On the complexity of addition

Emil Jeřábek

Institute of Mathematics
Czech Academy of Sciences
jerabek@math.cas.cz
https://math.cas.cz/~jerabek/

Czech Gathering of Logicians
University of Ostrava, 2 June 2023

Addition algorithms

(1) Addition algorithms

2 Amortized analysis

Computational complexity of arithmetic

Time complexity of integer arithmetic operations:

- Standard computational complexity model:
- multitape Turing machines
(RAM model has + built in \Longrightarrow trivial cheat)
- integers X, Y, \ldots written in binary (or decimal)
- how many steps does it take, measured in terms of the size of input: $n=\|X\|+\|Y\|+\cdots,\|X\| \approx \log X$
- $X+Y, X-Y, X<Y$
- linear time $O(n)$
- optimal: need to read the input
- $X \cdot Y,\lfloor X / Y\rfloor$
- still not quite settled after many decades of research
- best known upper bound: $O(n \log n)$ [HvdH21]
- lower bounds?
(network coding conjecture \Longrightarrow circuit LB: $\Omega(n \log n)$ wires [ACKL19])

School-book addition algorithm

Input tape 0:
Input tape 1:

Output tape:

State:

carry 0

School-book addition algorithm

Input tape 0:
Input tape 1:

Output tape:

State:

carry 1

School-book addition algorithm

Input tape 0:
Input tape 1:

Output tape:

State:

carry 0

School-book addition algorithm

Input tape 0:
Input tape 1:

Output tape:

State:

carry 1

School-book addition algorithm

Input tape 0:
Input tape 1:

Output tape:

State:

carry 1

School-book addition algorithm

Input tape 0:
Input tape 1:

Output tape:

State:

carry 1

School-book addition algorithm

Input tape 0:
Input tape 1:

Output tape:

State:

$\cdots \square \square \square 101010110$
carry 1

School-book addition algorithm

Input tape 0:
Input tape 1:

Output tape:

State:

$\cdots \square \square 1 \mid 01001010$
halt

Sequence sum

What if we want to add more than two numbers?

SEQSum

- input: sequence of integers $\left\langle X_{i}: i<k\right\rangle$ separated with "+"
- output: $\sum_{i<k} X_{i}$

Size of input: $n=k+\sum_{i<k} n_{i}, n_{i}=\left\|X_{i}\right\|$
Question:

- What is the time complexity of SEQSUM?
- Can we do it in time $O(n)$?

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$X_{3} \quad X_{2} \quad X_{1} \quad X_{0}$
Input tape: $\quad \cdots \quad \square \mid$ Y

State:
carry 0

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$$
X_{3} \quad X_{2} \quad X_{1} \quad X_{0}
$$

Input tape: $\quad \cdots \quad \square \mid$

Output tape: $\quad \cdots$| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

State:
carry 0

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$X_{3} \quad X_{2} \quad X_{1} \quad X_{0}$

Y

Output tape: $\quad \cdots$| | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

State:
carry 0

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$X_{3} \quad X_{2} \quad X_{1} \quad X_{0}$

Y

Output tape: $\quad \cdots$| | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

State:
carry 0

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$X_{3} \quad X_{2} \quad X_{1} \quad X_{0}$

Y

Output tape: $\quad \cdots$| | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | 1 | 1 | 0 | 0 | | | |

State:
carry 0

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$X_{3} \quad X_{2} \quad X_{1} \quad X_{0}$

Y

Output tape: $\quad \cdots$

State:
rewind

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$X_{3} \quad X_{2} \quad X_{1} \quad X_{0}$

Y

Output tape: $\quad \cdots$| | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 1 | 1 | 0 | 0 | | | | |

State:
rewind

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$X_{3} \quad X_{2} \quad X_{1} \quad X_{0}$

Y

Output tape: $\quad \cdots$| | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 1 | 1 | 0 | 0 | | | | |

State:
rewind

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$X_{3} \quad X_{2} \quad X_{1} \quad X_{0}$
Input tape: $\quad \cdots \quad \square \mid$
Y

Output tape: $\quad \cdots$| | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 1 | 1 | 1 | 0 | 0 | | | | | |

State:
rewind

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$\begin{array}{llll}X_{3} & X_{2} & X_{1} & X_{0}\end{array}$
Input tape: $\quad \cdots \square \square||1| 0| 1|+|1| 1| 0|+|1|+|1| 1| 0 \mid 0$
Y

State:
carry 0

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$\begin{array}{llll}X_{3} & X_{2} & X_{1} & X_{0}\end{array}$

Y
Output tape: $\left.\quad \cdots \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline & & & & & & & & & & & & 1\end{array}\right)$
State:
carry 0

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$\begin{array}{llll}X_{3} & X_{2} & X_{1} & X_{0}\end{array}$
Input tape: $\quad \cdots \quad \square \mid$
Y

Output tape: $\quad \cdots$

State:
rewind

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$\begin{array}{llll}X_{3} & X_{2} & X_{1} & X_{0}\end{array}$
Input tape: $\quad \cdots \square \square||1| 0| 1|+|1| 1| 0|+|1|+|1| 1| 0 \mid 0$
Y

State:
carry 0

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$X_{3} \quad X_{2} \quad X_{1} \quad X_{0}$
Input tape: $\quad \cdots \quad \square \mid$
Y

Output tape: \cdots| | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

State:
carry 0

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$X_{3} \quad X_{2} \quad X_{1} \quad X_{0}$
Input tape: $\quad \cdots \quad \square \mid$
Y

Output tape: $\quad \cdots$| | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

State:
carry 0

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$$
\begin{array}{llll}
X_{3} & X_{2} & X_{1} & X_{0}
\end{array}
$$

Input tape: $\quad \cdots \square|||1| 0| 1|+|1| 1|0|+|1|+|1| 1|0| 0$
Y

State:
carry 1

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$$
\begin{array}{llll}
X_{3} & X_{2} & X_{1} & X_{0}
\end{array}
$$

Input tape: $\quad \cdots \square \square||1| 0| 1|+|1| 1| 0|+|1|+|1| 1| 0 \mid 0$
Y

State:
carry 1

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$\begin{array}{llll}X_{3} & X_{2} & X_{1} & X_{0}\end{array}$

Y

Output tape: $\quad \cdots$

State:
rewind

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$\begin{array}{llll}X_{3} & X_{2} & X_{1} & X_{0}\end{array}$
Input tape: $\quad \cdots \square \square||1| 0| 1|+|1| 1| 0|+|1|+|1| 1| 0 \mid 0$
Y

State:
rewind

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$\begin{array}{llll}X_{3} & X_{2} & X_{1} & X_{0}\end{array}$

Y

Output tape: $\quad \cdots$

State:
rewind

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$\begin{array}{llll}X_{3} & X_{2} & X_{1} & X_{0}\end{array}$
Input tape: $\quad \cdots \quad \square \mid$
Y

State:
rewind

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$\begin{array}{llll}X_{3} & X_{2} & X_{1} & X_{0}\end{array}$
Input tape: $\quad \cdots \square \square||1| 0| 1|+|1| 1| 0|+|1|+|1| 1| 0 \mid 0$
Y

State:
carry 0

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$$
\begin{array}{llll}
X_{3} & X_{2} & X_{1} & X_{0}
\end{array}
$$

Input tape: $\quad \cdots \square|||1| 0| 1|+|1| 1|0|+|1|+|1| 1|0| 0$
Y

State:
carry 1

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$\begin{array}{llll}X_{3} & X_{2} & X_{1} & X_{0}\end{array}$

Y

Output tape: $\left.\cdots$| | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | \right\rvert\,

State:
carry 1

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$X_{3} \quad X_{2} \quad X_{1} \quad X_{0}$

Y

Output tape: \cdots

State:
carry 1

Simple SeqSum algorithm

Use one tape as an accumulator Y :

$$
Y \leftarrow 0
$$

for $i<k$ do:

$$
Y \leftarrow Y+X_{i}
$$

$\begin{array}{llll}X_{3} & X_{2} & X_{1} \quad X_{0}\end{array}$

Y

Output tape: \cdots

State:
halt

Time complexity analysis

The content of Y before adding $X_{i}: Y_{i}=\sum_{j<i} X_{j}, m_{i}=\left\|Y_{i}\right\|$
$Y \leftarrow Y+X_{i}$ takes time $O\left(n_{i}+m_{i}\right) \subseteq O(n)$ as $m_{i} \leq n$
\Longrightarrow total time: $O(n k) \subseteq O\left(n^{2}\right)$

- even if $n_{i}<m_{i}, Y \leftarrow Y+X_{i}$ may take time up to $\approx m_{i}$ due to carry propagation
- we may have $m_{i}=\Omega(n)$ for all $i>0$, and $k=\Omega(n)$: take huge X_{0} and constant-size $x_{1}, \ldots, x_{k-1}, k \approx\left\|X_{0}\right\|$

The complexity of SEQSUM

SEQSum is computable in time $O\left(n^{2}\right)$
Question: Can we do better?

The complexity of SEQSUM

SEQSum is computable in time $O\left(n^{2}\right)$
Question: Can we do better?

Answer:

- Yes, we can! SeqSum is computable in time $O(n)$
- We don't even need a better algorithm: we just need a better analysis!

Amortized analysis

1) Addition algorithms

(2) Amortized analysis

Amortized complexity

Identified as a concept and named by [Tar85]

- If an operation is used many times in an algorithm, it may happen that its average (amortized) cost is smaller than its maximal cost
- NOT average-case analysis: still worst-case wrt the input!
- Typical use case: data structures
- Example: stack implemented by an array
- when capacity exhausted, reallocate double size and copy
- algorithm performs n stack operations (push, pop) \Longrightarrow each operation may cost up to $O(n)$ steps
- but: the average cost is only $O(1)$! total cost of reallocations is $O\left(n+\frac{n}{2}+\frac{n}{4}+\cdots\right)=O(n)$
- Basic strategies: aggregate analysis, accounting method, potential method

Binary counter

Basic example (see e.g. [CLRS22]): 0
Counter 1
10

- holds an integer in binary 11
- starts with 0 , performs n increments 100
$0 \rightarrow 1 \rightarrow \cdots \rightarrow n$ 101110
Cost of an increment: 111- maximal $O(\log n)$: carry propagation 1000
1001
- amortized $O(1)$ 101010111100

Binary counter

Basic example (see e.g. [CLRS22]):
Counter

- holds an integer in binary
- starts with 0 , performs n increments
$0 \rightarrow 1 \rightarrow \cdots \rightarrow n$
Cost of an increment:
- maximal $O(\log n)$: carry propagation
- amortized $O(1)$: aggregate analysis
updates: $n \times$ position $0, \frac{n}{2} \times$ pos. $1, \frac{n}{4} \times$ pos. $2, \ldots$
\Longrightarrow total cost $n+\frac{n}{2}+\frac{n}{4}+\frac{n}{8}+\cdots<2 n$

Increments \rightarrow sums?

Counter \approx accumulator SEQSUM algorithm for $1+1+\cdots+1$
Can we generalize the amortized analysis to the full algorithm?

- direct aggregate analysis not easy
- accounting method:
- pay the cost of excess carries from "credits" saved earlier
- potential method:
- define "potential energy" of TM configurations
- changes of the potential account for work on carries

Improved analysis of SEQSUM

Recall: input $\left\langle X_{i}: i<k\right\rangle, n_{i}=\left\|X_{i}\right\|, n=k+\sum_{i<k} n_{i}$
The cost of one addition $Y \leftarrow Y+X_{i}$:
X_{i} :

old Y :

	1	1	0	0	1	1	1	0	1	1	0

new Y :

- regular costs: $n_{i}+1 \Longrightarrow$ total: $k+\sum_{i<k} n_{i}=n$
- paid from credit: carries $1 \rightarrow 0$
- the " 1 " got there by a regular change $0 \rightarrow 1$ earlier!
\Longrightarrow cover all credits by charging regular costs twice
- grand total: $2 n \quad$ (actually $4 n$ due to rewinds)

Potential method

Potential function $\Phi=$ the number of 1 s in Y
$\Phi_{i}=$ the value of Φ before the addition $Y \leftarrow Y+X_{i}$
By the same argument: the cost of $Y \leftarrow Y+X_{i}$ is at most

$$
2\left(n_{i}+1\right)+\Phi_{i}-\Phi_{i+1}
$$

Since $\Phi_{0}=0$ and $\Phi_{k} \geq 0$, the total cost is at most

$$
\sum_{i<k}\left(2\left(n_{i}+1\right)+\Phi_{i}-\Phi_{i+1}\right)=2\left(k+\sum_{i<k} n_{i}\right)+\Phi_{0}-\Phi_{k} \leq 2 n
$$

Summary

Computational complexity of $\sum_{i<k} X_{i}$:

- the obvious algorithm appears to require time $O\left(n^{2}\right)$ on the first sight
- it actually runs in time $4 n$
- extension of a common example in amortized complexity
- seems to be missing in standard literature, even though it is a fundamental algorithmic problem

References

- P. Afshani, C. B. Freksen, L. Kamma, K. G. Larsen: Lower bounds for multiplication via network coding, ICALP 2019, LIPIcs 132 (2019), 10:1-12
- T.H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: Introduction to algorithms, MIT Press, 2022 (4th ed.)
- D. Harvey, J. van der Hoeven: Integer multiplication in time $O(n \log n)$, Ann. of Math. 193 (2021), 563-617
- E. Jeřábek: Can we do integer addition in linear time?, Theoretical Computer Science Stack Exchange, https://cstheory.stackexchange.com/q/52391
- R. E. Tarjan: Amortized computational complexity, SIAM J. Algebraic Discrete Methods 6 (1985), 306-318

