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Abstract. It is well-known that one cannot use first-order logic with

identity and the predicates Cat(x) and Dog(x) to say that there are

more cats than dogs. Nonetheless, Goodman and Quine (1947) offered

an ingenious translation of the sentence into a richer but thoroughly

finitist and nominalist language with mereological vocabulary and size

comparison for individuals. However, their translation as it stands fails

in the case of counting comparisons involving overlapping objects (say,

conjoined twin cats). Furthermore, we prove that no general translation

of equinumerosity (and hence of “more”) can be given in the overlapping

object setting using the predicates in Goodman and Quine’s translation,

assuming size comparison can be cashed out by counting mereological

atoms, and we use computational complexity theory to prove a more

general inexpressibility result. We end with some open questions.

1. Introduction

Goodman and Quine in “Steps towards a constructive nominalism” [4]

have made one of the most valiant attempts ever at giving a reduction of

logical meta-theory and ordinary counting language to an uncompromising

physicalist “constructive” nominalism with no cheating. There are no prop-

erties, tropes, sets, classes, or types, and there is no cheating with second-

order quantifiers or infinite sentences. All we have are physical individuals

governed by classical mereology, with the theory explicitly developed to be
1
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compatible with finitism—the hypothesis that there are only finitely many

individuals.

We will focus on Goodman and Quine’s clever account of counting com-

parison sentences such as “There are more cats than dogs”, assuming finitism.

We show that Goodman and Quine’s own account fails given overlapping

individuals such as conjoined twins, and then go on to prove that given

their mereological commitments to overlapping individuals, there is no way

to extend their account to handle such objects without going beyond the

theoretical resources they used for their cats-and-dogs example.

Next, we observe that there are some additional nominalistically accept-

able resources that Goodman and Quine did not draw on for their cats-and-

dogs account, but prove that within the scope of finitism these resources

are still insufficient if we understand the translation task as one of finding a

schematic formula that says “The number of objects x such that F (x) equals

the number of objects x such that G(x)” that works for any predicates F

and G. We then discuss some open problems related to possible nominalist

solutions for Goodman and Quine coming from either relaxing the finitism

of “Steps” or relaxing the details of the translation requirement.

2. Counting and “bigger”

2.1. Cats and dogs. In First-Order Logic with identity and predicates

Cat(x) and Dog(x), for any specific finite n we can say that there are at

most, at least or exactly n cats and/or dogs by an appropriate quantified

statement. For instance, that there exactly two cats can be said as

∃x∃y(Cat(x) ∧ Cat(y) ∧ x ̸= y ∧ ∀z(Cat(z) → (z = x ∨ z = y))).
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Van Benthem and Icard [15] call this “counting in the syntax”. But it is

well known that we cannot in this way say things like “There are finitely

many cats”1 or “There are more cats than dogs.”2 With infinite sentences,

of course, we could say that there are more cats than dogs by saying that

there is at least one cat and no dogs, or at least two cats and at most one

dog, or at least three cats and at most two dogs, . . . . But that won’t fit

with the finitism of “Steps”.

Goodman and Quine, however, have an additional resource available,

namely mereology, and give an ingenious account of how to say that there

are more cats than dogs. Stipulate that a bit is a part of a cat or a dog that

is the same size as the smallest of the cats and dogs. Then stipulate that:

Bits There are more cats than dogs if and only if every individual that

has a bit of every cat is bigger than some individual that has a bit

of every dog.

(What “size” and “bigger” could be taken to mean will be discussed in

Section 2.2.)

But now suppose that there are two cats and one dog, while (a) the two

cats share a leg, (b) the dog is smaller than that shared leg (say, it’s a fetal

dog), and there is no other overlap. Then consider any individual C that is

a bit of the shared cat leg, and any individual D that has a bit of the dog.

Then C is an individual that has a bit of every cat, and yet D is at least

1The impossibility of saying this follows immediately from compactness, since any

sentence ϕ translating “There are finitely many cats” will be compatible with any finite

number of sentences ϕn saying that there are at least n cats, and hence there will be a

model where ϕ and all the ϕn are true.

2For a simple elementary proof, see [12].
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as large as C, so Bits delivers the incorrect verdict that there are no more

cats than dogs.

Now, while conjoined twins are rare, nonetheless it is a central part of

Goodman and Quine’s theory that objects can overlap. For, famously (or

infamously), in order to avoid having to posit linguistic types, they suppose

that the world is all filled with invisible linguistic tokens. For instance, if

you are reading this paper on a screen, on the white margins of the page,

there are pixels that spell out your grandparents’ names. You don’t see

these pixels because they are surrounded by other pixels of the same color.

If you turned these surrounding pixels a different color, the pixels spelling

out your grandparents’ names would stand out, but they are there anyway.

However, in the same part of the margin where there are pixels spelling

out your grandparents’ names, there are pixels spelling out Schrödinger’s

equation, and some of the pixels of your grandparents’ names are reused

for Schrödinger’s equation. And the same is true, but with chunks of white

paper instead of pixels, if you are reading this article in hard copy. Thus,

Goodman and Quine’s world is full of overlapping linguistic tokens.

We can fix up Bits to work with conjoined twins. For each cat or dog,

say that a part is unshared provided that it does not overlap any other cat

or dog. Let the unshared portion of a cat or dog be the fusion of all of its

unshared parts. Then say that a bit∗ of a dog or cat is a part that is the

same size as the smallest unshared portion of a cat or dog. Then we can

say:

Bits∗ There are more cats than dogs if and only if every individual that

has an unshared bit∗ of every cat is bigger than some individual that

has a bit∗ of every dog.
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But while Bits∗ works well for conjoined twin cats or dogs in our world, it

doesn’t work for more complex cases of overlap. Imagine that we have a cat

c that is a proper part of a larger cat C. This is problematic for this literal

case3 but for linguistic tokens the phenomenon of one token being a proper

part of another is common. Then c has no bits∗, since c has no unshared

parts, and thus there is no individual that has an unshared bit∗ of every cat.

Therefore, the right-hand-side of Bits∗ is vacuously satisfied no matter how

many dogs and cats there are—in particular we get a counterexample if c

and C are the only cats and there are two or more dogs.

One might hope that some other clever definition of bits will do the job,

say a definition cleverly making use of spatial continuity4, so that there

is an individual x that is a fusion of pairwise non-overlapping bits†, with

each of them a part of a different cat and every cat having exactly one bit†

contributing to x, and we can then compare such individuals x in size to

individuals made of bits† of dogs. In the case of organisms like cats and dogs

we have a hope of doing this, even if there is total overlap like in the c and C

example. But we should not expect to be able to do this in full generality—

and Goodman and Quine’s ontology includes the full generality of a classical

mereology. For suppose there exist n distinct mereological atoms x1, ..., xn,

and define a “shcat” as any part of the fusion X of x1, ..., xn. Then there

are 2n − 1 shcats, and if n > 1 then there is no way to make an individual

that contains a bit† of every shcat with no pairwise overlap between the

3Though it is worth noting that Kingma [10] has claimed that a fetus is a part of its

mother.

4We are grateful to an anonymous reader for this suggestion.
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bits†, since the fusion of the shcats cannot be partitioned into more than n

pairwise non-overlapping parts, while 2n − 1 > n for n > 1.

One might try to creatively tweak Bits∗ to get around worries with more

radical overlap. But as we are about to see, if our only resources are mere-

ological predicates and something like “Bigger”, this can’t be done.

2.2. Atomic cosmoses. Say that a mereological cosmos5 is atomic pro-

vided that every individual (and hence every part of every individual) has

an atomic part—a part with no proper parts. Atomic cosmoses are epistemi-

cally possible—for all we know, we inhabit one. And while some philosophers

defend the possibility of “gunky” cosmoses with no atoms (for a survey, see

[7]), it is plausible that that atomic ones are at least metaphysically pos-

sible. Furthermore, any finite mereological cosmos is atomic, since in a

non-atomic cosmos there is a downward regress of proper parts, and Good-

man and Quine’s project in “Steps” is a finitist one. Thus for the sake of the

success of their project, the Goodman and Quine account had better work

for finite atomic cosmoses.

Note that assuming classical mereology, in an atomic cosmos, if x and y

are distinct individuals, then they differ in an atomic part.6 It follows that

we can identify individuals with the fusions of their atomic parts.

5The term “cosmos” will be restricted to mereological realities, while the term “uni-

verse” will be used in the model-theoretic sense for the set of objects in an abstract model.
6If x and y are distinct, then at least one is not a part of the other, or else we violate

the reflexivity of parthood. Without loss of generality, x is not a part of y. By Strong

Supplementation, there is a part of z of x that doesn’t overlap y, and so x and y will differ

at least by z.
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Atomicity can help us solve two technical problems that afflict Bits in

the case of non-overlapping objects. First, if there are infinitely many cats

or dogs (or at least some other kinds of things), it could be that for any part

x of a cat or dog there is another cat or dog smaller than x, and there is no

such thing as a “bit” of a cat or dog such that every cat or dog is at least

of its size.

Second, it is unclear how to understand “bigger” in the case of scattered

objects, i.e., objects that occupy a disconnected spatial region. Suppose

there are 1000 cats and 1001 dogs, but the dogs are all in one building while

the cats are scattered all over the earth. Let CatBit be an object consisting

of a bit of every cat and DogBit be an object consisting of a bit of every

dog. Then there is an intuitive sense in which CatBit is a cloud of cat bits

about the size of the earth, while DogBit is a denser cloud of dog bits about

the size of a building, so CatBit seems bigger than DogBit.

Maybe the thing to say is that size is volume, and the total volume of

DogBit is bigger than the total volume of CatBit, where only the volume

within the bits counts, not the volume between them. But now we can’t

count objects with zero volume, such as point particles would be, since any

finite collection of such objects still has zero volume, and point particles

are clearly logically possible. Furthermore, the main alternative to point

particles are quantum particles whose “position” can be identified with the

region of points in space where a measurement might find a particle. But

such quantum particles can overlap very significantly. While fermions (say,

electrons) cannot share the same position and all the same characteristic

such as rest mass, charge, spin and fermionic type because of the anticom-

mutation of their wavefunction, fermions differing in their characteristics



8 ALEXANDER R. PRUSS AND EMIL JEŘÁBEK

(say, two electrons with different spins) can have the same position distri-

bution, and there are no restrictions on sharing position distribution for

bosons (say, photons), whether with the same or with different characteris-

tics.7 Volume won’t help with counting objects that are fusions of co-located

particles. Or we might try comparing mass instead of size, but then we won’t

be able to count massless particles, like photons.

In an atomic cosmos, however, the best version of “bigger” seems to be

that an object is bigger just in case it has more (mereological) atoms. The

Bits account simplifies, as we can replace bits by atoms, and so the problem

of a lack of a non-zero lower bound on the size of a cat or dog disappears,

and have an unambiguous account of the size of scattered objects.

One might think that comparing sizes by counting atoms is cheating,

since the point of the project under examination is to give an account of

counting. However, any compunction we might have about comparing the

size of objects by counting atoms would also affect comparing the size of

object by volume—if there is no philosophical problem with adding up the

volumes of bits, there should be no problem with adding up the counts

of atoms. The task Goodman and Quine have set themselves is to count

complex individuals, and that task is a serious prima facie challenge, because

the very formulation of the problem seems to presuppose abstract entities,

namely sets of objects to be counted. On the other hand, if we are counting

the atoms in a complex object, there is no such difficulty: instead of talking

7The philosophical literature often discusses co-location in connection with bosons with

the same characteristics. As Paul [11] notes, in the alleged case of indiscernible co-located

particles one can resist the claim that one genuinely has distinct objects. But this resis-

tance is less plausible in the case of discernible particles.
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of abstract sets of objects, we just talk of the concrete wholes made of the

atoms, and suppose relations such as more, less or equal count between

them.

Furthermore, if we allow a physical possibility operator and spatiotempo-

ral arrangement, we have a good chance of being able to define the atomic

sense of “bigger”. Suppose that the actual world’s mereological atoms are

small enough to each fit within a one millimeter cube.8 Then:

Move Object x is (atomically) bigger than object y if and only if it is

physically possible to move the atoms of x and y in such a way that

none are destroyed and:

(i) no two atoms of x are within a meter of each other,

(ii) no atom of x has two atoms of y within a centimeter of it,

(iii) every atom of y has an atom of x within a centimeter of it,

(iv) there is an atom of x that has no atoms of y within a centimeter

of it, and

(v) each individual atom continues to fit within a one millimeter

cube.

Given mild geometric assumptions (say, that we are working in a metric

space), this will clearly be correct if x and y do not overlap. But the case

of overlap is also unproblematic, as long as we remember that any atom of

y that is also an atom of x always has an atom of x within a centimeter of

itself—namely it has itself within a centimeter of itself!

Or, alternately, we can proceed counterfactually:

8One might think that it’s impossible for a mereological atom to occupy more than

a point of space, in which this assumption is trivially true. But if extended simples are

possible, this is a substantive assumption.
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Trash Object x is bigger than object y where neither object is actually in

a trash bin if and only if repeating the procedure of putting an atom

of x in the trash at the same time as one puts an atom of y in the

trash would eventually result in all the atoms of y being in the trash

while not all the atoms of x are yet in the trash.

Again, the case of overlap is unproblematic—it just means that sometimes

putting an atom of x in the trash will constitute putting an atom of y there.

Both Move and Trash in effect describe a bijection between collections

of atoms.9 One might wonder at this point whether some similar physical

procedure could be used to define counting for non-atomic objects. In the

case of non-overlapping objects, this is likely to be the case10, but in the case

of overlapping objects, like our hypothetical cats where one cat is a proper

part of another, this is unlikely. For instance, overlapping objects in general

are not separable in a way analogous to (i) in Move, while putting one cat

in the trash will also put in the trash all the cats that are proper parts of

it, and putting two objects into trash also puts their fusion into the trash.

As an alternative to counting atoms, one might try counting points oc-

cupied by the object, so that x is bigger than y if and only if the set of

points occupied by x has bigger cardinality than the set of points occupied

by y.11 But in an atomic cosmos where each atom occupies a single point

and no two atoms are co-located, this yields a version of “bigger” equiv-

alent to the atom-count one. Now, one of the main results of our paper

9We are grateful to an anonymous reader for this observation.
10Though we may need to distort the objects—perhaps discontinuously—if, say, one

object surrounds another.

11We are grateful to a referee for the suggestion.
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will be that an atom-count “bigger” cannot be used to define “more” for

all finite atomic cosmoses. But any finite atomic cosmos is mereologically

isomorphic12 to a finite atomic cosmos where each atom occupies a single

point and no two atoms are co-located, since on classical mereology any two

atomic cosmoses with the same number of atoms are mereologically isomor-

phic. Thus if point-count “bigger” can be used to define “more” for all finite

atomic cosmoses, atom-count “bigger” can be used to define “more” for all

finite atomic cosmoses without atomic co-location, and hence by isomor-

phism also for all finite atomic cosmoses. Thus in this context there is no

advantage to counting points over counting atoms. And there is a disadvan-

tage: as discussed earlier in connection with quantum mechanics, it appears

metaphysically possible for multiple atoms to occupy the same point, and

in atomic cosmoses where all the atoms occupy one and the same point,

the point-count version of “bigger” never obtains between two objects, and

hence is of no help in counting complex objects (which on classical mereol-

ogy will coincide with the fusions of the co-located atoms).13 Thus in the

12A mereological isomorphism is a bijection between sets of individuals that preserves

parthood.
13A referee notes an interesting objection. Time-travel suggests the possibility of

multiply-located particles [3]. But there are practical contexts where we may want to count

multilocated instances of the “same” particle as separate individuals due to separate causal

efficacy, and then point-counting appears to give a better answer to “how many” questions

than atom-counting. However, this conflicts with intuitions that co-located particles (at

least of different types) should be counted separately. If one is convinced that multilocated

instances should count as separate individuals, a compromise option is to have a mereolog-

ical ontology where the atoms are particle-types-at-locations, perhaps with “fundamental

intensive properties” as in [11, p. 57] to handle cases of co-located same-type particles.

One will still have co-location of particles of different types, and so defining “bigger” in
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subsequent sections of the paper, we will focus on the atom-count version of

“bigger”.14

Finally, it is worth noting that if extended simples are possible, then

there is an argument that if atom-count “bigger” cannot be used to define

“more”, total volume “bigger” cannot be used either, even if we restrict our

attention to cosmoses all of whose atoms have non-zero volume. To see this,

consider finite atomic cosmoses where each atom is an extended simple with

the same non-zero volume and no two atoms overlap spatially. For such

cosmoses, total-volume “bigger” is equivalent to atom-count “bigger”, and

so if total-volume “bigger” can be used to define “more”, so can atom-count

“bigger” in such cosmoses. And by mereological isomorphism it could then

be used to define “more” in all finite atomic cosmoses, which we will argue

is impossible.

2.3. An initial impossibility result. Atomic mereological cosmoses can

be nicely modeled within a monadic second-order (MSO) logic. In MSO, we

terms of point-count will be uninformative in universes where there is just one point oc-

cupied by multiple atoms of different types, and atom-count is more promising. In any

case, atom-counting is more metaphysically neutral than point-counting, since even on

the controversial view where co-location is impossible and multilocated instances should

count separately, one can simply use atom-counting with a mereology on which the atoms

are occupied points.
14One may worry that the atom-count version of “bigger” has some counterintuitive

consequences in cases of co-location of atoms. For instance, an object consisting of a

million co-located atoms is atom-count “bigger” than an object consisting of a thousand

atoms that are spread out through a one-meter ring. This is true, but there is no need to

insist that “bigger” should match ordinary language, especially given the argument that

if “more” can be defined using a point-count “bigger”, then it can be defined using an

atom-count “bigger”.
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have quantification over first-order elements, whose variables are denoted by

lower-case letters like x, and over second-order monadic or unary entities,

denoted by upper-case letters like X that allow us to form formulas like

X(x). We can think of these second-order entities as sets, or properties, or

predicates. We also have ordinary predicates with argument slots typed to

specify whether they take a first-order or second-order argument. A model

of MSO is a tuple M = (U, σ, I) where U is the universe—the set of first-

order entities—while σ is the signature or collection of predicates and names

(for simplicity, we won’t have functions), and I is an interpretation of the

predicates and names.

Given an atomic mereological cosmos, we can imagine mathematical ob-

jects, which we will call points (not necessarily spatial ones), that are in

one-to-one correspondence with the atoms. If α is an atom, we let α∗ be the

point corresponding to α. An atomic mereological cosmos’s individual β can

then be modeled as the non-empty set β† = {α∗ : α ⊑ β} of points, where

⊑ is parthood. Thus, a mereological atom α can be modeled in two differ-

ent ways in the MSO model M : as a point (or element) α∗ of the model’s

universe U or as a singleton subset α† of U . Since mereological atoms are

a kind of mereological individual, and complex individuals are modeled as

subsets of U , for the sake of uniformity it is natural to model an atom α as

the singleton α†.

We assume that the mereological axioms are precisely such as to en-

sure that the above correspondence between mereological individuals in an

atomic cosmos and non-empty sets is a bijection with α ⊑ β if and only if

α† ⊆ β†.



14 ALEXANDER R. PRUSS AND EMIL JEŘÁBEK

There is one set in the model M that does not correspond to an object in

the mereological cosmos: the empty set ∅. We can treat the empty set as a

notational convenience, as it does not add any expressive power on the MSO

side. For instance, we can split a universal quantification ∀X ψ (existential

quantifications can be defined in terms of universal ones by De Morgan) over

all sets X in MSO into a conjunction between universal quantification over

non-empty sets and evaluation of ψ at the empty set:

∀X(∃xX(x) → ψ) ∧ ψ′

where ψ′ is ψ after replacement of all terms with an occurrence of X free in

ψ with terms that do not include X but are equivalent when X is empty.

In ψ′, occurrences of X(x) can be replaced with x ̸= x, and any atomic

predicate expressions containing X need to be replaced with expressions

that use new predicates, with fewer arguments, that handle the case of a

given argument referring to an empty set (for convenience, we may wish

to allow 0-ary predicates). For instance, if ψ contains the atomic formula

P (X,Y ), we generate a new unary predicate P1 interpreted as PM ′
1 = {A :

(∅, A) ∈ PM} where M ′ is our model with the additional predicate. We

handle names similarly to quantifiers, by replacing a sentence using the name

with a disjunction of two sentences, one conditional on the name referring

to the empty set and one not doing so. Furthermore, if there are numerical

quantifiers, these can be fixed up to take care of the case where something is

empty in a straightforward way. And if we can define counting for collections

of sets that do not contain an empty set, we can define counting for all
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collections of sets.15 And so the question of defining counting of complex

individuals in Goodman and Quine’s setting is equivalent to that of defining

counting of sets (i.e., second-order objects) in MSO. Alternately, we can

introduce an expressively insignificant “empty” object into Goodman and

Quine’s ontology. In any case, henceforth we ignore the issue of the empty

set, and take MSO (with appropriate additional predicates and names as

needed) as equi-expressive with atomic mereology.

Now, if Goodman and Quine can give an account of “more” for individ-

uals, they can give an account of equinumerosity or equal count: there are

equal numbers of cats and dogs if and only if there aren’t more cats than

dogs and there aren’t more dogs than cats.

But it turns out that if we take the atomic sense of “bigger” as “having

more atoms”, it follows from recent work of van Benthem and Icard [15] that

it is impossible to express equinumerosity of collections of complex individ-

uals in terms of our atomic “bigger”. For consider a version MSO>
fin of MSO

with a “bigger” predicate > and the restriction that the only admissible

15For instance, the collections A and B of sets are equinumerous if and only if either

(a) neither contains the empty set and they are equinumerous or (b) one contains the

empty set and nothing else while the other contains exactly one member or (c) both

contain the empty set and some other members and the respective collections of these

other members are equinumerous or (d) exactly one contains the empty set and at least

one other member while the other does not contain the empty set and the collections

resulting from removal of the empty set from the first and an arbitrary element from the

second are equinumerous. This disjunction defines equinumerosity for collections that are

allowed to contain the empty set in terms of equinumerosity for collections that are not

allowed to contain the empty set. A similar trick can be used for “more”.
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modelsM are finite ones where X > Y is interpreted as saying that the car-

dinality of the set denoted by X is greater than that of the set denoted by Y .

We also include first-order unary predicates A and B in our language. Say

that a binary relation R between natural numbers is expressible in MSO>
fin

if and only if there is a sentence ψ such that for all admissible models M we

have

M ⊨ ψ if and only if R(|AM |, |BM |).

In words, ψ holds just in case the cardinalities of the interpretations of A and

B satisfy R. It follows from Van Benthem and Icard [15, Thm. 4.7]16 that

a numerical relation is expressible in MSO>
fin if and only if it is semi-linear,

from which it follows that:

Lemma 1. There is no sentence ϕ such that for all finite models M with

AM and BM non-empty we have M ⊨ ϕ if and only if |AM | = 2|B
M |.

The Appendix of this paper gives a definition of the semi-linearity of

binary relations and details of proof given [15, Thm. 4.7].

But given Lemma 1, it follows that there is no way to define equinumeros-

ity in MSO with >. For if we could define equinumerosity in MSO with >,

we could say that the number of X such that ∀x(X(x) → B(x)) (i.e., the

number of subsets of the extension of B) equals the number of X such that

∀x(X(x) → A(x)) ∧ ∃x∀y(X(y) ↔ x = y)

(i.e., the number of singleton subsets of the extension of A), and this would

hold in M precisely when |AM | = 2|B
M |.

16See also [16] which corrects an error in a later part (Section 5.3) of [15]. However,

the results we are relying on do not depend on that part.
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Thus, there is no way to use the atomic sense of “bigger” to define equinu-

merosity of objects. But let us now explore some other resources that Good-

man and Quine could try to draw on.

3. Extensions of Goodmand and Quine’s “Steps”

3.1. More counting predicates. While “bigger” is the one predicate that

Goodman and Quine actually used to try to count individuals, there is no

reason to suppose that this is the only possible predicate that someone

with their ontology could use for their purpose. Suppose for instance that

Goodman and Quine had a “power of two” predicate that applies to two in-

dividuals provided that the number of atoms in the first individuals equalled

two to the power of the number of atoms in the second. Then our argument

that Goodman and Quine cannot compare the counts of individuals would

fail.

Granted, we might be suspicious of introducing a predicate like this, given

that it sounds like we are presupposing counting. But as noted in Section 2.2,

such numerical relations between pairs of individuals may well be nominalis-

tically and physicalistically acceptable. And with a bit more creativity than

that involved in Trash, we can imagine a physical procedure allowing the

definition of the power of two predicate with the help of a binary-counting

computational machine and a rule that whether one puts an atom of y in

the trash depends on what the display is showing.17

17This might require that x and y not overlap. But given that we can define having an

equal number of atoms using Move or Trash, if x and y overlap, we can replace y with

a y′ that has the same atomic size as y but does not overlap x. Granted, this only works

if the cosmos is large enough to have the extra atoms needed.
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Thus, as a first attempt at helping Goodman and Quine, we might give

them a larger array of predicates that compare atomic sizes of individuals

than just “bigger”. To be maximally generous, thus, consider MSO with

finite models, but allow the use of a predicate corresponding to every k-ary

relation on the natural numbers N for any finite k. Given the finitism in

Goodman and Quine’s “Steps” paper, they will only be willing to use finitely

many of these predicates18, but if we can show that counting comparisons

cannot be expressed with any predicates corresponding to relations on N,

our limiting result will be all the stronger for it. Let R be the set of all such

relations, and as usual identify such a k-ary relation with a subset of Nk.

For a k-ary relation R in R, let CR be the corresponding k-ary predicate,

and assume that our model interprets this predicate to be satisfied by the

tuple of sets (A1, . . . , Ak) if and only if (|A1|, . . . , |Ak|) ∈ R, where |A| is the

cardinality of A. Thus, our atomically understood “bigger” predicate is just

C>, while the “power of two” predicate would be C{(n,m)∈N2:n=2m}.

These cardinality predicates then correspond to atomic size predicates

that go beyond “bigger”, and allow us to define any atomically-based nu-

merical relationship between finite tuples of mereological individuals. But

they are not enough to allow us to define counting of mereological individ-

uals in general. To state the relevant MSO result, in addition to having

our cardinality predicates CR for R ∈ R, add two unary predicates F and

G with second-order arguments, so that our task will be to define the con-

cept of F and G having equal size of extension. Here, however, we have an

impossibility result:19

18We are grateful to an anonymous reader for this point.

19The result was conjectured by the first author and proved by the second.
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Theorem 1. Say that an MSO model M = (U, σ, I) is admissible provided

that its signature consists of all cardinality predicates CR with interpretation

CM
R = {(A1, . . . , Ak) : (|A1|, . . . , |Ak|) ∈ R} and the two third-order unary

predicates F and G. Then there is no sentence ϕ = ϕF,G such that for all

finite admissible models M we have M ⊨ ϕ if and only if |FM | = |GM |.

This will be a special case of Theorem 2, below, which is proved in the

Appendix.

3.2. More predicates. The objects to be counted are not alone in the

world. The larger structure of the world may include tools that help count,

like an abacus can. For instance, [13] suggested that the infinite number of

points of spacetime could provide a helpful structure. However, the main

results of this paper are restricted to Goodman and Quine’s original setup

which was explicitly meant to be compatible with a finite context.

Nonetheless, even in a finite context there are other tools available. So far

the only predicates we drew on to define counting were arithmetic relations

between the “atomic sizes” of mereological individuals. But there are many

other physical predicates in the world, expressing properties or relations such

as distance, mass, charge, shape, color, etc. Could some of these predicates

help?

An initial objection to using such predicates is that objects should be

able to be counted in any possible world. Now, nominalists should not

quantify over properties—by the famous ontological commitment criterion

of the later Quine—so any nominalistic definition of counting can only use

a fixed finite number of predicates corresponding to a fixed finite number of

properties. Suppose now for a reductio that there is a nominalistic definition
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of counting, and let F be the finite collection of predicates used in it, besides

identity and our cardinality predicates. Assume, given the physicalism of

Goodman and Quine’s “Steps”, that all these predicates are physical. Now,

while in reality there might be strongly emergent properties and relations of

complex individuals that cannot be defined by mereological atoms, worlds

with no such irreducible predicates except perhaps for our “atomic size”

predicates seem metaphysically possible. Let us assume this possibility.

Then counting should work in all possible worlds, and hence also in such

reductionistic worlds. So we can assume that any predicate in F that can

be satisfied by a sequence of objects at least one of which is non-atomic can

be finitely defined by predicates that are mereologically atomic in the sense

that they can only be satisfied by mereological atoms. Having performed

such a reduction, we can assume that F contains only mereologically atomic

predicates.

But for any finite collection F of physicalistic mereologically atomic predi-

cates other than identity, and assuming the physicalism of “Steps”, it is very

plausible that for any finite non-zero N there is a metaphysically possible

cosmos with exactly N atoms, all of which are F-indiscernible, i.e., such that

if F (a1, . . . , ak) for F in F and distinct atoms a1, . . . , ak, then F (a
′
1, . . . , a

′
k)

for any atoms a′1, . . . , a
′
k.

20 Just imagine a cosmos made of N bosons all

of which share the same quantum state. Even someone who believes in

Leibniz’s Principle of the Identity of Indiscernibles can accept this because

F-indiscernibility is compatible with being discernible with respect to other

20The assumption of physicalism rules out cases such as deities who exist in all pos-

sible worlds and can be distinguished from all physical entities by lacking any physical

attributes.
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properties. But if all the atoms are F-indiscernible in worlds of some sort,

any definition of counting that uses the predicates in F can be modified not

to use them, and will still work in worlds of the given sort—just replace any

expression of the form F (x1, . . . , xk) for F in F by a tautology or the denial

of a tautology, depending on whether F is satisfied by all k-tuples of atoms

or by none of them (since F-indiscernibility rules out the possibility that it

is satisfied by some but not by others). And now Theorem 1 applies once

again to yield a contradiction to the assumption that counting of complex

individuals can be defined.

If one is suspicious of such indiscernibility assumptions, however, there is

a more technical argument. Again, we can assume that the finite set F of

predicates used in the alleged definition of counting consists entirely of mere-

ologically atomic predicates, because there will be possible cosmoses with

an arbitrary non-zero finite number of atoms where non-atomic predicates

other than the atomic size predicates are definable in terms of mereologically

atomic predicates. And now the possibility of defining counting for all col-

lections of objects violates the following generalization of Theorem 1, since

mereologically atomic predicates correspond to MSO’s first-order predicates.

Theorem 2. Consider a class M of MSO models M = (U, σ, I) where

the signature σ consists of all cardinality predicates CR with interpretation

CM
R = {(A1, . . . , Ak) : (|A1|, . . . , |Ak|) ∈ R}, the two third-order unary pred-

icates F and G, and any number of first-order predicates. Suppose that M

contains models with universes of arbitrary non-zero finite size and that for

any model M = (U, σ, I) in M and any subsets H and K of the power set

of U , there is a model MH,K = (U, σ, IH,K) where IH,K agrees with I on
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everything in σ other than F and G, and interprets F and G as H and K

respectively. Then there is no sentence ϕ = ϕF,G such that for all models M

in M we have M ⊨ ϕ if and only if |FM | = |GM |.

The statement of Theorem 2 is somewhat complicated. The idea is that we

want our definition ϕ of equinumerosity to work in models of arbitrary size,

all with the same cardinality predicates CR and some auxiliary first-order

predicates like distance, mass and charge, and we want the definition to work

for arbitrary collections F and G of complex individuals, which corresponds

to there being models where F and G can be given any interpretation we like

but that fix all the other features besides F and G. The proof of Theorem 2

is given in the Appendix.

3.3. Objection: Asking for too much. Now, Goodman and Quine could

have objected that the above way of conceiving the task of counting is asking

for too much, namely that it’s asking for us to count the F -satisfiers and

G-satisfiers for arbitrary interpretations. But the very statement of this task

is nominalistically suspicious, since it quantifies over all interpretations of F

and G. An interpretation of a unary predicate with a second-order argument

is, after all, a set of subsets of the universe U or, in the mereological setting,

a set of mereological individuals.

Instead, Goodman and Quine can insist that we should conceive the task

of counting to be that of providing an account of the equinumerosity of

the X’s satisfying two formulas. Here is a way to make this task precise.

We want to have an equinumerosity quantifier. Syntactically, this binds X

in expressions of the form #Xτ = #Xψ where τ and ψ have X as a free

variable (and may have other free variables). Semantically, #Xτ = #Xψ is
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supposed to be true in a model M under an assignment ρ of the remaining

free variables just in case

|{A :M ⊨ρ,A/X τ}| = |{A :M ⊨ρ,A/X ψ}|,

where M ⊨ρ,A/X τ means that τ is true under the assignment given by

ρ together with assigning A to free instances of X. The question now is

whether we can find a translation of #Xτ = #Xψ. The language into which

we perform the translation will be L, a second-order language with the

predicates CR for R ∈ R, but without F and G. Let LF,G be the language

behind Theorem 2 that does have F and G.

One way to think of the translation question is to reserve some set X

of infinitely many first-order and infinitely many second-order variables for

the free variables of τ and ψ other than X, and then to ask whether there

is a schematic formula ΦX with two types of blanks, where if we put τ in

blanks of the first type and ψ in blanks of the second type we get a formula

ΦX(τ, ψ) that holds in exactly the same models under the same assignments

of the remaining free variables of X as #Xτ = #Xψ does. The translation

thesis we will now argue against is that there is such a schematic formula.

It follows from Theorem 2 that this translation thesis is false. For suppose

we have such a schematic formula ΦX . Then let ϕ be ΦX(F (X), G(X)) and

by Theorem 2, let M ∈ M be a model in which exactly one of M ⊨ ϕ and

|FM | = |GM | is true. If we could apply the translation thesis to the formula

#XF (X) = #XG(X), we would be done, but the translation thesis is for

the language L that doesn’t include F or G.

Instead, introduce names a1, . . . , an for all the n objects in M , thereby

generating a language L′ and a modelM ′ just likeM except for these added
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names. Let F ′(X, a1, . . . , an) and G′(X, a1, . . . , an) be formulas using one

free second-order variable X, the names a1, . . . , an and no other non-logical

vocabulary, such that the assignment A/X satisfies F ′(X, a1, . . . , an) in M
′

if and only if A ∈ FM and satisfies G′(X, a1, . . . , an) if and only if in case

A ∈ GM .21 These formulas will offer a complete description of which sets A

are in FM and GM in terms of their possible members a1, . . . , an.

Let L0 and L′
0 be subsets of L and L′ that use only the predicates oc-

curring in ΦX as well as identity. Let ψ(a1, . . . , an) be a conjunction of all

atomic sentences using the names a1, . . . , an and first-order predicates from

L′
0 that are true in M ′. Let ψ(x1, . . . , xn) be the formula in L0 resulting

from replacing ai with the first-order variable xi for all i.

Now let ϕ0 be the sentence:

∀x1 . . . ∀xn
[
ψ(x1, . . . , xn) → #XF

′(X,x1, . . . , xn) = #XG
′(X,x1, . . . , xn]

)
of L0. Then M ⊨ ϕ0 if and only if |FM | = |GM |: the number of satisfiers of

F ′(X, a1, . . . , an) in M
′ does not depend on the identities of the ai, just on

their being distinct, and likewise for G′. Next let ϕ1 be:

∀x1 . . . ∀xn
[
ψ(x1, . . . , xn) → ΦX(F ′(X,x1, . . . , xn), G

′(X,x1, . . . , xn)]
)
.

But the only predicates in our schematic formula ΦX are cardinality pred-

icates and the predicates used in ψ(x1, . . . , xn), while the cardinality pred-

icates are invariant under permutations of the universe, and ψ(x1, . . . , xn)

includes xi ̸= xj for all i and j, so ψ(x1, . . . , xn) implies that the sequence

x1, . . . , xn is a permutation of a1, . . . , an and (xi1 , . . . , xik) satisfies a first-

order predicate used in ΦX if and only if (ai1 , . . . , aik) satisfies it. Thus,

21We can take F ′(X, a1, . . . , an) to be the disjunction of 2n formulas of the form

ε1X(a1) ∧ · · · ∧ εnX(an), where εi is either nothing or a negation.



COUNTING IN CONSTRUCTIVE NOMINALISM 25

M ⊨ ϕ1 if and only ifM ′ ⊨ ΦX(F ′(X, a1, . . . , an), G
′(X, a1, . . . , an)). But the

latter holds if and only if M ′ ⊨ ΦX(F (X), G(X)), which holds if and only if

M ⊨ ΦX(F (X), G(X)). Thus, M ⊨ ϕ1 if and only if M ⊨ ΦX(F (X), G(X)).

Now by our translation claim we have M ⊨ ϕ1 if and only if M ⊨ ϕ0,

which we saw held if and only if |FM | = |GM |. But remember that exactly

one of M ⊨ ΦX(F (X), G(X)) and |FM | = |GM | was true, so we have a

contradiction.

4. Open questions

4.1. Infinite worlds? Can we do better at counting with an infinite mere-

ologically atomic world? As a warm-up, suppose we have a “finite atomic

size” predicate Fin such that Fin(x) for an individual x if and only if x has

finitely many atoms. Then a trick of [2] shows that there is a way to express

there being a finite number of mereological individuals. For note that the

following two statements are equivalent in a mereologically atomic world:

(i) There are finitely many individuals x such that F (x)

(ii) There is an individual x of finite atomic size such that for any indi-

viduals y and z if F (y) and F (z), then y and z differ within x.

Here, we say that y and z differ within x provided that there is part of one

of y and z that is not a part of the other and yet is a part of x. For if x

is such as in (ii) and F (z) holds, then there are at most 2n objects y that

differ from z within x, where n is the number of atoms of x. Conversely, if

there are finitely many objects x such that F (x), then for every pair of y

and z such that F (y) and F (z), choose some atom a that is a part of one

but not of the other, and let x0 be an object constituted by all the chosen

atoms. Then any two satisfiers of F differ within x0.
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Thus, if the task is to see if there are more individuals satisfying F than

ones satisfying G, and we ignore the differences between different infinite

cardinalities (it is not clear that such differences should matter to Goodman

and Quine given their nominalism), the main remaining question will be

whether we can account for counting comparisons of individuals composed

of a finite number of atoms.

If our mereologically atomic world has enough of the right kind of struc-

ture, a positive answer can be given. For an easy case, suppose the atoms

have the relational structure of the natural numbers, for instance because

they are arranged along a single infinite ray, and have some physical rela-

tions between them corresponding to successor, addition and multiplication,

such that the axioms of Second Order Arithmetic (SOA) hold, with mere-

ologically complex individuals in place of sets (i.e., of second-order objects

of SOA) and some tweaking to handle the lack of an empty set as in Sec-

tion 2.3. But if we have SOA, and add the third-order predicates F and G

guaranteed to apply to only finitely many sets, we can express that there

are equal numbers of satisfiers of F and G by a method for which thanks are

due to [6]. Any finite sequence A1, . . . , An of sets of numbers can be encoded

as a single set of numbers, say the set {2k · 3m : m ∈ Ak}, and then one can

say in SOA with F that all the Ai satisfy F , that they are all distinct, and

that nothing else satisfies F . Saying that there is such an encoding set then

says there are exactly n satisfiers of F , from which one can define counting

predicates for satisfiers of finitely-often satisfied third-order predicates.

Following [13], one might suppose space itself has the requisite struc-

ture allowing for counting to be defined for regions of space. But if we

deny supersubstantialism’s identification of objects with regions of space or
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spacetime, the world’s ontology can be expected to be richer than that of

points of space, because it will include individuals in space like electrons,

dogs and cats, and so counting individuals is not the same as counting re-

gions. Granted, if mereological atoms of individuals in space are guaranteed

to have different locations, we can still count individuals by using the under-

lying spatial structure. However, our physics does allow for multiple bosons,

such as photons, to be located in the same place in space. We can then have

mereologically complex individuals constituted by pluralities of co-located

photons, and it intuitively seems that the surrounding spatial structure will

not help count objects that are wholly located in one place.

Nonetheless, could the move from a finite to infinite context itself help?

The proof of Theorem 2 uses computational complexity considerations that

no longer apply if the universe U is infinite, even if we restrict our attention

to cases where F and G are satisfied by finitely many things. We thus

have an open question whether Theorem 2, or at least Theorem 1, can be

generalized to such contexts. Perhaps the simplest open question to state is

whether Theorem 1 remains true if (a) we allow the model’s universe to be

infinite, (b) switch from MSO to Weak MSO where second-order variables

range over finite sets, and (c) require FM and GM to be finite.

One may conjecture that this generalization of the theorem is still true:

why should it matter for counting finite collections of finite individuals

whether there are infinitely many atoms outside of them? Yet such an

infinitary setting appears to significantly increase the expressive power of

the language. In the finite setting, in any given formula, we can emulate

quantification over natural numbers of polynomially bounded size, i.e., we

can emulate formulas like Qm(m ≤ p(|U |) → ψ(m)) where Q is ∀ or ∃ and p
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is a polynomial.22 But in the infinite setting, we can emulate quantification

over all natural numbers by using the cardinalities of arbitrarily large finite

sets, which seems to increase expressive power. (And then, analogously to

Theorem 2, we might ask what happens if we allow other first-order predi-

cates.)

An even more general version would be to allow the second-order vari-

ables to range over infinite sets, require the universe’s cardinality U to satisfy

|U | ≤ κ for some cardinality κ, and instead of allowing only cardinality pred-

icates corresponding to subsets of Cartesian powers of N, allow cardinality

predicates that correspond to subsets of Cartesian powers of κ+1, but still

require F and G to have a finite number of satisfiers.

4.2. A more complex translation method? In Section 3.3, we consid-

ered a version of the task of defining equinumerosity where we have an

equinumerosity quantifier ranging over mereological individuals and try to

translate it into expressions involving atomic cardinality predicates of mereo-

logical individuals and relations between atoms. We ruled out a substitution-

based translation where we have a schematic formula Φ that says that there

are equal numbers of mereological individuals x such that τ as objects x

22If p(n) = n = |U |, then this is easy: we first paraphrase Qm(m ≤ |U | → ψ(m)) with

QXψ(|X|), and then use our cardinality quantifiers to replace ψ(|X|) by something in our

MSO language. But we can also handle p(n) = (nk − 1)/(n − 1) for any arbitrary finite

k, and hence any polynomial bound, as follows. First paraphrase Qm(m ≤ p(|U |) →

ψ(m)) as Q0X0 . . . Qk−1Xk−1ψ(|X0| + n|X1| + · · · + nk−1|Xk−1|). Then eliminate the

constant n = |U | by noting that ∀Y (∀x(Y (x) ↔ x = x) → |Y | = n) and adding an inner

quantification over Y . Then use our unlimited supply of cardinality predicates.
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such that ψ and where we can substitute any formulas open in x for τ and

ψ.

But in general, translation may involve something more complicated than

substitution. For instance, consider the iota operator ι, where ιxϕ is a term

denoting the x such that ϕ. We cannot translate B(ιxK(x)) (e.g., “The king

is bald”) into an expression of the form B(ρ) where ρ is a term not using ι,

but we can do a Russellian translation as:

∃x(K(x) ∧ ∀y(K(y) → x = y) ∧B(x)),

and there is a general recursive algorithm for such rewrites of formulas with

iota-expressions. However, the algorithm does not simply involve substitut-

ing subformulas using ι with subformulas not using it, since the quantifiers

in the translation will in general be wide-scope.

Thus, we might ask whether there is a recursive algorithm for translating

a sentence in a language L1 that includes atomic cardinality predicates for

mereological individuals, relations between atoms and an equinumerosity

quantifier into a language L2 that only has the atomic cardinality predi-

cates and the relations between atoms, where the only constraint on the

translation is that both sentences are true in the same atomic mereological

worlds. Or, even more generally, we might ask abstractly whether for every

sentence of L1 there is a sentence of L2 that is true in the same atomic

mereological worlds. We do not know the answers to these questions. In the

nominalist setting, the algorithmic question seems the more relevant one.

Nonetheless, philosophically, we can at least say that the onus would be on
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the Goodman-Quine-style nominalist to show that there is such a more com-

plex translation method. The nominalist should not simply assume there is

one, especially given the negative results of this paper.

5. Conclusions

In mereologically atomic worlds, the Goodman and Quine mereological

strategy for comparing the numbers of complex entities provably fails, given

some assumptions about what the translation would look like.

In infinite worlds, if there is enough structure to emulate Second Order

Arithmetic with the atoms behaving like numbers and supersubstantialism

holds—i.e., objects are identified with regions—a version of the strategy suc-

ceeds (cf. [13]). However, supersubstantialism is a very controversial thesis.

Plausibly, there are objects in space, and if so, then our physics gives us

reason to think that there can be mereological atoms that are spatially colo-

cated. In such a case, it is not clear whether the surrounding spatiotemporal

structure helps with counting—the question depends on some open problems

about the expressive power of certain monadic second-order logics.23

Appendix: Proofs

Lemma 1

A binary relation (we won’t need any others) is semi-linear if and only if

it is a finite disjunction of linear relations, and a binary relation R is linear

23We are grateful to two anonymous readers for a number of comments that have

substantially improved this paper. We are also grateful to Robert Verrill for a discussion

about quantum mechanics and co-location.
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provided that there exist natural numbers a, b, c and d such that R(x, y) if

and only if there is a natural number t such that x = a+ bt and y = c+ dt.

Van Benthem and Icard [15] work with non-strict comparison ≤ of car-

dinalities while we’re using the strict comparison >. However, each can be

defined in terms of the other. Starting with ≤, one can define |U | = |V |

by the conjunction |U | ≤ |V | and |V | ≤ |U |, and then define |U | > |V | as

|V | ≤ |U | but not |U | = |V |. Conversely, given >, one can define |U | = |V |

by saying that neither |U | > |V | nor |V | > |U |, and then define |U | ≤ |V | as

|V | > |U | or |U | = |V |. Thus, whatever is expressible using ≤ is expressible

using >, and vice versa. Van Benthem and Icard [15, Thm. 4.7] have shown

that it is precisely the semi-linear relations that are expressible over finite

models in MSO with ≤, and hence the same is true in MSO>
fin.

Now the power of two relation E2(x, y) that holds whenever x = 2y is

not semi-linear. For consider any semi-linear binary relation R. This will

be a finite disjunction of linear relations R1, ..., Rn with Ri defined by the

natural numbers ai, bi, ci and di as in our definition of linearity. Let U be

the set of all x such that ∃yR(x, y) and let V be the set of all x such that

∃yE2(x, y). Then V is the set of all powers of 2. If all the bi are zero, then

U = {a1, ..., an} and so U ̸= V . If there is a non-zero bi, then U contains

the infinite affine sequence ai, ai + bi, ai + 2bi, ai + 3bi, ... but the set V of

powers of 2 does not contain any infinite affine sequence, so again U ̸= V .

Thus, E2 is not R. Hence E2 is not semi-linear and thus there is no sentence

ψ such that for all admissible models M we have

(1) M ⊨ ψ if and only if |AM | = 2|B
M |.
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Proof of Lemma 1. Suppose we have a sentence ϕ such that

M ⊨ ϕ if and only if |AM | = 2|B
M |

for all admissible M with AM and BM non-empty. Then define ψ as

(ϕ ∧ (∃xA(x) ∧ ∃xB(x))) ∨ (¬∃xA(x) ∧ ∃!xB(x)),

and we will have (1), contrary to the fact that we cannot express powers of

two in MSO>
fin. □

Theorem 2

The basic idea of descriptive complexity theory is that there is a tight

correspondence between expressibility of properties of finite structures in

various logics—such as fragments of second-order (SO) logic—and compu-

tational complexity classes. The archetypal result in this field is Fagin’s

theorem, which states that a class (closed under isomorphism) of finite struc-

tures is definable by an existential SO formula if and only if membership

in the class is decidable in NP (nondeterministic polynomial time). More

generally, a class of finite structures is SO-definable iff it belongs to the

polynomial-time hierarchy PH (see [8]).

The set-up in Theorem 2 is a bit more complicated as it involves third-

order predicates and the cardinality predicates CR, but as we will show,

a modification of the equivalence of SO to PH can be used to translate

Theorem 2 into a question about relativized complexity classes that is easy

to answer by means of standard results from complexity theory. While we

formulated the theorem for MSO for consistency with the rest of the paper,

the argument actually applies to full SO.
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Let us first briefly introduce the complexity classes we will work with. The

reader can find more details and background in Arora and Barak [1], which

we will use as a basic reference; however, this textbook does not present the

definitions and main results systematically relativized as needed for our pur-

poses, so we advise the reader to follow our presentation regardless (we will

often give references to [1] for unrelativized concepts with the understanding

that they can be relativized in a routine manner).

Let {0, 1}∗ =
⋃

n∈N{0, 1}n (where N is the set of nonnegative integers)

denote the set of finite strings over the two-element alphabet {0, 1}; we

denote the length of w ∈ {0, 1}∗ as |w|. The concatenation of strings u and v

is written u⌣v. A decision problem L ⊆ {0, 1}∗ is in the class P (polynomial

time, [1, §1.6]) if there is a polynomial p ∈ N[x] and an algorithm (formally:

a Turing machine [1, §1.2]) that, given any w ∈ {0, 1}∗, decides whether

w ∈ L or not in at most p(|w|) steps. Polynomial-time computability of

functions F : {0, 1}∗ → {0, 1}∗ is defined similarly; the class of polynomial-

time computable functions is denoted FP ([1, §17.2]). A problem L ⊆ {0, 1}∗

is in NP (nondeterministic polynomial time, [1, §2.1]) if there is a polynomial

p ∈ N[x] and a predicate P ∈ P such that for all w ∈ {0, 1}∗,

(2) w ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|w|) (w, u) ∈ P.

Here and below, (w0, w1) is a suitable pairing function {0, 1}∗ × {0, 1}∗ →

{0, 1}∗; we omit details of a particular definition of (w0, w1) as they are not

important (essentially, we only need that (w0, w1) as well as the projections

(w0, w1) 7→ wi are polynomial-time computable).

We will work extensively with relativized complexity classes and algo-

rithms ([1, §3.4]). An oracle algorithm (formally: oracle Turing machine)
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is an algorithm that is equipped with an oracle O ⊆ {0, 1}∗, and—apart

from normal computation steps—may ask queries of the form “is x ∈ O?”

for x ∈ {0, 1}∗, and the oracle answers each query correctly in one step.

The oracle itself is not considered part of the specification of the algorithm:

the same algorithm can compute different problems when it is supplied with

different oracles. To stress this, we will write AO for the instantiation of an

oracle algorithm A with a specific oracle O ⊆ {0, 1}∗.

A polynomial-time oracle algorithm is an oracle algorithm A for which

there exists a polynomial p ∈ N[x] such that AO halts in at most p(|w|)

steps on any input w ∈ {0, 1}∗ with any oracle O ⊆ {0, 1}∗. For a given

oracle O, a decision problem L ⊆ {0, 1}∗ is in the class PO (polynomial time

relative to O) if there is a polynomial-time oracle algorithm A such that

AO decides membership in L. A decision problem L is in NPO if there are

p ∈ N[x] and P ∈ PO such that (2) holds. By an oracle NP algorithm A′,

we mean a polynomial p ∈ N[x] and a polynomial-time oracle algorithm A

(without specifying the oracle), with the understanding that when supplied

with any oracle O, A′ decides the NPO-problem A′O defined by means of the

expression (2), that is,

w ∈ A′O ⇐⇒ ∃u ∈ {0, 1}p(|w|) (w, u) ∈ AO.

We will also consider algorithms (and associated complexity classes) that

can query two or more oracles at the same time, say AO,O′
. We can formally

define them as algorithms using the join

O ⊕O′ = {0⌣w : w ∈ O} ∪ {1⌣w : w ∈ O′}

as a single oracle.
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If C ⊆ P({0, 1}∗) is a class of oracles, we write PC =
⋃

O∈C P
O and NPC =⋃

O∈C NP
O, and similarly for other relativized classes we introduce below.

The (relativized) polynomial hierarchy PHO is defined as
⋃

k≥1(Σ
p
k)

O,

where the levels (Σp
k)

O are defined by induction on k with (Σp
1)

O = NPO

and (Σp
k+1)

O = NP(Σp
k)

O
([1, §5.5]). Equivalently, L ∈ (Σp

k)
O iff there is a

polynomial p and an oracle polynomial-time algorithm A such that for all

w ∈ {0, 1}∗,

(3) w ∈ L ⇐⇒ ∃u1 ∀u2 . . . Qkuk (w, u1, . . . , uk) ∈ AO,

where Qi is ∃ for odd i and ∀ for even i, and the quantifiers run over

ui ∈ {0, 1}p(|w|) ([1, §5.2]). (We could also bound different ui by different

polynomials pi(|w|) instead of p(|w|); this does not matter.) An oracle Σp
k

algorithm A′ is specified by p and A as above; for any oracle O, it decides

the problem A′O ∈ (Σp
k)

O defined by the right-hand side of (3).

Let C be any complexity class. A problem L is in the class C/poly if there

exists a predicate L0 ∈ C, a polynomial p ∈ N[x], and a nonuniform advice

(an : n ∈ N), where each an is a string of length |an| ≤ p(n), such that

w ∈ L ⇐⇒ (w, a|w|) ∈ L0

([1, §6.3]). That is, we can compute L in C with the help of a polynomially

long advice string an that only depends on the length n of the input, rather

than on the input itself. When we speak of algorithms with advice, the

sequence of advice strings is part of the specification of the algorithm: e.g.,

an oracle Σp
k/poly algorithm A′ consists of an oracle Σp

k algorithm A and a

sequence (an : n ∈ N) of polynomially-long strings as above; when supplied

with any oracle O, A′ decides the problem A′O = {w : (w, a|w|) ∈ AO}.
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Finally, we need some counting classes (for which we will not bother to

define a separate notion of an “algorithm”). A problem L is in the class

PPO ([1, §17.2]) if there is a p ∈ N[x] and P ∈ PO such that

(4) w ∈ L ⇐⇒ Pr
u∈{0,1}p(|w|)

[
(w, u) ∈ P

]
≥ 1

2
,

where we take probability with respect to the uniform distribution over

{0, 1}p(|w|). A lesser-known class C=P
O (first considered by Wagner [17])

consists of problems L that can be expressed as

(5) w ∈ L ⇐⇒ Pr
u∈{0,1}p(|w|)

[
(w, u) ∈ P

]
=

1

2

with P and p as above. There are a few alternative equivalent definitions

of this class: in particular, L ∈ C=P
O iff there is p ∈ N[x], P ∈ PO, and

F ∈ FPO such that

(6) w ∈ L ⇐⇒
∣∣{u ∈ {0, 1}p(|w|) : (w, u) ∈ P

}∣∣ = F (w),

where we think of F (w) ∈ {0, 1}∗ as representing an integer written in binary

notation. This generalizes definition (5) as the function F (w) = 2p(|w|)−1 is

polynomial-time computable; in the other direction, we have

∣∣{u ∈ {0, 1}p(|w|) : (w, u) ∈ P
}∣∣ = F (w) ⇐⇒ Pr

α,u

[
(w,α, u) ∈ P ′] = 1

2
,

where the probability is over (α, u) ∈ {0, 1} × {0, 1}p(|w|) = {0, 1}p(|w|)+1,

and P ′ is defined by

(w,α, u) ∈ P ′ ⇐⇒


(w, u) ∈ P, if α = 0,

u ≥ F (w), if α = 1,

where we treat u as a binary representation of an integer 0 ≤ u < 2p(|w|) on

the second line.
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A decision problem L′ ⊆ {0, 1}∗ is reducible to a problem L ⊆ {0, 1}∗ if

there exists a function F ∈ FP such that

w ∈ L′ ⇐⇒ F (w) ∈ L

for all w ∈ {0, 1}∗ ([1, §2.2]). If C ⊆ P({0, 1}∗) is a complexity class, a

C-complete problem is an L ∈ C such that every L′ ∈ C is reducible to L.

Most of the uniform classes mentioned above have complete problems; in

particular, we will use the fact that for each k ≥ 1 and every oracle O, there

exists a (Σp
k)

O-complete problem ([1, §5.2.2]).

When we discuss decision problems where the input is a finite first-order

structure M , we represent it by a finite string as follows. We assume that

the domain of the structure is [n] = {0, . . . , n − 1}. The representation is

a tuple that includes n written in unary (i.e., as a string of 1s of length n,

denoted 1n), and the table of values of each relation and function in the

signature. The table of a k-ary relation R is a string in {0, 1}nk
whose

(ik−1n
k−1 + · · · + i1n + i0)th bit indicates whether (i0, . . . , in−1) ∈ R; the

table of a function can be taken to be the table of its graph (which is a

(k + 1)-ary relation). Observe that if we fix a finite signature, the size of a

representation of a structure M is a fixed integer polynomial p(n), where n

is the size of the domain of M .

For ease of reference, we recall the statement of Theorem 2 again:

Theorem 2. Consider a class M of MSO models M = (U, σ, I) where

the signature σ consists of all cardinality predicates CR with interpretation

CM
R = {(A1, . . . , Ak) : (|A1|, . . . , |Ak|) ∈ R}, the two third-order unary pred-

icates F and G, and any number of first-order predicates. Suppose that M

contains models with universes of arbitrary non-zero finite size and that for
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any model M = (U, σ, I) in M and any subsets H and K of the power set

of U , there is a model MH,K = (U, σ, IH,K) where IH,K agrees with I on

everything in σ other than F and G, and interprets F and G as H and K

respectively. Then there is no sentence ϕ = ϕF,G such that for all models M

in M we have M ⊨ ϕ if and only if |FM | = |GM |.

As we see, the structures considered in the theorem are more complicated

than plain first-order structures, and we do not want to represent the third-

order predicates by listing their tables as this would make the size of the

representation too large (doubly exponential in n, rather than polynomial).

We treat the cardinality predicates CR simply as an additional syntactic

feature of the logic, as they have a fixed interpretation. The F and G

predicates will be presented as oracles: the machine can write down the

representation of a set S ⊆ U = [n], which takes just n bits, and ask the

oracle whether it belongs to FM or GM , respectively.

Lemma 2. Let ϕ be an MSO sentence using first-order symbols, the counting

predicates CR, and third-order predicates F and G, as in the statement of

Theorem 2. Then for some k, there is an oracle Σp
k/poly algorithm that

decides the set of finite models M |= ϕ when given the first-order part of M

as input, and the FM and GM predicates as oracles.

We stress that the sentence ϕ is fixed in the conclusion of the lemma; we

do not claim (and it is actually false) that we can testM |= ϕ in PHF,G/poly

when both M and ϕ are given as input.

Proof. By induction on the complexity of ϕ; for the induction, we consider

also formulas with free first-order and second-order variables, the interpre-

tation of which has to be included in the input. We may assume that ϕ is



COUNTING IN CONSTRUCTIVE NOMINALISM 39

unnested (i.e., first-order function symbols can only occur in atomic subfor-

mulas of the form f(x1, . . . , xk) = y, where xi and y are variables), and that

it contains only existential quantifiers. We consider the various possibilities

for ϕ:

• A first-order or second-order atomic formula (R(x⃗), f(x⃗) = y, x = y,

x ∈ X): this can be evaluated in P by locating the relevant entry in

the table of R, f , or X.

• An atomic formula of the form F (X) or G(X): we ask the oracle.

• An atomic formula of the form CR(X1, . . . , Xk): Given the interpre-

tations A1, . . . , Ak of X1, . . . , Xk, respectively, we can compute a1 =

|A1|, . . . , ak = |Ak| in polynomial time. Observe that a1, . . . , ak ≤ n;

thus, we can evaluate the formula in P/poly if we take the table of R

restricted to {0, . . . , n}k as nonuniform advice. This requires (n+1)k

bits, which is polynomial in n (here, k is a constant determined by ϕ).

• ϕ is ¬ϕ0, ϕ0∧ϕ1, or ϕ0∨ϕ1: by the induction hypothesis, ϕ0 and ϕ1

can be evaluated by oracle Σp
k/poly algorithms for some k. Then by

prenexing the quantifiers from the (3) representation, ϕ0 ∧ ϕ1 and

ϕ0 ∨ ϕ1 can also be evaluated by oracle Σp
k/poly algorithms, and

¬ϕ0 by an oracle Σp
k+1/poly algorithm (actually, an oracle ΠP

k/poly

algorithm, which we didn’t define). Note that we combine together

the nonuniform advices of the two algorithms.

• ϕ is ∃X ϕ0(X, . . . ): by the induction hypothesis, we can test whether

(M,S, . . . ) |= ϕ0(X, . . . ) by an oracle Σp
k/poly algorithm for some k.

If the domain of M is [n], we have

(M, . . . ) |= ϕ(. . . ) ⇐⇒ ∃S ∈ {0, 1}n (M,S, . . . ) |= ϕ0(X, . . . ),
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which can still be tested by an oracle Σp
k/poly algorithm (using the

same nonuniform advice) by combining ∃S ∈ {0, 1}n with the initial

quantifier in (3).

• ϕ is ∃xϕ0(x, . . . ): similar.

□

Lemma 3. Assume that there exists a sentence ϕF,G as in the statement

of Theorem 2. Then there exists k such that C=P
O ⊆ (Σp

k)
O/poly for all

oracles O.

Proof. Fix ϕF,G as in the statement. By Lemma 2, there is an oracle Σp
k/poly

algorithm A for some k such that AFM ,GM
decides whetherM |= ϕF,G when

given the first-order part of M as input. It follows that there is an oracle

Σp
k/poly algorithm B such that BH,K decides whether |H| = |K| for any

H,K ⊆ P([n]), taking only 1n (a sequence of n ones) as input. To see this,

we fix for every n a model Mn ∈ M with domain [n]. By assumption, the

model Mn,H,K that differs from Mn only by interpreting F and G as H

and K (respectively) is also in M, thus |H| = |K| iff Mn,H,K |= ϕF,G. This

can be determined by AH,K when given the first-order part of Mn as input;

but since this is fixed for a given n, and takes polynomially many bits to

describe, we can just supply it to B as additional nonuniform advice instead

of proper input.

Now, let L ∈ C=P
O for some oracle O, and fix p ∈ N[x] and P ∈ PO such

that (5) holds, which can be written as

w ∈ L ⇐⇒∣∣{u ∈ {0, 1}p(|w|) : (w, u) ∈ P
}∣∣ = ∣∣{u ∈ {0, 1}p(|w|) : (w, u) /∈ P

}∣∣.
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This condition for w ∈ L can be tested by B with input 1p(|w|), with oracle

access to Pw = {u : (w, u) ∈ P} and its complement (which are in turn

computable in PO given w as a proper input), and with nonuniform advice

of length polynomial in p(|w|), which is polynomial in |w|. All in all, we

obtain L ∈ (Σp
k)

PO
/poly = (Σp

k)
O/poly. Since L was arbitrary, C=P

O ⊆

(Σp
k)

O/poly. □

We finish the proof of Theorem 2 by showing that the assumption C=P
O ⊆

(Σp
k)

O/poly for all oracles O leads to a contradiction. This is actually the

most difficult part of the proof, but fortunately for us, the work was already

done by others; that is, we will only need to combine several well-known

results from complexity theory.

First, we observe that any PPO predicate as in (4) can be expressed as

∃s ∈ {0, 1}p(|w|)−1
∣∣{u ∈ {0, 1}p(|w|) : (w, u) ∈ P}

∣∣ = 2p(|w|)−1 + s,

where the predicate after the quantifier is in C=P
O as it has the form (6).

Consequently,

C=P
O ⊆ (Σp

k)
O/poly =⇒ PPO ⊆ (Σp

k)
O/poly.

Next, (the relativized version of) Toda’s theorem ([14], [1, §17.4]) says

PHO ⊆ PPPO

,

whence

C=P
O ⊆ (Σp

k)
O/poly =⇒ PHO ⊆ P(Σp

k)
O/poly ⊆ P(Σp

k)
O
/poly.

Finally, (the relativized version of) the Karp–Lipton theorem ([9], [1, §6.4])

says

NPO′ ⊆ PO′
/poly =⇒ PHO′

= (Σp
2)

O′
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for any oracle O′. We take O′ to be a (Σp
k)

O-complete problem: then PO′
=

P(Σp
k)

O
, and (Σp

l )
O′

= (Σp
k+l)

O for any l ≥ 1, in particular NPO′
= (Σp

k+1)
O,

PHO′
= PHO, and (Σp

2)
O′

= (Σp
k+2)

O, whence we obtain

C=P
O ⊆ (Σp

k)
O/poly =⇒ PHO = (Σp

k+2)
O

for all oracles O, and hence PHO collapses.

However, it is known that there exist oracles O such that the relativized

polynomial hierarchy PHO does not collapse, i.e., (Σp
n)O ⊊ (Σp

n+1)
O for all

n ∈ N (Yao [18], H̊astad [5]). In particular, (Σp
k+2)

O ⊊ (Σp
k+3)

O ⊆ PHO,

thus

C=P
O ⊈ (Σp

k)
O/poly.
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