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ABSTRACT. It is well-known that one cannot use first-order logic with
identity and the predicates Cat(xz) and Dog(z) to say that there are
more cats than dogs. Nonetheless, Goodman and Quine (1947) offered
an ingenious translation of the sentence into a richer but thoroughly
finitist and nominalist language with mereological vocabulary and size
comparison for individuals. However, their translation as it stands fails
in the case of counting comparisons involving overlapping objects (say,
conjoined twin cats). Furthermore, we prove that no general translation
of equinumerosity (and hence of “more”) can be given in the overlapping
object setting using the predicates in Goodman and Quine’s translation,
assuming size comparison can be cashed out by counting mereological
atoms, and we use computational complexity theory to prove a more

general inexpressibility result. We end with some open questions.

1. INTRODUCTION

Goodman and Quine in “Steps towards a constructive nominalism” [4]
have made one of the most valiant attempts ever at giving a reduction of
logical meta-theory and ordinary counting language to an uncompromising
physicalist “constructive” nominalism with no cheating. There are no prop-
erties, tropes, sets, classes, or types, and there is no cheating with second-
order quantifiers or infinite sentences. All we have are physical individuals

governed by classical mereology, with the theory explicitly developed to be
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compatible with finitism—the hypothesis that there are only finitely many
individuals.

We will focus on Goodman and Quine’s clever account of counting com-
parison sentences such as “There are more cats than dogs”, assuming finitism.
We show that Goodman and Quine’s own account fails given overlapping
individuals such as conjoined twins, and then go on to prove that given
their mereological commitments to overlapping individuals, there is no way
to extend their account to handle such objects without going beyond the
theoretical resources they used for their cats-and-dogs example.

Next, we observe that there are some additional nominalistically accept-
able resources that Goodman and Quine did not draw on for their cats-and-
dogs account, but prove that within the scope of finitism these resources
are still insufficient if we understand the translation task as one of finding a
schematic formula that says “The number of objects = such that F'(x) equals
the number of objects z such that G(x)” that works for any predicates F
and G. We then discuss some open problems related to possible nominalist
solutions for Goodman and Quine coming from either relaxing the finitism

of “Steps” or relaxing the details of the translation requirement.

2. COUNTING AND “BIGGER”

2.1. Cats and dogs. In First-Order Logic with identity and predicates
Cat(x) and Dog(x), for any specific finite n we can say that there are at
most, at least or exactly n cats and/or dogs by an appropriate quantified

statement. For instance, that there exactly two cats can be said as

JrJy(Cat(x) A Cat(y) ANz # y AVz(Cat(z) = (z =z V z=1y))).
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Van Benthem and Icard [15] call this “counting in the syntax”. But it is

well known that we cannot in this way say things like “There are finitely
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many cats”* or “There are more cats than dogs.”” With infinite sentences,
of course, we could say that there are more cats than dogs by saying that
there is at least one cat and no dogs, or at least two cats and at most one
dog, or at least three cats and at most two dogs, .... But that won’t fit
with the finitism of “Steps”.

Goodman and Quine, however, have an additional resource available,
namely mereology, and give an ingenious account of how to say that there

are more cats than dogs. Stipulate that a bit is a part of a cat or a dog that

is the same size as the smallest of the cats and dogs. Then stipulate that:

BiTs There are more cats than dogs if and only if every individual that
has a bit of every cat is bigger than some individual that has a bit

of every dog.

(What “size” and “bigger” could be taken to mean will be discussed in
Section 2.2.)

But now suppose that there are two cats and one dog, while (a) the two
cats share a leg, (b) the dog is smaller than that shared leg (say, it’s a fetal
dog), and there is no other overlap. Then consider any individual C' that is
a bit of the shared cat leg, and any individual D that has a bit of the dog.

Then C' is an individual that has a bit of every cat, and yet D is at least

IThe impossibility of saying this follows immediately from compactness, since any
sentence ¢ translating “There are finitely many cats” will be compatible with any finite
number of sentences ¢, saying that there are at least n cats, and hence there will be a
model where ¢ and all the ¢,, are true.

?For a simple elementary proof, see [12].
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as large as C, so BITS delivers the incorrect verdict that there are no more
cats than dogs.

Now, while conjoined twins are rare, nonetheless it is a central part of
Goodman and Quine’s theory that objects can overlap. For, famously (or
infamously), in order to avoid having to posit linguistic types, they suppose
that the world is all filled with invisible linguistic tokens. For instance, if
you are reading this paper on a screen, on the white margins of the page,
there are pixels that spell out your grandparents’ names. You don’t see
these pixels because they are surrounded by other pixels of the same color.
If you turned these surrounding pixels a different color, the pixels spelling
out your grandparents’ names would stand out, but they are there anyway.
However, in the same part of the margin where there are pixels spelling
out your grandparents’ names, there are pixels spelling out Schrodinger’s
equation, and some of the pixels of your grandparents’ names are reused
for Schrodinger’s equation. And the same is true, but with chunks of white
paper instead of pixels, if you are reading this article in hard copy. Thus,
Goodman and Quine’s world is full of overlapping linguistic tokens.

We can fix up BITS to work with conjoined twins. For each cat or dog,
say that a part is unshared provided that it does not overlap any other cat
or dog. Let the unshared portion of a cat or dog be the fusion of all of its
unshared parts. Then say that a bit* of a dog or cat is a part that is the
same size as the smallest unshared portion of a cat or dog. Then we can

say:

BiTs* There are more cats than dogs if and only if every individual that
has an unshared bit* of every cat is bigger than some individual that

has a bit* of every dog.
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But while BiTs* works well for conjoined twin cats or dogs in our world, it
doesn’t work for more complex cases of overlap. Imagine that we have a cat
c that is a proper part of a larger cat C. This is problematic for this literal
case® but for linguistic tokens the phenomenon of one token being a proper
part of another is common. Then ¢ has no bits*, since ¢ has no unshared
parts, and thus there is no individual that has an unshared bit* of every cat.
Therefore, the right-hand-side of BITs* is vacuously satisfied no matter how
many dogs and cats there are—in particular we get a counterexample if ¢
and C are the only cats and there are two or more dogs.

One might hope that some other clever definition of bits will do the job,
say a definition cleverly making use of spatial continuity® so that there
is an individual z that is a fusion of pairwise non-overlapping bits’, with
each of them a part of a different cat and every cat having exactly one bit?
contributing to x, and we can then compare such individuals = in size to
individuals made of bits! of dogs. In the case of organisms like cats and dogs
we have a hope of doing this, even if there is total overlap like in the ¢ and C
example. But we should not expect to be able to do this in full generality—
and Goodman and Quine’s ontology includes the full generality of a classical
mereology. For suppose there exist n distinct mereological atoms 1, ..., Ty,
and define a “shcat” as any part of the fusion X of x1,...,x,. Then there
are 2" — 1 shcats, and if n > 1 then there is no way to make an individual

that contains a bit" of every shcat with no pairwise overlap between the

3Though it is worth noting that Kingma [10] has claimed that a fetus is a part of its
mother.

We are grateful to an anonymous reader for this suggestion.
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bits', since the fusion of the sheats cannot be partitioned into more than n
pairwise non-overlapping parts, while 2" — 1 > n for n > 1.

One might try to creatively tweak BITS* to get around worries with more
radical overlap. But as we are about to see, if our only resources are mere-

ological predicates and something like “Bigger”, this can’t be done.

2.2. Atomic cosmoses. Say that a mereological cosmos®

is atomic pro-
vided that every individual (and hence every part of every individual) has
an atomic part—a part with no proper parts. Atomic cosmoses are epistemi-
cally possible—for all we know, we inhabit one. And while some philosophers
defend the possibility of “gunky” cosmoses with no atoms (for a survey, see
[7]), it is plausible that that atomic ones are at least metaphysically pos-
sible. Furthermore, any finite mereological cosmos is atomic, since in a
non-atomic cosmos there is a downward regress of proper parts, and Good-
man and Quine’s project in “Steps” is a finitist one. Thus for the sake of the
success of their project, the Goodman and Quine account had better work
for finite atomic cosmoses.

Note that assuming classical mereology, in an atomic cosmos, if z and y

are distinct individuals, then they differ in an atomic part.® It follows that

we can identify individuals with the fusions of their atomic parts.

5The term “cosmos” will be restricted to mereological realities, while the term “uni-

verse” will be used in the model-theoretic sense for the set of objects in an abstract model.

6If 2 and y are distinct, then at least one is not a part of the other, or else we violate
the reflexivity of parthood. Without loss of generality, x is not a part of y. By Strong
Supplementation, there is a part of z of  that doesn’t overlap ¥y, and so x and y will differ

at least by z.
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Atomicity can help us solve two technical problems that afflict B1TS in
the case of non-overlapping objects. First, if there are infinitely many cats
or dogs (or at least some other kinds of things), it could be that for any part
x of a cat or dog there is another cat or dog smaller than x, and there is no
such thing as a “bit” of a cat or dog such that every cat or dog is at least
of its size.

Second, it is unclear how to understand “bigger” in the case of scattered
objects, i.e., objects that occupy a disconnected spatial region. Suppose
there are 1000 cats and 1001 dogs, but the dogs are all in one building while
the cats are scattered all over the earth. Let CatBit be an object consisting
of a bit of every cat and DogBit be an object consisting of a bit of every
dog. Then there is an intuitive sense in which CatBit is a cloud of cat bits
about the size of the earth, while DogBit is a denser cloud of dog bits about
the size of a building, so CatBit seems bigger than DogBit.

Maybe the thing to say is that size is volume, and the total volume of
DogBit is bigger than the total volume of CatBit, where only the volume
within the bits counts, not the volume between them. But now we can’t
count objects with zero volume, such as point particles would be, since any
finite collection of such objects still has zero volume, and point particles
are clearly logically possible. Furthermore, the main alternative to point
particles are quantum particles whose “position” can be identified with the
region of points in space where a measurement might find a particle. But
such quantum particles can overlap very significantly. While fermions (say,
electrons) cannot share the same position and all the same characteristic
such as rest mass, charge, spin and fermionic type because of the anticom-

mutation of their wavefunction, fermions differing in their characteristics
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(say, two electrons with different spins) can have the same position distri-
bution, and there are no restrictions on sharing position distribution for
bosons (say, photons), whether with the same or with different characteris-
tics.” Volume won’t help with counting objects that are fusions of co-located
particles. Or we might try comparing mass instead of size, but then we won’t
be able to count massless particles, like photons.

In an atomic cosmos, however, the best version of “bigger” seems to be
that an object is bigger just in case it has more (mereological) atoms. The
BITS account simplifies, as we can replace bits by atoms, and so the problem
of a lack of a non-zero lower bound on the size of a cat or dog disappears,
and have an unambiguous account of the size of scattered objects.

One might think that comparing sizes by counting atoms is cheating,
since the point of the project under examination is to give an account of
counting. However, any compunction we might have about comparing the
size of objects by counting atoms would also affect comparing the size of
object by volume—if there is no philosophical problem with adding up the
volumes of bits, there should be no problem with adding up the counts
of atoms. The task Goodman and Quine have set themselves is to count
complex individuals, and that task is a serious prima facie challenge, because
the very formulation of the problem seems to presuppose abstract entities,
namely sets of objects to be counted. On the other hand, if we are counting

the atoms in a complex object, there is no such difficulty: instead of talking

"The philosophical literature often discusses co-location in connection with bosons with
the same characteristics. As Paul [11] notes, in the alleged case of indiscernible co-located
particles one can resist the claim that one genuinely has distinct objects. But this resis-

tance is less plausible in the case of discernible particles.
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of abstract sets of objects, we just talk of the concrete wholes made of the
atoms, and suppose relations such as more, less or equal count between
them.

Furthermore, if we allow a physical possibility operator and spatiotempo-
ral arrangement, we have a good chance of being able to define the atomic
sense of “bigger”. Suppose that the actual world’s mereological atoms are

small enough to each fit within a one millimeter cube.® Then:

MoOVE Object z is (atomically) bigger than object y if and only if it is
physically possible to move the atoms of x and y in such a way that
none are destroyed and:

(i) no two atoms of = are within a meter of each other,

every atom of y has an atom of x within a centimeter of it,

)
(ii) no atom of x has two atoms of y within a centimeter of it,
(iii)

)

(iv) there is an atom of x that has no atoms of y within a centimeter
of it, and
(v) each individual atom continues to fit within a one millimeter

cube.

Given mild geometric assumptions (say, that we are working in a metric
space), this will clearly be correct if z and y do not overlap. But the case
of overlap is also unproblematic, as long as we remember that any atom of
y that is also an atom of x always has an atom of x within a centimeter of
itself—namely it has itself within a centimeter of itself!

Or, alternately, we can proceed counterfactually:

80ne might think that it’s impossible for a mereological atom to occupy more than

a point of space, in which this assumption is trivially true. But if extended simples are

possible, this is a substantive assumption.
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TrASH Object x is bigger than object y where neither object is actually in
a trash bin if and only if repeating the procedure of putting an atom
of z in the trash at the same time as one puts an atom of y in the
trash would eventually result in all the atoms of y being in the trash

while not all the atoms of x are yet in the trash.

Again, the case of overlap is unproblematic—it just means that sometimes
putting an atom of x in the trash will constitute putting an atom of y there.

Both MOVE and TRASH in effect describe a bijection between collections
of atoms.” One might wonder at this point whether some similar physical
procedure could be used to define counting for non-atomic objects. In the
case of non-overlapping objects, this is likely to be the case!?, but in the case
of overlapping objects, like our hypothetical cats where one cat is a proper
part of another, this is unlikely. For instance, overlapping objects in general
are not separable in a way analogous to (i) in MOVE, while putting one cat
in the trash will also put in the trash all the cats that are proper parts of
it, and putting two objects into trash also puts their fusion into the trash.

As an alternative to counting atoms, one might try counting points oc-
cupied by the object, so that x is bigger than y if and only if the set of
points occupied by = has bigger cardinality than the set of points occupied
by y.!! But in an atomic cosmos where each atom occupies a single point
and no two atoms are co-located, this yields a version of “bigger” equiv-

alent to the atom-count one. Now, one of the main results of our paper

IWe are grateful to an anonymous reader for this observation.

10Though we may need to distort the objects—perhaps discontinuously—if, say, one
object surrounds another.

Hwe are grateful to a referee for the suggestion.
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will be that an atom-count “bigger” cannot be used to define “more” for
all finite atomic cosmoses. But any finite atomic cosmos is mereologically
isomorphic'? to a finite atomic cosmos where each atom occupies a single
point and no two atoms are co-located, since on classical mereology any two
atomic cosmoses with the same number of atoms are mereologically isomor-
phic. Thus if point-count “bigger” can be used to define “more” for all finite
atomic cosmoses, atom-count “bigger” can be used to define “more” for all
finite atomic cosmoses without atomic co-location, and hence by isomor-
phism also for all finite atomic cosmoses. Thus in this context there is no
advantage to counting points over counting atoms. And there is a disadvan-
tage: as discussed earlier in connection with quantum mechanics, it appears
metaphysically possible for multiple atoms to occupy the same point, and
in atomic cosmoses where all the atoms occupy one and the same point,
the point-count version of “bigger” never obtains between two objects, and
hence is of no help in counting complex objects (which on classical mereol-
ogy will coincide with the fusions of the co-located atoms).'> Thus in the

125 mereological isomorphism is a bijection between sets of individuals that preserves

parthood.

137 referee notes an interesting objection. Time-travel suggests the possibility of
multiply-located particles [3]. But there are practical contexts where we may want to count
multilocated instances of the “same” particle as separate individuals due to separate causal
efficacy, and then point-counting appears to give a better answer to “how many” questions
than atom-counting. However, this conflicts with intuitions that co-located particles (at
least of different types) should be counted separately. If one is convinced that multilocated
instances should count as separate individuals, a compromise option is to have a mereolog-
ical ontology where the atoms are particle-types-at-locations, perhaps with “fundamental
intensive properties” as in [11, p. 57] to handle cases of co-located same-type particles.

One will still have co-location of particles of different types, and so defining “bigger” in
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subsequent sections of the paper, we will focus on the atom-count version of
“bigger” .14

Finally, it is worth noting that if extended simples are possible, then
there is an argument that if atom-count “bigger” cannot be used to define
“more”, total volume “bigger” cannot be used either, even if we restrict our
attention to cosmoses all of whose atoms have non-zero volume. To see this,
consider finite atomic cosmoses where each atom is an extended simple with
the same non-zero volume and no two atoms overlap spatially. For such
cosmoses, total-volume “bigger” is equivalent to atom-count “bigger”, and
so if total-volume “bigger” can be used to define “more”, so can atom-count
“bigger” in such cosmoses. And by mereological isomorphism it could then

be used to define “more” in all finite atomic cosmoses, which we will argue

is impossible.

2.3. An initial impossibility result. Atomic mereological cosmoses can

be nicely modeled within a monadic second-order (MSO) logic. In MSO, we
terms of point-count will be uninformative in universes where there is just one point oc-
cupied by multiple atoms of different types, and atom-count is more promising. In any
case, atom-counting is more metaphysically neutral than point-counting, since even on
the controversial view where co-location is impossible and multilocated instances should
count separately, one can simply use atom-counting with a mereology on which the atoms

are occupied points.

140ne may worry that the atom-count version of “bigger” has some counterintuitive
consequences in cases of co-location of atoms. For instance, an object consisting of a
million co-located atoms is atom-count “bigger” than an object consisting of a thousand
atoms that are spread out through a one-meter ring. This is true, but there is no need to
insist that “bigger” should match ordinary language, especially given the argument that
if “more” can be defined using a point-count “bigger”, then it can be defined using an

atom-count “bigger”.
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have quantification over first-order elements, whose variables are denoted by
lower-case letters like x, and over second-order monadic or unary entities,
denoted by upper-case letters like X that allow us to form formulas like
X (x). We can think of these second-order entities as sets, or properties, or
predicates. We also have ordinary predicates with argument slots typed to
specify whether they take a first-order or second-order argument. A model
of MSO is a tuple M = (U, 0,I) where U is the universe—the set of first-
order entities—while ¢ is the signature or collection of predicates and names
(for simplicity, we won’t have functions), and [ is an interpretation of the
predicates and names.

Given an atomic mereological cosmos, we can imagine mathematical ob-
jects, which we will call points (not necessarily spatial ones), that are in
one-to-one correspondence with the atoms. If v is an atom, we let a* be the
point corresponding to ce. An atomic mereological cosmos’s individual 8 can
then be modeled as the non-empty set g1 = {a* : a C B} of points, where
C is parthood. Thus, a mereological atom a can be modeled in two differ-
ent ways in the MSO model M: as a point (or element) a* of the model’s
universe U or as a singleton subset of of U. Since mereological atoms are
a kind of mereological individual, and complex individuals are modeled as
subsets of U, for the sake of uniformity it is natural to model an atom « as
the singleton af.

We assume that the mereological axioms are precisely such as to en-
sure that the above correspondence between mereological individuals in an

atomic cosmos and non-empty sets is a bijection with  C S if and only if

af C gt.
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There is one set in the model M that does not correspond to an object in
the mereological cosmos: the empty set &. We can treat the empty set as a
notational convenience, as it does not add any expressive power on the MSO
side. For instance, we can split a universal quantification VX ¢ (existential
quantifications can be defined in terms of universal ones by De Morgan) over
all sets X in MSO into a conjunction between universal quantification over

non-empty sets and evaluation of ¢ at the empty set:

VX 3z X (z) = ¥) Ay

where 1)’ is 9 after replacement of all terms with an occurrence of X free in
1 with terms that do not include X but are equivalent when X is empty.
In 1/, occurrences of X (z) can be replaced with x # z, and any atomic
predicate expressions containing X need to be replaced with expressions
that use new predicates, with fewer arguments, that handle the case of a
given argument referring to an empty set (for convenience, we may wish
to allow O-ary predicates). For instance, if ¢ contains the atomic formula
P(X,Y), we generate a new unary predicate P; interpreted as Pj "={A:
(@,A) € PM} where M’ is our model with the additional predicate. We
handle names similarly to quantifiers, by replacing a sentence using the name
with a disjunction of two sentences, one conditional on the name referring
to the empty set and one not doing so. Furthermore, if there are numerical
quantifiers, these can be fixed up to take care of the case where something is
empty in a straightforward way. And if we can define counting for collections

of sets that do not contain an empty set, we can define counting for all
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collections of sets.'®> And so the question of defining counting of complex
individuals in Goodman and Quine’s setting is equivalent to that of defining
counting of sets (i.e., second-order objects) in MSO. Alternately, we can
introduce an expressively insignificant “empty” object into Goodman and
Quine’s ontology. In any case, henceforth we ignore the issue of the empty
set, and take MSO (with appropriate additional predicates and names as
needed) as equi-expressive with atomic mereology.

Now, if Goodman and Quine can give an account of “more” for individ-
uals, they can give an account of equinumerosity or equal count: there are
equal numbers of cats and dogs if and only if there aren’t more cats than
dogs and there aren’t more dogs than cats.

But it turns out that if we take the atomic sense of “bigger” as “having
more atoms”, it follows from recent work of van Benthem and Icard [15] that
it is impossible to express equinumerosity of collections of complex individ-
uals in terms of our atomic “bigger”. For consider a version MSO; . of MSO

with a “bigger” predicate > and the restriction that the only admissible

15For instance, the collections A and B of sets are equinumerous if and only if either
(a) neither contains the empty set and they are equinumerous or (b) one contains the
empty set and nothing else while the other contains exactly one member or (¢) both
contain the empty set and some other members and the respective collections of these
other members are equinumerous or (d) exactly one contains the empty set and at least
one other member while the other does not contain the empty set and the collections
resulting from removal of the empty set from the first and an arbitrary element from the
second are equinumerous. This disjunction defines equinumerosity for collections that are
allowed to contain the empty set in terms of equinumerosity for collections that are not

allowed to contain the empty set. A similar trick can be used for “more”.
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models M are finite ones where X > Y is interpreted as saying that the car-
dinality of the set denoted by X is greater than that of the set denoted by Y.
We also include first-order unary predicates A and B in our language. Say
that a binary relation R between natural numbers is ezpressible in MSOg
if and only if there is a sentence v such that for all admissible models M we

have

M E 1 if and only if R(|AM|,|BM)).

In words, 9 holds just in case the cardinalities of the interpretations of A and
B satisfy R. Tt follows from Van Benthem and Icard [15, Thm. 4.7]'6 that
a numerical relation is expressible in MSOg  if and only if it is semi-linear,

from which it follows that:

Lemma 1. There is no sentence ¢ such that for all finite models M with

AM and BM non-empty we have M E ¢ if and only if |AM| = 2lBM].

The Appendix of this paper gives a definition of the semi-linearity of
binary relations and details of proof given [15, Thm. 4.7].

But given Lemma 1, it follows that there is no way to define equinumeros-
ity in MSO with >. For if we could define equinumerosity in MSO with >,
we could say that the number of X such that Vz(X(z) — B(x)) (i.e., the

number of subsets of the extension of B) equals the number of X such that
V(X (z) = A(z)) A JaVy(X (y) > = =y)

(i.e., the number of singleton subsets of the extension of A), and this would
hold in M precisely when |AM| = 2/BY.

1686e also [16] which corrects an error in a later part (Section 5.3) of [15]. However,

the results we are relying on do not depend on that part.
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Thus, there is no way to use the atomic sense of “bigger” to define equinu-
merosity of objects. But let us now explore some other resources that Good-

man and Quine could try to draw on.

3. EXTENSIONS OF GOODMAND AND QUINE’S “STEPS”

3.1. More counting predicates. While “bigger” is the one predicate that
Goodman and Quine actually used to try to count individuals, there is no
reason to suppose that this is the only possible predicate that someone
with their ontology could use for their purpose. Suppose for instance that
Goodman and Quine had a “power of two” predicate that applies to two in-
dividuals provided that the number of atoms in the first individuals equalled
two to the power of the number of atoms in the second. Then our argument
that Goodman and Quine cannot compare the counts of individuals would
fail.

Granted, we might be suspicious of introducing a predicate like this, given
that it sounds like we are presupposing counting. But as noted in Section 2.2,
such numerical relations between pairs of individuals may well be nominalis-
tically and physicalistically acceptable. And with a bit more creativity than
that involved in TRASH, we can imagine a physical procedure allowing the
definition of the power of two predicate with the help of a binary-counting
computational machine and a rule that whether one puts an atom of y in

the trash depends on what the display is showing.!”

17T his might require that x and y not overlap. But given that we can define having an
equal number of atoms using MOVE or TRASH, if  and y overlap, we can replace y with
a 9’ that has the same atomic size as y but does not overlap z. Granted, this only works

if the cosmos is large enough to have the extra atoms needed.
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Thus, as a first attempt at helping Goodman and Quine, we might give
them a larger array of predicates that compare atomic sizes of individuals
than just “bigger”. To be maximally generous, thus, consider MSO with
finite models, but allow the use of a predicate corresponding to every k-ary
relation on the natural numbers N for any finite k. Given the finitism in
Goodman and Quine’s “Steps” paper, they will only be willing to use finitely
many of these predicates'®, but if we can show that counting comparisons
cannot be expressed with any predicates corresponding to relations on N,
our limiting result will be all the stronger for it. Let R be the set of all such
relations, and as usual identify such a k-ary relation with a subset of NF,
For a k-ary relation R in R, let Cr be the corresponding k-ary predicate,
and assume that our model interprets this predicate to be satisfied by the
tuple of sets (A1,...,Ag) if and only if (|A1],...,|Ak|) € R, where |A] is the
cardinality of A. Thus, our atomically understood “bigger” predicate is just
C>, while the “power of two” predicate would be Cy(y, 1)enzin—om}-

These cardinality predicates then correspond to atomic size predicates
that go beyond “bigger”, and allow us to define any atomically-based nu-
merical relationship between finite tuples of mereological individuals. But
they are not enough to allow us to define counting of mereological individ-
uals in general. To state the relevant MSO result, in addition to having
our cardinality predicates C'r for R € R, add two unary predicates F' and
G with second-order arguments, so that our task will be to define the con-
cept of F' and G having equal size of extension. Here, however, we have an

impossibility result:*?

18We are grateful to an anonymous reader for this point.

19T he result was conjectured by the first author and proved by the second.
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Theorem 1. Say that an MSO model M = (U,o,1) is admissible provided
that its signature consists of all cardinality predicates Cr with interpretation
CM = {(A1,..., Ag) : (|A1],...,]Ak]) € R} and the two third-order unary
predicates F' and G. Then there is no sentence ¢ = ¢rq such that for all

finite admissible models M we have M = ¢ if and only if |[FM| = |GM|.

This will be a special case of Theorem 2, below, which is proved in the

Appendix.

3.2. More predicates. The objects to be counted are not alone in the
world. The larger structure of the world may include tools that help count,
like an abacus can. For instance, [13] suggested that the infinite number of
points of spacetime could provide a helpful structure. However, the main
results of this paper are restricted to Goodman and Quine’s original setup
which was explicitly meant to be compatible with a finite context.

Nonetheless, even in a finite context there are other tools available. So far
the only predicates we drew on to define counting were arithmetic relations
between the “atomic sizes” of mereological individuals. But there are many
other physical predicates in the world, expressing properties or relations such
as distance, mass, charge, shape, color, etc. Could some of these predicates
help?

An initial objection to using such predicates is that objects should be
able to be counted in any possible world. Now, nominalists should not
quantify over properties—by the famous ontological commitment criterion
of the later Quine—so any nominalistic definition of counting can only use
a fixed finite number of predicates corresponding to a fixed finite number of

properties. Suppose now for a reductio that there is a nominalistic definition
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of counting, and let F be the finite collection of predicates used in it, besides
identity and our cardinality predicates. Assume, given the physicalism of
Goodman and Quine’s “Steps”, that all these predicates are physical. Now,
while in reality there might be strongly emergent properties and relations of
complex individuals that cannot be defined by mereological atoms, worlds
with no such irreducible predicates except perhaps for our “atomic size”
predicates seem metaphysically possible. Let us assume this possibility.
Then counting should work in all possible worlds, and hence also in such
reductionistic worlds. So we can assume that any predicate in F that can
be satisfied by a sequence of objects at least one of which is non-atomic can
be finitely defined by predicates that are mereologically atomic in the sense
that they can only be satisfied by mereological atoms. Having performed
such a reduction, we can assume that F contains only mereologically atomic
predicates.

But for any finite collection F of physicalistic mereologically atomic predi-
cates other than identity, and assuming the physicalism of “Steps”, it is very
plausible that for any finite non-zero N there is a metaphysically possible
cosmos with exactly N atoms, all of which are F-indiscernible, i.e., such that
if F(a1,...,a;) for F in F and distinct atoms ay, ..., a, then F(a},...,a})
for any atoms af, ... ,aﬁg.zo Just imagine a cosmos made of N bosons all
of which share the same quantum state. Even someone who believes in
Leibniz’s Principle of the Identity of Indiscernibles can accept this because

F-indiscernibility is compatible with being discernible with respect to other

20The assumption of physicalism rules out cases such as deities who exist in all pos-
sible worlds and can be distinguished from all physical entities by lacking any physical

attributes.
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properties. But if all the atoms are F-indiscernible in worlds of some sort,
any definition of counting that uses the predicates in F can be modified not
to use them, and will still work in worlds of the given sort—just replace any
expression of the form F(z1,...,zx) for F in F by a tautology or the denial
of a tautology, depending on whether F' is satisfied by all k-tuples of atoms
or by none of them (since F-indiscernibility rules out the possibility that it
is satisfied by some but not by others). And now Theorem 1 applies once
again to yield a contradiction to the assumption that counting of complex
individuals can be defined.

If one is suspicious of such indiscernibility assumptions, however, there is
a more technical argument. Again, we can assume that the finite set F of
predicates used in the alleged definition of counting consists entirely of mere-
ologically atomic predicates, because there will be possible cosmoses with
an arbitrary non-zero finite number of atoms where non-atomic predicates
other than the atomic size predicates are definable in terms of mereologically
atomic predicates. And now the possibility of defining counting for all col-
lections of objects violates the following generalization of Theorem 1, since

mereologically atomic predicates correspond to MSQO'’s first-order predicates.

Theorem 2. Consider a class M of MSO models M = (U,o0,I) where
the signature o consists of all cardinality predicates Cr with interpretation
CM ={(Ay,...,Ay) : (|A1],...,|Ax|) € R}, the two third-order unary pred-
icates F' and G, and any number of first-order predicates. Suppose that M
contains models with universes of arbitrary non-zero finite size and that for
any model M = (U,o,I) in M and any subsets H and K of the power set

of U, there is a model My x = (U,0,1g k) where Iy i agrees with I on
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everything in o other than F and G, and interprets F and G as H and K

respectively. Then there is no sentence ¢ = ¢, such that for all models M

in M we have M E ¢ if and only if |FM| = |GM|.

The statement of Theorem 2 is somewhat complicated. The idea is that we
want our definition ¢ of equinumerosity to work in models of arbitrary size,
all with the same cardinality predicates Cr and some auxiliary first-order
predicates like distance, mass and charge, and we want the definition to work
for arbitrary collections F' and G of complex individuals, which corresponds
to there being models where F' and G can be given any interpretation we like
but that fix all the other features besides F' and G. The proof of Theorem 2

is given in the Appendix.

3.3. Objection: Asking for too much. Now, Goodman and Quine could
have objected that the above way of conceiving the task of counting is asking
for too much, namely that it’s asking for us to count the F-satisfiers and
G-satisfiers for arbitrary interpretations. But the very statement of this task
is nominalistically suspicious, since it quantifies over all interpretations of F’
and G. An interpretation of a unary predicate with a second-order argument
is, after all, a set of subsets of the universe U or, in the mereological setting,
a set of mereological individuals.

Instead, Goodman and Quine can insist that we should conceive the task
of counting to be that of providing an account of the equinumerosity of
the X'’s satisfying two formulas. Here is a way to make this task precise.
We want to have an equinumerosity quantifier. Syntactically, this binds X
in expressions of the form #x7 = #x where 7 and ¢ have X as a free

variable (and may have other free variables). Semantically, #x7 = #x is
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supposed to be true in a model M under an assignment p of the remaining

free variables just in case

{A: M=, ax TH = {A: M E, 4/ D},

where M E, 4,x 7 means that 7 is true under the assignment given by
p together with assigning A to free instances of X. The question now is
whether we can find a translation of #x7 = #xv. The language into which
we perform the translation will be £, a second-order language with the
predicates Cr for R € R, but without F' and G. Let L be the language
behind Theorem 2 that does have F' and G.

One way to think of the translation question is to reserve some set X
of infinitely many first-order and infinitely many second-order variables for
the free variables of 7 and v other than X, and then to ask whether there
is a schematic formula @x with two types of blanks, where if we put 7 in
blanks of the first type and ¢ in blanks of the second type we get a formula
@ x (1,1) that holds in exactly the same models under the same assignments
of the remaining free variables of X' as #x7 = #x does. The translation
thesis we will now argue against is that there is such a schematic formula.

It follows from Theorem 2 that this translation thesis is false. For suppose
we have such a schematic formula @x. Then let ¢ be &x(F(X),G(X)) and
by Theorem 2, let M € M be a model in which exactly one of M F ¢ and
|FM| = |GM] is true. If we could apply the translation thesis to the formula
#xF(X) = #xG(X), we would be done, but the translation thesis is for
the language £ that doesn’t include F or G.

Instead, introduce names azi,...,a, for all the n objects in M, thereby

generating a language £’ and a model M’ just like M except for these added
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names. Let F'(X,aq,...,a,) and G'(X,a1,...,a,) be formulas using one
free second-order variable X, the names a1, ..., a, and no other non-logical
vocabulary, such that the assignment A/X satisfies F'(X,aq,...,ay) in M’
if and only if A € F'M and satisfies G'(X, a1,...,a,) if and only if in case
A € GM 21 These formulas will offer a complete description of which sets A
are in FM and GM in terms of their possible members ay, ..., a,.

Let Lo and L{, be subsets of £ and £’ that use only the predicates oc-
curring in @x as well as identity. Let ¢(aq,...,a,) be a conjunction of all
atomic sentences using the names aq, ..., a, and first-order predicates from
Ly that are true in M’. Let ¢(x1,...,z,) be the formula in Ly resulting
from replacing a; with the first-order variable x; for all 4.

Now let ¢ be the sentence:
V...V, [w(ml, vy Tn) = #XF(X 21, xn) = #xG (X 2, ,xn])

of Ly. Then M F ¢y if and only if |[FM| = |GM|: the number of satisfiers of
F'(X,ai1,...,a,) in M’ does not depend on the identities of the a;, just on

their being distinct, and likewise for G’. Next let ¢; be:
Voi...Va, W(:pl, ey p) = Ox (F'(X,21,. .., 20), G (X, 11, .. ,:L‘n)]) .

But the only predicates in our schematic formula @x are cardinality pred-
icates and the predicates used in ¥ (x1,...,x,), while the cardinality pred-
icates are invariant under permutations of the universe, and ¥ (x1,...,xy,)
includes z; # x; for all ¢ and j, so ¥(z1,...,x,) implies that the sequence
Z1,...,Ty is a permutation of ay,...,a, and (x;,...,z;, ) satisfies a first-
order predicate used in @x if and only if (a;,...,a;,) satisfies it. Thus,

2lWe can take F'(X,a1,...,an) to be the disjunction of 2" formulas of the form

e1X(a1) A--- NepX(an), where g; is either nothing or a negation.
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M E ¢y ifandonly if M' E &x(F'(X,a1,...,a,),G(X,a1,...,a,)). But the
latter holds if and only if M’ E &x(F(X),G(X)), which holds if and only if
ME ®&x(F(X),G(X)). Thus, M E ¢; if and only if M F &x(F(X),G(X)).
Now by our translation claim we have M F ¢; if and only if M E ¢,
which we saw held if and only if |[FM| = |GM|. But remember that exactly
one of M F &x(F(X),G(X)) and |FM| = |GM| was true, so we have a

contradiction.

4. OPEN QUESTIONS

4.1. Infinite worlds? Can we do better at counting with an infinite mere-
ologically atomic world? As a warm-up, suppose we have a “finite atomic
size” predicate Fin such that Fin(z) for an individual z if and only if = has
finitely many atoms. Then a trick of [2] shows that there is a way to express
there being a finite number of mereological individuals. For note that the

following two statements are equivalent in a mereologically atomic world:

(i) There are finitely many individuals x such that F(z)
(ii) There is an individual z of finite atomic size such that for any indi-

viduals y and z if F(y) and F'(z), then y and z differ within z.

Here, we say that y and z differ within x provided that there is part of one
of y and z that is not a part of the other and yet is a part of z. For if z
is such as in (ii) and F(z) holds, then there are at most 2™ objects y that
differ from z within x, where n is the number of atoms of z. Conversely, if
there are finitely many objects x such that F(z), then for every pair of y
and z such that F'(y) and F(z), choose some atom a that is a part of one
but not of the other, and let zy be an object constituted by all the chosen

atoms. Then any two satisfiers of F' differ within xg.



26 ALEXANDER R. PRUSS AND EMIL JERABEK

Thus, if the task is to see if there are more individuals satisfying F' than
ones satisfying GG, and we ignore the differences between different infinite
cardinalities (it is not clear that such differences should matter to Goodman
and Quine given their nominalism), the main remaining question will be
whether we can account for counting comparisons of individuals composed
of a finite number of atoms.

If our mereologically atomic world has enough of the right kind of struc-
ture, a positive answer can be given. For an easy case, suppose the atoms
have the relational structure of the natural numbers, for instance because
they are arranged along a single infinite ray, and have some physical rela-
tions between them corresponding to successor, addition and multiplication,
such that the axioms of Second Order Arithmetic (SOA) hold, with mere-
ologically complex individuals in place of sets (i.e., of second-order objects
of SOA) and some tweaking to handle the lack of an empty set as in Sec-
tion 2.3. But if we have SOA, and add the third-order predicates F and G
guaranteed to apply to only finitely many sets, we can express that there
are equal numbers of satisfiers of ' and GG by a method for which thanks are
due to [6]. Any finite sequence Ay, ..., A, of sets of numbers can be encoded
as a single set of numbers, say the set {2¥-3™ : m € A;}, and then one can
say in SOA with F' that all the A; satisfy I, that they are all distinct, and
that nothing else satisfies F'. Saying that there is such an encoding set then
says there are exactly n satisfiers of F', from which one can define counting
predicates for satisfiers of finitely-often satisfied third-order predicates.

Following [13], one might suppose space itself has the requisite struc-
ture allowing for counting to be defined for regions of space. But if we

deny supersubstantialism’s identification of objects with regions of space or
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spacetime, the world’s ontology can be expected to be richer than that of
points of space, because it will include individuals in space like electrons,
dogs and cats, and so counting individuals is not the same as counting re-
gions. Granted, if mereological atoms of individuals in space are guaranteed
to have different locations, we can still count individuals by using the under-
lying spatial structure. However, our physics does allow for multiple bosons,
such as photons, to be located in the same place in space. We can then have
mereologically complex individuals constituted by pluralities of co-located
photons, and it intuitively seems that the surrounding spatial structure will
not help count objects that are wholly located in one place.

Nonetheless, could the move from a finite to infinite context itself help?
The proof of Theorem 2 uses computational complexity considerations that
no longer apply if the universe U is infinite, even if we restrict our attention
to cases where F' and G are satisfied by finitely many things. We thus
have an open question whether Theorem 2, or at least Theorem 1, can be
generalized to such contexts. Perhaps the simplest open question to state is
whether Theorem 1 remains true if (a) we allow the model’s universe to be
infinite, (b) switch from MSO to Weak MSO where second-order variables
range over finite sets, and (c) require F* and GM to be finite.

One may conjecture that this generalization of the theorem is still true:
why should it matter for counting finite collections of finite individuals
whether there are infinitely many atoms outside of them? Yet such an
infinitary setting appears to significantly increase the expressive power of
the language. In the finite setting, in any given formula, we can emulate
quantification over natural numbers of polynomially bounded size, i.e., we

can emulate formulas like Qm(m < p(|U]) — (m)) where Q is V or 3 and p
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is a polynomial.?? But in the infinite setting, we can emulate quantification
over all natural numbers by using the cardinalities of arbitrarily large finite
sets, which seems to increase expressive power. (And then, analogously to
Theorem 2, we might ask what happens if we allow other first-order predi-
cates.)

An even more general version would be to allow the second-order vari-
ables to range over infinite sets, require the universe’s cardinality U to satisfy
|U| < k for some cardinality , and instead of allowing only cardinality pred-
icates corresponding to subsets of Cartesian powers of N, allow cardinality
predicates that correspond to subsets of Cartesian powers of x4+ 1, but still

require I and G to have a finite number of satisfiers.

4.2. A more complex translation method? In Section 3.3, we consid-
ered a version of the task of defining equinumerosity where we have an
equinumerosity quantifier ranging over mereological individuals and try to
translate it into expressions involving atomic cardinality predicates of mereo-
logical individuals and relations between atoms. We ruled out a substitution-
based translation where we have a schematic formula @ that says that there

are equal numbers of mereological individuals x such that 7 as objects z

221f p(n) = n = |U|, then this is easy: we first paraphrase Qm(m < |U| — ¢(m)) with
QXY(|X|), and then use our cardinality quantifiers to replace ¥ (| X|) by something in our
MSO language. But we can also handle p(n) = (n® —1)/(n — 1) for any arbitrary finite
k, and hence any polynomial bound, as follows. First paraphrase Qm(m < p(|U]) —
P(m)) as QuXo...Qr_1Xk_19(|Xo| + n|X1| + --- + nF 71X, _1|). Then eliminate the
constant n = |U| by noting that VY (Vz(Y (z) <> = = z) — |Y| = n) and adding an inner

quantification over Y. Then use our unlimited supply of cardinality predicates.
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such that ¢ and where we can substitute any formulas open in x for 7 and
.

But in general, translation may involve something more complicated than
substitution. For instance, consider the iota operator ¢, where (1x¢ is a term
denoting the = such that ¢. We cannot translate B(tx K (x)) (e.g., “The king
is bald”) into an expression of the form B(p) where p is a term not using ¢,

but we can do a Russellian translation as:

Jz(K(z) ANVy(K(y) — = =y) A B(z)),

and there is a general recursive algorithm for such rewrites of formulas with
iota~expressions. However, the algorithm does not simply involve substitut-
ing subformulas using ¢ with subformulas not using it, since the quantifiers
in the translation will in general be wide-scope.

Thus, we might ask whether there is a recursive algorithm for translating
a sentence in a language £; that includes atomic cardinality predicates for
mereological individuals, relations between atoms and an equinumerosity
quantifier into a language Lo that only has the atomic cardinality predi-
cates and the relations between atoms, where the only constraint on the
translation is that both sentences are true in the same atomic mereological
worlds. Or, even more generally, we might ask abstractly whether for every
sentence of £ there is a sentence of Lo that is true in the same atomic
mereological worlds. We do not know the answers to these questions. In the
nominalist setting, the algorithmic question seems the more relevant one.

Nonetheless, philosophically, we can at least say that the onus would be on
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the Goodman-Quine-style nominalist to show that there is such a more com-
plex translation method. The nominalist should not simply assume there is

one, especially given the negative results of this paper.

5. CONCLUSIONS

In mereologically atomic worlds, the Goodman and Quine mereological
strategy for comparing the numbers of complex entities provably fails, given
some assumptions about what the translation would look like.

In infinite worlds, if there is enough structure to emulate Second Order
Arithmetic with the atoms behaving like numbers and supersubstantialism
holds—i.e., objects are identified with regions—a version of the strategy suc-
ceeds (cf. [13]). However, supersubstantialism is a very controversial thesis.
Plausibly, there are objects in space, and if so, then our physics gives us
reason to think that there can be mereological atoms that are spatially colo-
cated. In such a case, it is not clear whether the surrounding spatiotemporal
structure helps with counting—the question depends on some open problems

about the expressive power of certain monadic second-order logics.??

APPENDIX: PROOFS
LEMMA 1

A binary relation (we won’t need any others) is semi-linear if and only if

it is a finite disjunction of linear relations, and a binary relation R is linear

23We are grateful to two anonymous readers for a number of comments that have
substantially improved this paper. We are also grateful to Robert Verrill for a discussion

about quantum mechanics and co-location.
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provided that there exist natural numbers a, b, ¢ and d such that R(x,y) if
and only if there is a natural number ¢ such that z = a + bt and y = ¢+ dt.

Van Benthem and Icard [15] work with non-strict comparison < of car-
dinalities while we’re using the strict comparison >. However, each can be
defined in terms of the other. Starting with <, one can define |U| = |V|
by the conjunction |U| < |V| and |V| < |U|, and then define |U| > |V]| as
|[V| <|UJ but not |U| = |V|. Conversely, given >, one can define |U| = |V|
by saying that neither |U| > |V| nor |V| > |U|, and then define |U| < |V| as
|V| > |U| or |[U| = |V|. Thus, whatever is expressible using < is expressible
using >, and vice versa. Van Benthem and Icard [15, Thm. 4.7] have shown
that it is precisely the semi-linear relations that are expressible over finite
models in MSO with <, and hence the same is true in MSOEH.

Now the power of two relation Ea(z,y) that holds whenever x = 2¥ is
not semi-linear. For consider any semi-linear binary relation R. This will
be a finite disjunction of linear relations Ry, ..., R, with R; defined by the
natural numbers a;, b;, ¢; and d; as in our definition of linearity. Let U be
the set of all x such that JyR(x,y) and let V be the set of all z such that
JyEs(x,y). Then V is the set of all powers of 2. If all the b; are zero, then
U = {ai,...,an} and so U # V. If there is a non-zero b;, then U contains
the infinite affine sequence a;, a; + b;, a; + 2b;, a; + 3b;, ... but the set V of
powers of 2 does not contain any infinite affine sequence, so again U # V.
Thus, F» is not R. Hence FEj5 is not semi-linear and thus there is no sentence

1) such that for all admissible models M we have

(1) M E  if and only if [AM| = 2!B"1.
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Proof of Lemma 1. Suppose we have a sentence ¢ such that
M E ¢ if and only if |AM | = 21"
for all admissible M with AM and B™ non-empty. Then define 1 as
(p A (FzA(x) NJxB(x))) V (-FzA(x) A aB(x)),

and we will have (1), contrary to the fact that we cannot express powers of

two in MSOZ . O

THEOREM 2

The basic idea of descriptive complexity theory is that there is a tight
correspondence between expressibility of properties of finite structures in
various logics—such as fragments of second-order (SO) logic—and compu-
tational complexity classes. The archetypal result in this field is Fagin’s
theorem, which states that a class (closed under isomorphism) of finite struc-
tures is definable by an existential SO formula if and only if membership
in the class is decidable in NP (nondeterministic polynomial time). More
generally, a class of finite structures is SO-definable iff it belongs to the
polynomial-time hierarchy PH (see [8]).

The set-up in Theorem 2 is a bit more complicated as it involves third-
order predicates and the cardinality predicates C'r, but as we will show,
a modification of the equivalence of SO to PH can be used to translate
Theorem 2 into a question about relativized complexity classes that is easy
to answer by means of standard results from complexity theory. While we
formulated the theorem for MSO for consistency with the rest of the paper,

the argument actually applies to full SO.
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Let us first briefly introduce the complexity classes we will work with. The
reader can find more details and background in Arora and Barak [1], which
we will use as a basic reference; however, this textbook does not present the
definitions and main results systematically relativized as needed for our pur-
poses, so we advise the reader to follow our presentation regardless (we will
often give references to [1] for unrelativized concepts with the understanding
that they can be relativized in a routine manner).

Let {0,1}* = U,en{0,1}" (where N is the set of nonnegative integers)
denote the set of finite strings over the two-element alphabet {0,1}; we
denote the length of w € {0,1}* as |w|. The concatenation of strings u and v
is written u_v. A decision problem L C {0,1}* is in the class P (polynomial
time, [1, §1.6]) if there is a polynomial p € N[z] and an algorithm (formally:
a Turing machine [1, §1.2]) that, given any w € {0,1}*, decides whether
w € L or not in at most p(|w|) steps. Polynomial-time computability of
functions F': {0,1}* — {0,1}* is defined similarly; the class of polynomial-
time computable functions is denoted FP ([1, §17.2]). A problem L C {0,1}*
is in NP (nondeterministic polynomial time, [1, §2.1]) if there is a polynomial

p € N[z]| and a predicate P € P such that for all w € {0,1}*,
(2) we L < Jue {0,131 (w,u) e P.

Here and below, (wp,w;) is a suitable pairing function {0,1}* x {0,1}* —
{0,1}*; we omit details of a particular definition of (wg,w;) as they are not
important (essentially, we only need that (wg,w) as well as the projections
(wo, w1 ) — w; are polynomial-time computable).

We will work extensively with relativized complexity classes and algo-

rithms ([1, §3.4]). An oracle algorithm (formally: oracle Turing machine)
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is an algorithm that is equipped with an oracle O C {0,1}*, and—apart
from normal computation steps—may ask queries of the form “is x € O?”
for x € {0,1}*, and the oracle answers each query correctly in one step.
The oracle itself is not considered part of the specification of the algorithm:
the same algorithm can compute different problems when it is supplied with
different oracles. To stress this, we will write A© for the instantiation of an
oracle algorithm A with a specific oracle O C {0,1}*.

A polynomial-time oracle algorithm is an oracle algorithm A for which
there exists a polynomial p € N[z] such that A° halts in at most p(|w]|)
steps on any input w € {0,1}* with any oracle O C {0,1}*. For a given
oracle O, a decision problem L C {0,1}* is in the class P© (polynomial time
relative to O) if there is a polynomial-time oracle algorithm A such that
A9 decides membership in L. A decision problem L is in NP if there are
p € N[z] and P € P9 such that (2) holds. By an oracle NP algorithm A’,
we mean a polynomial p € N[z] and a polynomial-time oracle algorithm A
(without specifying the oracle), with the understanding that when supplied
with any oracle O, A’ decides the NP-problem A’C defined by means of the

expression (2), that is,
we A9 «— FJue {0,1}P1D (w,u) e AC.

We will also consider algorithms (and associated complexity classes) that
can query two or more oracles at the same time, say A99" We can formally

define them as algorithms using the join
OO0 ={0Lw:weOyu{l.w:we O}

as a single oracle.
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If C € P({0,1}*) is a class of oracles, we write P¢ = o P© and NPC =
Uoec NP?, and similarly for other relativized classes we introduce below.

The (relativized) polynomial hierarchy PHO is defined as Uk21(ZZ)O,

where the levels (IP)© are defined by induction on k with (£f)¢ = NP?

and (£, )0 = NPED? ([1, §5.5]). Equivalently, L € (£0)€ iff there is a

polynomial p and an oracle polynomial-time algorithm A such that for all

w € {0,1}*,
(3) weE L <— Eiu1Vuz...Qkuk(w,ul,...,uk)eAO,

where @; is J for odd 7 and V for even ¢, and the quantifiers run over
u; € {0, 13P0wD ([1, §5.2]). (We could also bound different u; by different
polynomials p;(Jw|) instead of p(Jw|); this does not matter.) An oracle X}
algorithm A’ is specified by p and A as above; for any oracle O, it decides
the problem A'Y € (£7)? defined by the right-hand side of (3).

Let C be any complexity class. A problem L is in the class C/poly if there
exists a predicate Ly € C, a polynomial p € N[z|, and a nonuniform advice

(an : n € N), where each a,, is a string of length |a,| < p(n), such that
w e L <= (w,ap,) € Lo

([1, §6.3]). That is, we can compute L in C with the help of a polynomially
long advice string a,, that only depends on the length n of the input, rather
than on the input itself. When we speak of algorithms with advice, the
sequence of advice strings is part of the specification of the algorithm: e.g.,
an oracle ZZ/poly algorithm A’ consists of an oracle ZZ algorithm A and a
sequence (a, : n € N) of polynomially-long strings as above; when supplied

with any oracle O, A’ decides the problem A0 = {w : (w,ay,) € A°}.
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Finally, we need some counting classes (for which we will not bother to

define a separate notion of an “algorithm”). A problem L is in the class

PP ([1, §17.2]) if there is a p € N[z] and P € P? such that

1
4 €L <— P ,u) € P| > —,
) v uG{O,l}rp(lw\)[(w v) ] -2

where we take probability with respect to the uniform distribution over
{0,13P(wD A lesser-known class C_P? (first considered by Wagner [17])

consists of problems L that can be expressed as

1
5 L P Pl ==
(5) we L <= ue{o,lfpﬂw‘)[(w’u) € P] 5

with P and p as above. There are a few alternative equivalent definitions
of this class: in particular, L € C_P? iff there is p € N[z], P € P9, and

F € FP9 such that
(6) we L <= [{ue{0,1370"D: (w,u) € P}| = F(w),

where we think of F'(w) € {0,1}* as representing an integer written in binary
notation. This generalizes definition (5) as the function F(w) = 2P(wD=1 is

polynomial-time computable; in the other direction, we have
1
[{u e {0,1371D ; (w,u) € P}| = F(w) < Pr[(w,a,u) € P'] =<,
a,u 2

where the probability is over (a,u) € {0,1} x {0, 1}P(wD = {0, 1}2(wh+1,
and P’ is defined by

(w,u) € P, if a =0,
(w,a,u) € Pl <=

u>F(w), ifa=1,

where we treat u as a binary representation of an integer 0 < u < 2P(“D on

the second line.
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A decision problem L’ C {0,1}* is reducible to a problem L C {0,1}* if

there exists a function F' € FP such that
wel < F(w)eL

for all w € {0,1}* ([1, §2.2]). If C € P({0,1}*) is a complexity class, a
C-complete problem is an L € C such that every L' € C is reducible to L.
Most of the uniform classes mentioned above have complete problems; in
particular, we will use the fact that for each £ > 1 and every oracle O, there
exists a (£})?-complete problem ([1, §5.2.2]).

When we discuss decision problems where the input is a finite first-order
structure M, we represent it by a finite string as follows. We assume that
the domain of the structure is [n] = {0,...,n — 1}. The representation is
a tuple that includes n written in unary (i.e., as a string of 1s of length n,
denoted 1™), and the table of values of each relation and function in the
signature. The table of a k-ary relation R is a string in {0, 1}"k whose
(ig_1nF~1 + .-~ +i1n + ig)th bit indicates whether (i, ... i, 1) € R; the
table of a function can be taken to be the table of its graph (which is a
(k 4 1)-ary relation). Observe that if we fix a finite signature, the size of a
representation of a structure M is a fixed integer polynomial p(n), where n
is the size of the domain of M.

For ease of reference, we recall the statement of Theorem 2 again:

Theorem 2. Consider a class M of MSO models M = (U,o0,I) where
the signature o consists of all cardinality predicates Cr with interpretation
CM = {(Ay,...,A) : (JA1],...,|Ak|) € R}, the two third-order unary pred-
icates F' and G, and any number of first-order predicates. Suppose that M

contains models with universes of arbitrary non-zero finite size and that for
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any model M = (U,0,I) in M and any subsets H and K of the power set
of U, there is a model My x = (U,o0,1g k) where Iy i agrees with I on
everything in o other than F' and G, and interprets F and G as H and K
respectively. Then there is no sentence ¢ = ¢r g such that for all models M

in M we have M E ¢ if and only if |FM| = |GM|.

As we see, the structures considered in the theorem are more complicated
than plain first-order structures, and we do not want to represent the third-
order predicates by listing their tables as this would make the size of the
representation too large (doubly exponential in n, rather than polynomial).
We treat the cardinality predicates Cr simply as an additional syntactic
feature of the logic, as they have a fixed interpretation. The F and G
predicates will be presented as oracles: the machine can write down the
representation of a set S C U = [n], which takes just n bits, and ask the

oracle whether it belongs to FM or GM | respectively.

Lemma 2. Let ¢ be an MSO sentence using first-order symbols, the counting
predicates Cr, and third-order predicates F and G, as in the statement of
Theorem 2. Then for some k, there is an oracle ZZ/poly algorithm that
decides the set of finite models M |= ¢ when given the first-order part of M

as input, and the FM and GM predicates as oracles.

We stress that the sentence ¢ is fixed in the conclusion of the lemma; we
do not claim (and it is actually false) that we can test M |= ¢ in PH"C /poly

when both M and ¢ are given as input.

Proof. By induction on the complexity of ¢; for the induction, we consider
also formulas with free first-order and second-order variables, the interpre-

tation of which has to be included in the input. We may assume that ¢ is
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unnested (i.e., first-order function symbols can only occur in atomic subfor-
mulas of the form f(x1,...,2zr) =y, where z; and y are variables), and that

it contains only existential quantifiers. We consider the various possibilities

for ¢:

e A first-order or second-order atomic formula (R(Z), f(Z) =y, z =y,
x € X): this can be evaluated in P by locating the relevant entry in
the table of R, f, or X.

e An atomic formula of the form F'(X) or G(X): we ask the oracle.

e An atomic formula of the form Cr(Xy,..., Xx): Given the interpre-
tations Aq,..., A of X1,..., X}, respectively, we can compute a; =
|A1], ..., ax = |Ag| in polynomial time. Observe that aq,...,a; < n;

thus, we can evaluate the formula in P/poly if we take the table of R
restricted to {0, ...,n}* as nonuniform advice. This requires (n+1)*
bits, which is polynomial in n (here, k is a constant determined by ¢).

® ¢ is —g, g A1, or ¢gV ¢1: by the induction hypothesis, ¢y and ¢;
can be evaluated by oracle ZZ /poly algorithms for some k. Then by
prenexing the quantifiers from the (3) representation, ¢g A ¢1 and
¢o V ¢1 can also be evaluated by oracle Z,': /poly algorithms, and
—¢o by an oracle ¥}, 41/poly algorithm (actually, an oracle I'I,F; /poly
algorithm, which we didn’t define). Note that we combine together
the nonuniform advices of the two algorithms.

e ¢is IX ¢o(X,...): by the induction hypothesis, we can test whether
(M,S,...) E ¢o(X,...) by an oracle X} /poly algorithm for some k.

If the domain of M is [n], we have

(M,...)Eo(...) = 3S€{0,1}"(M,S,...) = ¢o(X,...),
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which can still be tested by an oracle ZZ /poly algorithm (using the
same nonuniform advice) by combining 35 € {0, 1}" with the initial
quantifier in (3).
o ¢is Jxpo(x,...): similar.

O

Lemma 3. Assume that there exists a sentence ¢pc as in the statement
of Theorem 2. Then there exists k such that C_.PY C (XP)O /poly for all

oracles O.

Proof. Fix ¢ as in the statement. By Lemma 2, there is an oracle ZZ /poly
algorithm A for some k such that A" MG decides whether M = ¢rc when
given the first-order part of M as input. It follows that there is an oracle
¥? /poly algorithm B such that B¥¥ decides whether |H| = |K| for any
H,K C P([n]), taking only 1™ (a sequence of n ones) as input. To see this,
we fix for every n a model M,, € M with domain [n]. By assumption, the
model M,y that differs from M,, only by interpreting F' and G as H
and K (respectively) is also in M, thus |H| = |K| iff M, .k = ¢rc. This

AHE when given the first-order part of M,, as input;

can be determined by
but since this is fixed for a given n, and takes polynomially many bits to
describe, we can just supply it to B as additional nonuniform advice instead
of proper input.

Now, let L € C_P? for some oracle O, and fix p € N[z] and P € P such

that (5) holds, which can be written as

we L <—

[{u € {0,1370D: (w,u) € P}| = |{u € {0,1}70D : (w,u) ¢ P}|.
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This condition for w € L can be tested by B with input 1% with oracle
access to P, = {u : (w,u) € P} and its complement (which are in turn
computable in P given w as a proper input), and with nonuniform advice
of length polynomial in p(|w|), which is polynomial in |w|. All in all, we
obtain L € (ZZ)PO/poly = (X2)9/poly. Since L was arbitrary, C_PY C

(X5)° /poly. O

We finish the proof of Theorem 2 by showing that the assumption C_PY C
(£P)9/poly for all oracles O leads to a contradiction. This is actually the
most difficult part of the proof, but fortunately for us, the work was already
done by others; that is, we will only need to combine several well-known
results from complexity theory.

First, we observe that any PP? predicate as in (4) can be expressed as
3s € {0, 1}p(wh-1 [{u e {0, 13P00D : (w, u) € P} = op(lwh =1 4 ¢

where the predicate after the quantifier is in C_P? as it has the form (6).

Consequently,
C_P? C (0)9/poly = PP? C (x})/poly.
Next, (the relativized version of) Toda’s theorem ([14], [1, §17.4]) says
PHO C PPP7
whence
C_P? C (59)9/poly = PHO C PR)/poly € p(R)? /oy,

Finally, (the relativized version of) the Karp-Lipton theorem ([9], [1, §6.4])
says

NPY" C PO /poly = PHY = (5)
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for any oracle O’. We take O’ to be a (ZZ)O—complete problem: then P9 =

PED? and (TN = (ZZH)O for any | > 1, in particular NPO" = (P

(@)
1)

9

PHO = PHO, and (Zg)o/ = (ZZ+2)O, whence we obtain

C_PY C (£P)9/poly = PH® = (2}

(@]
h+2)

for all oracles O, and hence PH collapses.

However, it is known that there exist oracles O such that the relativized
polynomial hierarchy PH? does not collapse, i.e., (Xh)° ¢ (Zerl)O for all
n € N (Yao [18], Hastad [5]). In particular, (2124_2)0 C(£p.3)° C PHO,

thus

C_P? ¢ (£P)?/poly.
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