {ai : i < n} ⊆ M such that M � ϕ(u, ai, aj) for i < j < n. In order
to simplify the notation, we will assume u is given by a constant of L, and write just ϕ(x, y); this
does not increase the number of subterms of ϕ. Let S be the set of all subterms t(x, y) of ϕ, and
for every i0 < i1 < i2 < i3 < n, define

tp(i0, i1, i2, i3) = {〈u0, u1, u2, u3, t, s〉 ∈ 44 × S2 : tM (aiu0
, aiu1

) = sM (aiu2
, aiu3

)}.

Since |S| ≤ τ , tp is a colouring of quadruples of numbers below n by at most τ∗ colours. Thus,
we can find a 7-element homogeneous set H ⊆ {0, . . . , n − 1} for tp; without loss of generality
H = {0, . . . , 6}.

Fix a set of variables {yα : α < m}, and put

Θ = {t(yα, yβ) : 〈α, β〉 ∈ R, t(x, y) ∈ S}.

If t ∈ Θ, let V (t) denote the set of α < m such that yα occurs in t; note that |V (t)| ≤ 2. A
realization of t is an injective mapping r : V (t)→ H such that

α, β ∈ V (t) ∧ 〈α, β〉 ∈ R =⇒ r(α) < r(β).

Notice that this condition is void if t depends on at most one variable; otherwise it concerns a
unique pair 〈α, β〉. If r is a realization of t, let r(t) ∈M be the value of the term resulting from t

by replacing each variable yα with ar(α).
A joint realization of a set of terms {t0, . . . , tk−1} ⊆ Θ is an injective mapping r : V (t0)∪ · · · ∪

V (tk−1)→ H such that r � V (ti) is a realization of ti for i < k. Note that any pair {t, s} ⊆ Θ has
a joint realization, as R has no cycles of length at most 2.
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If t, s ∈ Θ, and r is a joint realization of t and s, we define

t ∼ s ⇐⇒ r(t) = r(s).

Claim 5.1.1 The definition of ∼ is independent of the choice of r.

Proof: First, if two joint realizations r, r′ satisfy

r(α) < r(β) ⇐⇒ r′(α) < r′(β) (9)

for all α, β ∈ V (t) ∪ V (s), then

r(t) = r(s) ⇐⇒ r′(t) = r′(s) (10)

by homogeneity for tp. This condition holds automatically if

• V (t) ⊆ V (s) or V (s) ⊆ V (t), or

• V (t) = {α, β}, V (s) = {β, γ}, where 〈α, β〉, 〈β, γ〉 ∈ R, or vice versa.

Assume t = t(yα, yβ), s = s(yα, yγ), where β 6= γ, and 〈α, β〉, 〈α, γ〉 ∈ R (the case with
〈β, α〉, 〈γ, α〉 ∈ R is symmetric). By (10), it suffices to consider the case where r(α) = r′(α) = 0,
r(β) = 1, r(γ) = r′(γ) = 2, r′(β) = 3. Using (10), we have

tM (a0, a1) = sM (a0, a2) =⇒ tM (a0, a3) = sM (a0, a4) = tM (a0, a1) = sM (a0, a2),

and the converse implication is symmetric.
The remaining case is when V (t) and V (s) are disjoint and nonempty. It suffices to show

that if r(t) = r(s) for some joint realization r, there is a constant a ∈ M such that r′(t) = a for
every realization r′ of t (whence the same holds for s by symmetry). Assume t depends on two
variables yα, yβ with 〈α, β〉 ∈ R (the unary case is easier). Using (10), we may assume that the
realization r1(α) = r(α) − 1, r1(β) = r(β) + 1 of t is within bounds, and disjoint from r(V (s)).
Then r′ = r1 ∪ (r �V (s)) is a joint realization of {t, s} such that (9) holds, hence using (10) again,
it follows that

tM (ar(α)−1, ar(β)+1) = r(s) = tM (ar(α), ar(β)).

Applying homogeneity, we have

tM (ai, aj) = tM (a0, a6) = tM (ak, al)

for every 0 < i < j < 6, 0 < k < l < 6. Since every set {i, j, k, l} is order-isomorphic to some not
involving 0, 6, we obtain

tM (ai, aj) = tM (ak, al)

for all i < j, k < l using homogeneity again. � (Claim 5.1.1)

Thus, ∼ is a well-defined relation on Θ. It is clearly reflexive and symmetric. If t l
F (t0, . . . , tk−1) and s l F (s0, . . . , sk−1) are in Θ, and r is a joint realization of t and s, it is
also a joint realization of each {ti, si}, hence

t0 ∼ s0, . . . , tk−1 ∼ sk−1 =⇒ t ∼ s.
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Claim 5.1.2 ∼ is transitive.

Proof: Assume that t ∼ s ∼ u. If there exists a joint realization r of {t, s, u}, we immediately
obtain r(t) = r(s) = r(u), hence t ∼ u. If not, we must have t = t(yα, yβ), s = s(yβ , yγ),
u = u(yγ , yα), where 〈α, β〉, 〈β, γ〉, 〈γ, α〉 ∈ R. Applying alternately t ∼ s and s ∼ u, we obtain

tM (a3, a4) = sM (a4, a5) = uM (a5, a6) = sM (a1, a5) = tM (a0, a1) = sM (a1, a2) = uM (a2, a3),

hence r(t) = r(u) under the joint realization of t, u such that r(γ) = 2, r(α) = 3, and r(β) = 4.
(This argument in fact shows that with such a cyclic dependency, the values of all three terms are
independent of the realization.) � (Claim 5.1.2)

Let Ξ ⊆ Θ and {t∗ : t ∈ Ξ} be as in Definition 3.3, for empty x, and (since L has no relation
symbols) empty ε. By induction on the definition of t ∈ Ξ, we see that the value of the closed
term t∗ in M coincides with r(t) for any realization r of t. This and the definition of ∼ implies
that

M � θ∗Θ,∼,ε,

hence by Lemma 3.5 and existential closedness of M ,

M � ∃y0, . . . , ym−1 θΘ,∼,ε(y).

If b0, . . . , bm−1 ∈M witness this, and 〈α, β〉 ∈ R and i < j ∈ H, we have

M � ψ(bα, bβ) ⇐⇒ M � ψ(ai, aj)

for every subformula ψ of ϕ. It follows that

M �
∧

〈α,β〉∈R

ϕ(bα, bβ)

as required. �

We draw two principal conclusions from Theorem 5.1. For the first one, notice that the theory
below is interpretable in the theory R just by taking < for ∈: then (11) is witnessed by xi = i,
z = n due to axiom (4).

Corollary 5.2 The theory in the language 〈∈〉 axiomatized by the sentences

∃z, x0, . . . , xn−1

( ∧
i<j<n

xi 6= xj ∧ ∀y
(
y ∈ z ↔

∨
i<n

y = xi

))
(11)

for all n ∈ ω is not weakly interpretable in ECL, and consequently not interpretable in any
consistent existential theory.

Proof: Apply Theorem 5.1 to the formula interpreting x ∈ z∧y ∈ z∧x 6= y, and R a chain longer
than n. �

We can restate this in proper model-theoretic terminology. A theory T is said to eliminate
∃∞ (or eliminate infinity) if for every formula ϕ(z, x), there exists n such that for every model
M � T and a ∈ M , if |ϕ(a,M)| ≥ n, then it is infinite. Specializing this to the theory T eq, this
means that for every ϕ(z, x) and ψ(x, y) (where lh(x) = lh(y) = k), there exists n such that for
every M � T and a ∈ M , if ψ defines an equivalence relation on Mk, and ϕ(a,Mk) hits at least
n equivalence classes, then it hits infinitely many.

As in Corollary 5.2, an application of Theorem 5.1 to the formula ϕ(z, x) ∧ ϕ(z, y) ∧ ¬ψ(x, y)
yields:
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Corollary 5.3 (ECL)eq has elimination of the ∃∞ quantifier. �

Our second principal conclusion is the following tameness result on ECL:

Corollary 5.4 For any language L, ECL has NSOP3. That is, the theory axiomatized by

∀x, y, z ¬(x < y ∧ y < z ∧ z < x),

∃x0, . . . , xn−1

∧
i<j<n

xi < xj

for n ∈ ω is not weakly interpretable in ECL, and is not interpretable in any consistent existential
theory.

Consequently, ECL has the NSOP property, i.e., no theory consistent with ECL interprets a
partial order with arbitrarily long chains.

Proof: Apply Theorem 5.1 with R being a directed 3-cycle. �

Let us state for the record that Corollaries 5.2 or 5.4 solve our original problem:

Corollary 5.5 The theory REPPRF represents all partially recursive functions, but it does not
interpret R. �

On the other hand, it should be stressed that ECL is not that tame, if the language L is
sufficiently complicated (note that the observation below also stands in contrast to properties of
random relational structures, i.e., ECL with L purely relational, which is a simple theory, thus
NTP2).

Proposition 5.6 If L contains an at least binary function symbol, then ECL has TP2, hence it
is not simple. More generally, any theory weakly interpreting REPTRF (i.e., with a consistent
extension that loosely represents trf) has TP2.

Proof: It suffices to show the latter claim. Let F (x, y) be the REPTRF-function representing the
recursive function that interprets x as a Gödel number of a finite sequence, and outputs its yth
element. Let ai,j = (i, j), and ϕ(x, y1, y2) be the formula

F (x, y1) = y2.

Clearly, ϕ(x, ai,j) ∧ ϕ(x, ai,k) is inconsistent for j 6= k. On the other hand, if σ ∈ ωω, and n ∈ ω,
let s be the Gödel number of σ � n. Then ϕ(s, ai,σ(i)) for all i < n. Thus, the type

{ϕ(x, ai,σ(i)) : i < ω}

is consistent. �

The assumption on L in Proposition 5.6 is essential; see Theorem B.1 for more detailed model-
theoretic classification of the theories ECL as L varies.

Now, in the most general case when L contains an at least binary function symbol, there is still a
gap left between Proposition 5.6 and Corollary 5.4. We can close it by improving Corollaey 5.4 from
NSOP3 to NSOP1, but the proof will no longer be self-contained: we will rely on a characterization
of NSOP1 theories due to Chernikov and Ramsey [2] using an independence relation in the spirit
of the Kim–Pillay theorem.

We will work inside a monster model M of a completion T ⊇ ECL, as in Section 2.4: a κ-
saturated, strongly κ-homogeneous model of T , where κ is a cardinal larger than ‖L‖ and all
structures we intend to handle; recall that subsets of M of size < κ are called small.
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Definition 5.7 If A, B, and C are small tuples (sequences), we say that A is independent from B

over C, written as A |̂ C B, if 〈AC〉∩〈BC〉 = 〈C〉, where 〈X〉 denotes the substructure generated
by X, and the juxtaposition of two sequences denotes their concatenation. We will often treat
these tuples as sets where the context permits, seeing as the definition of |̂ does not depend on
their ordering.

The definition of A |̂ C B is stated here in more general circumstances than what is required
for [2] (in particular, their characterization only needs the case when C is a small model, i.e., an
elementary submodel of the monster). We do it partly because we can—at no additional cost—and
partly because we also want the definition to conform to the shape of independence relations from
the original Kim–Pillay theorem, which we will use elsewhere in the paper. For the same reason,
the next Lemma includes some properties of independence relations that are not directly relevant
to the characterization from [2].

Lemma 5.8 Let M be a monster model of a completion T of ECL. The independence relation |̂
has the following properties for all small tuples A,A′, B,B′, C,D:

(i) (Invariance) If f is an automorphism of M, then A |̂ C B implies f(A) |̂ f(C) f(B).

(ii) (Symmetry) A |̂ C B implies B |̂ C A.

(iii) (Monotonicity) If A′ ⊆ A, and B′ ⊆ B, then A |̂ C B implies A′ |̂ C B′.

(iv) (Weak transitivity) A |̂ B C and A |̂ BC D implies A |̂ B CD.

(v) (Existence) A |̂ B B.

(vi) (Strong finite character) If A | r^C B, there is a formula ϕ(x, b, c) ∈ tp(A/BC) such that
a | r^C B whenever M � ϕ(a, b, c).

(vii) (Extension3) For any A,B,C, there is A′ ≡C A such that A′ |̂ C B.

(viii) (Local character) For any B, and finite A, there is B′ ⊆ B such that |B′| ≤ ‖L‖, and
A |̂ B′ B.

(ix) (Independence theorem) If A |̂ C B, B |̂ C B′, B′ |̂ C A′, and A′ ≡C A, there exists A′′

such that A′′ ≡CB A, A′′ ≡CB′ A′, and A′′ |̂ C BB′.

Proof: Properties (i)–(v) are clear.
(vi): By definition, A | r^C B implies that t(a, c) = s(b, c) /∈ 〈C〉 for some terms t, s, and a ⊆ A,

b ⊆ B, c ⊆ C. Then we can take t(x, c) = s(b, c) for the formula ϕ.
(vii): We can extend the structure 〈BC〉 with a disjoint copy of 〈AC〉 r 〈C〉: that is, let us

define a structure D with domain

〈BC〉 ∪̇ {x : x ∈ 〈AC〉r 〈C〉},

with relations and functions defined so that they agree with the original structure on 〈BC〉, and
so that f = id〈C〉 ∪ x is an isomorphism of 〈AC〉 to 〈C〉 ∪ 〈AC〉r 〈C〉 ⊆ D. We can ensure D
is a substructure of M (extending 〈BC〉) using ECL and κ-saturation. Then A′ = f(A) has the
required properties.

3Our formulation of the extension property follows the statement of the Kim–Pillay theorem [5, 16]. As pointed

out by the reviewer, this property is often postulated in a stronger form: for any A, B, C, D, if A |̂ C B, there is

A′ ≡BC A such that A′ |̂ C BD. This easily follows from (vii) using (i) and (iv).
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(viii): Let us construct a chain B0 ⊆ B1 ⊆ B2 ⊆ · · · of subsets of B of size |Bn| ≤ λ := ‖L‖
as follows. We put B0 = ∅. Given Bn, let Mn = 〈ABn〉 ∩ 〈B〉. Since |Mn| ≤ λ, there exists a set
Bn ⊆ Bn+1 ⊆ B of size |Bn+1| ≤ λ such that Mn ⊆ 〈Bn+1〉.

Let B′ =
⋃
n∈ω Bn. Then 〈AB′〉 ∩ 〈B〉 =

⋃
nMn ⊆ 〈B′〉 by construction, hence A |̂ B′ B, and

|B′| ≤ λ.
(ix): In order to simplify the notation, we may assume without loss of generality that C, A, A′,

B, and B′ are structures, with C ⊆ A,A′, B,B′. By the assumption, we have A ∩B = A′ ∩B′ =
B ∩ B′ = C, and we can fix an isomorphism f : A ' A′ identical on C. Put D = 〈AA′BB′〉. We
will extend D into a model D′ with domain

D′ = D ∪̇ {x : x ∈ Ar C} ∪̇ {x : x ∈ 〈AB〉r (A ∪B)} ∪̇ {x : x ∈ 〈A′B′〉r (A′ ∪B′)}

using copies of parts of D. We will also write y for elements y ∈ A′rC, so that x = y if f(x) = y.
We define relations and functions on D′ so that

• g = idB ∪ x ∪ x is an isomorphism of 〈AB〉 to B ∪Ar C ∪ 〈AB〉r (A ∪B), and

• g′ = idB′ ∪ x ∪ x is an isomorphism of 〈A′B′〉 to B′ ∪A′ r C ∪ 〈A′B′〉r (A′ ∪B′).

It is important to note there is no conflict between the two clauses: the intersection of the two
targets is C ∪ Ar C = C ∪ A′ r C, which is asked to be made isomorphic to A via idC ∪ x, and
to A′ via idC ∪ x = idC ∪ f−1(x); these two requirements are equivalent, as the two mappings
commute with the isomorphism f : A→ A′.

Now, using ECL and κ-saturation, we can embed D′ as a substructure of M extending D. Let
A′′ = g(A) = g′(A′). Then g is an isomorphism of A to A′′ identical on B ⊇ C, thus A′′ ≡CB A,
and similarly A′′ ≡CB′ A′ via g′. Finally, 〈A′′C〉 = A′′, 〈BB′C〉 ⊆ D, and A′′ ∩ D = C, thus
A′′ |̂ C BB′. �

The following is a restatement of Proposition 5.8 in Chernikov and Ramsey [2].

Theorem 5.9 Let M be a monster model of a complete theory T , and A |̂ M B an independence
relation on small tuples A,B, and small models M � T , that satisfies the appropriate restrictions
of properties (i), (ii), (iii), (v), (vi), and (ix) from Lemma 5.8. Then T is NSOP1. �

Corollary 5.10 For any language L, ECL is NSOP1. �

Remark 5.11 Using Theorem 9.1 in [4], it can be seen that our |̂ coincides with the relation of
Kim-independence.

We mention that Corollary 5.10 was independently discovered by Kruckman and Ramsey [6],
who learned of the problem from an earlier unpublished version of this paper where it was posed
as an open problem.

6 Conclusion

We succeeded in our original goal of separating interpretability of R from representability of
recursive functions. More generally, we obtained a criterion for interpretability of ∃∀ theories in
existential theories, showing in particular that we may assume such interpretations to be quantifier-
free. We believe these results are interesting in their own right, of course, but at the same time
we place as much value on the connection between formal arithmetic and model theory that it
revealed: while model-theoretic methods are often used in the study of arithmetic, typically this
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means to work with models of the (fairly strong) theories of arithmetic themselves, which are quite
unlike the kind of tame model theory we encountered in this paper. It would be interesting to see
if more such connections are waiting to be discovered.

A Elimination of imaginaries

In this section, we discuss elimination of imaginaries in the theories ECL. We put it here in the
appendix as it is rather tangential to our main topic; we only need it in the proof of Theorem 4.5.

One way to describe elimination of imaginaries is that, loosely speaking, it allows to replace
any interpretation with an interpretation with absolute equality. We recall the proper definition
below, along with some important variants of the notion.

Definition A.1 A theory T has elimination of imaginaries (e.i.) if for every M � T and e ∈M eq,
there is a tuple b ∈M such that dclMeq(e) = dclMeq(b).

T has weak e.i. if for every M � T and e ∈ M eq, there is b ∈ M such that b ∈ aclMeq(e) and
e ∈ dclMeq(b).

As a special case, for any k, l > 0 let ∼k,l be the equivalence relation on injective l-tuples of
k-tuples (represented as kl-tuples) defined by

〈ai : i < l〉 ∼k,l 〈bi : i < l〉 ⇐⇒ {ai : i < l} = {bi : i < l},

so that Mkl/∼k,l represents l-element subsets of Mk. If for all M � T and all k, l > 0, every
a ∈ Mkl/∼k,l is interdefinable (in M eq) with a tuple b ∈ M , then T has coding of finite sets.
See [1] for an exposition of various forms of e.i.; in particular, T has e.i. iff it has weak e.i. and
coding of finite sets.

It would be nice if ECL had e.i., however this is too good to be true: as we will prove shortly,
the theory does not have coding of finite sets.

Lemma A.2 If M � ECL, and A ⊆M , then aclM (A) = 〈A〉.

Proof: Assume A is a submodel, and M � ϕ(b, a), where b ∈ M r A, and ϕ is open. Let
N = M ∪̇ (ω × (M rA)), where each A ∪ ({i} × (M rA)) is an isomorphic copy of M , as in the
proof of Lemma 5.8 (vii). Then N � ϕ(〈i, b〉, a) for each i < ω, hence ϕ(M,a) is also infinite by
existential closedness. �

Lemma A.3 Every M � ECL has elementary extensions with arbitrarily large sets X totally
indiscernible over M . Moreover, we can choose X to have the additional property that any LM -
term t(x1, . . . , xk) containing all the indicated variables defines an injective function on Xk.

Proof: Let M � ECL, and X be a set disjoint from M . An LM -term in variables X is reduced if it
has no constant subterms other than M -constants; that is, variables and M -constants are reduced,
and if t1, . . . , tk are reduced terms, and F is a k-ary function symbol of L, then F (t1, . . . , tk) is
reduced unless all the ti are M -constants.

Let R be the model whose domain is the set of all reduced terms, with realizations of relations
the same as in M (i.e., unsatisfied by tuples involving any non-constant terms), and functions
realized in the obvious way. Let N be an e.c. extension of R. Since every permutation of X extends
to an automorphism of R fixing M , any tuples of distinct elements x1, . . . , xk and x′1, . . . , x

′
k of X

satisfy the same atomic formulas with parameters from M . Thus in N , X is a totally indiscernible
set over M by quantifier elimination. �
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Proposition A.4 Neither ECL nor any its completion has coding of unordered pairs of elements,
and a fortiori elimination of imaginaries.

Proof: Let N be a model of ECL with {a, b} a 2-element totally indiscernible set satisfying the
property from Lemma A.3. Without loss of generality, N is strongly ω-homogeneous. Assume for
contradiction that there is a tuple u in N interdefinable with the representation of {a, b} (that
is, with the element 〈a, b〉/∼1,2 of N eq). By Lemma A.2, all elements of u are in the submodel
generated by a, b, hence they are given by a tuple of terms t(a, b). By a, b ≡ b, a and homogeneity,
there is an automorphism f such that f(a) = b and f(b) = a; since f preserves {a, b}, it also
preserves u, hence ti(a, b) = ti(b, a). Using the extra property, this can only happen if all the
ti are closed terms. Thus u, hence {a, b}, is ∅-definable, and a, b ∈ aclN (∅); using Lemma A.2
again, a and b are in fact values of closed terms, but this contradicts a ≡ b. �

Short of full e.i., the next best thing we can hope for is weak e.i. This will turn out to hold
for ECL, and thankfully it is still enough for our intended application.

Let us work again in a monster model M of a completion of ECL. Recall the following
characterization [1, Facts 1.2]: weak e.i. holds iff for every relation R definable with parameters
in M, there exists a smallest algebraically closed set defining R. (By Lemma A.2, algebraically
closed set = substructure for us.) We observe easily that ECL satisfies a somewhat weaker
property:

Lemma A.5 For any definable relation R(x), the class of substructures that define R is directed.
That is, if R is definable over b, and over c, it is also definable over 〈b〉 ∩ 〈c〉.

Proof: In order to simplify the notation, we will omit bars over finite tuples.
Put A = 〈b〉 ∩ 〈c〉. By saturation, it suffices to show that

x ≡A x′ =⇒
(
R(x)↔ R(x′)

)
. (12)

Assume that R(x)↔ ϕ(b, x)↔ ψ(c, x).

Claim A.5.1

(i) If b ≡c b′, then R(x)↔ ϕ(b′, x).

(ii) If c ≡b c′, and b ≡c′ b′, then R(x)↔ ϕ(b′, x).

(iii) If b ≡A b′, and x |̂ A b′, then R(x)↔ ϕ(b′, x).

(iv) If x ≡A x′, and x |̂ A b, then R(x)↔ R(x′).

Proof: (i): Let α(v, w) denote ∀x (ϕ(v, x)↔ ψ(w, x)). Since α(b, c), and b ≡c b′, we have α(b′, c).
(ii): By the dual statement to (i), we have R(x)↔ ψ(c′, x). Thus, α(b, c′), whence α(b′, c′).
(iii): By Lemma 5.8 (vii), there exists c′ ≡b c such that c′ |̂ b x. Since c |̂ A b by the definition

of A, c′ ≡b c implies c′ |̂ A b. By Lemma 5.8 (iv), we obtain c′ |̂ A x. Thus, by Lemma 5.8 (ix),
there exists b′′ such that b′′ ≡c′ b, and b′′ ≡Ax b′. Using (ii), this implies

R(x)↔ ϕ(b′′, x)↔ ϕ(b′, x).

(iv): There exists b′ such that xb ≡A x′b′. Then x′ |̂ A b′, thus

R(x)↔ ϕ(b, x)↔ ϕ(b′, x′)↔ R(x′)

by (iii). � (Claim A.5.1)
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Finally, to prove (12), let x′′ ≡A x be such that x′′ |̂ Ab using Lemma 5.8 (vii). Then
R(x)↔ R(x′′)↔ R(x′) by (iv) of the Claim. �

Incidentally, the previous lemma implies another property: T has Galois e.i. if for every M � T ,
a ∈M , and e ∈ aclMeq(a), there is b ∈M such that dclMeq(ae) = dclMeq(ab).

Proposition A.6 For any language L, ECL has Galois elimination of imaginaries.

Proof: By [1, Prop. 3.9], Galois e.i. is equivalent to the conjunction of elimination of strong types
(ST), and coding of Galois finite sets. The latter follows from our Lemma A.2 by [1, Facts 3.7]. It
thus suffices to show ST; by [1, Prop. 3.2], this is equivalent (in view of Lemma A.2) to the claim
that aclMeq(A) = dclMeq(A) for real sets A in a monster model M � ECL. We can reformulate
this as follows: if E is an equivalence relation (on k-tuples) definable over A with finitely many
equivalence classes, then all the equivalence class are individually definable over A.

So, let us fix a k-tuple x, we will show that the equivalence class of x is A-definable. Assume
that E has n classes. By repeated use of Lemma 5.8 (vii), we can find a sequence {xi : i ≤ n}
of tuples such that x ≡A xi, and xi |̂ A x0 . . . xi−1x. By the pigeonhole principle, there exist
0 ≤ i < j ≤ n such that xi and xj are in the same class C of E. It follows that C is definable over
Axi and over Axj , hence by Lemma A.5, it is definable over 〈Axi〉 ∩ 〈Axj〉 = 〈A〉, i.e., over A.
But then x ≡A xi implies that x ∈ C. �

It may come as anticlimactic that we will state the result we are most interested in, viz. weak
e.i. for ECL, without proof: while the author has figured out a long and cumbersome argument,
it was independently shown in an easier way by Kruckman and Ramsey [6, §3.4], and we invite
the interested reader to consult their paper.

Theorem A.7 For any language L, ECL has weak elimination of imaginaries. �

We end this section by stating explicitly the consequence of Theorem A.7 for definable functions
of EC eq

L that we will need in the proof of Theorem 4.5. While it is somewhat hairy to formulate,
it follows by a simple compactness argument.

Lemma A.8 Let T ⊇ ECL. If

T ` α(x)→ ∃=muβ(u, x),

there are formulas {αi(x) : i < n} for some n > 0, and for each i < n, tuples of terms ti,j(x),
j < m, such that T proves that {αi : i < n} define a partition of α (i.e., α(x)↔

∨
i<n αi(x), and

αi(x)→ ¬αi′(x) for i 6= i′), and

αi(x)→
(
β(u, x)↔

∨
j<m

u = t
i,j(x)

)
.

Moreover, T proves αi(x)→ t
i,j(x) 6= t

i,j′(x) for j 6= j′.

Proof: Note that αi(x) → t
i,j(x) 6= t

i,j′(x) for j 6= j′ follows from the rest, specifically α(x)
implies that there are at least m tuples satisfying β(u, x).

We will prove the statement by induction on m. If m = 0, there is nothing to prove. Assuming
the result holds for m, we will prove it for m+ 1.

By Lemma A.2 and a compactness argument, there are tuples of terms ti,m(x), i < n, such
that T proves

α(x)→
∨
i<n

β(ti,m(x), x).
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Putting
αi(x)↔ β(ti,m(x), x) ∧

∧
i′<i

¬β(ti
′,m(x), x),

we have a partition of α into formulas αi such that T proves

αi(x)→ β(ti(x), x).

Let us write
βi(u, x)↔ β(u, x) ∧ u 6= t

i(x).

Then T proves
αi(x)→ ∃=muβi(u, x).

Using the induction hypothesis, we can further refine the partition so that there are tuples of
terms ti,j(x), j < m, such that

T ` αi(x)→
(
βi(u, x)↔

∨
j<m

u = t
i,j(x)

)
.

Then T proves
αi(x)→

(
β(u, x)↔

∨
j<m+1

u = t
i,j(x)

)
as required. �

Proposition A.9 Let T ⊇ ECL, and E be an equivalence relation on k-tuples definable in T .
Then there are

• integers n > 0, r > 0, and mi ≥ 0 for i < n,

• formulas ϕi(x) for i < n, and

• terms ti,jl (x) for i < n, j < mi, l < r,

such that T proves

E(x, y)↔
∨
i<n

(
ϕi(x) ∧ ϕi(y) ∧

{
t
i,j(x) : j < mi

}
=
{
t
i,j(y) : j < mi

})
, (13)

where ti,j(x) denotes the tuple 〈ti,jl (x) : l < r〉, and the following condition hold:

• The formulas ϕi form a partition, i.e., T proves
∨
i<n ϕi(x), and ϕi(x)→ ¬ϕi′(x) for i 6= i′.

• On each part ϕi, the tuples ti,j are pairwise distinct, i.e.,

T ` ϕi(x)→
∨
l<r

ti,jl (x) 6= ti,j
′

l (x)

for each i < n, and j < j′ < mi.

Proof: By Theorem A.7, for each M � T and an equivalence class e of E, there is a real tuple
a ∈ M such that a ∈ aclMeq(e), and e ∈ dclMeq(a). Thus, for each such M , e, and a, we can find
a formula ψ(u, x) and an integer m ≥ 1 such that:

• ψ(a, x) for all x ∈ e.

• ψ(u, x) →
(
ψ(u, y) ↔ E(x, y)

)
; that is, for a given u, the set {x : M � ψ(u, x)} is either

empty, or an equivalence class of E.
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• For a given x, there are either none or exactly m tuples u such that ψ(u, x).

Using a compactness argument, there is a finite partition coarser than E definable in T by formulas
{ϕi(x) : i < n}, and for each i < n, there is a formula ψi(u, x), and an integer mi ≥ 1, such that
T proves:

ψi(u, x)→
(
ψi(u, y)↔ E(x, y)

)
,

ψi(u, x)→ ϕi(x),

ϕi(x)→ ∃=miuψi(u, x).

For a given i, if the tuple u in ψi(x, u) has length 0, then ϕi(x) is equivalent to ψi(x), and it
defines a single equivalence class of E; in this case, we formally replace ψi with an always false
formula using a dummy variable u, and put mi = 0. In this way, we may ensure that all the u are
nonempty; by repeating one of its elements, we may in fact assume that they all have the same
length l > 0 independent of i.

Using Lemma A.8, after possibly refining the partition {ϕi : i < n}, we can find tuples of terms
t
i,j(x) such that T proves

ψi(u, x)↔ ϕi(x) ∧
∨
j<mi

u = t
i,j(x).

This implies (13), that is,

ϕi(x) ∧ ϕi(y)→
(
E(x, y)↔

{
t
i,j(x) : j < mi

}
=
{
t
i,j(y) : j < mi

})
.

Indeed, {ti,j(x) : j < mi} = {u : ψi(u, x)}, and similarly for y. The properties of ψi ensure that if
E(x, y), these sets are equal, whereas if not (which can only happen if mi > 0), they are disjoint,
hence distinct. �

B Dependence on language

The results in Section 5 give fairly tight model-theoretic classification of ECL (NSOP1, but TP2) in
the case that L includes at least one at least binary function symbol. However, the theories behave
in different ways for other languages L; in this section, we summarize the main model-theoretic
properties of the theories ECL in dependence on L.

For the benefit of readers coming from a non-model-theoretic background, we recall that a
theory T is κ-stable if for every M � T and A ⊆M of size |A| ≤ κ, there are at most κ complete
types over A. We say that T is stable if it is κ-stable for some infinite cardinal κ, and superstable
if it is κ-stable for all sufficiently large cardinals κ. An even stronger condition is that T be totally
transcendental ; officially, this means that every formula ϕ has Morley rank MR(ϕ) <∞, but we can
use the following characterization: T is totally transcendental iff all countable-language fragments
of T are ω-stable (which implies κ-stable for all κ ≥ ω). The class of ω-stable theories includes
uncountably categorical theories, which in turn include strongly minimal theories (meaning that
for all M � T , the only subsets of M definable with parameters are finite or cofinite).

Theorem B.1 Let L be a language. Then any complete extension of ECL is

(i) strongly minimal iff L consists of nullary symbols;

(ii) totally transcendental iff L consists of nullary symbols, and either finitely many unary rela-
tions, or one unary function;

(iii) superstable iff L consists of at most unary symbols, at most one of which is a unary function;
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(iv) stable iff it has NIP iff L consists of at most unary symbols;

(v) supersimple iff L consists of relations, constants, and at most one unary function;

(vi) simple iff it has NTP2 iff L consists of relations and at most unary functions;

(vii) NSOP1.

Proof: We may assume L contains no nullary relations, as these are fixed to true or false in any
complete extension.

First, we establish the right-to-left implications. (i) is obvious. (ii): We may assume L is
countable, we will verify ECL is ω-stable. Let M � ECL, and A ⊆ M be a set of parameters,
which we may assume to be a submodel. If L consists of constants and finitely many unary
relations Pi(x), a type tp(b/A) of an element b /∈ A is determined by {i : Pi(b)}, hence there are
only finitely many (plus |A| trivial types for b ∈ A). If L consists of constants and a unary function
F (x), tp(b/A) is determined by the least n such that Fn(b) ∈ A and the value of Fn(b), or in case
there is no such n, by the shape of the chain {Fn(b) : n < ω}. This makes |A|+ ℵ0 possibilities.

(iii)4: Assume L consists of constants, unary relations {Pi(x) : i ∈ I}, and one unary function
F (x). Let A ⊆M � ECL be a submodel, and b ∈M . Similarly to the totally transcendental case,
tp(b/A) is determined by the type of b over A in the relation-free reduct of M , for which there are
|A|+ ℵ0 possibilities, and by {〈i, n〉 : i ∈ I, n < ω, Pi(Fn(b))}. Thus, |S1(A)| ≤ |A|+ 2‖L‖.

(iv): Let L be unary, and M,A, b as before. Atomic formulas involved in tp(b/A) are of the
forms t(b) = s(b) or P (t(b)) (i.e., not referring to A, hence at most ‖L‖ many), or t(b) = a

for a ∈ A. For any t(x), the type either contains one formula of the form t(b) = a, or all of
{t(b) 6= a : a ∈ A}. Thus, |S1(A)| ≤ |A|‖L‖; in particular, ECL is κ-stable whenever κ = κ‖L‖.

(vi): The Kim–Pillay theorem [5] (see also [16, 2.6.1]) states that a theory is simple if we can
define an independence relation A |̂ C B that satisfies properties (i), (ii), (iv), [a weaker form
of] (vi), (vii), (viii), and (ix) from Lemma 5.8, and the converse implication to (iv); the latter
amounts to base monotonicity : if C ′ ⊆ B, then A |̂ C B implies A |̂ CC′ B.

Now, if L contains no functions of arity 2 or more, the relation A |̂ C B from Definition 5.7
can be restated as

A |̂
C
B ⇐⇒ ∀a ∈ A ∀b ∈ B 〈a〉 ∩ 〈b〉 ⊆ 〈C〉.

This shows that it satisfies base monotonicity, even in the stronger form that A |̂ C B implies
A |̂ CC′ B for arbitrary C ′.

(v): In terms of the independence relation, a simple theory is supersimple iff it satisfies a strong
form of local character: for every B and finite A, there is a finite B′ ⊆ B such that A |̂ B′ B
(cf. [16]). If L consists of relations and constants, we can take B′ = A ∩ B. If L also contains
one unary function F , we construct a set B′ ⊆ B with |B′| ≤ |A| such that for each u ∈ A, if
Fn(u) ∈ 〈B〉 r 〈∅〉 for some n, then the least such n satisfies Fn(u) = Fm(v) for some v ∈ B′
and m ∈ ω.

(vii) is Corollary 5.10.
Now we turn to the left-to-right implications.
(vi) follows from Proposition 5.6.
(v): We may assume T is simple, i.e., all functions in L are at most unary. If there are two

unary functions F (x), G(x), a monster model M � T will contain an a such that t(a) 6= s(a) for
any pair of distinct unary terms t, s. Let B = {G(Fn(a)) : n < ω}. Then any finite C ⊆ B

satisfies 〈C〉 ∩B = C ( B ⊆ 〈a〉, hence a | r^C B. Thus T is not supersimple.

4A theory is superstable iff it is stable and supersimple, hence (iii) follows from (iv) and (v). However, we prefer

to give a direct proof not relying on sophisticated tools like the Kim–Pillay theorem.
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(iv): If L contains an at least binary function, it is even TP2. If L contains an at least binary
relation, wlog P (x, y), then the formula P (x, y) has IP, as every finite model embeds into any
model of ECL.

(iii): We may assume L is unary, lest the theory is not even stable. So, assume L contains two
unary functions F (x), G(x). Let κ be an arbitrarily large cardinal such that κω > κ, M � ECL,
and A = {aα : α < κ} ⊆M of cardinality κ. For every σ : ω → κ, the type

pσ(x) = {G(Fn(x)) = aσ(n) : n ∈ ω}

over A is consistent, and pσ and pτ are incompatible for σ 6= τ . Thus, |S1(A)| ≥ κω, and T is not
κ-stable.

(ii): We may assume T is superstable. If L contains a function F (x), and a relation P (x), the
2ω types

pI(x) = {P (Fn(x)) : n ∈ I} ∪ {¬P (Fn(x)) : n /∈ I}

for I ⊆ ω witness that the 〈F, P 〉-fragment of T is not ω-stable, hence T is not totally tran-
scendental. If L contains infinitely many predicates Pn(x), n < ω, we can likewise use the types
{Pn(x) : n ∈ I} ∪ {¬Pn(x) : n /∈ I}.

(i): If L contains a non-nullary (wlog unary) predicate P (x), then both P (M) and its com-
plement are infinite for any M � ECL, thus M is not minimal. Likewise, if L contains a function
F (x), the formula F (x) = x defines an infinite set with infinite complement. �

Apart from tameness properties from classification theory, we also discuss some more elemen-
tary invariants of the theories, namely the number of types, and the number of complete extensions.
We only consider countable languages for the rest of this section.

Recall that a countable complete theory is called small if it has countable many complete
n-types for all n ∈ ω; this holds if and only if it has a saturated countable model.

Proposition B.2 Let L be countable, and T a complete extension of ECL.

(i) Let L consist of relations and constants, where the number of non-nullary relations and
T -unequal constants is finite. Then T is ω-categorical.

(ii) Let L consist either of nullary symbols and one unary function, or of nullary relations,
finitely many unary relations, and infinitely many T -unequal constants. Then T has ℵ0

complete n-types for each 0 < n < ω, hence it is not ω-categorical, but it is small.

(iii) Otherwise T has 2ω complete 1-types.

Proof:
(i): By quantifier elimination, there are only finitely many formulas in n variables for every n

(ignoring sentences).
(ii): On the one hand, if F is a unary function, there are infinitely many incompatible 1-types

of the form
Fn(x) = Fn+1(x) ∧

∧
i<j≤n

F i(x) 6= F j(x).

If {ci : i < ω} are provably pairwise distinct constants, then we have infinitely many 1-types
extending x = ci.

On the other hand, T is ω-stable by Theorem B.1.
(iii): If we have a unary function F (x), and a nonnullary relation (wlog unary) R(x), we

have countably many independent atomic formulas R(Fn(x)), thus 2ω 1-types. Likewise, if there
is another unary function G(x), the formulas G(Fn(x)) = x are independent, and if we have
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a binary (or more) function H(x, y), we can consider the formulas H(s1(x), sn(x)) = x, where
s1(x) := H(x, x), and sn+1(x) := H(x, sn(x)). If there are infinitely many proper predicates, or
an at least binary predicate and infinitely many distinct constants, we are also done. �

Corollary B.3 Let L be countable.

(i) ECL is complete iff L contains no nullary symbols, or consists of one constant.

(ii) If L contains no constants, and only finitely many nullary relation symbols (with no restric-
tions on non-nullary symbols), then ECL has finitely many complete extensions.

(iii) If L is finite, and contains no nonconstant functions, then ECL has finitely many complete
extensions.

(iv) If L consists of a unary function, and finitely many nullary symbols, at least one of which
is a constant, then ECL has countably infinitely many complete extensions.

(v) Otherwise ECL has 2ω complete extensions.

Proof: (i): It is easy to see that in the other cases, there is at least one nontrivial atomic sentence.
(ii)–(v): If there are infinitely many nullary relations or constants, there are infinitely many

independent atomic sentences, hence 2ω complete extensions.
Assume there are only finitely many nullary symbols, and let L0 be Lminus constants. The only

atomic sentences in L0 are nullary relations, hence ECL0 has finitely many complete extensions. If
L has k > 0 constants, then completions of ECL correspond to complete k-types over completions
of ECL0 . By Proposition B.2, these are finitely many if L0 is finite and contains no functions, ℵ0

if L0 consists of one unary function and nullary predicates, and 2ω otherwise. �

Let us touch upon a somewhat different topic now. In Section 3, we proved the existence
of the model completion ECL in a laborious way by, essentially, computing an explicit finite
axiomatization of resultants. Model theorists are not very keen on getting their hands dirty
with actual formulas, and prefer higher-level methods; in particular, a very popular technique for
construction of model completions is using Fräıssé limits. For example, if L is a finite relational
language, one can show the existence of ECL quite easily by taking the theory of the Fräıssé limit
of the class of all finite L-structures. The reader may wonder why we did not use this method as
well, thus we will have a look at what we can achieve with Fräıssé limits in our situation. Let us
first recall the basic setup.

Definition B.4 The age of a structure M is the class of all finitely generated structures embed-
dable in M .

A Fräıssé class is a class K of finitely generated countable structures satisfying the following
conditions:

• K contains only countably many structures up to isomorphism.

• Hereditary property (HP): if a finitely generated structure B embeds in A ∈ K, then B ∈ K.

• Joint embedding property (JEP): for any finite set {B0, . . . , Bn−1} ⊆ K, there exists A ∈ K
such that each Bi embeds in A.

• Amalgamation property (AP): for any C,B0, B1 ∈ K and embeddings gi : C → Bi (i = 0, 1),
there exists A ∈ K and embeddings fi : Bi → A (i = 0, 1) such that f0 ◦ g0 = f1 ◦ g1.
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Note that JEP is equivalent to its special cases n = 0 and n = 2. The former amounts to K 6= ∅;
the latter is, under the assumption of AP and HP, equivalent to the simpler property that K
contains only one 0-generated structure up to isomorphism.

Note also that if the language is countable, finitely generated structures are automatically
countable.

A structure M is ultrahomogeneous if for every finitely generated substructures A,B ⊆M and
every isomorphism f : A ' B, there exists an automorphism g of M such that f ⊆ g.

Proposition B.5 A class K is a Fräıssé class if and only if it is the age of a countable ultraho-
mogeneous structure M . In that case, M is unique up to an isomorphism; it is called the Fräıssé
limit of K. �

Model completions can then be conveniently constructed using Fräıssé limits as follows.

Proposition B.6 Let T be a universal theory in a finite language consisting of relations and
constants. If the class of finite models of T has AP and JEP, then it is a Fräıssé class; its Fräıssé
limit M is a unique countable e.c. model of T up to isomorphism. The theory of M is the model
completion of T . �

This works well for ECL when L is a finite language with relations and (by considering sepa-
rately each quantifier-free diagram) constants. However, it is not applicable if L contains proper
functions; this cannot be circumvented by somehow encoding the structures in a relational lan-
guage, as the theories have fundamentally different properties: in particular, model completions
constructed by Proposition B.6 are always ω-categorical, and this seems to be inherent in the
method.

Thus, it seems Fräıssé limits are not helpful for showing the existence of ECL in general.
Nevertheless, we may still wonder if limits of suitable Fräıssé classes could provide some interesting
models of ECL.

Notice that in order to have JEP, whatever class of models we consider must satisfy the same
quantifier-free sentences; in view of quantifier elimination of ECL, this amounts to choosing a
completion of ECL. So, let L be a countable language, and T a complete extension of ECL. We
can write T = ECL + Diag(M0), where M0 is a (possibly empty) structure whose every element
is the value of a closed term, i.e., M0 is 0-generated; we denote T0 = Diag(M0). There are two
candidate Fräıssé classes of models of T0 that immediately spring to mind:

• The class Kfg of finitely generated models of T0.

• The class Kfin of finite models of T0.

It is easy to verify that Kfg satisfies HP, AP, and JEP. Thus, it is a Fräıssé class iff it contains
countably many structures up to isomorphism, which happens iff T is small. (We already charac-
terized when T is small in Proposition B.2.) We leave it to the reader to check that in this case,
the Fräıssé limit of Kfg is the countable saturated model of T .

Clearly, Kfin is nonempty only if M0 is finite, hence we will assume this for the moment.
Again, it is easy to see Kfin has HP, AP, and JEP, hence it is a Fräıssé class iff it is countable up to
isomorphism. This holds iff L contains only finitely many nonnullary symbols; since the finiteness
of M0 implies there are only finitely many constants up to equality in T0, and nullary relations
are in T0 fixed to true or false, we can as well assume without loss of generality that L is finite.
The Fräıssé limit of Kfin is then described by the following result.

Proposition B.7 Let T = ECL + Diag(M0), where M0 is a 0-generated L-structure, and L and
M0 are finite.
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Then T has a prime (equivalently: countable atomic) model, which can be characterized as the
unique locally finite (i.e., such that finitely generated submodels are finite) countable model of T ,
and it can be constructed as the Fräıssé limit of the class of all finite L-structures that extend M0.

Proof: By the preceding discussion, Kfin is a Fräıssé class, hence it has a Fräıssé limit M . Clearly,
M ⊇ M0 is countable, and locally finite. By general properties of Fräıssé limits (see e.g. [3]), M
is existentially closed in the class of locally finite structures. This in fact implies that M is e.c. in
the class of all structures, hence M � T : if ϕ(u) is an ∃1 formula, u ∈M , and M ⊆ N � ϕ, let

N ′ = M ∪ {tN (u) : t is a subterm of ϕ},

and make it an L-structure by preserving the values of all relations and functions in N where
possible, and fN

′
(v) = a for some fixed a ∈ M if fN (v) /∈ N ′. Then M ⊆ N ′ � ϕ(u), and every

finitely generated submodel of N ′ is included in N ′rM plus a finitely generated submodel of M ,
hence N ′ is locally finite. Thus, M � ϕ(u).

Every locally finite M ′ � T is atomic: let a ∈ M ′, and A be the submodel of M ′ generated
by a. Write A r {a} = {bi : i < m}. Then tp(a) is generated by ∃y0, . . . , ym−1 Diag(A), where
Diag(A) is written using variables x, y in place of a, b.

Thus, M is a countable atomic, hence prime, model of T , and by uniqueness of prime models,
every countable locally finite model of T is isomorphic to M . �

There are other cases when T has a prime model: for example, if T is small (see Proposi-
tion B.2). In fact, we can give a full description (for countable languages). Recall that a complete
countable theory has a prime model if and only if it is atomic.

Proposition B.8 Let T = ECL + Diag(M0), where L is countable, and M0 is a 0-generated
L-structure. Then T has a prime model iff it falls in of the following cases:

(i) M0 � ECL.

(ii) L contains only finitely many nonnullary symbols, all of which are unary.

(iii) M0 is finite, and L contains only finitely many nonnullary symbols.

Proof: Clearly, (i) implies that M0 is a prime model of T . We constructed a prime model in
case (iii) in Proposition B.7.

Assume (ii) holds; we will show T is atomic. Let ϕ(x) be a T -consistent formula, which we
may assume to be quantifier-free. By the argument in the proof of Proposition B.7, ϕ is satisfiable
in a model M ⊇ M0 such that M r M0 is finite. Let M0 ⊆ M � ϕ(a) be such that |M r M0| is
minimal possible. Using minimality, we can choose for each b ∈ M rM0 a term tb(x) (in fact, a
subterm of ϕ) such that tb(a) = b. Let C be the (finite) set of all elements of M0 that are values
of subterms of ϕ(a). For each element b ∈M0, let us fix a constant term tb whose value is b. Let
ψ(x) be the conjunction of the following formulas:

• tu(x) 6= tv(x) for each u ∈M rM0, and u 6= v ∈ (M rM0) ∪ C;

• xi = tai(x) for each i;

• F (tu(x)) = tF (u)(x) for each u ∈M rM0, and F ∈ L a nonconstant function symbol;

• R(tu(x)) or ¬R(tu(x)) (whichever is satisfied by a) for each u ∈ M r M0, and R ∈ L a
nonnullary relation symbol.
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By construction, M � ψ(a), hence ψ is consistent. By induction on the length of s, we see that
T0 ` ψ(x)→ s(x) = ts(a)(x) for each subterm s of ϕ; it follows easily that T0 ` ψ(x)→ ϕ(x). We
claim that ψ is an atom; by quantifier elimination, it suffices to show that it implies the quantifier-
free type of a. Thus, let us consider a model M ′ � ψ(a′). We may assume M ′ is generated by a′.
The conjuncts of ψ ensure that the mapping b 7→ tb(a′) is a homomorphism f : M → M ′ such
that f(ai) = a′i. It is the identity on M0, and injective on M r M0. Since ψ implies ϕ, we have
M ′ � ϕ(a′). By the minimality of M , this implies |M ′ r M0| ≥ |M r M0|, hence f must map
M rM0 to M ′ rM0. Thus, f is in fact an isomorphism of M to M ′.

On the other hand, assume that none of (i)–(iii) holds. Since M0 does not validate some axiom
of ECL as in Definition 3.6, and all elements of M0 can be denoted by constant terms, there exists
a consistent quantifier-free formula in one variable θ(x) which is not satisfiable in M0. Assuming
for contradiction that T is atomic, we may choose θ(x) to be an atom.

If L includes infinitely many nonnullary relation symbols, let R(x) be one that does not appear
in θ. Then θ(x) ∧ R(x, . . . , x) and θ(x) ∧ ¬R(x, . . . , x) are both consistent, contradicting θ being
an atom: taking an arbitrary model M � θ(a), we may flip the value of R(a, . . . , a) without
affecting M � θ(a). By a similar argument, we obtain a contradiction if L contains infinitely many
nonconstant function symbols.

The remaining case is that M0 is infinite, and L includes an at least binary symbol, say, a
relation symbol R(x, y) (the case of a function symbol is similar). Fix a model M � θ(a). Since
M0 is infinite, we can find c ∈M0, denoted by a closed term t, such that c is not the value of any
subterm of θ(a). Then we can flip the value of R(a, . . . , a, c) without affecting M � θ(a), hence
the formulas θ(x) ∧ R(x, . . . , x, t) and θ(x) ∧ ¬R(x, . . . , x, t) are both consistent, a contradiction.

�

C More on representation

For completeness, let us present a few counterexamples to possible strengthenings of some of the
basic claims in Section 2.2.

First, we mentioned that it is enough to represent a specific dprp, or prf, in a theory in order
to show its essential undecidability. In contrast, we will prove that any finite set of trf and rp
can be represented in a decidable theory. More generally, it holds even for infinite families of
such functions and predicates as long as they are uniformly recursive: here, we call a sequence
{Fn : n ∈ ω} of recursive functions Fn : Nkn → N uniformly recursive if the functions n 7→ kn and
〈n,w〉 7→ Fn((w)0, . . . , (w)kn−1) are recursive, and similarly for sequences of predicates.

Proposition C.1 Let R be a uniformly recursive sequence of trf and rp. Then there exists a
consistent decidable theory T and a recursive numeral sequence σ such that R is representable
in T w.r.t. σ.

Proof: Let L be the (recursive) language LR from Definition 2.4, and 〈N,R〉 be the “standard
L-model” with domain N and the L-symbols realized by the corresponding elements of R. Then
ECL + Diag(〈N,R〉) = ECL + REPR is a decidable complete theory by Corollary 3.8, and it
represents R w.r.t. the sequence n 7→ n. �

The second example serves two-fold purpose. For one, it exhibits that a recursively axioma-
tizable (or even decidable) theory may represent a non-recursive predicate w.r.t. a non-recursive
sequence of numerals. Second, it shows that representation of rp, or even dprp, does not imply
essential undecidability if the sequence of numerals is not recursive. We will first prove a simple
version applying to finite languages.
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Proposition C.2 Let P be a finite set of predicates and disjoint pairs. Then there exists a con-
sistent decidable theory T that represents P (w.r.t. a possibly non-recursive sequence of numerals).

Proof: Since we do not require the elements of P to be recursive to begin with, we may as well
extend each disjoint pair to a predicate, thus we will assume P consists of predicates without loss
of generality. Let L be the finite relational language corresponding to P. Since ECL is decidable,
it has a recursive model M (using the standard Henkin completion procedure; in fact, in this
case, it is not difficult to construct the model explicitly). Let T = ECL + Diag(M), which is
a decidable complete theory. Since ECL is ω-categorical, M is (a recursive presentation of) its
unique countable model, and the countable structure 〈N,P〉 embeds in M ; let us fix such an
embedding σ : n 7→ n, where the elements n ∈ M are identified with the corresponding constants
in the language of T . Then all P-predicates are represented in T w.r.t. σ. �

We could handle countable sets of predicates and disjoint pairs of bounded arity with a bit of
preprocessing, but we will need more work to take care of the general case: in particular, note
that ECL is no longer ω-categorical (or even small) if L is an infinite relational language; we will
use a slightly different theory instead.

Let L0 be the language that includes an n-ary relation Rn(x0, . . . , xn−1) for every n ≥ 1, and
T0 be the universal L0-theory axiomatized by

Rn(x)→
∧

i<j<n

xi 6= xj

for each n. The class K of finite models of T0 is easily seen to have HP, AP, and JEP. Crucially, it
contains only countably many nonisomorphic structures: in fact, for any n, there are only finitely
many T0-structures of size n, as the axioms force all but the first n L0-relations to be empty.

Thus, K is a Fräıssé class, and it has a Fräıssé limit M . Since any isomorphism between finite
submodels of M extends to an automorphism of M , and there are finitely many isomorphism
types of such submodels of fixed size, it follows that the theory T ∗ of M is ω-categorical, and has
elimination of quantifiers. Since all finite(ly generated) models of T0 embed in M , T ∗ is in fact
the model completion of T0.

It is not difficult to explicitly axiomatize T ∗ by suitable extension axioms, thus T ∗ is recursively
axiomatizable, and in fact, decidable (as it is complete). Moreover, M may be presented as a
recursive structure. Thus, its elementary diagram T ∗M = T ∗ + Diag(M) is a decidable theory.

We will now show that every predicate and disjoint pair (with no recursivity assumption) is
representable in T ∗M , using various (mostly nonrecursive) sequences of numerals. In fact, any
countable set of predicates and disjoint pairs can be represented w.r.t. the same sequence of
numerals:

Proposition C.3 Every countable set P of predicates and disjoint pairs is representable in the
decidable theory T ∗M .

Proof: As in the proof of Proposition C.2, we will assume P to consist of predicates. Without
loss of generality, we may also assume that P is closed under identification of variables: i.e., if
P ∈ P is n-ary, and i < j < n, the (n− 1)-ary predicate Pi,j defined by

Pi,j(x0, . . . , xn−2) ⇐⇒ P (x0, . . . , xj−1, xi, xj , . . . , xn−2)

is in P. Let us also define

P ′(x0, . . . , xn−1) ⇐⇒ P (x0, . . . , xn−1) ∧
∧

i<j<n

xi 6= xj .
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Then we can reconstruct P from P ′ and predicates of smaller arity as

P (x0, . . . , xn−1) ⇐⇒ P ′(x0, . . . , xn−1) ∨
∨

i<j<n

(
xi = xj ∧ Pi,j(x0, . . . , xj−1, xj+1, . . . , xn−1)

)
,

hence by induction on the arity, we see that all P-predicates are quantifier-free definable from
predicates from P ′ = {P ′ : P ∈ P}. Thus, without loss of generality, we may replace P with P ′,
i.e., we may assume that all predicates P ∈ P satisfy

P (x)→
∧
i<j

xi 6= xj .

We may also assume P contains predicates of every arity n ∈ N.
For each n ∈ N, let us fix an enumeration {Pn,m : m ∈ N} of all n-ary predicates from P such

that each such predicate occurs more than n times in the enumeration. Finally, for each n ≥ 1,
we define

Pn(x0, . . . , xn−1) ⇐⇒ Pn−1,x0(x1, . . . , xn−1) ∧
∧
i>0

xi 6= x0.

The structure 〈N, Pn : n ≥ 1〉 is a countable model of T0, hence it embeds in M . Let us fix
such an embedding σ : n 7→ n, where we identify n ∈ M with the corresponding constant in the
language of T ∗M . Thus, σ serves as a sequence of numerals, and each relation Pn is represented
in T ∗M w.r.t. σ by the formula Rn(x).

It follows that each P ∈ P is represented in T ∗M as well: if P is n-ary, let us fix distinct
m0, . . . ,mn ∈ N such that P = Pn,m0 = · · · = Pn,mn . By the pigeonhole principle, all the numbers
m0, . . . ,mn cannot simultaneously appear in any tuple satisfying P ; thus, the formula∨

j≤n

Rn+1(mj , x0, . . . , xn−1).

represents P (x0, . . . , xn−1) in T ∗M w.r.t. σ. �

The main result of this paper shows that representability of prf does not imply interpretability
of R. Another problem in a similar vein is to clarify the relationship between representability
of different types of recursive objects. Specifically, let us consider the following conditions on a
theory T :

(i) The set RP is representable in T .

(ii) The set DPRP is representable in T .

(iii) The set RP ∪ {succ} is representable in T .

(iv) The set DPRP ∪ {succ} is representable in T .

(v) The set TRF is representable in T .

(vi) The set PRF is representable in T .

We discuss separately the cases with the successor function included because of pathologies exhib-
ited by representation of predicates and disjoint pairs w.r.t. potentially non-recursive sequences of
numerals, as seen in Proposition C.3.

As we already mentioned in Section 2.2, it is easy to see that (vi)→ (v), (iv)→ (iii), (ii)→ (i),
(vi) → (iv) → (ii), and (v) → (iii) → (i). We wish to show now that no other implications
between these six conditions hold in general. This turns out not to be quite true—once again
due to pathologies exhibited by non-recursive sequences of numerals. In the spirit of battering
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reality vigorously until it complies with our preformed expectations, we fix this by considering
a more strict notion of implication between representability of classes R0 and R1, namely: does
representability ofR0 in T w.r.t. a sequence of numerals σ imply the representability ofR1 w.r.t. σ?
This leads to the desired answer.

Proposition C.4

(i) There exists a theory that represents DPRP ∪ {succ}, but does not represent TRF.

(ii) There exists a theory that represents TRF, but does not represent DPRP ∪ {succ}.

(iii) There exists a theory that represents DPRP, but does not represent succ.

(iv) Every theory that represents RP also represents arbitrary countable sets of predicates and
disjoint pairs.

(v) There exists a theory that represents TRF w.r.t. a sequence of numerals σ, but does not
represent DPRP w.r.t. σ.

Proof: If R ⊆ PRF ∪ DPRP, let EC REPR = ECLR + REPR, where LR is the language of
REPR.

(i): Let R = DPRP + {succ}. Then the theory EC REPR represents R, and it is supersimple
(hence NTP2) by Theorem B.1. In contrast, any theory representing trf is TP2 by Proposition 5.6.

(ii): The (complete) theory T = EC REPTRF represents trf. Let P = 〈P+, P−〉 be a recursively
inseparable dprp. We claim that T cannot represent {P, succ}, i.e., it does not interpret REPP,succ:
if it did, then REPP,succ would be also interpretable in a finite-language fragment T0 of T , which
would make T0 an essentially undecidable theory. However, T0 is of the form EC REPR for a finite
R ⊆ TRF, thus it is decidable as in the proof of Proposition C.1.

(iii): The theory T = EC REPDPRP represents dprp. Assume for contradiction that it repre-
sents succ, i.e., it interprets REP succ. Then REP succ is interpretable in a finite-language fragment
T0 of T , which is an extension of ECL for L a finite language with relations and constants.
Thus, (any completion of) T0 is ω-categorical. It follows that REP succ also has an ω-categorical
extension, but this is impossible, as it has infinitely many definable constants.

(iv): The argument from the proof of Proposition C.3 shows that every countable set P of
predicates and disjoint pairs is representable (w.r.t. a suitable sequence of numerals) in any theory
that represents all predicates definable in the model M .

(v): The theory T = EC REPTRF represents trf w.r.t. the sequence of numerals n. If it also
represented DPRP w.r.t. the same numeral sequence, it would in fact represent DPRP ∪ {succ},
which we already know to be impossible from (ii). �

Remark C.5 The theory T = EC REPTRF we used in the proof of Proposition C.4 is not re-
cursively axiomatized. Using an elaborate enumeration of recursive functions, Shoenfield [11]
constructed a recursively axiomatizable theory T in which all unary trf are representable w.r.t. a
recursive sequence of numerals σ, but no non-recursive set and no recursively inseparable dprp is
representable in T w.r.t. σ.
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