
Proofs with monotone cuts

Emil Jeřábek∗

Institute of Mathematics of the Academy of Sciences

Žitná 25, 115 67 Praha 1, Czech Republic, email: jerabek@math.cas.cz

October 6, 2010

Abstract

Atserias, Galesi, and Pudlák [4] have shown that the monotone sequent calculus MLK
quasipolynomially simulates proofs of monotone sequents in the full sequent calculus LK
(or equivalently, in Frege systems). We generalize the simulation to the fragment MCLK
of LK which can prove arbitrary sequents, but restricts cut-formulas to be monotone. We
also show that MLK as a refutation system for CNFs quasipolynomially simulates LK .

1 Introduction

The propositional sequent calculus LK , or equivalently, Frege systems, are among the most
natural proof systems studied in propositional proof complexity, however the goal of proving
superpolynomial lower bounds for these systems remains elusive. The best we can do are
lower bounds (even exponential) for some fragments of LK obtained by restricting the class
of formulas that can appear in a proof, the primary example being bounded-depth Frege
systems. Lower bounds on such subsystems of LK can make use of structural or combinatorial
properties of Boolean functions definable by the class of formulas in question, thus progress
in this direction is connected to progress in circuit complexity. (Though this relationship
should not be exaggerated: for a well-known example, bounded-depth Frege systems with
mod-p counting gates have so far resisted any attempts to prove lower bounds despite that
exponential lower bounds on the corresponding circuit class AC 0[p] have been known for
about quarter a century.)

One important circuit class for which we have strong lower bounds is the class of monotone
circuits. The monotone sequent calculus MLK , which is the fragment of LK allowing only
monotone formulas to appear in any sequent in the proof, was thus introduced with the hope
that one could somehow exploit ideas from monotone circuit complexity to show exponen-
tial speed-up of LK over MLK . This intuition turned out to be wrong: Atserias, Galesi, and
Pudlák [4] have shown that MLK quasipolynomially simulates LK (with respect to monotone
sequents), moreover, they presented a plausible hypothesis (basically saying that there are

∗Supported by grant IAA1019401 of GA AV ČR, grant 1M0545 of MŠMT ČR, and a grant from the John

Templeton Foundation.

1

polynomial-size monotone formulas for threshold functions whose basic properties have poly-
nomial LK -proofs) which implies that the simulation can be improved to fully polynomial.
(Some work halfway towards establishing this conjecture has been done in [7].)

A drawback of the usual setup where subsystems of LK are obtained by restricting all
formulas in the proof (as described above) is that it also restricts the set of sequents provable
in the system. For example, bounded-depth Frege systems can only prove tautologies of
bounded depth, and MLK can only prove monotone sequents. An alternative approach is to
restrict only cut-formulas, and let arbitrary formulas appear in other parts of the proof. This
yields a proof system with two desirable properties: on the one hand, it is a complete proof
system for full classical propositional logic with no restriction on provable sequents (because
it includes the cut-free sequent calculus), on the other hand, it conservatively extends the
former approach in that if the end-sequent of a proof as well as all cut-formulas are restricted
to a class of formulas (closed under subformulas), then all formulas in the proof are, due to
the subformula property.

In this paper, we apply this alternative approach to the monotone calculus. We introduce
the proof system MCLK , which is identical to LK except that only monotone formulas are
admitted as cut-formulas. By the above mentioned conservativity property, MCLK coincides
with MLK when proving monotone sequents, in particular the result of Atserias et al. [4]
shows that MCLK quasipolynomially simulates LK -proofs of monotone sequents. However,
unlike MLK , MCLK can also prove nonmonotone sequents, and a priori it could be much less
efficient in this case (the only obvious upper bound is that MCLK includes the cut-free sequent
calculus). Our main result shows that this does not happen: MCLK quasipolynomially
simulates LK on arbitrary sequents, and if the hypothesis on threshold functions from [4] is
true, then the simulation can be made polynomial. As in [4], the idea of the proof is based
on slice functions (see Wegener [14]), but we apply them in a different way.

We also consider MLK as a refutation system for CNFs, which is another way of employing
a monotone calculus to prove (or rather refute, in this case) nonmonotone formulas. A CNF
can be given as a set of clauses, and each clause can be represented as a monotone sequent
(in fact: a sequent containing only propositional variables). Then an MLK -refutation is a
derivation of the contradictory empty sequent from this set of sequents using the rules of MLK .
We extend the simulation to this setup as well: MLK as a refutation system quasipolynomially
(potentially polynomially, under the usual hypothesis) simulates LK -refutations of CNFs (or
equivalently, Frege proofs of DNFs). In fact, the result is much more general: we show that
MCLK quasipolynomially (potentially polynomially) simulates LK -derivations of a sequent
from a set of monotone sequents.

2 Preliminaries

We will work with formulas using propositional variables pi, i ∈ ω, and the connectives
∧,∨,¬,>,⊥. Such a formula is monotone if it does not contain ¬. A sequent is an expression
of the form Γ ` ∆, where Γ and ∆ are finite sets of formulas (thus our sequent calculi will
have the structural rules of exchange and contraction for free; we could also dispense with

2

i
ϕ ` ϕ

Γ ` ϕ,∆ Π, ϕ ` Λ
cut

Γ,Π ` ∆,Λ

Γ ` ∆
w

Γ,Π ` ∆,Λ

Γ, ϕ, ψ ` ∆
∧-l Γ, ϕ ∧ ψ ` ∆

Γ ` ϕ,∆ Π ` ψ,Λ
∧-r

Γ,Π ` ϕ ∧ ψ,∆,Λ

Γ, ϕ ` ∆ Π, ψ ` Λ
∨-l Γ,Π, ϕ ∨ ψ ` ∆,Λ

Γ ` ϕ,ψ,∆
∨-r

Γ ` ϕ ∨ ψ,∆

Γ ` ϕ,∆
¬-l Γ,¬ϕ ` ∆

Γ, ϕ ` ∆¬-r
Γ ` ¬ϕ,∆

⊥-l ⊥ ` >-r ` >

Table 1: Rules of the sequent calculus

weakening, but we decided to keep it for convenience). An LK-proof of a sequent Γ ` ∆ is a
finite sequence Γ0 ` ∆0, . . . ,Γk ` ∆k of sequents such that (Γk ` ∆k) = (Γ ` ∆), and each
Γi ` ∆i is derived from some of the sequents {Γj ` ∆j | j < i} by an LK -rule, as listed in
Table 1. The number of lines in the proof is k+1, and its size is the total number of symbols.
An LK -proof of a formula ϕ is a proof of the sequent ` ϕ.

A sequent is monotone, if all of its formulas are. An MLK-proof is an LK -proof consisting
only of monotone sequents (in particular, no ¬-l or ¬-r rules can be used). We introduce our
proof system MCLK as follows: an MCLK-proof is an LK -proof where in every instance of
the cut rule, the formula ϕ is monotone. The basic relationship of MLK to MCLK is given
by the following observation:

Proposition 2.1 MLK-proofs are exactly MCLK-proofs of monotone sequents.

Proof: Clearly, an MLK -proof is also an MCLK -proof, and its end-sequent is monotone.
Conversely, consider an MCLK -proof of a monotone sequent. By the subformula property,
every formula in the proof is a subformula of some formula in the end-sequent or of a cut-
formula, and as such it is monotone. Thus the proof is an MLK -proof. �

The following result is known about the complexity of MLK :

Theorem 2.2 (Atserias et al. [4]) MLK quasipolynomially simulates LK-proofs of mono-
tone sequents. More precisely, if a monotone sequent in n variables has an LK-proof of size
s, it also has an MLK-proof of size nO(logn)sO(1) with sO(1) lines. �

We do not formally introduce the concept of quasipolynomial simulation, as we will always
give the size of the resulting proof explicitly as here (the reason being that it is better than a

3

general quasipolynomial bound, which is 2(log s)O(1)
). However, we note that here and below,

all simulations are actually constructive in the sense that given an LK -proof, we can find the
corresponding MLK -proof in time polynomial in the size of the output (i.e., nO(logn)sO(1)).

The main ingredient in the simulation in [4] are threshold functions, i.e., Boolean functions
θnk : 2n → 2 defined by

θnk (x0, . . . , xn−1) = 1 ⇔
∣∣{i < n | xi = 1}

∣∣ ≥ k.

Using a divide-and-conquer approach

Tnk (p0, . . . , pn−1) =
∨
i≤k
i≤n/2

(
T
bn/2c
i (p0, . . . , pbn/2c−1) ∧ T

dn/2e
k−i (pbn/2c, . . . , pn−1)

)
,

we can define monotone formulas Tnk computing θnk of size nO(logn). The main properties of
these formulas have short proofs:

Theorem 2.3 (Atserias et al. [3]) The sequents

` Tn0 (p0, . . . , pn−1)(1)

Tnn+1(p0, . . . , pn−1) `(2)

Tnk (p0, . . . , pi−1,⊥, pi+1, . . . , pn−1) ` Tnk+1(p0, . . . , pi−1,>, pi+1, . . . , pn−1)(3)

have MLK-proofs of size nO(logn) with nO(1) lines. �

Using carry-save addition, it is possible to construct polynomial-size (nonmonotone) for-
mulas for the threshold functions such that (1)–(3) have polynomial-size LK -proofs (Buss
[5]). Actually, there exist polynomial-size monotone formulas for θnk , however the known con-
structions are either randomized (Valiant [13]) or rather complicated (sorting networks by
Ajtai, Komlós, and Szemerédi [1, 2]), thus their basic properties are not known to be shortly
provable.

Theorem 2.4 ([4]) Assume that there are monotone formulas such that (1)–(3) have poly-
nomial-size LK-proofs. Then MLK polynomially simulates LK-proofs of monotone sequents.
I.e., if a monotone sequent has an LK-proof of size s, then it has an MLK-proof of size sO(1).

�

Note in particular that the result only asks for proofs of (1)–(3) in LK , rather than MLK .
Some progress towards establishing the hypothesis of Theorem 2.4 has been achieved in [7] by
formalizing a variant of the Ajtai–Komlós–Szemerédi network in a suitable theory of bounded
arithmetic corresponding to LK ; the missing piece is formalization of an expander graph
construction.

3 Elimination of constants

Before we get to the main results, we will clarify one issue about the definition of the monotone
calculi, namely the role of the truth constants >,⊥. For convenience, we defined MLK and

4

MCLK so that both >,⊥ can appear in monotone formulas; however, it is just as reasonable
to restrict monotone formulas to ∧ and ∨ only. We will show that this choice does not matter:
we can eliminate >,⊥ from a proof with no increase in size if they do not appear in the end-
sequent. This is an expected result, nevertheless we feel that it is better to state and prove
it explicitly, so that we do not have to worry about it later.

Theorem 3.1 If a sequent with no occurrence of > or ⊥ has an MCLK-proof of size s, it
also has an MCLK-proof of size at most s with no occurrence of > or ⊥.

Proof: For each formula ϕ, let us define a formula ϕ by induction on the complexity of ϕ:

ϕ = ϕ if ϕ is a variable or > or ⊥, ¬ϕ =

> if ϕ = ⊥,

⊥ if ϕ = >,

¬ϕ otherwise,

ϕ ∧ ψ =

⊥ if ϕ = ⊥ or ψ = ⊥,

ψ if ϕ = >,

ϕ if ψ = >,

ϕ ∧ ψ otherwise,

ϕ ∨ ψ =

> if ϕ = > or ψ = >,

ψ if ϕ = ⊥,

ϕ if ψ = ⊥,

ϕ ∨ ψ otherwise.

That is, we propagate constants upwards until they either disappear, or we end up with
evaluation of the whole formula. Observe that |ϕ| ≤ |ϕ|, ϕ is monotone if ϕ is, ϕ contains
no occurrence of > or ⊥ unless it is > or ⊥, and ϕ = ϕ if ϕ contains no constant. Let π be
an MCLK -proof whose end-sequent contains no constant. We construct π′ by applying the
following transformation to π:

(i) we replace every formula ϕ with its translation ϕ,

(ii) we remove all occurrences of > from antecedents and ⊥ from succedents,

(iii) we delete all sequents which contain ⊥ in antecedent or > in succedent.

We obtain a sequence of sequents with no occurrence of > or ⊥, which ends with the original
end-sequent of π. We claim that the sequence is a valid MCLK -proof. For example, assume
that a sequent was derived in π by an application

Γ ` ϕ,∆ Π ` ψ,Λ
(∗)

Γ,Π ` ϕ ∧ ψ,∆,Λ

of the ∧-r rule, and that the corresponding sequent was not deleted in step (iii). This means
that there is no ⊥ in Γ ∪ Π, no > in ∆ ∪ Λ, and at least one of ϕ and ψ is different from >,
therefore at least one sequent corresponding to the two assumptions of the rule is retained in
π′. If, say, ϕ is ⊥, then also ϕ ∧ ψ = ⊥, and (∗) translates to an instance

Γ′ ` ∆′

Γ′,Π′ ` ∆′
,Λ′

5

of weakening, where primes denote the removal of constants in step (ii). We may thus assume
that neither ϕ nor ψ is ⊥. If ϕ is >, then (∗) translates to another instance

Π′ ` ψ,Λ′

Γ′,Π′ ` ψ,∆′
,Λ′

of weakening. Similarly if ψ = >. Finally, if neither ϕ nor ψ is a constant, then (∗) translates
to an instance

Γ′ ` ϕ,∆′ Π′ ` ψ,Λ′

Γ′,Π′ ` ϕ ∧ ψ,∆′
,Λ′

of ∧-r. The other rules are handled in a similar way, we leave the details to the reader. �

Corollary 3.2 If a sequent with no occurrence of > or ⊥ has an MLK-proof of size s, it also
has an MLK-proof of size at most s with no occurrence of > or ⊥.

Proof: By Proposition 2.1 and Theorem 3.1. �

Note that the proof of Theorem 3.1 also applies to LK , but there we could obtain it trivially
(albeit with a linear size increase) by replacing ⊥,> with p ∧ ¬p, p ∨ ¬p (respectively).

4 Simulation of LK by monotone cuts

In this section, we prove our main result on simulation of LK by MCLK :

Theorem 4.1 MCLK quasipolynomially simulates LK : if a sequent in n variables has an
LK-proof of size s, it also has an MCLK-proof of size nO(logn)sO(1) with sO(1) lines. If the
assumption of Theorem 2.4 holds true, then it has an MCLK-proof of size sO(1).

Let Tnk denote either the formulas of size nO(logn) employed in Theorem 2.3, or polynomial-
size formulas for threshold functions given by the assumption of Theorem 2.4. Let us also fix
k ≤ n+ 1.

We will use the following consequence of Theorem 2.3:

Lemma 4.2 ([4]) The sequents

Tnk (p0, . . . , pn−1) ` pi, Tnk (p0, . . . , pi−1,⊥, pi+1, . . . , pn−1),(4)

Tnk (p0, . . . , pi−1,⊥, pi+1, . . . , pn−1), pi ` Tnk+1(p0, . . . , pn−1)(5)

have MLK-proofs of size nO(logn) with nO(1) lines for every i < n. If the assumption of
Theorem 2.4 holds true, they have MLK-proofs of size nO(1). �

For every formula ϕ(p0, . . . , pn−1), we define a monotone formula ϕ(p0, . . . , pn−1) as follows:
we use De Morgan rules to push all negations down to variables, and then we replace each
¬pi with the formula

Tnk (p0, . . . , pi−1,⊥, pi+1, . . . , pn−1).

6

Lemma 4.3 For any formula ϕ(p0, . . . , pn−1), the sequents

Tnk (p0, . . . , pn−1) ` ϕ,¬ϕ,(6)

ϕ,¬ϕ ` Tnk+1(p0, . . . , pn−1),(7)

Tnk (p0, . . . , pn−1), ϕ ` ϕ,(8)

ϕ ` ϕ, Tnk+1(p0, . . . , pn−1)(9)

have MCLK-proofs of size nO(logn)|ϕ|O(1) with (n|ϕ|)O(1) lines. If the assumption of Theo-
rem 2.4 holds true, they have MCLK-proofs of size (n|ϕ|)O(1).

Proof: (6): By induction on complexity of ϕ. If ϕ is a variable, the sequent is a restatement
of (4). If ϕ is ⊥ or >, then Tnk ` >,⊥ is an instance of >-r. The induction step for ¬ is
trivial as ¬¬ϕ = ϕ. The induction step for ∧ proceeds by

Tnk (p0, . . . , pn−1) ` ϕ,¬ϕ Tnk (p0, . . . , pn−1) ` ψ,¬ψ∧-r
Tnk (p0, . . . , pn−1) ` ϕ ∧ ψ,¬ϕ,¬ψ∨-r
Tnk (p0, . . . , pn−1) ` ϕ ∧ ψ,¬ϕ ∨ ¬ψ

where ϕ ∧ ψ = ϕ ∧ ψ and ¬(ϕ ∧ ψ) = ¬ϕ ∨ ¬ψ. The induction step for ∨ is similar.
(7): The proof is analogous to (6), except that we use (5) instead of (4).
(8): We prove the sequents

Tnk (p0, . . . , pn−1), ϕ ` ϕ,
Tnk (p0, . . . , pn−1) ` ϕ,¬ϕ

simultaneously by induction on complexity of ϕ. We use (4) when ϕ is atomic. The induction
step for ¬ goes by

Tnk (p0, . . . , pn−1) ` ϕ,¬ϕ
¬-l

Tnk (p0, . . . , pn−1),¬ϕ ` ¬ϕ
Tnk (p0, . . . , pn−1), ϕ ` ϕ¬-r
Tnk (p0, . . . , pn−1) ` ¬ϕ,ϕ

and the induction steps for ∧ and ∨ are similar to the proof of (6).
The proof of (9) is analogous. �

Proof (of Theorem 4.1): Let π be an LK -proof of a sequent Θ ` Ξ. We fix k ≤ n + 1, and
we consider the corresponding translation ϕ as defined above. We construct π by replacing
each sequent Γ ` ∆ in π with

Tnk (p0, . . . , pn−1),Γ ` ∆, Tnk+1(p0, . . . , pn−1),

where Γ = {ϕ | ϕ ∈ Γ}. If a sequent was derived in π by one of the rules i, w, cut , ⊥-l, or
>-r, then its translation is derived by an instance of the same rule in π. In fact, the same
also holds for ∧-l, ∧-r, ∨-l, and ∨-r, because ϕ ∧ ψ = ϕ ∧ ψ and ϕ ∨ ψ = ϕ ∨ ψ. If a sequent
was derived in π by an instance

Γ, ϕ ` ∆
Γ ` ¬ϕ,∆

7

of ¬-r, we derive its translation in π by a (monotone) cut

Tnk (p0, . . . , pn−1),Γ, ϕ ` ∆, Tnk+1(p0, . . . , pn−1) Tnk (p0, . . . , pn−1) ` ϕ,¬ϕ
Tnk (p0, . . . , pn−1),Γ ` ¬ϕ,∆, Tnk+1(p0, . . . , pn−1)

with the sequent (6) from Lemma 4.3. Instances of ¬-l are handled similarly, using (7).
In this way, we obtain a valid MLK -proof of the sequent

Tnk (p0, . . . , pn−1),Θ ` Ξ, Tnk+1(p0, . . . , pn−1).

For every formula ϕ ∈ Θ, we use a cut with (8) to replace ϕ with ϕ. (Note that the cut
formula, ϕ, is monotone.) Similarly, we replace each ψ ∈ Ξ with ψ by a cut with (9). We
obtain an MCLK -proof of

Tnk (p0, . . . , pn−1),Θ ` Ξ, Tnk+1(p0, . . . , pn−1).

We do this for every k ≤ n+ 1, and we join all these proofs together by n+ 1 cuts to get an
MCLK -proof of

Tn0 (p0, . . . , pn−1),Θ ` Ξ, Tnn+1(p0, . . . , pn−1).

Finally, using cuts with (1) and (2), we get an MCLK -proof of

Θ ` Ξ. �

5 MLK as a refutation system

We have defined MCLK with the intention of creating a proof system which would share
the main properties of MLK , but could be used to derive nonmonotone formulas. There
is another way of achieving this, namely to use MLK as a refutation system for CNFs. A
CNF-formula can be presented as a set of clauses

pi1 ∨ pi2 ∨ · · · ∨ pik ∨ ¬pj1 ∨ ¬pj2 ∨ · · · ∨ ¬pjl .

Such a clause C can in turn be identified with the monotone sequent C` defined as

pj1 , pj2 , . . . , pjl ` pi1 , pi2 , . . . , pik

consisting only of propositional variables.

Definition 5.1 Let S be a set of clauses. An MLK-refutation of S is a finite sequence
{Γi ` ∆i | i ≤ k} of sequents such that Γk ` ∆k is the contradictory empty sequent `, and
each Γi ` ∆i is either C` for an element C of S, or is derived from some of the sequents
{Γj ` ∆j | j < i} by an MLK -rule. LK -refutations are defined similarly.

8

Notice that MLK is complete as a refutation system for CNFs, as it includes resolution
(indeed, resolution is the fragment of MLK which only allows cut as a rule of inference).

Notice also that it makes no difference whether we formulate the refutation system using
MLK -rules or MCLK -rules: no nonmonotone formulas can sneak in because of the subformula
property. We can, however, generalize the setup to derivations of arbitrary sequents from sets
of sequents, and then it is meaningful to consider MCLK -rules to allow for nonmonotone
sequents.

Definition 5.2 Let S be a set of sequents. An MCLK-derivation of a sequent Γ ` ∆ from
S is a finite sequence of sequents ending with Γ ` ∆ such that every element of the sequence
is derived by an MCLK -rule from previous ones or is a member of S. LK -derivations and
MLK -derivations are defined similarly.

Observe that MCLK -derivations of monotone sequents from S are in fact MLK -derivations,
due to the subformula property (and in particular, they cannot make use of any nonmonotone
sequents in S).

Unrestricted LK -derivations have the same power as LK employed in the usual way as a
proof system:

Definition 5.3 The characteristic formula (Γ ` ∆)→ of a sequent Γ ` ∆ is the formula∨
ϕ∈Γ

¬ϕ ∨
∨
ψ∈∆

ψ

(with arbitrary bracketing of the disjunctions).

Proposition 5.4 (folklore) The following are constructible from each other in polynomial
time:

(i) an LK-derivation of a sequent A from a finite set S of sequents,

(ii) an LK-proof of the formula ∨
B∈S

¬B→ ∨A→.

(Either the input of the algorithm includes S, or the disjunction in (ii) should be restricted
to those B actually used in the proof.)

Proof: (i) → (ii): we weaken all sequents in the derivation by including
∨
B∈S ¬B→ on the

right-hand side. For each initial sequent (Π ` Λ) ∈ S used in the derivation, we include the
subproof

· · · ϕ ` ϕ (ϕ ∈ Λ) · · ·
ϕ ` ϕ

¬-l¬ϕ,ϕ ` (ϕ ∈ Π) · · ·
∨-l(Π ` Λ)→,Π ` Λ ¬-r,w,∨-r.

Π ` Λ,
∨
B∈S ¬B→

Writing A = (Γ ` ∆), we use ¬-r and ∨-r to derive the end-sequent `
∨
B∈S ¬B→∨(Γ ` ∆)→

from Γ ` ∆,
∨
B∈S ¬B→.

9

(ii) → (i): if A = (Γ ` ∆), we construct a proof of A→,Γ ` ∆ as above. Similarly, for
each B = (Π ` Λ) ∈ S, we construct a derivation of ¬B→ ` from B using ¬-r, ∨-r, and ¬-l.
We infer ∨

B∈S
¬B→ ∨A→,Γ ` ∆

by ∨-l, and Γ ` ∆ by a cut. �

Corollary 5.5 The following are constructible from each other in polynomial time:

(i) an LK-refutation of a set C = {Ci | i < t} of clauses,

(ii) an LK-proof of the formula ¬
∧
i<tCi. �

The main observation of this section is that the simulation of LK by MCLK generalizes
to derivations from sets of monotone sequents.

Theorem 5.6 If a sequent A has an LK-derivation of size s from a set S of monotone
sequents, where S ∪{A} use n variables, then it also has an MCLK-derivation from S of size
nO(logn)sO(1) with sO(1) lines. If the assumption of Theorem 2.4 holds true, then it has an
MCLK-derivation from S of size sO(1).

Proof: We follow the same proof as for Theorem 4.1. We only need to derive translations

Tnk (p0, . . . , pn−1),Γ ` ∆, Tnk+1(p0, . . . , pn−1)

of initial sequents Γ ` ∆ from S. However, this is trivial: Γ = Γ and ∆ = ∆ since the sequent
is monotone, thus we can derive the translation by weakening from Γ ` ∆ itself. �

Corollary 5.7 If a CNF in n variables has an LK-refutation of size s, it has an MLK-
refutation of size nO(logn)sO(1) with sO(1) lines. If the assumption of Theorem 2.4 holds true,
then it has an MLK-refutation of size sO(1). �

We remark that the proof of Theorem 3.1 (elimination of constants) also generalizes to
MCLK -derivations from sets of constant-free sequents.

The restriction to S consisting of monotone sequents only in Theorem 5.6 is necessary,
because otherwise an MCLK -derivation of A from S might not exist at all. For example, LK
derives A = (`) from S = { ` p, ` ¬p} by

` ¬p
` p

¬-l¬p `
cut,

`

but there is no MCLK -derivation of A from S: by the subformula property, every formula
in the derivation is a subformula of a formula in A (there are none) or of a cut-formula,
and therefore it is monotone; in particular, the axiom ` ¬p cannot actually appear in the
derivation, and of course there is no derivation of ` from ` p alone. In general, nonmonotone

10

parts of sequents from S used in an MCLK -derivation have to be reflected in the end-sequent,
they cannot disappear.

Even when there is an MCLK -derivation of A from S, we cannot in general expect its
size to be related to the size of an LK -derivation. For example, let S be as above, and let A
be an arbitrary tautological sequent not involving p. There is a trivial polynomial-size LK -
derivation of A from S (namely, the one above extended by weakening). On the other hand,
an MCLK -derivation of A from S (which exists as A is tautological by itself) cannot involve
the axiom ` ¬p, and then by substituting > for p we see that without loss of generality it
does not use the axiom ` p either. Thus, in general A cannot have a (quasi)polynomial-size
MCLK -derivation from S unless MCLK is (quasi)polynomially bounded.

Leaving proof complexity aside, the reader may wonder whether there is a criterion de-
termining when an MCLK -derivation (of arbitrary size) of A from S exists. (For LK , the
answer is obvious: if and only if A follows from S in classical logic.) We can obtain one by
a straightforward adaptation of the 3-valued semantics of the cut-free sequent calculus (see
Schütte [12], Girard [6]).

Definition 5.8 A Schütte valuation is a mapping v from the set of propositional formulas to
{0, 1, ∗} (where ∗ stands for “undefined”) satisfying the following conditions for all formulas
ϕ,ψ:

• if v(¬ϕ) = 0, then v(ϕ) = 1,

• if v(¬ϕ) = 1, then v(ϕ) = 0,

• if v(ϕ ∧ ψ) = 1, then v(ϕ) = v(ψ) = 1,

• if v(ϕ ∧ ψ) = 0, then v(ϕ) = 0 or v(ψ) = 0,

• if v(ϕ ∨ ψ) = 1, then v(ϕ) = 1 or v(ψ) = 1,

• if v(ϕ ∨ ψ) = 0, then v(ϕ) = v(ψ) = 0,

• v(>) 6= 0,

• v(⊥) 6= 1.

A valuation v satisfies a sequent Γ ` ∆ unless v(ϕ) = 1 for all ϕ ∈ Γ and v(ϕ) = 0 for all
ϕ ∈ ∆. A valuation v is monotonely full if v(ϕ) 6= ∗ for every monotone formula ϕ.

It is easy to see that any Schütte valuation can be extended to a usual Boolean valuation,
hence we can think about it as follows: we take a Boolean valuation, and restrict it to a subset
of formulas which includes all monotone formulas, and includes suitable witnesses ensuring
that (defined) values of compound formulas are computed correctly. Notice also that Schütte
semantics is not truth-functional, the value of a compound formula may not be uniquely
determined by values of its components: for example, if v(ϕ) = v(ψ) = 1, then v(ϕ ∧ ψ) can
be either 1 or ∗.

Proposition 5.9 Let A be a sequent and S a set of sequents. The following are equivalent:

11

(i) There exists an MCLK-derivation of A from S.

(ii) For every monotonely full Schütte valuation v, if v satisfies all sequents in S, then it
satisfies A.

Proof (sketch): (i) → (ii): by induction on the length of the derivation. LK -rules other than
cut are sound for all Schütte valuations. Monotone cuts are sound because the valuation is
monotonely full.

(ii) → (i): Assume that A is not MCLK -derivable from S. Consider pairs X ` Y of (not
necessarily finite) sets of formulas, ordered by product of inclusions (i.e., (X ` Y) ≤ (X ′ ` Y ′)
iff X ⊆ X ′ and Y ⊆ Y ′). By Zorn’s lemma, there exists a maximal (X ` Y) ≥ A such that
no finite B ≤ (X ` Y) is MCLK -derivable from S. As X ∩ Y = ∅ due to the identity axiom,
we can define

v(ϕ) =

1, if ϕ ∈ X,
0, if ϕ ∈ Y,
∗, otherwise.

Then it is easy to see that v is a monotonely full Schütte valuation which satisfies S, but
refutes A. �

Remark 5.10 The proof did not use any special property of monotone formulas, it actu-
ally gives the following more general result: if Φ is an arbitrary set of formulas, then LK -
derivations with cut-formulas restricted to Φ are sound and complete with respect to Φ-full
Schütte valuations.

Example 5.11 There is no MCLK -derivation of p ∨ ¬q ` ¬p from S = {q ` ¬p,¬q ` ¬p}
(even though its existence does not seem to obviously violate the subformula property). To
see this, let w be the Boolean valuation such that w(p) = 1 and w(q) = 0, and let v be the
restriction of w defined only for monotone formulas, ¬p, and p∨¬q. Then v is a monotonely
full Schütte valuation satisfying S and refuting p ∨ ¬q ` ¬p.

6 Variants and problems

So far we have only worked with sequence-like (or dag-like) proofs and derivations. Alterna-
tively, we may consider tree-like derivations, where each sequent is used at most once as a
premise of a rule of inference. It is well-known that tree-like LK is polynomially equivalent to
LK (Kraj́ıček [9, 10]), but since the proof of this result heavily relies on implications and cuts,
it is not known whether it holds for MLK or MCLK as well. However, the transformation
used in the simulation of LK by MCLK preserves tree-likeness, provided that we start with
tree-like proofs of the basic properties of our threshold formulas:

Theorem 6.1 If a sequent A has an LK-derivation of size s from a set S of monotone
sequents, where S ∪ {A} use n variables, then it also has a tree-like MCLK-derivation from
S of size nO(logn)sO(1). �

12

We do not know whether we can make the number of lines in the tree-like MCLK -
derivation polynomial1 as in Theorem 5.6. Also, the assumption of Theorem 2.4 does not
seem to suffice to produce polynomial-size tree-like MCLK -derivations: the LK -proofs in the
assumption can be assumed to be tree-like, but the inductive construction of their MLK -
counterparts in [4] does not preserve tree-likeness. We would need to strengthen the assump-
tion to say that there are polynomial-size tree-like MLK -proofs of the sequents, and we have
so far no evidence supporting this stronger assumption.

An important strengthening of LK is the extension Frege (EF) system, which allows on
top of LK to use abbreviations through introduction of extension axioms of the form

q ↔ ϕ,

where q is a variable not contained in ϕ, the conclusion of the proof, or the previous part
of the proof. The actual extension axioms are not well suited for the context of monotone
sequent calculus as ↔ is a nonmonotone connective, however it is well-known that EF is
equivalent to a modification of LK which operates with Boolean circuits instead of formulas,
and in this formulation it makes perfect sense for any set of connectives, even independently
of their meaning in a particular logic.

For definiteness, we will follow the approach presented in Jeřábek [8]. Two circuits are
similar if they unwind to the same formula (note that this condition is checkable in polynomial
time, in fact, even in NL). The circuit-LK proof system operates with sequents composed of
circuits. It has a structural derivation rule which allows to replace any circuit in a sequent with
a similar circuit, and it includes the usual rules of LK (note that expressions like ϕ∧ψ in the
definition of LK -rules are ambiguous in principle when applied to circuits, but the similarity
rule ensures that all their possible readings are derivable from each other and therefore no
confusion can arise). Alternatively, we could replace (with a polynomial blow-up in size)
the similarity rule by its special case where one can only merge or unmerge two nodes with
identical inputs and labelled by the same connective.

The proof of Theorem 5.6 goes through for circuits as well as for formulas. Moreover, the
divide-and-conquer monotone formulas for threshold functions are easily seen to be imple-
mentable by polynomial-size monotone circuits, and their basic properties have polynomial-
size circuit-MLK proofs. We obtain:

Theorem 6.2 If a sequent A has a circuit-LK-derivation of size s from a set of monotone
sequents S, then it has a circuit-MCLK-derivation from S of size sO(1). �

We do not know whether we can make the circuit-MCLK -derivation tree-like. Indeed, by
the standard argument (see e.g. [10]) the size of a circuit proof is polynomially related to
the number of lines in a proof with formulas, thus this boils down to the above mentioned
problem whether tree-like MCLK can simulate LK in polynomially many lines.

1Atserias et al. [4] claim that there are tree-like proofs of Theorem 2.3 and Lemma 4.2 as well as the main

simulation (Theorem 2.2) with polynomially many lines, but this appears to be an error. For example, already

their Lemma 2 (taken in turn from [3], where neither tree-likeness nor line count is explicitly mentioned)

applied to a quasipolynomial-size formula requires quasipolynomially many lines if the proof is to be tree-like,

and the same goes for their Lemma 3.

13

Finally, since we already mentioned several open problems in this section, let us restate
here for the record the main problem: can the quasipolynomial simulations in Theorems 2.2,
4.1, and 5.6 be made polynomial, and specifically, is the assumption of Theorem 2.4 true?

7 Acknowledgements

The main results (Section 4) were independently discovered by Phuong Nguyen [11]. I would
like to thank Pavel Pudlák for useful suggestions and enlightening comments.

References

[1] Miklós Ajtai, János Komlós, and Endre Szemerédi, Sorting in c log n parallel steps, Com-
binatorica 3 (1983), no. 1, pp. 1–19.

[2] , An O(n log n) sorting network, in: Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, 1983, pp. 1–9.

[3] Albert Atserias, Nicola Galesi, and Ricard Gavaldà, Monotone proofs of the Pigeon Hole
Principle, Mathematical Logic Quarterly 47 (2001), no. 4, pp. 461–474.

[4] Albert Atserias, Nicola Galesi, and Pavel Pudlák, Monotone simulations of non-
monotone proofs, Journal of Computer and System Sciences 65 (2002), no. 4, pp. 626–638.

[5] Samuel R. Buss, Polynomial size proofs of the propositional pigeonhole principle, Journal
of Symbolic Logic 52 (1987), pp. 916–927.

[6] Jean-Yves Girard, Proof theory and logical complexity, vol. I, Bibliopolis, Naples, 1987.

[7] Emil Jeřábek, A sorting network in bounded arithmetic, Annals of Pure and Applied
Logic, accepted.

[8] , Dual weak pigeonhole principle, Boolean complexity, and derandomization,
Annals of Pure and Applied Logic 129 (2004), pp. 1–37.

[9] Jan Kraj́ıček, Lower bounds to the size of constant-depth propositional proofs, Journal of
Symbolic Logic 59 (1994), no. 1, pp. 73–86.

[10] , Bounded arithmetic, propositional logic, and complexity theory, Encyclope-
dia of Mathematics and Its Applications vol. 60, Cambridge University Press, 1995.

[11] Phuong Nguyen, personal communication.

[12] Kurt Schütte, Syntactical and semantical properties of simple type theory, Journal of
Symbolic Logic 25 (1960), no. 4, pp. 305–326.

[13] Leslie G. Valiant, Short monotone formulae for the majority function, Journal of Algo-
rithms 5 (1984), no. 3, pp. 363–366.

14

[14] Ingo Wegener, The complexity of Boolean functions, Teubner, Stuttgart, 1987.

15

